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A wavenumber approach to quantifying the isotropy of the sound
field in reverberant spacesa)

M�elanie Nolan,b) Efren Fernandez-Grande, Jonas Brunskog, and Cheol-Ho Jeong
Acoustic Technology, Department of Electrical Engineering, Technical University of Denmark (DTU),
Building 352, Ørsteds Plads, DK-2800 Kongens Lyngby, Denmark

(Received 1 August 2017; revised 10 March 2018; accepted 29 March 2018; published online 27
April 2018)

This study proposes an experimental method for evaluating isotropy in enclosures, based on an anal-

ysis of the wavenumber spectrum in the spherical harmonics domain. The wavenumber spectrum,

which results from expanding an arbitrary sound field into a plane-wave basis, is used to characterize

the spatial properties of the observed sound field. Subsequently, the obtained wavenumber spectrum

is expanded into a series of spherical harmonics, and the moments from this spherical expansion are

used to characterize the isotropy of the wave field. The analytical framework is presented. The

method is examined numerically and experimentally, based on array measurements in four cham-

bers: two anechoic chambers (one with a single source and another with an array of 52 sources), a

reverberation chamber, and the same reverberation chamber with a sample of absorbing material on

the floor. The results indicate that the proposed methodology is suitable for assessing the isotropy of

a sound field. VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5032194

[FM] Pages: 2514–2526

I. INTRODUCTION

Many acoustical measurements rely on the assumption

that the sound field is diffuse. Examples include standardized

measurements of sound absorption and transmission loss in

reverberation rooms.1,2 The diffuse sound field is yet an ide-

alized concept, and the sound field in any reverberant space

differs in fundamental aspects from the perfectly diffuse

sound field.3,4 It is therefore of interest to examine the

behavior of sound fields in real rooms, and the concept of

acoustic diffusion in a room.

Various models of diffuse sound fields have been

described in the literature.3–6 The conception that any com-

plex sound field can be defined as the superposition of a set of

plane waves is used as a starting point for a model referred to

as the random wave model, which theory is essentially due to

Schroeder,7 Waterhouse,8 Lubman,9 Jacobsen,4,10,11 and

Pierce.12 The diffuse sound field is described as composed of

plane waves with random phases and equal magnitudes,

which directions of propagation are uniformly distributed

over all angles of incidence, such that the same amount of

energy arrives at the observation point from each element of

solid angle. Since infinitely many plane waves are assumed,

this model is idealized, but gives a good approximation to the

sound field in a reverberation room driven with a pure tone in

the frequency range where the modal overlap is high (typi-

cally above Schroeder’s frequency). In this study, we associ-

ate the concept of diffusion with this theory.

Different methods have been proposed for evaluating

the degree of diffusion in a room. Cook et al.13 (and later

Bodlund14), examined the cross-correlation between pres-

sure measurements at neighboring positions. The core idea

behind this approach is that, in a perfectly diffuse sound

field, the cross-correlation function between two omnidirec-

tional microphones follows a sinc function pattern. In Ref.

15, Jacobsen and Roisin presented a method of determining

spatial correlation functions in a room, suitable to other

quantities than the sound pressure. Noteworthy and perhaps

overlooked is the work by Ebeling,16 who interpreted the

cross-correlation function derived by Cook et al.13 in the

spatial frequency domain. Subsequently, he proposed a mul-

tipole expansion of the spatial correlation function leading to

a measure for spatial diffusivity. More recently, other meth-

ods have investigated how spherical microphone arrays can

be used to characterize diffuseness. Gover et al.17 estimate

the directional impulse responses of a room using a spherical

array beamformer, to evaluate the distribution of acoustic

energy arriving to the array from different directions.

Following a different approach, Epain and Jin18 analyze the

spherical harmonic covariance matrix to estimate diffuseness

arising from the presence of multiple uncorrelated sources.

Yet, other measures have been proposed, consisting in mea-

suring the acoustic intensity over time,19–24 or the acoustic

energy at various points across space.25

From the standpoint of the random wave theory, sound

field diffusion relies on two essential features: (i) the direc-

tions of propagation of the plane waves that conform the

sound field must be uniformly distributed over all angles of

incidence (i.e., isotropic sound field), and (ii) these plane

waves must have random relative phases. This publication is

strictly concerned with quantifying sound field isotropy [i.e.,

condition (i)].

An experimental method for evaluating isotropy in

enclosures is proposed that is based on an analysis of the

wavenumber spectrum in the spherical harmonics domain.

a)Portions of this work were presented in “A wavenumber approach to char-

acterizing the diffuse field conditions in reverberation rooms,” Proceedings

of the 22nd International Congress on Acoustics, Buenos Aires, Argentina,

September 2016.
b)Electronic mail: melnola@elektro.dtu.dk
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On the one hand, the wavenumber spectrum characterizes

the magnitudes of the sound waves arriving from definite

directions at the observation point.26 On the other hand, a

spherical harmonic basis is best suited to analyze isotropy,

as it depends only on direction (polar and azimuth angles),

and can provide an unequivocal characterization of the sym-

metry of a given quantity. Hence, the use of spherical har-

monics as a basis for describing isotropy is commonly used

in several areas of physics.27–30 In this work, we propose to

use a spherical harmonic expansion on the wavenumber

spectrum, the underlying hypothesis being that in a perfectly

isotropic sound field, the wavenumber spectrum is rotation-

ally symmetric. Because the spherical harmonic expansion is

performed on the wavenumber spectrum, and not on the

recorded pressure signals directly,18,29,30 the proposed

method is not restricted to measurements with a spherical

array or other geometry. The method is valid for uniform or

random spatial sampling, as opposed to Refs. 17 and 18.

