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Accurate Range Query with Privacy Preservation
for Outsourced Location-Based Service in IoT

Zhaoman Liu, Lei Wu, Weizhi Meng, Senior Member, IEEE, Hao Wang and Wei Wang

Abstract—With the maturity of Internet of Things technology,
location-based service (LBS) is developing rapidly in intelligent
terminal devices, and it brings new vitality to the fields of
logistics, transportation, product traceability and so on. The
popularity of LBS produces a lot of spatial data, which inevitably
brings burden to the storage and management of LBS provider
(LBSP). With the help of cloud computing and cloud storage,
outsourcing spatial data to cloud server has become a new
trend. However, due to the cloud server is not trusted, data
outsourcing will face the problems of data disclosure and query
disclosure. Range query is a common query in LBS, considering
the situation of data outsourcing, this paper proposes an accurate
range query (ARQ) scheme, which can realize efficient range
query while preserving LBSP’s data privacy and user’s query
privacy from being disclosed to the cloud server. The ARQ scheme
issuitable for spatial data in any form without being limited to
the case that the data points are only integers, which has a
certain practical significance. In addition, by dividing the region
into atomic regions, ARQ can realize sub-linear search time and
ensure dynamic update of spatial data. We proved the security of
the proposed scheme through security analysis, and demonstrated
the effectiveness of the scheme through experiments.

Index Terms—IoT, LBS, Range query, Privacy preservation,
Data outsourcing, Hilbert curve, SSW.

I. INTRODUCTION

W ITH the continuous development of the Internet of
Things, location-based services (LBS) also usher in

huge development opportunities. The emergence of low-power
wide-area network (LPWAN) makes it possible for wearable
devices and urban infrastructure to access the network, and
LBS will follow the access of devices to cover the whole
network. A growing number of mobile devices have precise
GPS positioning function, which makes LBS increasingly
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popular and becomes one of the most promising services in
the minds of mobile users. The successful operation of LBS
relies on a large amount of spatial data, which is not only
used in LBS, but also widely used in computational geometry,
medical imaging, earth science, etc. Although LBS brings
convenience to the user’s life, it also poses a threat to the user’s
personal safety and property safety. It is well known that the
user needs to provide their location when enjoying location-
based services, however, their location may involve other
sensitive information, such as home address, living habits,
health status and social relations. Therefore, how to obtain
location-based services while protecting the user’s location
privacy has attracted extensive attention from the society.

Along with the development of cloud storage and cloud
computing technology, more and more location-based service
companies tend to store spatial databases on the cloud. For
example, Yelp and Foursquare rely on public clouds (such
as Amazon Web Services, AWS) to manage their spatial data
sets and process queries, which makes the interaction between
users and cloud server replace the interaction between users
and LBSP, thus reducing the storage and management burden
of LBS companies. Although cloud services bring convenience
to LBS companies, outsourcing data may cause data leakage
since cloud servers are generally honest but curious. At the
same time, as user directly sends their query requests to cloud
server, it will inevitably lead to the disclosure of user’s query
privacy. Data privacy and query privacy can be preserved by
encrypting data sets and queries, but this makes it difficult for
cloud server to search and match. Therefore, under the premise
of preserving LBSP’s data privacy and the user’s query privacy,
how to make the cloud server provide effective service for the
user has become an urgent problem to be solved.

Range query is the basic query in LBS. For example, in
the application of peripheral recommendation, when the user
queries LBSP for banks within 1 km, the service provider
will provide the user with near to far candidates according to
the distance between the user and surrounding banks. In the
interaction between the user and LBSP, if the user’s location
and query content are known by lawbreakers, it will pose a
threat to the user’s personal safety and property safety. In a
range query, the position is viewed as a data point in Euclidean
space, and the query is described as a geometric object, such
as a circle, rectangle, or arbitrary polygon. Among them, the
purpose of circular range query is to find the data points
located in the circular range, which has been widely used in
geographic information system, computational geometry and
computational aided design.

Searchable encryption (SE) schemes can assist in the search
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of outsourced encrypted data, meaning that the cloud server
can search without knowing the data or the query content.
Most existing SE schemes are suitable for keyword query but
not for range query based on spatial data. Unlike keyword
query that requires equality testing, range query based on
spatial data requires compute-compare operations, such as
circular range query needs to calculate the distance from
the data point to the center of the circle and then compare
the distance to the radius. The existing cryptographic primi-
tives are inefficient in distance computation and comparison
of ciphertext, which makes the design of SE schemes that
support range queries more challenging. More specifically,
Pseudo-Random Function (PRF) [1] can only support equality
testing; Order-Preserving Encryption (OPE) [2] only supports
comparison; Partial Homomorphic Encryption (PHE) can only
calculate addition (such as Pailliar encryption [3]) or multi-
plication (such as Elgamal encryption [4]). In principle, Full
Homomorphic Encryption (FHE) [5] can calculate addition
and multiplication on ciphertext, but its efficiency is relatively
low, and the calculation of encrypted data with FHE cannot
directly expose the search results, that is, it cannot directly
make clear that the data points are inside or outside the query
range, which limits its use in search.

In this paper, we propose a range query scheme (ARQ).
According to the user’s query range, it can accurately retrieve
the encrypted spatial data without disclosing LBSP’s data
privacy and the user’s query privacy to the cloud server.
Compared with our previous scheme [6], this scheme can
realize accurate range query. Compared with scheme [7], this
scheme requires less storage space when constructing data
points.

The main work and contributions of this paper are as
follows:

(1) We transform spatial data and query range into location
vectors and a set of query vectors respectively. Instead of per-
forming ”calculate-compare” operations on encrypted spatial
data and query range, the symmetric SSW algorithm [8] is
adopted to encrypt the location vector and query vector, and
further judge the relationship between spatial data and query
range confidentially, which avoids the complex calculations in
homomorphic encryption.

(2) We divide the region into atomic regions by Hilbert
curve, and index the spatial data within the same atomic
region, which enables our scheme to achieve sublinear search
time and is suitable for query on large-scale datasets.

(3) We design a vector construction method, in which the
length of the vector is related to the atomic region’s edge
length, and the value of the vector is related to the spatial
data’s relative position in the atomic region. This construction
enables our scheme to support query on arbitrary data without
limiting to integers, which is more in line with the practical
application scenario. In addition, the idea of transforming the
query range into a vector set enables us to extend the query
range to any shape, not just a circular range.

(4) We formalize the definition of the leakage function of
the scheme, and rigorously prove the data privacy and query
privacy with indistinguishability under selective chosen plain-
text attacks (IND-SCPA). We evaluate ARQ and demonstrate

that ARQ is efficient on real-world spatial data sets.
The rest of the paper is organized as follows. Section 2

introduces the relevant work on privacy preservation in range
query and nearest neighbour query. Section 3 introduces the
background knowledge used in this paper. Section 4 describes
the system model and data storage model, as well as the
query model and potential threat model of the system in detail.
Section 5 describes the scheme of this paper. Section 6 and
Section 7 respectively analyse the security and efficiency of
the scheme from the theoretical and experimental perspectives.
Finally, Section 8 summarizes the the whole scheme and
prospects the future work.

II. RELATED WORK

In this part, we summarize the privacy preservation schemes
for range query and nearest neighbour query in LBS, and
make a detailed comparison between the proposed scheme
in this paper and the previous schemes for range query
from the perspectives of cryptography primitives, security and
efficiency, which is shown in Table I.

A. Range query with privacy preservation

At present, Some related works have studied the range query
of encrypted data. According to the different query shapes,
they can be roughly divided into rectangular, circular and
arbitrary shape range query.

Rectangle range query needs to retrieve all data points
within the rectangle range. The multi-dimensional range
searchable encryption schemes [9, 10] essentially provide a
solution that supports the search of rectangular range. Specif-
ically, Boneh et al. [9] and Shi et al. [11] designed a public
key scheme that can process rectangular range queries with
linear search time. By using the tree structure, such as R-tree
[12, 13] or kd-tree [14], the schemes [10, 12–14] can perform
the rectangular range query in a faster time than the linear
search. However, these solutions do not support circular range
queries on encrypted spatial data.

Circular range query retrieves all data points within the
circular range. By using a set of concentric circles, Wang et al.
[15] proposed a scheme that could retrieve data points within
the circular range from the encrypted data. Zhu et al. [16] also
established a circular range query scheme for encrypted spatial
data. However, these two schemes only apply to the circular
range and cannot be applied to other geometric shapes.