Besides, the analytical framework proposed in this paper is

far simpler than the theory developed in Ref. 16, in that it

considers the actual pressure field directly, rather than its

ensemble statistics and spatial correlation. Consequently, the

proposed methodology is valid even when the random wave

theory no longer holds (this would be the case at low fre-

quencies or when absorbing material is spread over one or

several surfaces).

The present paper is organized as follows: the theoreti-

cal background is presented in Sec. II, and the validity of the

method is evaluated in Secs. III and IV, based on a numeri-

cal and an experimental study using array measurements.

II. THEORETICAL BACKGROUND

A. Wavenumber spectrum

We consider the steady-state sound field produced by a

pure-tone source in a reverberation chamber. The resulting

sound field at the point characterized by the vector rm

¼ ðxm; ym; zmÞ can be represented as a superposition of plane

waves, each traveling in a direction specified by the wave-

number vector k ¼ ðkx; ky; kzÞ. Each plane wave may have

different amplitudes and phases, which we account for by

using a complex coefficient term Pðkx; ky; kzÞ ¼ PðkÞ,

pðrmÞ ¼
ð ð ðþ1

�1

PðkÞe�jðkxxþkyyþkzzÞdk: (1)

The integrals represent a three-dimensional inverse Fourier

transform in kx, ky; and kz, respectively, which guarantees

that any pressure distribution may be represented by Eq. (1).

The quantity PðkÞ ¼ jPðkÞjej/ðkÞ is the wavenumber spec-

trum, with jPðkÞj and /ðkÞ its magnitude and phase, respec-

tively. We must keep in mind that all propagating plane

waves satisfy the condition kkk2 ¼ k2 ¼ k2
x þ k2

y þ k2
z with

k2 � k2
x þ k2

y (indicating that evanescent waves are not pre-

sent). Introducing spherical coordinates, xm ¼ r sin# cos u,

ym ¼ r sin# sin u, zm ¼ r cos# and kx ¼ k sin h cos /,

ky ¼ k sin h sin /, kz ¼ k cos h, Eq. (1) becomes

pðrmÞ ¼
ðþ1

0

ð2p

0

ðp

0

PðkÞe�jkrðsin h sin# cos ð/�uÞþcos h cos#Þ

� k2 sin hdkdhd/: (2)

Since we are interested in the sound field produced by a

pure-tone with frequency f0, all propagating waves should

appertain to the surface of the radiation sphere of radius

k0 ¼ 2pf0=c in the wavenumber domain. In other words, the

wavenumber spectrum PðkÞ must only consist of compo-

nents that fulfill

P k; h;/ð Þ ¼ d k � k0ð Þ
4pk2

~P h;/ð Þ; (3)

where dðk � k0Þ=4pk2 corresponds to the Dirac delta func-

tion in spherical coordinates with symmetry with respect to

both h and /. ~Pðh;/Þ denotes the two-dimensional wave-

number spectrum expressed in spherical coordinates.

Combining Eqs. (2) and (3) yields

pðr;#;uÞ¼ 1

4p

ð2p

0

ðp

0

~Pðh;/Þe�jk0rðsinhsin#cosð/�uÞþcoshcos#Þ

�sinhdhd/: (4)

The pressure distribution measured over a surface associated

with rm¼ða; #;uÞ, can now be represented by

pða;#;uÞ¼ 1

4p

ð2p

0

ðp

0

~Pðh;/Þe�jk0aðsinhsin#cosð/�uÞþcoshcos#Þ

�sinhdhd/; (5)

where a spherical measurement area of radius a is chosen.

The two-dimensional inverse Fourier transformation

required for explicitly calculating ~Pðh;/Þ reads

~P h;/ð Þ ¼ p
ð2p

0

ðp

0

p a;#;uð Þejk0a sinh sin#cos /�uð Þþcoshcos#ð Þ

� sin#d#du: (6)

In practice, no assumption whatsoever concerning the shape

of the measurement area is necessary, since the analysis is

done via discrete Fourier transforms, based on a discrete

approximation of Eq. (4), see Sec. II C. In fact, the pressure

field can be sampled randomly over an arbitrary volume, as

shown in Sec. III.

B. Isotropy

A wave field is termed isotropic if the wavenumber vec-

tors of the incident plane waves are uniformly distributed

over all angles of incidence (corresponding to a sinusoidal

distribution of the polar angles and a uniform distribution of

the azimuth angles).4 In order to evaluate isotropy in an

acoustic field, it is necessary to analyze the direction of the

waves that comprise the sound field. If the sound field is iso-

tropic, its wavenumber spectrum is spherically symmetric

(i.e., the magnitude of the waves is constant with angle).

Contrarily, in an anisotropic sound field, the wavenumber

J. Acoust. Soc. Am. 143 (4), April 2018 Nolan et al. 2515



spectrum is asymmetric, as there is variable energy in differ-

ent directions. Therefore, a spherical harmonic basis is best

suited to analyze isotropy, as it depends only on the angles

(polar and azimuth angles).

The magnitude of the wavenumber spectrum ~Pðh;/Þ
determined in Eq. (6) is thus expanded into a series of spher-

ical harmonics

j ~Pðh;/Þj ¼
X1
n¼0

Xn

m¼�n

Amnðk0ÞYm
n ðh;/Þ: (7)

Since the spherical harmonics are orthonormal, the complex

coefficients Amnðk0Þ of the expansion can be calculated from

Amnðk0Þ ¼
ð2p

0

ðp

0

j ~Pðh;/ÞjYm
n
�ðh;/Þ sin hdhd/: (8)

It is interesting to note that Eq. (8) corresponds to a two-

dimensional spherical Fourier transform.31

In the case of a perfectly isotropic sound field, the mag-

nitude of the wavenumber spectrum is constant over the

entire solid angle (i.e., spherically symmetric), which corre-

sponds to a constant function over a sphere. Consequently,

the energy of the wavenumber spectrum ~Pðh;/Þ resides

entirely on the monopole moment of the spherical harmonic

expansion in Eq. (7) [i.e., A00ðk0Þ].31 This will not be the

case if the contributing waves cover just a partial section of

the solid angle, as all moments of the spherical harmonic

expansion in Eq. (7) would characterize the wave field (in

the case of a single propagating plane wave, the magnitude

of the wavenumber spectrum equals a Dirac delta function,

the spherical Fourier coefficients of which are the spherical

harmonics31 Amn ¼ ½Ym
n ðh;/Þ�

�
). More generally, as soon as

there is any degree of asymmetry in the wave field, part of

the energy will be represented by the higher-order moments

(which are spherically asymmetric).

The magnitude of the nth order moment is given byPn
m¼�n jAmnðk0Þj , so that the relative magnitude of the

monopole contribution (compared to the total orders) can

now be expressed as

i k0ð Þ ¼
jA00 k0ð ÞjX1

n¼0

Xn

m¼�n

jAmn k0ð Þj
: (9)

This quantity is here suggested as an isotropy indicator and

will be denoted i in the following. The measure ranges

between zero and one and equals unity in the case where the

flow of acoustic energy is equal in all directions and is, there-

fore, perfectly isotropic. Conversely, it approaches zero if the

incident waves propagate in a single direction. The measure is

independent of the specific choice of coordinate directions. A

similar measure was previously proposed in Ref. 32 for char-

acterizing the radiation pattern of monopoles.

C. Implementation of the method

In practice, the two-dimensional wavenumber spectrum
~Pðh;/Þ is obtained using a discrete plane wave expansion,

based on a discrete approximation of Eq. (4),

pðrmÞ ¼
XL

l¼1

~PðklÞe�jkl�rm ; (10)

where the directions of propagation of the plane waves are

uniformly distributed over a spherical domain. In the limit

L! þ1 the pressure distribution in Eq. (4) is obtained.

The pressure field is sampled at a discrete number M of

positions, and can be expressed in matrix form as

p¼

w1ðr1Þ w2ðr1Þ � � � wNðr1Þ
..
. ..

.
� � � ..

.

w1ðrMÞ w2ðrMÞ � � � wNðrMÞ

2
664

3
775

c1

c2

..

.

cL

2
666664

3
777775
; p¼Wc;

(11)

where p is the measured sound pressure vector, c is a com-

plex coefficient vector containing the wavenumber spectrum
~PðklÞ in Eq. (10) and W is a matrix containing the plane

wave functions wðrÞ ¼ e�jk�r. This is an ill-posed (typically

underdetermined) problem, which requires regularized inver-

sion. The solution of Eq. (11) can be calculated in a least-

squares sense, i.e., via a regularized matrix pseudo-inverse.

The problem can be formulated as an unconstrained prob-

lem,33 introducing a regularization parameter k, which deter-

mines the penalty weight of the ‘p-norm of the solution vector.

Throughout this study, the ‘2-norm of the solution is chosen,

~c ¼ argmin
c

ðkWc� pk2
2 þ kkck2

2Þ; (12)

which has the well-known closed form analytical solution

~c ¼WHðWWH þ kIÞ�1
p; (13)

where the superscript H denotes the conjugate transpose and

I is the identity matrix. Equation (13) corresponds to the

least-squares solution of the problem with Tikhonov

regularization.34

Subsequently, a spherical harmonic expansion of the

magnitude of each component of c can be obtained based on

a discrete approximation of Eqs. (7) and (8). Note however,

that the discrete Fourier inversion required for calculating
~PðklÞ necessarily extends over a finite surface, limiting the

angular resolution.

D. Numerical example

For the sake of illustration, we consider an ideal wave-

number spectrum [by ideal, we mean that the wavenumber

spectrum ~Pðh;/Þ is estimated perfectly, hence disregarding

numerical errors in the inversion of Eq. (11)], discretized

into 1000 directions that are solutions to the so-called

Thomson problem,35 which considers equally charged par-

ticles on a sphere, hence yielding a uniform sampling over a

spherical domain (Fig. 1). Two reference test cases are con-

sidered, where the sound field is modeled as (a) a single

propagating plane wave; (b) a perfectly isotropic wave field.