Wang et al. [17] proposed the first work on query of
generalized geometric range. The main idea of the scheme is to
transform various geometric queries into the same form: a set
of query points. Then they proposed a generalized geometric
range query based on Bloom Filter [18] and predicate encryp-
tion [8]. The scheme in [7] improves the search complexity
by designing a new form of equal-vector [17]. However,
these scenarios require enumerating all the data points in a
given geometry object and using time-consuming predicate
encryption as the building block. Therefore, these schemes
are not suitable for processing large-scale dataset. Luo et al.
[19] proposed a generalized geometric range query scheme
for encrypted datasets based on ASPE [20] and geometric
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transformation [21] by replacing the geometric range with its
circumscribed polygon. Compared with the existing literature
[7, 10, 17], their scheme can conduct generalized geometric
range query on the encrypted dataset and achieve practical
efficiency at the same time. In addition, their scheme claims to
be able to resist attacks under a known background model. Li
et al. [22] studied the security of Luo’s scheme [19], proposed
an attack method and showed that Luo’s scheme could be
quickly destroyed under the known background model. At
the same time, Li et al. [22] proposed a new geometric
range search scheme, which can solve the security defects of
Luo’s scheme [19] and is secure under the known background
model. In addition, they improved the efficiency of geometric
range search to the sub-linear order by using the R-tree index
structure.

B. Nearest neighbor or K nearest neighbor query with privacy
preservation

Nearest neighbor (NN) or K nearest neighbor (KNN) query
refers to the retrieval of one or k data points nearest to
the query point according to Euclidean distance. [20] first
studied the NN query or KNN query for encrypted data,
which can realize the search in linear time but is vulnerable
to the attack of the chosen plaintext. The recent schemes
[23–26] improved Wong’s scheme [20], making the nearest
neighbor query on the encrypted data more secure and effi-
cient. Subsequent researches then focused on improving query
efficiency by using data structures [27] or minimizing client-
server interactions [28]. Scheme [29, 30] enables the user to
receive the most relevant results from the encrypted dataset
according to the predefined correlation scoring function; Yang
et al. [31] further proposed a secure ranking scheme using
Paillier [3] encryption, which can support multiple users and
any language; The scheme proposed by Akavia et al. [32] can
use full homomorphic encryption to retrieve the first matching
record.

C. Spatial data queries between two parties
It is necessary to consider secure interactions between users

or between user and LBSP because the third-party servers
(such as the cloud server) are often not trusted in real life.
Schemes [33–35] realized the calculation and comparison of
the distance between the two parties (Alice and Bob) by
using the secure two-parties computation. Among them, Alice
has the confidential spatial data and Bob has the confidential
query range. Alice and Bob can use Secure Multiple-party
Computation (SMC) to determine whether the spatial data is
within the query range or not without disclosing their privacy,
which inevitably introduces multiple rounds of interaction
between the two parties. In addition, using Garble Circuit [36]
to perform addition, multiplication and comparison on cipher-
texts also makes range query possible, but like homomorphic
encryption, Garble Circuit will cause higher computational and
communication complexity.

D. Location privacy preservation in Internet of things
Although location privacy preservation in the Internet of

things has been studied in recent years, there are still many

problems to be solved. First of all, researchers have proposed
a lot of general privacy preservation mechanisms, but on the
whole, less consideration is given to the actual application
scenarios, and the practicability is poor. Among them, the
more mature application scenario is the Internet of vehicles.
Literatures [37, 38] studied the privacy leakage of vehicles and
users in ride matching, and proposed a shared ride matching
scheme to protect location privacy.

In addition, through big data and other related technologies,
attackers can obtain the user’s location from a variety of
channels, and infer the user’s privacy through data mining
and other means. In this context, to encrypt database has
become a very promising direction [39, 40], which provides
data confidentiality and performs queries on encrypted data
without sacrificing functions.

III. PRELIMINARIES

This section provides a brief overview of the encryption
techniques used in the proposed solution.

A. Hilbert Curve

The space filling curve can map unordered data in the
high-dimensional space to the one-dimensional space, through
which the adjacent objects in the space will be stored in the
adjacent one-dimensional space, which can not only reduce the
time of input and output, but also improve the efficiency of
data processing in memory. According to the characteristics of
filling curve, the Hilbert curve can run through each discrete
unit of two-dimensional space or higher dimensional space
linearly once and only once, and conduct linear ordering and
coding for each discrete unit, which serves as the unique
identifier for the unit. The Hilbert curve specifies the order
of points in a two-dimensional plane. At the root level, once
a direction and a starting point are selected, the order of
quadrants can be determined by surrounding four quadrants
and numbering them from 0 to 3. When we want to determine
the order of access to the sub-quadrants and maintain the
overall adjacency property, we need to perform a simple
transformation to the original curve. For a given quadrant,
the curve we draw in it is determined by the curve above
it and the position of that quadrant. As shown in Fig. 1,
four transformations of the current layer can be determined
according to the direction of the curve of the previous layer.

0 1

23

1

0

2

3

32

1 0

30

1 2

Fig. 1. Four transformations of Hilbert Curve

B. Shen-Shi-Waters Encryption

Shen, Shi and Waters (SSW) designed a symmetric key
predicate encryption scheme that supports the inner product
query, which can calculate whether the inner product of two
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TABLE I
COMPARISON OF SCHEMES ON RANGE QUERY WITH PRIVACY PRESERVATION

Range Scheme Methods Security Efficiency Defect

rectangular

[10] Asymmetric Hidden Vector
Encryption

Ensure single dimen-
sional privacy and se-
lective security

Faster than linear Query privacy is not guaran-
teed

[12] Asymmetric Scalar-Product
Preserving Encryption

Resist known-plaintext
attack and ordering in-
formation leakage

Faster than linear Lack of formal security defini-
tion

[13] Symmetric-key SSW
Ensure single dimen-
sional privacy and se-
lective security

Faster than linear Cannot extend to range queries
against other shapes

[14] Symmetric-key range predicate
encryption

Resist chosen-plaintext
attack Logarithmic-time Single-dimensional privacy is

not guaranteed

circle [15] Symmetric-key SSW Resist chosen-plaintext
attack

Linearly related to
the query radius

Spatial data and query radius
are limited to integers

[16] Improved homomorphic en-
cryption

Ensure data privacy
and query privacy Faster than linear Cannot extend to range queries

against other shapes

Any shape
[17] Symmetric-key SSW Ensure data privacy

and query privacy
Sublinear and re-
lated to dataset size

Cannot apply to large scale
dataset

[19] Asymmetric Scalar-Product
Preserving Encryption

Resist attacks under
a known background
model

Sublinear The matching result is not ac-
curate enough

Ours Symmetric-key SSW Ensure data privacy
and query privacy Sublinear Cannot resist collusion attacks

vectors is 0 without disclosing the privacy. Specifically, given
two vectors ~u = (u1, u2, . . . , uα) and ~v = (v1, v2, . . . , vα),
SSW generates ciphertext [~u] of vector ~u and ciphertext [~v]
of vector ~v. On the premise of not disclosing ~u and ~v, the
calculation of [~u] and [~v] indicates whether the inner product
of ~u and ~v is 0, namely{

if 〈~u,~v〉 = 0, SSW.Query([~u], [~v]) = 1

otherwise, P r[SSW.Query([~u], [~v]) = 0] ≥ 1− negl(λ),

where 〈~u,~v〉 =
∑α
i=1 ui · vi is the inner product of two

vectors. In addition to protecting data privacy, SSW can also
protect query privacy. The security of SSW is proved to
be indistinguishable under selective chosen-plaintext attack.
Detailed security analysis of SSW can be found in [8]. The
algorithm of SSW is briefly introduced as follows:

Setup(1λ): Given the security parameter λ, output the secret
key sk;

Enc(sk, ~u): Given the secret key sk and the vector ~u, where
~u = (u1, u2, . . . , uα), output the ciphertext [~u];

GenToken(sk,~v): Given the secret key sk and the vector ~v,
where ~v = (v1, v2, . . . , vα), output the token [~v];

Query([~u], [~v]): Given the ciphertext [~u] and the token [~v],
if 〈~u,~v〉 = 0, output 1 and output 0 otherwise.

The encryption time and token generation time of SSW are
both O(α), and the size of ciphertext and token are both O(α),
where α is the vector length.

IV. SYSTEM AND THREAT MODELS

A. System Model

As shown in Fig. 2, the system is composed of user, LBSP
and cloud server provider (CSP). The user generates encrypted
request of range query and sends it to CSP; LBSP stores
location information of intelligent terminal devices, processes
spatial dataset and sends the encrypted data information to
the CSP; CSP retrieves the encrypted dataset according to

the user’s encrypted request, re-encrypts the spatial data that
satisfies the query request, and returns the re-encrypted dataset
to user, finally the user decrypts and obtains spatial data within
the query range.