The complex coefficients Amn from the spherical harmonic

2516 J. Acoust. Soc. Am. 143 (4), April 2018 Nolan et al.



expansion in Eq. (7) are calculated using a discrete approxi-

mation of Eq. (8).

Figure 1 shows the magnitude of the ideal wavenumber

spectra, along with the first seven moments (i.e., Amn com-

puted up to n¼ 7) from their respective spherical harmonic

expansions. The moments are displayed in terms of their

magnitude
Pn

m¼�n jAmnj. Figure 1(a) shows the case of the

single propagating plane wave, which corresponds to a

wavenumber spectrum with a single non-zero coefficient. It

is apparent that all moments from the spherical harmonic

expansion in Eq. (7) characterize the wave field and that the

isotropy indicator in Eq. (9) is zero (i¼ 0). Figure 1(b) dis-

plays the case of an ideal isotropic sound field, with a uniform

spatial distribution of the directions of propagation of all waves.

It can be seen that the wavenumber spectrum is rotationally

symmetrical, and therefore its magnitude resides entirely on the

monopole moment of the spherical harmonic expansion, i.e., all

Amn for ðm; nÞ 6¼ ð0; 0Þ are null. Analytically, the magnitude of

such a spectrum corresponds to a constant function over the

sphere. Consequently, the magnitude of the wavenumber spec-

trum is represented using the zeroth-order spherical harmonic

only, and the indicator in Eq. (9) equals unity (i¼ 1), indicating

a perfectly isotropic sound field.

III. NUMERICAL RESULTS

A simulation is conducted to examine the validity of the

method. The simulated pressure field is produced by a variable

number of pure-tone point sources with equal volume velocity

Q¼ 10�5 m3s�1. The resulting pressure field due to the

monopoles is sampled at 64 randomly distributed points within

a cubical volume of side length 20 cm, centred at the origin of

coordinates (as shown in Fig. 2). The minimum distance

between neighbouring measurement points is set to 5 cm.

All acoustic sources (monopoles) are distributed over a

spherical domain of radius 2.4 m around the centre of the

array. Thus, the complex pressures generated by the point

sources are perfectly in phase at the array centre. Three differ-

ent source configurations are simulated: seven sources evenly

distributed over one-eighth of the spherical domain [case (a),

see Fig. 3(a), left]; 26 sources evenly distributed over one-

half of the spherical domain [case (b), see Fig. 3(b), left]; 52

sources evenly distributed over the entire spherical domain

[case (c), see Fig. 3(c), left]. Additive noise of 30 dB signal-

to-noise ratio is included in the simulated measurements.

For the plane-wave expansion described in Eq. (10), a

plane-wave basis of 1000 plane waves of unknown ampli-

tudes is considered, whose directions of propagation are dis-

tributed uniformly based on a Thomson problem.35 The

number of plane waves should be greater than the number of

measurement positions, for a proper representation of the

measured pressure.26,36 The complex coefficient vector c

corresponding to the wavenumber spectrum (i.e., the ampli-

tudes of the waves) is estimated using Eq. (11). Tikhonov

regularization [i.e., a ‘2 least-squares (LS) solution] is used

FIG. 1. Magnitude of the wavenumber

spectrum and corresponding spherical

harmonic expansion (up to n¼ 7) in

the ideal case of (a) a single propagat-

ing plane wave; (b) a perfectly isotro-

pic sound field.

FIG. 2. Random spatial sampling of 64 positions.

J. Acoust. Soc. Am. 143 (4), April 2018 Nolan et al. 2517



for the regularized inversion, along with the L-curve crite-

rion as a parameter-choice method.34 As for the expansion

of the wavenumber spectrum in Eq. (7), only a limited num-

ber of spherical harmonics orders can be used in practice.

The spherical harmonic expansion is truncated at

ntrunc ¼N¼ 7, corresponding to 64 coefficients [so that

ðN þ 1Þ2¼M, where M is the number of measurement posi-

tions]. Although possible, adding more spherical harmonics

in the expansion of the wavenumber spectrum does not con-

tain relevant information.37,38

The resulting wavenumber spectra magnitudes jPðkÞj
and corresponding spherical harmonic expansions are illus-

trated in Fig. 3 (centre and right columns, respectively) for

the third-octave band centred at 500 Hz (the wavenumber

results have been averaged over the third-octave band, and

the spherical harmonic expansion conducted on the averaged

wavenumber spectra). The moments from the respective

spherical harmonic expansions are displayed in terms of

their magnitude
Pn

m¼�n jAmnj. In the first configuration [case

(a), least isotropic configuration], the contributing waves

cover a partial section of the solid angle, and therefore all

moments are needed to describe the magnitude of the wave-

number spectrum. In the second scenario [case (b)], the con-

tributing waves cover half of the solid angle, resulting in a

wavenumber spectrum that is best described by the mono-

pole and dipole moments of its spherical harmonic expan-

sion. In the last case [case (c), most isotropic case], the

wavenumber spectrum is nearly constant over the sphere,

and therefore its magnitude resides primarily on the mono-

pole moment of its spherical harmonic expansion, i.e., Amn

for (m, n) 6¼ (0, 0) are (almost) null. These results are well in

line with the estimated isotropy indicator values: 0.17, 0.38,

and 0.96, for the three cases, respectively.

Figure 4 shows the isotropy indicators of cases (a), (b),

and (c) as a function of frequency, for the third-octave bands

ranging from 125 Hz to 1 kHz. The results confirm the isot-

ropy of sound field (c) in the entire frequency range (values

ranging between 0.93 and 0.97). The indicator is not unity

because the sound field is due to 52 sources only (and there-

fore not perfectly isotropic).

The robustness to noise of the method is examined in

Appendix B.

IV. EXPERIMENTAL RESULTS

The validity of the proposed methodology is examined

experimentally in a large (215 m3) reverberation room at the

Technical University of Denmark (DTU), with two different

FIG. 3. Monopoles distribution, wavenumber spectrum and corresponding spherical harmonic expansion for sound fields (a), (b), and (c), respectively (top to

bottom). Frequency: 500 Hz. Truncation order: N¼ 7.

2518 J. Acoust. Soc. Am. 143 (4), April 2018 Nolan et al.



damping conditions. Validation measurements are also con-

ducted in the DTU anechoic chamber (1000 m3) and in the

DTU Audio Visual Immersion Lab (AVIL), for they provide

tractable environments to examine the methodology. All

measurements are performed using a rigid spherical micro-

phone array of radius a¼ 9.75 cm (Br€uel & Kjær, Nærum,

Denmark, see Fig. 5). The array consists of 64 microphones

near-uniformly distributed over its surface, and can sample

up to 7 orders of spherical harmonics.

Spherical microphone arrays are widely used for the

analysis and reconstruction of complex sound fields33,39 and

are particularly well suited for applications in enclosures,40

where the sound waves impinge on the array from multiple

directions. Hence, several authors have proposed methods

for quantifying diffuseness or isotropy, using spherical array

measurements.17,18,23,24 The approach described in this work

does not require a specific array configuration. We use the

spherical array here (unlike in Sec. III) for convenience, as

this equipment is readily available. Note that the scattering

induced by the presence of the rigid sphere in the medium is

accounted and compensated for.33

As in Sec. III, a plane-wave basis of 1000 plane waves

is considered for the plane-wave expansion described in Eq.

(10), and the spherical harmonic expansion of the wavenum-

ber spectrum is truncated at ntrunc ¼ N ¼ 7.

A. Experimental results in the anechoic chamber

An omnidirectional source (an “Omnisource,” Br€uel &

Kjær), which radiates approximately like a point source, is

placed 4 m away from the surface of the rigid spherical

array. The source is driven with random white noise, and a

spectral resolution of 1 Hz is used for the analysis. The pres-

sure on the surface of the array is shown in Fig. 6(a) at

500 Hz (ka¼ 0.89). Tikhonov regularization is used for the

regularized inversion of Eq. (11), along with the L-curve

FIG. 4. Isotropy indicator as a function of frequency for the sound fields (a),

(b), and (c). Truncation order: N¼ 7.

FIG. 5. Sixty-four-channels rigid spherical microphone array.

FIG. 6. Sound pressure level measured in the anechoic chamber at the 64 micro-

phone positions (a); wavenumber spectrum, rotated for display convenience (b);

spherical harmonic expansion (c). Frequency: 500 Hz. Truncation order: N¼ 7.
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criterion as a parameter-choice method,34 to estimate the

wavenumber spectrum.

Figures 6(b) and 6(c), respectively, show the wavenum-

ber spectrum magnitude, and corresponding spherical har-

monic expansion for the third-octave band centred at

500 Hz. It is apparent that all moments from the spherical

expansion in Eq. (7) are needed to describe the magnitude of

the angular spectrum, which in turn confirms the anisotropy

of the sound field. Nevertheless, the angular resolution of the

estimated wavenumber spectrum is compromised (the

response exhibits a main lobe and concentric side lobes, as

in a conventional array output)41 due to the limited measure-

ment aperture. Hence, the isotropy indicator resulting from

the least-squares solution is likely to have higher values than

expected throughout the whole frequency range. In the pre-

sent case of a single wave impinging on the array, the use of

the compressive sensing (CS) framework would significantly

improve the angular resolution,42 leading to a wavenumber

spectrum closer to that in Fig. 1(a). This is shown in

Appendix A. However, in this study, the conventional least-

squares solution with Tikhonov regularization is chosen

instead, as this choice is more appropriate for rooms and

enclosures, where the wave field cannot be assumed to be

spatially sparse.

Figure 7 shows the estimated isotropy indicator as a

function of frequency for the third-octave bands ranging

from 125 Hz to 1 kHz. The corresponding wavenumber spec-

tra are also shown. At low frequencies, the spatial resolution

is poor (as the wavelength is large compared to the dimen-

sion of the array, ka < 0.45), leading to a wide main lobe in

the wavenumber spectrum. This in turn results in an isotropy

indicator ranging between 0.25 and 0.35. At medium fre-

quencies (0.45 < ka < 0.89), the resolution of the array is

finer and the isotropy indicator has values around 0.2. At

high frequencies (ka > 0.89), the resolution is higher (the

main lobe and side lobes are therefore narrower), leading to

an isotropy indicator below 0.2. Ideally, the isotropy indica-

tor would be zero, as shown in Sec. II D, but it is not zero

because of the regularization employed. When using a sparse

regularization approach (see Appendix A), the indicator

drops to 0.02 in the entire frequency range.