The system can be divided into initialization phase and
query processing phase. In the initialization phase, LBSP uses
the Hilbert curve to further divide the region into atomic
regions and generates the key required for the query phase.
When a user registers with LBSP, LBSP generates public
and private keys for encrypting and decrypting the regional
partition mode and generates key for re-encrypting spatial data,
and sends the above keys with the key for encrypting the query
range together to the user via a secure channel. In the query
processing phase, LBSP constructs vector for spatial data and
builds index for the spatial dataset within the same atomic
region. After that, LBSP sends encrypted indexes to CSP. Once
the user generates a query request, it firstly requests the atomic
region coding of the region to LBSP, then LBSP encrypts the
regional partition mode with the user’s public key and sends
the encrypted mode to the user. After decryption, the user
selects atomic regions that need to query and constructs a set
of query vectors, both of which represent the query range.
The query range is encrypted and sent to CSP together with
re-encrypted key. CSP matches the encrypted query with the
encrypted index and re-encrypts the spatial data that meets the
query range to the user. At last, the user decrypts and obtains
the spatial data within the circular range.

B. Storage Model

1) Region division: This paper considers dividing the re-
gion on the basis of ”country-province-city-region”. Under
such circumstance, LBSP uses Hilbert curve to further divide
the region into atomic regions, which are viewed as the
basic unit to store and manage spatial data. LBSP presets
the threshold d so that the side length of the divided atomic
region is not greater than d. Due to the monotonicity of Hilbert
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Fig. 2. System model for outsourced range query

curve, it is difficult to reveal the specific region that the coding
represents without knowing the generating rule of curve. The
region division by Hilbert curve with different orders is shown
in Fig. 3.
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Fig. 3. Region division by Hilbert Curve with different order

2) Storage structure: For any spatial data, it consists of
the following parts: (1) the region name R, (2) the atomic
region coding AR, (3) data number N, (4) location vector ~v
and (5) spatial data D. The region name refers to the area
where the spatial data is located. Location vector represents
the coordinate information of spatial data in the form of vector,
which is used to compare with the query vector. Due to
the privacy of spatial data, LBSP processes atomiic region
coding, location vector and spatial data by encryption. The
storage structure of spatial data is shown in Fig. 4. After
transforming spatial data, LBSP will logically connect spatial
data distributed in the same atomic region to form a linked
list.

R AR N v Dv

Region
Atomic 

Region

Location

Number

Location 

Vector

Location 

Data

Fig. 4. The storage structure of spatial data

C. Query Model

The query request generated by user includes the following
parts: (1) the region name R, (2) a set of atomic regions CR1,
(3) a set of atomic regions CR2 and (4) query vector set {~u}

for every atomic region in CR2. Among them, CR1 refers to
the atomic regions that are in the query range, CR2 refers to
the atomic regions that are intersecting with the query range,
and {~u} represents the data points in the form of vector which
are in CR2 and query range simultaneously. The user requires
cloud server to return all the spatial data in CR1 and return
the spatial data whose query result is 1 in CR2. In order to
protect user’s query privacy, it is necessary to encrypt the
atomic region sets and query vectors before the user sends a
request to CSP. As shown in Fig.5, in the scenario of using the
third-order Hilbert curve to divide the region, the user requests
range query at point O, and the query radius is expressed by
r. In this case CR1={10, 11, 28, 29, 30, 31, 32}, CR2={8, 9,
12, 17, 18, 24, 27, 33, 34, 35, 36, 53, 54}.

O
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Fig. 5. The storage structure of spatial data

D. Threat Model

Our threat model is basically consistent with other work in
this area. CSP and LBSP are perceived as honest but curious,
that is, they will abide by the agreement honestly, but they
also want to analyze and infer the private information of other
entities from the obtained data. Specifically, according to the
user’s request, LBSP will respond honestly to atomic region
coding but also tries to infer the user’s query range. In addition,
CSP will honestly match the query initiated by the user. At
the same time, it also wants to infer the user’s query range and
information of spatial data according to the content requested
by the user as well as the encrypted data sent by LBSP. This
paper assumes that there is no collusion between LBSP and
CSP in the query process. Based on what the cloud server has
learned, we summarize the two threat models as follows.

1) Known ciphertext model: This threat model refers to
ciphertext-only attack. CSP obtains encrypted atomic region
encoding and encrypted query vectors from the user, and
obtains encrypted location vectors and encrypted dataset from
the LBSP. According to the above encrypted information,
CSP may attempt to deduce about the user’s location and the
concrete location of spatial data.

2) Known background model: CSP can record and analyze
queries since user may continuously send requests for range
queries. If CSP learns any valuable information from the
recorded query, it may deduce the user’s approximate location
and trajectory. In addition, it is possible for CSP to analyze the
construction of Hilbert curve through the atomic region sets
submitted by the user, and then infer the user’s location. CSP
stores the location vector sent by LBSP and performs query
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matching operations together with the query vectors sent by
user. Based on these operations, CSP may try to link the query
range with the retrieved data.

V. A CONCRETE CONSTRUCTION OF ACCURATE RANGE
QUERY SCHEME

The scheme designed in this paper includes LBSP, CSP and
user. The whole scheme can be divided into the following
phases: (1) initialization phase, (2) index generation phase,
(3) database encryption phase, (4) query generation phase, (5)
token generation phase, (6) matching and re-encryption phase,
and (7) decryption phase. Each phase is described in detail
next.

A. Initialization

This phase is performed by LBSP. LBSP uses Hilbert curve
to divide the region into atomic regions, each of which is
encoded by a unique identifier. Select a random number k1 as
the key of hash function H to encrypt the Hilbert curve coding.
At the same time, LBSP calculates the symmetric key k, which
is used to encrypt the location vector and query vectors. Let
G be a group generator algorithm. LBSP calls G(1λ) to obtain
(p, q, r, s,G,GT , e), where p, q, r, s are random prime number
and G = Gp×Gq×Gr×Gs is a N-order composite group (N
= pqrs), and then LBSP selects generators gp, gq , gr, gs from
group Gp, Gq , Gr, Gs respectively. For i = 1 to ω, LBSP
selects h1,i, h2,i, u1,i, u2,i ∈ Gp uniformly and randomly,
where ω is the length of vector, and calculates symmetric key

k = (gp, gq, gr, gs, {h1,i, h2,i, u1,i, u2,i}ωi=1) .

In addition, LBSP generates public key and private key (pkp,
skp) for encrypting and decrypting spatial data.

When a user ui registers with LBSP, LBSP generates
identity idi and key pair (pki, ski) for the user, in which the
key pair is used to secretly interact the regional division mode
with LBSP. At the same time, LBSP uses its private key skp
and user’s public key pki to generate the re-encryption key
rkp→i, which is used to re-encrypt the spatial data. Finally,
LBSP sends param = (idi, pki, ski, rkp→i, sk) to the user
through the secure channel, where sk = {k1, k}.

B. Index Generation

This phase is performed by LBSP. Given a spatial dataset
DB, which includes the location information of intelligent
terminal devices, LBSP needs to process the spatial data before
outsourcing it to CSP. As shown in Fig. 4, each spatial data
should contain information such as the region R that it belongs
to, the atomic region AR that it belongs to, data number N,
location vector ~v and data content D, where location vector
is used to determine whether the spatial data falls within the
user’s query range, and data content D = (x, y) indicates the
specific location of spatial data.

When constructing the location vector, LBSP needs to
determine the length of the vector according to the actual
application. Instead of the real position (x, y) of data point
D, we use its relative position (xH , yH ) in the atomic region

Algorithm 1 IndexGen(DB)→ Γ

1: Γ←null
2: {AR1, AR2, · · · , ARm} ←Hilbert(R)
3: for i← 1, 2, · · · ,m do
4: Γi ← Linklist.Init()
5: Γi ← Linklist.Append(Γi, R,ARi)
6: for j ← 1, 2, · · · , |ARi| do
7: ~vj ← {0, 1}ω
8: Γij ← (j, ~vj , Dj)
9: Γi ← Linklist.Append(Γi,Γij)

10: end for
11: Γ← Γ ∪ {Γi}
12: end for
13: return Γ

to represent the location vector, which obviously shortens the
vector length and ensures the unification of the vector length
in different atomic regions, thus avoiding the inference attack
caused by the different vector length. Suppose the edge length
of atomic region is an integer d, and the data points keep
l decimal places in each dimension, then the space size of
each dimension in the atomic region is [0, 10ld), and the x-
value and y-value can be represented by dl log2 10 + log2 de
bits. Among them, The side length d of the atomic region is
inversely proportional to the order N and directly proportional
to the length S of the region, which can be expressed as
d = S/2N . We use ω = 2dl log2 10 + log2 de + 1 bits to
represent the location vector, and the last bit is the verification
bit whose value is fixed to 1, which is used to check whether
the location vector matches the query vector. For ease of
understanding, Fig. 6 describes the distribution of data points
with one decimal place in the atomic region with d = 1 and
the form of location vector. According to our construction
rule, data points need to be represented by 9 bits, and each
dimension occupies 4 bits. The above construction method
takes into account the fact that the value of data points in
practical application is not completely integer. Through this
construction method, our scheme can query any data points in
a query range.

LBSP regards the atomic region as the basic unit of data
storage and management. It links the spatial data distributed in
the same atomic region into a linked list and considers it as an
element of region R, and finally the spatial data in region R will
form an index Γ as shown in Fig. 7. The algorithm description
of this stage is shown in algorithm 1, where m represents the
number of atomic regions formed after the region R is divided,
and |ARi| represents the number of spatial data contained in
the atomic region ARi.

C. Database Encryption

This phase is performed by LBSP. Since the location of
terminal device is confidential information of LBSP, in order to
protect data’s privacy, LBSP needs to further encrypt the index
Γ. Specifically, LBSP will encrypt the atomic region coding,
location vector and data content in the index. Firstly, HAR ←
H(k1, AR) is obtained by hashing the coding AR of the atomic
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region with key k1. Then, the encrypted location vector [~v] is
calculated. For location vector ~v ∈ {0, 1}ω , LBSP randomly
selects a, b, α, β ∈ ZN , S1, S2 ∈ Gs, R1,i, R2,i ∈ Gr for
i = 1, · · · , ω, and calculates the encrypted location vector

[~v] = (C,C0, {C1,i, C2,i}ωi=1) ,

where C = S1 · gap , C0 = S2 · gbp, and for i = 1, · · · , ω,
C1,i = ha1,i · ub1,i · gαviq ·R1,i, C2,i = ha2,i · ub2,i · gβviq ·R2,i. In
addition, the encrypted data content CD are calculated, where
CD ← Enc(pkp, D).

Eventually, LBSP sends the encrypted index Γ∗ = (R, HAR,
N , [~v], CD) to the CSP. An algorithm description for this phase
is shown in algorithm 2.

Algorithm 2 DBEnc(sk, Γ)→ Γ∗

1: Γ∗ ←null
2: extract k1, k from sk
3: for i← 1, 2, · · · ,m do
4: extract ARi from Γi
5: Γ∗i ← Linklist.Init( )
6: Hi ← H(k1, ARi)
7: Γ∗i ← Linklist.Append(Γ∗i , R,Hi)
8: for j ← 1, 2, · · · , |ARi| do
9: [~vj ]←SSW.Enc(k, ~vj)

10: CDj
←Enc(pkp, Dj)

11: Γ∗ij ← (j, [~vj ], CDj )
12: Γ∗i ←Linklist.Append(Γ∗i ,Γ

∗
ij)

13: end for
14: Γ∗ ← Γ∗ ∪ {Γ∗i }
15: end for
16: return Γ∗

D. Query Generation

This phase is accomplished by user and LBSP. Before
requesting range query, user ui first asks LBSP for the division
mode of region R. By default, user and LBSP share the
hierarchical pattern of “country-province-city-region”. After
receiving the request from user ui, LBSP encrypts the division
mode of region R with the user’s public key pki and sends it
to the user. Finally the user decrypts it by its private key ski,
and obtains the atomic region codes of region R.

After obtaining the atomic region codes of region R, the
user determines the query range CR = (CR1, CR2) according
to its location (xu, yu) and query radius r. Among them, CR1

represents the set of atomic regions within the query range,
and CR2 represents the set of atomic regions intersecting with
the query range. For each atomic region in CR2, a query vector
set {~u} is constructed, which contains all the data points in
the query range. Like the location vector, the query vector
is represented by ω = 2dl log2 10 + log2 de + 1 bits, and the
last bit is used to verify whether the query vector matches
the location vector. In order to reduce the comparison with
location vector, we use wildcard to merge multiple query
vectors. Fig. 8 illustrates the construction rules of query vector.
Specifically, set the wildcard bits to be 0, the 0-value in the
non-wildcard bits to be -1, and the last bit to be -ω1, where ω1

represents the number of bits with the value of 1 in the initial
vector. This construction rule fully considers the adverse effect
that the product of 0 and any value is 0, and does not need
to consider the value of location vector in the wildcard bits.
At last the user generates query Q = (R,CR). The algorithm
description of this stage is shown in algorithm 3, where q
represents the query range with query location (xu, yu) as the
center of the circle and r as the query radius.

E. Token Generation

This phase is completed by the user. In order to preserve
user’s query privacy, the query Q needs to be encrypted before
it is sent to the CSP. Specifically, the atomic region codes
involved in query Q and query vectors need to be encrypted.
Firstly, hash the atomic region codes in set CR with the
key k1 to obtain HCR = (HCR1, HCR2). Secondly, calculate
the encrypted query vector [~u] with the key k. For query
vector ~u ∈ {{−1, 0, 1}ω−1|| − ω1}, the user randomly selects
f1, f2 ∈ ZN , r1,i, r2,i ∈ ZN for i = 1,· · · , ω, R1, R2 ∈ Gr,
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Algorithm 3 QueryGen(q)→Q
1: CR1 ←null
2: CR2 ←null
3: for i← 1, 2, · · · ,m do
4: if ARi ∈ q then
5: CR1 ← CR1 ∪ {ARi}
6: else if ARi ∩ q 6= ∅ then
7: select all (x, y) ∈ ARi ∩ q
8: transform (x, y) into ~u
9: ~u← {−1, 0, 1}ω−1|| − ω1

10: CR2 ← CR2 ∪ {ARi, {~u}}
11: end if
12: end for
13: CR← {CR1, CR2}
14: Q← (R,CR)
15: return Q

S1,i, S2,i ∈ Gs for i = 1, · · · , ω, and computes the encrypted
query vector

[~u] = (K,K0, {K1,i,K2,i}ωi=1) ,

where K = R1 ·
∏ω
i=1 h

−r1,i
1,i · h−r2,i2,i , K0 = R2 ·

∏ω
i=1 u

−r1,i
1,i ·

u
−r2,i
2,i , and K1,i = g

r1,i
p · gf1ui

q · S1,i, K2,i = g
r2,i
p · gf2ui

q · S2,i

for i = 1, · · · , ω.
Finally, the user gets the token TK = (R, HCR) and sends

(idi, rkp→i, TK) to CSP to request the spatial data within the
query range. A detailed description of this phase is shown in
algorithm 4 as follows.

F. Matching and Re-encryption

This phase is performed by CSP. When CSP receives the
query token TK from the user, it adopts different query
strategies for the two atomic region sets HCR1

and HCR2

in the token. First of all, CSP matches the set HCR1 with
the atomic region codes in encrypted index Γ∗, and saves
the encrypted spatial data from the matched atomic regions
to the set Res. Then, CSP matches the set HCR2 with the
atomic region codes in encrypted index Γ∗. With regard to the
matched atomic regions, CSP computes e(C,K) · e(C0,K0) ·∏ω
i=1 e(C1,i,K1,i) ·e(C2,i,K2,i)

?
= 1 to judge the relationship

between spatial data and query range and saves the encrypted
spatial data whose judgment result is 1 to the set Res.

Algorithm 4 TokenGen(sk,Q)→TK
1: HCR1

←null
2: HCR2

←null
3: extract CR from Q
4: for all AR ∈ CR1 do
5: HCR1 ← HCR1 ∪ {H(k1, AR)}
6: end for
7: for all AR ∈ CR2 do
8: {[~u]} ← SSW.GenToken(k, {~u})
9: HCR2

← HCR2
∪ {H(k1, AR), {[~u]}}

10: end for
11: HCR ← {HCR1 , HCR2}
12: TK← (R,HCR)
13: return TK

Finally, CSP re-encrypts the dataset Res to get re-
sult set Res′ and sends Res′ to user, where Res′ ←
ReEnc(rkp→i, Res). The algorithm description for this stage
is shown in algorithm 5.