B. Experimental results in a sound field reproduction
room

An experimental test is conducted using a 64-channel

loudspeaker array, set in an anechoic chamber (Audio Visual

Immersion Lab, AVIL, at DTU). The 64 loudspeakers (KEF

LS50) are arranged over a spherical domain of radius 2.4 m,

thereby surrounding the rigid spherical microphone array

(i.e., the microphone array is placed at the centre of the loud-

speaker array, so that the distance between any of the loud-

speakers and the centre of the microphone array is 2.4 m, see

Fig. 8). Only 52 out of the 64 available speakers were used

for the experiment, so as to obtain a (quasi) uniform distribu-

tion of sources over the spherical domain. It should be noted

that the speakers are not only positioned above and around

the array, but also below the laboratory’s suspended floor.

The speakers, which radiate approximately like point

sources, are driven with random white noise signals with

equal power, so as to approximate a homogeneous and iso-

tropic sound field. Since the sources are uncorrelated, this

experimental arrangement corresponds to an approximation

to the perfect diffuse sound field as described in Ref. 4 and

in the experimental investigation of Ref. 14. The pressure at

the 64 microphone positions is calculated based on the mea-

sured autospectra. Although this is sufficient for the purpose

of this study, one cannot possibly disregard the phase of the

pressure signals when evaluating sound field diffusion in a

room.18,43

Figure 9 shows the pressure on the surface of the array

at 125 Hz [Fig. 9(a)] and 400 Hz [Fig. 9(b)], the resulting

wavenumber spectra (averaged over the respective third-

octave bands of frequencies) and the corresponding spherical

harmonic expansions (N¼ 7). As in Sec. IV A, Tikhonov

regularization is used for the regularized inversion, along

FIG. 7. Isotropy indicator as a function of frequency in the anechoic cham-

ber (bottom, truncation order: N¼ 7) and corresponding wavenumber spec-

tra at 125 Hz, 250 Hz, 500 Hz, and 1 kHz (top).

FIG. 8. Sixty-four-channel loudspeaker array (Audio Visual Immersion Lab,

AVIL, DTU).
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with the L-curve criterion as a parameter-choice method. In

both cases, the measured pressure has variations of 61 dB,

resulting in a wavenumber spectrum that is nearly constant

over the spherical domain. Therefore, its magnitude is best

described by the zeroth-order moment of its spherical har-

monic expansion. At 125 Hz the isotropy indicator is 0.91,

and 0.89 at 400 Hz. It does not reach exactly unity, due to

errors resulting from differences in the speakers’ frequency

responses (62 dB), positioning errors, and transducer

mismatch.

C. Experimental results in the reverberation room

Experiments are conducted in a large (215 m3) reverber-

ation room, both empty and with an added sample of absorp-

tive material on the floor. Figure 10(a) shows the absorption

coefficient of the 10.8 m2 sample, measured according to

ISO 354 (Ref. 1) in one-third octave bands using the inter-

rupted noise method and a Br€uel & Kjær sound level meter

(type 2250). The room complies with the ISO 354 require-

ments,1 and is essentially rectangular although there are 85

built-in concrete boundary diffusers and 12 hanging panel

diffusers [see Fig. 10(b)]. The room is driven to steady-state

conditions with random white noise using a built-in loud-

speaker placed in one of the upper-corners of the room (that

is, at a sufficiently large distance away from the surface of

the rigid spherical array, so as to maximally excite the room

modes and reduce the amount of direct radiation on the sur-

face of the array). A spectral resolution of 0.125 Hz is used

for the analysis, corresponding to a time window of 8 s. This

corresponds to measuring at 6400 independent discrete fre-

quencies with a frequency span of 800 Hz. The measure-

ments cover the third-octave bands ranging from 125 Hz to

1 kHz. Once again, Tikhonov regularization is used for the

regularized inversion, along with the L-curve criterion as a

parameter-choice method.

Figures 11(a) and 11(b) compare the resulting wave-

number spectrum at 1 kHz, in the empty and damped room.

In the undamped room [free of absorption, Fig. 11(a)], a few

dominant incident directions are detected (i.e., a few waves

that carry considerably more energy than others, seemingly

FIG. 9. Measured pressure, wavenumber spectrum and spherical harmonic expansion at 125 Hz (a) and 400 Hz (b), due to a set of 52 loudspeakers emitting

random white noise of equal power. Truncation order: N¼ 7.

FIG. 10. Absorption coefficient of the specimen as a function of frequency

(a); panel and boundary diffusers in the test room (b).
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corresponding to the direct radiation from the source and a

few early reflections), indicating that the field is not perfectly

isotropic [as would be the case in the ideal example shown

in Fig. 1(b)]. In the damped room [added absorption, Fig.

11(b)], the wavenumber spectrum is less omnidirectional, as

there are no waves propagating in the positive z-direction,

because no sound is being reflected by the absorbing sample

(a � 1 at 1 kHz). This is in good agreement with results

described in Ref. 40, which show that there exists a large

influx of energy directed towards the absorber. The results

are confirmed by the corresponding spherical harmonic

expansions displayed in Fig. 11(c) (N¼ 7). In the undamped

case, the wavenumber spectrum is best described by the

monopole moment of its spherical harmonic expansion,

yielding an isotropy indicator value of i¼ 0.67. The sound

field is not perfectly isotropic, due to the few dominant

directions in the wavenumber spectrum (the stationary sound

field in a reverberation chamber driven with a single source

is, in fact, not expected to be fully isotropic). In the damped

case, the spherical harmonic expansion is no longer domi-

nated by the monopole moment, resulting in a sound field

that is less isotropic than in the empty room (i¼ 0.35).

Figure 12(a) compares the magnitude of the moments

from the spherical harmonic expansions in the undamped

and damped room, for the third-octave bands ranging from

125 Hz to 1 kHz. Figure 12(b) shows the corresponding isot-

ropy indicators as a function of frequency. In the undamped

room, the monopole moment dominates the spherical har-

monic expansion of the wavenumber spectrum throughout

the entire frequency range, yielding values of the isotropy

indicator that range from 0.65 to 0.72. In the damped room,

higher-order moments are required to describe the wavenum-

ber spectrum. The isotropy indicator in this case ranges from

0.35 to 0.57, indicating that the sound field is less isotropic

than in the undamped case. At low frequencies (below

400 Hz), the isotropy indicator is greater than at high fre-

quencies, because the absorption in the room is lower. In

fact, it can be observed that the absorption of the material

[see Fig. 10(a)] influences the isotropy of the sound field: as

the absorption increases, isotropy tends to decrease.

V. DISCUSSION

The current measurement system (64-channels micro-

phone array of radius 9.75 cm) is not expected to provide

valid results below 120 Hz, where the circumference of the

FIG. 11. Magnitude of the wavenumber spectrum (rotated for display conve-

nience) in the empty reverberation room (a) and in the room with added

absorption (b); corresponding spherical harmonic expansions (c).

Frequency: 1 kHz. Truncation order: N¼ 7.

FIG. 12. Spherical harmonic expansions as a function of frequency in the

empty and damped reverberation rooms (a); Corresponding isotropy indica-

tor as a function of frequency (b). Truncation order: N¼ 7.
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sphere corresponds to about 10% of the wavelength in air

(ka¼ 0.1), nor at high frequencies, where aliasing effects

start to appear. In the operational frequency range of the

array, the results indicate that the isotropy indicator responds

correctly to changes in the isotropy of the sound field. The

robustness to noise of the method is examined in Appendix

B, which shows that the method is fairly robust to perturba-

tions for SNRs as low as 20 dB, a common range in room

acoustic measurements. Nevertheless, its accuracy depends

on the wavenumber spectrum estimation, which relies on (a)

the measurement system: the sampling of the pressure field

should be sufficient to estimate its wavenumber spectrum

correctly; (b) the choice of the regularization scheme: in the

present study, the wavenumber spectrum has been calculated

via a conventional regularized least-squares inversion. This

is a sensible choice for estimating the wave field in a

reverberant room. However, alternative solution strategies

(‘1-norm, elastic-net, etc.) can be further examined.42,44 An

alternate estimation of the wavenumber spectrum based on

the framework provided by CS is presented in Appendix A,

with application to sparse problems.

An advantage of the approach described in this work is

that it does not require a specific array configuration. As

briefly mentioned in the introduction, other methods have

been proposed for the estimation of diffuseness from a set of

measured microphone signals. Epain and Jin18 suggested

characterizing diffuseness based on the analysis of the spher-

ical harmonic covariance matrix. Yet, the analysis in the

spherical harmonic domain is performed on the recorded sig-

nals directly (rather than on the wavenumber spectrum),

requiring the use of a spherical array of microphones.

Moreover, the study is concerned with the estimation of dif-

fuseness arising from the presence of multiple sources. The

sound field in a reverberation room driven with noise from

one source is, of course, quite different.

This work examines steady-state sound fields in a rever-

beration chamber. The results evaluate how isotropic the

sound field is at a particular location of the room; hence,

they do not directly evaluate the compliance of the reverber-

ation room with ISO 354:2003 and ISO 140–10:1991 (which

assume the sound field to be perfectly isotropic1,2). For this

purpose, extended measurements should be conducted.

The analytical framework considers the sound field pro-

duced by a pure-tone in a reverberant enclosure. However,

we eventually average the wavenumber spectrum results

over a third-octave band of frequencies. These results are

correct on average since the frequency components of the

experimental random noise have random phases.

VI. CONCLUSION

An experimental method to evaluate sound field isot-

ropy in enclosures is proposed in this study. The method is

based on an analysis of the wavenumber spectrum in the

spherical harmonics domain, which has suitable mathemati-

cal properties when it comes to examine isotropy.

Since the spherical harmonic expansion is performed on

the wavenumber spectrum, and contrary to existing methods,

the proposed method is not restricted to measurements with

a spherical array, and the pressure field can be sampled arbi-

trarily (e.g., using regular or random spatial sampling

schemes). Furthermore, because of being formulated as an

elementary wave model, the wavenumber spectrum can be

obtained in a least-square sense using conventional regulari-

zation schemes, but also allows for alternative strategies (‘1-

norm, elastic-net, etc.), conferring a broader application

perspective.