Algorithm 5 Match(Γ∗, TK)→Res
1: Res←null
2: extract Γ∗1,Γ

∗
2, · · · ,Γ∗m from Γ∗

3: extract HCR from TK
4: for i← 1, 2, · · · ,m do
5: extract Hi from Γ∗i
6: if Hi ∈ HCR1

then
7: Flag=1
8: for j ← 1, 2, · · · , |Hi| do
9: Res←Res∪{CDj}

10: end for
11: end if
12: if Hi ∈ HCR2

then
13: for j ← 1, 2, · · · , |Hi| do
14: if SSW.Query({[~u]}, [~vj ]) = 1 then
15: Flag=1
16: Res←Res∪{CDj}
17: end if
18: end for
19: end if
20: end for
21: return Res
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G. Decryption

This phase is performed by the user. After receiving the re-
encrypted result set Res′, the user needs to decrypt it with his
private key ski, and finally obtains the location information
of terminal devices within the query range. In this paper, we
use proxy re-encryption technology [41] to realize the function
of encrypting by LBSP and decrypting by users. In addition,
Attribute-Based Encryption [42, 43] can also achieve fine-
grained access control for spatial data with different attributes.
This paper mainly focuses on how to achieve accurate range
query for arbitrary form of spatial data. We will not elaborate
too much on the proxy re-encryption of spatial data.
Correctness For the atomic regions that intersects with the
query range, CSP calculates E = e(C,K) · e(C0,K0) ·∏ω
i=1 e(C1,i,K1,i) · e(C2,i,K2,i) to determine whether the

encrypted spatial data in above atomic regions is within the
query range. We can further deduce the above equation as
follows:

E = e(C,K) · e(C0,K0) ·
∏ω

i=1
e(C1,i,K1,i) · e(C2,i,K2,i)

= e(S1 · gap , R1 ·
∏ω

i=1
h
−r1,i
1,i · h−r2,i2,i ) · e(S2 · gbp, R2·∏ω

i=1
u
−r1,i
1,i · u−r2,i2,i ) ·

∏ω

i=1
e(ha1,i · ub1,i · gαviq ·R1,i,

g
r1,i
p · gf1ui

q · S1,i) · e(ha2,i · ub2,i · gβviq ·R2,i, g
r2,i
p · gf2ui

q · S2,i)

= e(gap ,
∏ω

i=1
h
−r1,i
1,i · h−r2,i2,i ) · e(gbp,

∏ω

i=1
u
−r1,i
1,i · u−r2,i2,i )·∏ω

i=1
e(ha1,i · ub1,i · gαviq , g

r1,i
p · gf1ui

q ) · e(ha2,i · ub2,i · gβviq ,

g
r2,i
p · gf2ui

q )

=
∏ω

i=1
e(gq, gq)

(αf1+βf2)viui

= e(gq, gq)
(αf1+βf2modq)〈~u,~v〉,

where 〈~u,~v〉 is the inner product of the vector ~u and ~v.
According to the construction rules of location vector and

query vector, when the data point D is in the query range,
there exists a query vector in the atomic region where D
is located, so that the inner product of the location vector
~v and the query vector ~u is 0, that is 〈~u,~v〉 = 0. Specif-
ically, for data point D(x, y), the location vector formed
by D is ~v = (b1, · · · , bω−1

2
, bω+1

2
, · · · , bω−1, bω) ∈ {0, 1}ω ,

where {b1, · · · , bω−1
2
} represents the binary code of xH ,

{bω+1
2
, · · · , bω−1} represents the binary code of yH , and

bω = 1. If D is in the query range, and the query vector cor-
responding to D is ~u = (b

′

1, · · · , b
′
ω−1

2

, b
′
ω+1
2

, · · · , b′ω−1, b
′

ω),
where the wildcard bits generated by merging query vectors
are set to be 0 and as for the non-wildcard bits from 1 to ω−1,
if bi = 0, then b

′

i = −1, otherwise bi = b
′

i = 1. In addition,
b
′

ω = −ω1, where ω1 is the number of bits with the value of

1 in (b
′

1, · · · , b
′

ω−1), that is ω1 =
ω−1∑
i=1

b
′

i for b
′

i = 1. Thus we

can get 〈~u,~v〉=
ω∑
i=1

bi · b
′

i=0 · (−1) + · · · + 0 · (−1) + 1 · 1 +

· · ·+ 1 · 1− ω1 = 0.
When D is not in the query range, for any query vector

in the atomic region where D is located, there exists at least
one position i such that b

′

i = 1 while bi = 0, then 〈~u,~v〉 =
ω∑
i=1

bi·b
′

i = 0·(−1)+· · ·+0·(−1)+0·1+1·1+· · ·+1·1−ω1 6= 0,

or b
′

i = −1 while bi = 1, then 〈~u,~v〉 =
ω∑
i=1

bi · b
′

i = 0 · (−1) +

· · ·+ 0 · (−1) + 1 · (−1) + 1 · 1 + · · ·+ 1 · 1− ω1 6= 0.
To sum up, when the spatial data (x, y) is within the query

range, 〈~u,~v〉 = 0 and E = 1, then the judgment result of the
Match algorithm is 1.

When the spatial data (x, y) is on the boundary of the query
range, 〈~u,~v〉 = 0, E = 1, then the judgment result of the
Match algorithm is 1.

When the spatial data (x, y) is outside the query range,
〈~u,~v〉 6= 0, and there exists two kinds of results:
• E 6= 1, then the judgment result of the Match algorithm

is 0;
• E = 1 if and only if αf1 + βf2 mod q = 0, then the

judgment result of the Match algorithm is 1 and Pr{E =
1} ≤ negl(λ).

In summary, we can get{
if 〈~u,~v〉 = 0, Flag = 1

else, P r[Flag = 0] ≥ 1− negl(λ)

Therefore, according to the above algorithm we can judge
the relationship between spatial data and query range: when
the judgement result of the Match algorithm is 0, it means that
spatial data is not in the query range; otherwise, the probability
that spatial data is not in the query range is no more than a
negligible function.

Accurate and extensible query. The ARQ scheme proposed
in this paper transforms data point and query range into
location vector and query vector respectively, and expresses
the relationship between them through the inner product of
vectors. This transformation enables the scheme to query
arbitrary data points without limiting the value of spatial data
to integers, which is more suitable for practical application. In
addition, the method that transforms query range into query
vector set enables our scheme to be extended to query spatial
data within a range of arbitrary shapes. To sum up, our ARQ
scheme can query arbitrary spatial data in any range.

Sublinear search. In ARQ scheme, the region R is divided
into sets of atomic regions by using Hilbert curve, and the
spatial data is stored and managed in atomic regions. When
performing a query on a query range, the ARQ scheme first
needs to find the atomic regions covered by the query range,
and it requires O(1) to find whether an atomic region matches
the query range. For the atomic region in the query range, the
spatial data contained in it can meet the query requirements,
so no further analysis is needed; For the atomic region
intersecting with the query range, we need to calculate whether
each spatial data contained in it meets the query requirements
by calling SSW.Query algorithm, which requires O(α), where
α is the average number of query vectors contained in the
atomic region. Therefore, the total time required for a range
query is O(ατ), where τ represents the total amount of spatial
data in the atomic region intersecting with the query range.
However, it requires O(αn) to query all encrypted spatial data
in region R, where n is the total amount of spatial data in
region R. Compared with n, it is obvious that τ is sublinear.

Effective update. The ARQ scheme can effectively update
encrypted spatial data (including insert, delete or modify
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encrypted spatial data). This is because the ARQ scheme stores
spatial data in the unit of atomic region and each encrypted
spatial data is a separate linked list. Therefore, making changes
to one encrypted spatial data does not require adjusting other
spatial data. In ARQ scheme, it requires O(τ ′) to update an
encrypted data point (i.e., O(τ ′) is required to find the data
point to be updated, and O(1) is required to update the data
point), where τ ′ represents the number of data points in the
same atomic region as the updated data point.

VI. SECURITY ANALYSIS

The ARQ scheme proposed in this paper uses Hilbert curve
and SSW as building blocks, which not only achieves accurate
range query, but also protects LBSP’s data privacy and user’s
query privacy. In this part, we first define the leakage function,
which represents all the information that can be captured by
the adversary during the query. Then, we define data privacy
and query privacy under the selective chosen-plaintext attack
model. Finally, we prove that our scheme meets the security
objectives.

A. Leakage Function

LBSP encrypts spatial data and sends them to CSP before
the user requests a range query. When a user makes a query
request to CSP, CSP retrieves the encrypted spatial dataset
based on the user’s encrypted query and returns the spatial data
that meets the query criteria to the user. To make the query
processing run smoothly, CSP inevitably needs to know some
information about spatial data and query requests. Specifically,
given a spatial dataset and a sequence of range queries, in
addition to public information such as security parameter λ,
vector space ∆ω

T , etc., information such as data size, data
structure, retrieval results are also granted to untrusted cloud
servers, which are formally described as leakage function L
and detailed as follows:

Definition 1. Size Pattern (ϕ1): The amount of spatial data
in region R. For Size pattern, the input of L is an encrypted
index Γ∗ of a spatial dataset, and the output is an integer
ϕ1 = n ← L(Γ∗), where n represents the number of data
points within the region R.