The numerical and experimental results obtained in two

anechoic chambers (one with a single source and another

with an array of 52 sources uniformly distributed around a

spherical microphone array) and in a reverberation chamber

(both empty and with absorption on the floor) indicate that

the method is suitable for assessing the isotropy of a sound

field. The results convey an interesting prospect for charac-

terizing the diffuse field conditions in enclosures.
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APPENDIX A: WAVENUMBER ESTIMATION FOR
SPARSE PROBLEMS

In the case of few sound waves impinging on the array,

solving the system of linear equations in Eq. (11) via ‘2-min-

imization yields a poor representation of the measured data

(i.e., the solution tends to produce many non-zero coeffi-

cients), compromising the angular resolution, and conse-

quently the value of the isotropy indicator. An alternate

estimation of the wavenumber is based on the framework

provided by CS that promotes a sparse solution to the prob-

lem (i.e., an optimal representation of the measured data

with as few non-zero coefficients as possible) via ‘1-minimi-

zation.42 The problem can be formulated in an unconstrained

form by introducing a regularization parameter k which

determines the weight of the ‘1-norm penalty:

~c ¼ argmin
c

kWc� pk2
2 þ kkck1: (A1)

Equation (A1), which corresponds to the well-known

LASSO formulation,45 is identical to Eq. (12), but using the

‘1-norm k � k1 instead.

The method is examined experimentally, based on the

anechoic measurements introduced in Sec. IV A. The ‘2 least-

squares (LS) solution obtained with Tikhonov regularization

is compared with the CS (LASSO) solution. The CS solution

is obtained as in Eq. (A1), and the LS solution is calculated as

in Eq. (12).

Figure 13(a) shows the magnitude of the wavenumber

spectrum resulting from the LS [Eq. (12)] and the CS [Eq.

(A1)] solutions, respectively, for the third-octave band cen-

tred at 500 Hz. It is apparent that the obtained complex coef-

ficients are significantly different. In the LS approach all of

the wavenumber coefficients are non-zero, whereas the CS

solution returns approximately four non-zero coefficients,
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yielding a wavenumber spectrum that resembles roughly a

Dirac delta function on the sphere. This in turn indicates that

the CS solution accurately detects the incoming direction of

the waves used in the expansion in Eq. (10) (i.e., the direc-

tion of arrival of the waves radiated by the loudspeaker).

Figure 13(b) compares the corresponding spherical harmonic

expansions of the wavenumber spectra resulting from the LS

and CS estimations, respectively (N¼ 7). The CS solution

results in less energy in the monopole moment and lower

order moments, in good agreement with the results obtained

FIG. 13. Magnitude of the wavenumber spectrum in the anechoic chamber

resulting from the LS (top) and CS (middle) solutions, respectively (a); cor-

responding spherical harmonic expansions (b). Frequency: 500 Hz.

Truncation order: N¼ 7.

FIG. 14. Isotropy indicator resulting from the LS and CS solutions, respec-

tively, as a function of frequency in the anechoic chamber. Numerical pre-

dictions are superimposed. Truncation order: N¼ 7.

FIG. 15. (Color online) Box plots of the isotropy indicator as a function of

frequency, for the numerical study presented in Sec. III. The SNR values

vary between 20 dB SNR and 60 dB SNR. Truncation order: N¼ 7.
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in the ideal case of a single propagating wave, as illustrated

in Fig. 1(a). The LS solution yields an isotropy indicator

value of 0.17, whereas the CS solution results in a value of

0.02, much closer to zero, representing accurately the anisot-

ropy of the sound field.

Figure 14 shows the isotropy indicator as a function of

frequency, for the third-octave bands ranging from 125 Hz to

1 kHz, resulting from the LS and CS [Eq. (A1)] solutions,

respectively. It is apparent that the LS solution overestimates

the isotropy indicator, whereas the CS solution yields values

close to zero throughout the entire frequency range, in agree-

ment with the theoretical considerations presented in Sec. II.

Nonetheless, selecting the ‘1-norm is a poor regularization

choice when processing the sound field in reverberant enclo-

sures, which yields non-physical solutions since the problem

is not sparse. A ‘2 least-squares solution with Tikhonov reg-

ularization is therefore best suited to applications in rooms.

Further numerical results were determined based on simu-

lated measurements using an identical 9.75 cm radius rigid-

sphere array with 64 microphones. The predicted isotropy

indicators resulting from the LS and CS solutions, respec-

tively, are superimposed to the experimental values. There is

fair, if not perfect, agreement between predictions and exper-

imental results.

APPENDIX B: ROBUSTNESS TO NOISE

The influence of the signal-to-noise ratio (SNR) on the

evaluation of the isotropy indicator is investigated, based

on the numerical study presented in Sec. III. Figure 15

shows box plots of the isotropy indicator as a function of

frequency, for the same source configurations as in Sec. III

[Figs. 15(a), 15(b), and 15(c), respectively] and SNR values

varying between 20 dB SNR and 60 dB SNR. For each

SNR, the isotropy indicators have been computed for 25

separate realizations, over the third-octave bands ranging

from 125 Hz to 1 kHz. The central marks in the figures are

the median of the isotropy indicator, the box represents the

first and third quartiles (isotropy indicator between 25%

and 75%), and the whiskers are 1.5 times the interquartile

distance. Outliers outside this range are removed and corre-

spond to wrong automatic-choice regularization parameters

that can be detected from inspection of the L-curve. For the

three test cases, the results show that the method is robust

to perturbations up to 20 dB SNR, which is sufficient, as

noise levels in room acoustic measurements are typically

lower.
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