Definition 2. Structure pattern (ϕ2): The number of atomic
regions containing data points and the number of spatial
data contained in each atomic region. For Structure pattern,
the input of L is the encrypted index Γ∗ of the spatial
dataset within a region R, and the output is a m′-dimensional
vector ϕ2 = (|AR1|, |AR2|, · · · , |ARm′ |) ← L(Γ∗), where
m′ denotes the total number of atomic regions that contains
data points in region R, and |ARi| denotes the size of the
ith atomic region containing spatial data (1 ≤ i ≤ m′ and∑m′

i=1 |ARi| = n).
Definition 3. Query-size pattern (ϕ3): The size of the

range query, that is, the number of atomic regions involved
in the range, which is divided into two parts: the first part
is the number of atomic regions within the range, and the
second part is the number of atomic regions intersecting
the query range. For Query-size pattern, the token TK is
regarded as the input of L, where TK ← TokenGen(sk,Q),

Q← QueryGen(q), and the output of L is a two-dimensional
vector ϕ3 = (|CR1|, |CR2|) ← L(TK), where |CR1| denotes
the number of atomic regions within the query range and |CR2|
denotes the number of atomic regions on the boundary of the
query range.

Definition 4. Search pattern (ϕ4): The number of the same
atomic regions in the current query compared to the previous
queries. For Search pattern, the inputs of L are token TK
and a previous token set TK ′ = {TK ′1, TK ′2, · · · , TK ′t},
where t represents the number of previous range queries,
the output of L is a t-dimensional vector ϕ4 = (α1, α2,
· · · , αt)← L(TK, TK ′), where αi represents the number of
the same atomic regions compared current query Q with the
ith query Qi. If αi = 0, then it means that there is no
intersection between current query Q and the ith query Qi,
and if αi = |ϕ3|, it means that the current query Q is a subset
of the ith query Qi.

Definition 5. Access pattern (ϕ5): Given a query, which data
identifiers satisfy the query criteria and which data identifiers
do not satisfy the query criteria. For Access pattern, the inputs
of L are encrypted index Γ∗ and token TK, and the output
of L is a n-dimensional vector ϕ5 = (β1, β2, · · · , βn) ←
L(Γ∗, TK), where βi ∈ {0, 1} for i = 1, 2, · · · , n. If βi = 0,
it means spatial data Cdi is not in the query range, otherwise
it means spatial data Cdi is in the query range.

B. Security Definition
We defined our security definition using a game-based ap-

proach that is widely used in SE scenarios. The security of our
scheme can be summarized as data privacy and query privacy,
either of which can be rigorously verified with Selective
Chosen-Plaintext Attack (IND-SCPA).

Data Privacy. Our data privacy shows that by submitting
two spatial datasets DB0 and DB1, a computationally limited
adversary A is able to select a large number of ciphertext
requests and token requests confined by the leakage function
L. However, it is not computationally feasible for adversary
A to distinguish the two datasets.

Definition 6. IND-SCPA Data Privacy. Let Π = (Setup,
IndexGen, DBEnc, QueryGen, TokenGen, Match, Dec) be a
range query scheme (ARQ) based on the security parameter λ.
We define the following security games between Challenger
C and adversary A:

Init. The adversaryA submits two datasets DB0 and DB1 to
challenger C, where DB0 = {D0,1, D0,2, · · · , D0,n}, DB1 =
{D1,1, D1,2, · · · , D1,n}. For i = 1, · · · , n, D0,i, D1,i ∈ ∆ω

T

and DB0 and DB1 satisfy L(Γ∗0) = L(Γ∗1).
Setup. The challenger C runs Setup algorithm to generate

key sk = {k1, k}.
Phase 1. The adversary A adaptively submits requests of

one of the following types:
• Ciphertext Request: For the jth ciphertext request, adver-

sary A submits a dataset DBj , where DBj = {Dj,1,
Dj,2,· · · , Dj,n}, then challenger C responds with an
encrypted index Γ∗j , where Γ∗j ← DBEnc(sk,Γj),
Γj ← IndexGen(DBj).

• Token Request: For the jth token request, adver-
sary A submits a query qj , where L(Γ∗0, TKj) =
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L(Γ∗1, TKj), then challenger C responds with a query
token TKj , where TKj ← TokenGen(sk,Qj), Qj ←
QueryGen(qj).

Challenge. The Challenger randomly selects a bit b from
{0, 1}, then invokes IndexGen and DBEnc algorithms to get
index Γb and encrypted index Γ∗b , and returns Γ∗b to adversary.

Phase 2. Adversary A continues to adaptively send queries
to the challenger, which have the same constraints as described
in Phase 1.

Guess. Adversary A outputs a bit b′ as a guess of b.
We believe that the scheme Π is secure under Selective

Chosen-Plaintext Attack if for any probabilistic polynomial
time adversary A, the advantage AdvDataΠ,A (1λ) of adversary
A is a negligible function based on λ. That is:

AdvDataΠ,A (1λ) = |Pr[b′ = b]− 1

2
| ≤ negl(λ),

where negl is a negligible function.
Query Privacy. The definition of query privacy is similar to

the definition of data privacy except that it submits two range
queries q0 and q1 instead of two databases. The details are as
follows:

Definition 7. IND-SCPA Query Privacy. Let Π = (Setup,
IndexGen, DBEnc, QueryGen, TokenGen, Match, Dec) be
a symmetric key range query scheme (ARQ) based on the
security parameter λ. We define the following security games
between Challenger C and adversary A:

Init. Adversary A submits two range queries q0 and q1 to
challenger C, where L(TK0) = L(TK1).

Setup. Challenger runs the Setup algorithm to generate
sk = {k1, k}.

Phase 1. Adversary A adaptively submits one of the fol-
lowing types of requests:
• Ciphertext Request: On the jth ciphertext request, the

adversary A submits a dataset DBj , where DBj =
{Dj,1, Dj,2,· · · , Dj,n}, then Challenger C responds to
an encrypted index Γ∗j , where Γ∗j ← DBEnc(sk,Γj),
Γj ← IndexGen(DBj), and the encrypted index satisfies
L(Γ∗j , TK0) = L(Γ∗j , TK1).

• Token Request: On the j′th token request, adver-
sary A submits query q′j , where L(TK ′j , TK0) =
L(TK ′j , TK1), then challenger C responds with a query
token TK ′j , where TK ′j ← TokenGen(sk,Q′j), Q′j ←
QueryGen(q′j).

Challenge. Challenger C randomly selects a bit b from
{0, 1}, then calls the QueryGen and TokenGen algorithms to
get the query Qb and the encrypted token TKb, and returns
the TKb to adversary A.

Phase 2. Adversary A continues to adaptively send queries
with the same constraints as described in Phase 1 to the
challenger.

Guess. Adversary A outputs a bit b′ as a guess of b.
We believe that the scheme Π is secure under Selective

Chosen-Plaintext Attack if for any probability polynomial time
adversary A, the advantage of adversary A is a negligible
function based on λ. That is:

AdvQueryΠ,A (1λ) = |Pr[b′ = b]− 1

2
| ≤ negl(λ),

where negl is a negligible function.

C. Security Proof

In this paper, we adopt Hilbert curve to divide the re-
gion into atomic regions, and adopt SSW to judge whether
the spatial data points are in the query range. Since the
construction of Hilbert curve is unidirectional and SSW has
the indistinguishability of ciphertext under selective chosen-
plaintext attack, our ARQ scheme can realize data privacy
and query privacy by using these mature building tools. In
addition to users, LBSP and CSP are also involved in our
ARQ scheme. In the following sections, we will demonstrate
the security of the scheme from the perspective of building
tools and participants.

Theorem 1. The space transformation of Hilbert curve
is unidirectional. Without knowing the space transformation
parameters, it is difficult to determine its position in two-
dimensional space according to one-dimensional Hilbert value.

Given the order N , the starting point (x0, y0), the direction
D and the scale factor Θ of the curve, a Hilbert curve can be
uniquely determined. For malicious adversaries, it is infeasible
to calculate the space transformation parameters by comparing
Hilbert values for all starting points.

Brute-force attack: Suppose the starting point of the curve
is (x0, y0), whose horizontal and vertical coordinates are
represented by l bits respectively. In order to get the starting
point (x0, y0), the malicious adversary needs to generate 2l

values on the x-axis and y-axis separately, so it is necessary
to find (x0, y0) in the (2l ∗ 2l) elements. In the same way,
assuming the direction D of the curve is represented by l
bits, then the continuous 360◦ space can be discretized into
2l values. The adversary must try 2l times to determine the
direction of the curve. Given the scale factor, if the curve’s
order is N, there are (N ·2l ·2l ·2l) choices in the whole space.
Therefore, the complexity of obtaining spatial transformation
parameters by violent attack is O(23l), which makes the
Hilbert transformation irreversible given a sufficiently large
value of l.

Theorem 2. The ARQ scheme proposed in this paper can
achieve data privacy if SSW has the indistinguishability of
ciphertext under selective chosen-plaintext attack.

Proof The proof is based on a probability polynomial
time (PPT) simulator which works as a challenger, it is
proved that compromising the proposed scheme is equivalent
to compromising the security of the building tool. The details
are as follows:

Init. Adversary A selects two databases DB0 and DB1 and
submits them to the challenger. Both DB0 and DB1 contain n
elements.

Setup. The Challenger randomly selects parameters from
Zp, Zq , Zr and key from 1λ.

Phase 1. The adversary adaptively generates one of the
following two requests:
• Ciphertext request: The adversary outputs a database DBj

(j ∈ {0, 1}) and a target element DBj,i. The Challenger
calls IndexGen algorithm and DBEnc algorithm to gener-
ate index Γj and encrypted index Γ∗j respectively, and
finally returns the encrypted target element Γ∗j,i as a
response.
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• Trapdoor request: By calling QueryGen algorithm, the
adversary outputs the query Q∗i and sends it to the
challenger. If L(Γ∗0, TK

∗
i ) = L(Γ∗1, TK

∗
i ), the challenger

calls TokenGen algorithm to generate the token TK∗i and
returns it to the adversary as a response.

Challenge. Challenger randomly selects a bit b from {0, 1},
calls IndexGen algorithm to generate the index Γb, and then
calls the DBEnc algorithm to get the encrypted index Γ∗b .

Phase 2. The adversary continues to adaptively send two
requests as described in phase 1 to the challenger.

Guess. The adversary outputs a bit b′ as the guess of b.
The ARQ scheme is successfully simulated by a PPT

simulator. It shows that if a PPT adversary can break the
scheme, it must be able to break the SSW encryption algorithm
under selective chosen-plaintext attack.

Theorem 3. The ARQ scheme proposed in this paper can
achieve query privacy if SSW is IND-SCPA query secure.

The proof of query privacy is similar to that of data privacy.
Due to space constraints, we skipped the full proof.

Theorem 4. The ARQ scheme proposed in this paper can
realize privacy preservation against untrusted LBSP.

Proof In the process of a range query based on a location,
LBSP receives the user’s request for the atomic region coding
of a region R. According to this request, LBSP can only
obtain the information about user’s region, but can’t judge the
specific location and the size of the range query. Therefore,
ARQ scheme can protect location privacy and query privacy
of users from LBSP.

Theorem 5. The ARQ scheme proposed in this paper can
realize privacy preservation against untrusted CSP.

Proof After LBSP outsources the spatial dataset to CSP, the
user performs the range query mainly by interacting with CSP.
On the one hand, CSP gets the encrypted index from the LBSP.
As defined by leakage function L in 6.1, CSP can obtain Size
pattern and Structure pattern based on the encrypted index,
that is, CSP can obtain the size of the dataset and the number
and size of atomic regions containing spatial data. Because
of the monotony of the Hilbert curve, it is unfeasible for
CSP to determine the specific location of the spatial data by
analyzing atomic region codes. Therefore, ARQ can protect
the data privacy of LBSP against untrusted CSP. On the other
hand, CSP receives encrypted query requests from user and
thus obtains a Query-size pattern. As mentioned above, due
to the monotony of Hilbert curve and confidentiality of SSW
encryption algorithm, CSP cannot know the specific location
of range query, so ARQ can protect user’s query privacy. To
sum up, The ARQ scheme can protect the data privacy of LBSP
and user’s query privacy against untrusted CSP.

VII. PERFORMANCE ANALYSIS

A. Complexity Analysis

We will evaluate the effectiveness of the scheme from the
perspective of the participants, based on the computation cost
and communication cost of the user, LBSP and CSP in the
whole operation process of the scheme.

1) Computation cost: In the scheme, the user performs
the query generation, token generation and decryption phases.
After interaction with LBSP, the user obtains atomic region
codes of the query area R, determines atomic region sets to
be queried and query vector according to the query location
and radius, which are hashed and encrypted respectively by
user and sent to CSP. The processing time of this process is
mainly spent on hashing the atomic region sets and encrypting
the query vector. Compared with encryption operation, the
calculation time of hashing operation is negligible, while the
complexity of encrypting query vectors is related to the size
of query range. The larger the query range is, the more
atomic regions intersect the query range, whose computational
complexity is O(r2α), where α is the average number of
query vectors in an atomic region. Therefore, the computa-
tional complexity of query generation and token generation
is O(r2α). In the decryption stage, the user needs to decrypt
the encrypted dataset in the query range. The processing time
of this stage is related to the amount of data in the query
range. The size of the query range and the total amount of
spatial data in the region R will affect the amount of data in
the query range. The larger the query range is, the more data
there is in the atomic region. Similarly, when the size of the
query range is constant, the more data the region R includes,
the more spatial data will distribute in the query range. In
summary, the user’s computational complexity in decryption
stage is O(nr2). Therefore, the calculation cost of the user is
O((n+ α)r2), where r is the query radius, and n is the data
amount in region R.

In the scheme, LBSP performs initialization, index gen-
eration and database encryption phases. Among them, the
processing time of initialization phase is mainly spent on the
partition of region R, which only needs to be executed once
and has a little impact on the whole computation cost of
LBSP. The processing time of index generation and database
encryption phase is related to the amount of spatial data,
and its computational complexity is O(n). Therefore, the
computation cost of LBSP is O(n).

In the scheme, CSP performs the matching and re-
encryption phase. The processing time of matching phase
is mainly spent on comparing the spatial data with query
vector, and the cost of which is related to the data amount
in the atomic region interacting with the query range. The
higher the order of Hilbert curve is, the more the number of
atomic regions is, and the less the amount of spatial data is
in each atomic region, that is, the amount of spatial data in
the atomic region is inversely proportional to the number of
atomic regions 22N , but with the increase of the total amount
n of spatial data in region R, the amount of spatial data in the
atomic region will also increase. In the re-encryption stage,
CSP needs to re-encrypt the spatial data in the query range.
The computational complexity of this stage is related to the
query size r2 and the total amount of spatial data in region R.
On the one hand, the larger the query range is, the more spatial
data it contains. On the other hand, the more the total amount
of spatial data is, the more spatial data is in the query range.
Therefore, the computation cost of CSP is O(n · 4−N +nr2).
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2) Communication cost: The communication cost between
user and CSP is firstly analyzed. In the whole process of
range query, the user outputs the token TK with a fixed size
|TK| to CSP, and the user receives the spatial data in the
query range from CSP. If the size of each spatial data is
set as |D|, then the size of spatial data in the query range
is (n′|D|),where n′ represents the total number of spatial
data in query range. Therefore, the user’s communication cost
is (|TK| + n′|D|). LBSP sends encrypted data set to CSP,
and thus its communication cost is (n|D|). In summary, the
communication cost of CSP is (|TK|+ (n′ + n)|D|).

We introduces the meaning of variables involved in the per-
formance analysis in Table II, and summarize the computation
time and communication time of all entities in Table III.

TABLE II
THE MEANING OF NOTATIONS IN PERFORMANCE ANALYSIS

Notation Description
r Radius of the range query
α The average number of query vectors in an atomic region
N Order of Hilbert curve
n Total number of spatial data in a region
n′ Total number of spatial data in a circle range
|TK| Size of the token
|D| Size of the spatial data
ω Length of location vector and query vector
|eG| The element size in group G
tp Time cost for a bilinear mapping
te Time cost for an exponential operation in Gp
t
′
e Time cost for an exponential operation in Gq

TABLE III
EFFICIENCY ANALYSIS

Entity Computation Cost Communication Cost
user O((n+ α)r2) |TK|+ n′|D|
LBSP O(n) n|D|
CSP O(n · 4−N + nr2) |TK|+ (n′ + n)|D|

B. Performance Evaluation

In this paper, Hilbert curve and SSW encryption algorithm
are used to construct a range query scheme. In this part, we
will first analyze the efficiency of the scheme from the per-
spective of building tools. Then we evaluate the performance
of our scheme over encrypted data in several aspects, including
encryption time, token generation time, token size, and search
time. The two main parameters that impact performance are
Hilbert curve’s order N and query size r. The experiment
was performed on a local 63-bit PC with Intel Core i5-3230m
processor at 2.6GHz and 8GB RAM. MATLAB R2014a was
used to construct Hilbert Curve, and the Pairing Based Cryp-
tography (PBC) library and GNU Multiple Precision (GMP)
library are used to implement the pairing group operations,
so as to test the running time of cryptography operation
in the scheme. We used a real weibo check-in dataset and
conducted experiments on the dataset in Beijing city, which
contains 59,780 data points. This dataset size is in line with
the mainstream dataset size (for example, see [7] and [44]).
The distribution of the test dataset is shown in Fig. 9.

Fig. 9. Distribution of locations in the Beijing city

1) Hilbert Curve: Hilbert curve is used to divide the
region into atomic regions in this paper, which realize fine-
grained query and sub-linear search time. Fig. 10 describes
the calculation time needed to construct the Hilbert curve of
different orders. From the picture we can see that as the order
of Hilbert curve becomes larger, it takes more time to construct
the curve, but this time is relatively small compared with the
whole scheme. When the order is 10, it only takes 0.05ms
to construct the Hilbert curve. Therefore, it is efficient to use
Hilbert curve for region division.
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Fig. 10. Time cost for constructing Hilbert curve

2) SSW Encryption algorithm: SSW encryption algorithm is
used to encrypt spatial data, generate token and search on the
encrypted spatial data to determine the relationship between
spatial data and query range, which is the main construction
tool of our ARQ scheme. According to the construction of
SSW encryption algorithm in the literature [8], we analyze
the efficiency of SSW algorithm in detail. In Table I, |eG|
represents the size of the elements in group G. tp, te and t′e
respectively represent the time required for a bilinear mapping,
an exponential operation in group Gp and an exponential
operation in group Gq . Table IV describes the size of key,
ciphertext and token and the computation time required for
different stages in SSW, where ω represents the length of
location vector and query vector.

The impact of Hilbert Curve’s Order When the region
is divided, the order of Hilbert curve will affect the query
efficiency. The higher the order is, the more the number
of atomic regions is, and the less spatial data each atomic
region contains. Therefore, for a specific query range, fewer
query comparison operations need to be performed. For a
spatial dataset of about 60000, Fig. 11 depicts the relationship
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TABLE IV
THE PERFORMANCE OF SSW

Element Size Stage Computation time
sk 4(ω + 1)|eG| Encrypt (4ω + 2)te + 2ωt′e
CT 2(ω + 1)|eG| TokenGen 6ωte + 2ωt′e
TK 2(ω + 1)|eG| Query 2(ω + 1)tp

between the order of Hilbert curve and the data amount in the
atomic region. It can be seen from the figure that when N = 2,
the average number of spatial data in the atomic region is 3736;
when N = 7, the average data amount in the atomic region
is 4. Therefore, by using Hilbert curve to divide the region
into atomic regions, the query efficiency can be improved to
sublinear.
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Fig. 11. The impact of Hilbert curve’s order

The order N will influences the edge length d of atomic
region: a larger N corresponds to a smaller d. Since the length
ω of location vector and query vector is related to d, a larger N
corresponds to a shorter ω. TableV describes the impact of N
on the encryption time. Note that in the process of encrypting
spatial datasets, the time for hashing atomic region coding
can be ignored compared with encrypting location vectors.
When N = 7, given the area of Beijing, the edge length d is
about 1000.86m. At this time, the length ω of location vector
is 33, and it takes 823.171s to encrypt our dataset. For the
same dataset, if we choose a larger N, the less time it takes
to encrypt the location vector. For example, when N = 9, d is
about 250.215m, and it takes 428.025s to encrypt the datasets.
Although encrypting the spatial dataset takes some time, it is
only a one-time cost.

TABLE V
IMPACT OF N ON ENCRYPTION TIME

N d ω Encryption Time
1 64055m 33 823.171s
7 1000.86m 21 527.260s
8 500.43m 19 477.642s
9 250.22m 17 428.025s

Given the query size, the order N can affect the token
generation time. TableVI describes the impact of N on token
generation time under r = 1000m. When N = 7, it takes about
11.592ms to generate a query vector and 1.669s to generate a
token corresponding to a given query range. When N = 9, it
takes about 9.384ms to generate a query vector and 11.148s
to generate a token corresponding to a given query range.

It can be seen from the table that the computation time of
query vector is negatively correlated with N. However, with
the increase of N, the number of atomic regions that intersect
with the query range increases, which leads to a significant
rise of the whole token generation time.

TABLE VI
IMPACT OF N ON TOKEN GENERATION TIME

Query range N Time for a query vector Time for token

r = 1000m
7 11.592ms 1.669s
8 10.488ms 4.531s
9 9.384ms 11.148s

It is worth noting that when we use the cryptographic
primitives PRF and SSW to generate tokens for the query
range, we need to enumerate all possible data points inside
the query range in the plaintext domain, and then generate the
corresponding query vectors in plaintext. Since this sub-step
is completely calculated in plaintext, this process will hardly
affect the performance of token generation.

Besides token generation time, the order also affects the
query time. In our scheme, only encrypted data points in the
same atomic region as the token are retrieved. As shown in
TableVII, when N = 7, there are about 10 data points in each
atomic region for a given dataset, and the query time is 6.970s.
When N = 9, there are about 3 data points in each atomic
region, and it takes 1.711s to search.

TABLE VII
IMPACT OF N ON SEARCH TIME

Query range N ω
Data amount in one
atomic region Search time

r = 1000m
7 21 10 6.970s
8 19 6 3.802s
9 17 3 1.711s

The impact of N on token size is shown in TableVIII, for
a given query range of r = 1000m, when N = 7, the size of a
query vector is 2.178KB, and the token size corresponding to
the query range is 313.632KB. However, when N = 9, the size
of a query vector is 1.782KB, and the token size corresponding
to the same query range is 2.067MB.

TABLE VIII
IMPACT OF N ON TOKEN SIZE

Query range N ω Size of a query vector Token size

r = 1000m
7 21 2.178KB 313.632KB
8 19 1.98KB 855.36KB
9 17 1.782KB 2.067MB

The impact of query size r. In addition to the order N, the
query size r also affects the token generation time and query
time. Given N = 8 and ω = 19, we choose four different query
ranges: 500m, 1000m and 2000m. The token generation time
and query time are shown in TableIX.

C. Comparison with other solutions

We compare our scheme with the latest privacy-preserving
range query scheme (CRSE[15] and FastGeo[7], respectively),
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TABLE IX
IMPACT OF r ON TOKEN GENERATION AND SEARCH

Query range Token Generation Time Search Time

N = 8, ω = 19
r = 500m 1.510s 3.802s
r = 1000m 4.531s 5.619s
r = 1500m 7.551s 11.651s
r = 2000m 12.082s 15.206s

where CRSE can query the spatial data in the circular range
over encrypted dataset and FastGeo can query the spatial data
in the geometric range over encrypted dataset. We compre-
hensively compare the time of encryption, token generation
and search, and compare the complexity and accuracy of the
above schemes as shown in TableX below. The query size
tested below is 100m and the dataset size is 1000. The length
of the vector in CRSE is 4, and that in FastGeo is 100. In our
scheme, we use 8-order Hilbert curve to partition the region
and hence the length of vector is 19.

From the table we can see that the query complexity of
CRSE is linear, and the search time increases linearly with the
increase of data amount. Compared with CRSE, our scheme
manages the encrypted dataset and query range by atomic
region, so that the search process can be processed in a
distributed way. Therefore, the search efficiency of ours is
significantly higher than that of CRSE. In addition, scheme
CRSE can only query the circular range, and our scheme can
be extended to query any shapes besides circular range.

In FastGeo, the length of vector depends on the size of
dataset, while the length of vector in our scheme is related
to the side length of atomic region, so the encryption time
and token generation time of FastGeo are significantly higher
than ours. Since FastGeo uses a two-layer structure to build
indexes, its query time is sublinear and does not increase
linearly as the dataset increases. Region division and the
construction of vector designed in this paper enable that our
scheme is suitable for large-scale datasets and the query can
be accurate to 1m.

VIII. CONCLUSION

In this paper, we propose a privacy-preserving range query
scheme for outsourced LBS in IoT. By using Hilbert curve
to divide the region into atomic regions and using SSW
encryption algorithm to judge the relationship between spatial
data and query range, Our ARQ scheme can achieve accurate
range query on the premise of preserving data privacy and
query privacy, and further achieve sublinear search time and
effective update of spatial data. Privacy preservation schemes
that involve third-party servers usually cannot resist collusion
attacks, which poses new threats to LBSP’s data privacy and
user’s query privacy. Our next work will consider how to
implement a secure and efficient range query without a third-
party server.

In addition to range query, nearest neighbor or k-nearest
neighbor query such as “querying the nearest hospital around
me” is also a common location-based query. Under the con-
dition of protecting data privacy and query privacy, how to
design accurate and efficient nearest neighbor or k-nearest

neighbor query scheme will also be the research direction of
our next work.
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