)

Check for
updates

1

Software-Defined Networking (SDN) is a new paradigm that provides pro-
grammability in configuring network resources. It introduces an abstraction layer
on the network control layer that allows runtime and ad-hoc network reconfig-
uration. Therefore, it enables to adapt at runtime not only physical network
resources but also software services that compose complex services delivered to
end users. Such a new network feature thus provides a valuable mechanism to be
exploited in the modeling of QoS-aware service compositions integrating services
from various networks. This paradigm has been successfully incorporated into
the virtualization of the telecommunication network and an architecture concept

Integrating SDN and NFV
with QoS-Aware Service Composition

Valeria Cardellini'@®, Tihana Galinac Grbac?®)®, Andreas Kassler?
Pradeeban Kathiravelu*®, Francesco Lo Presti'®, Antonio Marotta®

Matteo Nardelli'@®, and Lufs Veiga*

L University of Rome Tor Vergata, Rome, Italy

{cardellini,nardelli}@ing.uniroma2.it, lopresti@info.uniroma2.it

2 Faculty of Engineering, University of Rijeka, Rijeka, Croatia
tihana.galinac@riteh.hr
3 Karlstad University, Karlstad, Sweden
andreas.kassler@kau.se, antonio.marotta@live.it
4 INESC-ID Lisboa/Instituto Superior Técnico,
Universidade de Lisboa, Lisbon, Portugal

pradeeban.kathiravelu@tecnico.ulisboa.pt, luis.veiga@inesc-id.pt

Abstract. Traditional networks are transformed to enable full integra-
tion of heterogeneous hardware and software functions, that are config-
ured at runtime, with minimal time to market, and are provided to their
end users on “as a service” principle. Therefore, a countless number of
possibilities for further innovation and exploitation opens up. Network
Function Virtualization (NFV) and Software-Defined Networking (SDN)
are two key enablers for such a new flexible, scalable, and service-oriented
network architecture. This chapter provides an overview of QoS-aware
strategies that can be used over the levels of the network abstraction
aiming to fully exploit the new network opportunities. Specifically, we
present three use cases of integrating SDN and NFV with QoS-aware
service composition, ranging from the energy efficient placement of vir-
tual network functions inside modern data centers, to the deployment of
data stream processing applications using SDN to control the network
paths, to exploiting SDN for context-aware service compositions.

Introduction

@© The Author(s) 2018

I. Ganchev et al. (Eds.): Autonomous Control for a Reliable Internet of Services, LNCS 10768, pp. 212-240, 2018.

https://doi.org/10.1007/978-3-319-90415-3_9

3

)

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90415-3_9&domain=pdf
http://orcid.org/0000-0002-6870-7083
http://orcid.org/0000-0002-4351-4082
http://orcid.org/0000-0002-9446-8143
http://orcid.org/0000-0002-0335-0458
http://orcid.org/0000-0002-7461-6276
http://orcid.org/0000-0001-8802-504X
http://orcid.org/0000-0002-9519-9387
http://orcid.org/0000-0002-9285-0736

Integrating SDN and NFV with QoS-Aware Service Composition 213

called Network Function Virtualization (NFV), where virtual network functions
are interconnected into service compositions to create communication services.

Traditional networks that have been designed for yesterday peak require-
ments are inefficient to cope with nowadays massive communication traffic
injected by a large number of users (e.g., billions of devices in the Internet of
Things). The main obstacle of traditional networks to provide full exploitation of
their resources and accelerate innovation is caused by the lack of integration of
the variety of hardware and software appliances. Moreover, the lack of standard-
ized interfaces make network management costly and slow adapting to modern
trends, and user demands [14,20,27].

Within the 5G network, SDN and NFV are the two key technologies intro-
duced as enablers [33]. In future networks, the optimal cost is achieved through
dynamic and self-adaptive deployment on a network infrastructure which is con-
tinuously controlling its performances and autonomously managing its resources.
The primary goal of such a dynamic and autonomous deployment is to accom-
plish and maintain the quality of service (QoS) requirements of complex services.
By adopting SDN and NFV for the composition of complex services, Software-
Defined Service Composition (SDSC) [21] separates the execution of service com-
positions from the data plane of the overall system.

SDSC facilitates the integration and interoperability of more diverse imple-
mentations and adaptations of the services. A reliable execution of service com-
position can be guaranteed through the network management capabilities offered
by SDN, in finding the best alternative among various service implementations
and deployments among the multiple potential services deployments for the
service composition execution. SDSC thus offers an increased control over the
underlying network, while supporting the execution from various traditional web
service engines and distributed frameworks.

There are various modeling approaches for QoS-aware service composition
which have been proposed so far. With the introduction of a programmable
approach to implement and use network resources, we should investigate per-
formance modeling approaches that jointly consider all network layers and their
composite behavior and outputs. Therefore, the contribution of this chapter is
to analyze the integration of SDN and NFV in modeling the performance of
service compositions and investigate possible side effects that can arise from
their composite interactions. To this end, we present three different use cases of
integrating SDN and NFV with QoS-aware service composition, ranging from
the energy efficient placement of virtual network functions inside modern data
centers, to the deployment of data stream processing (DSP) applications using
SDN to control the network paths, to exploiting SDN for context-aware service
compositions.

In the upcoming sections of this chapter, we continue to discuss the benefits
and use cases of integrating SDN and NFV with QoS-aware service composition.
Section 2 provides an overview of the basic concepts: SDN, NFV, and service
compositions. Section 3 discusses the energy-efficient green strategies enabled by
the integration of SDN and NFV with service compositions. Section4 focuses

214 V. Cardellini et al.

on a specific example of composite service - represented by DSP applications -
and elaborates on the integration of a DSP framework with an SDN controller,
showing a full vertical integration of the application and network layers. Section 5
discusses how SDN can offer context-aware service compositions. Finally, we
discuss the benefits and open research issues in QoS-aware service compositions
in Sect.6 and conclude the chapter by identifying future research directions in
Sect. 7.

2 Overview of Basic Concepts

A traditional network architecture divides Telco/Network operators from Inter-
net Service Providers (ISPs) and Content Providers. Services are provided over
highly specialized technologies which limit their full exploitation by end users.
A new network architecture that is proposed for future networks introduces new
abstraction layers with standardized interfaces that would enable Telco/Network
Providers, ISPs, and Content Providers to provide their services over the web,
independently from the underlying network. The vision of future networks is to
provide their users with complex services that result from the autonomous com-
position of simple, possibly legacy, elementary services. Such a service orientation
has also been recently reaffirmed for the next decade in the Service Computing
manifesto [6], that call for the widespread adoption of service computing.

2.1 Introduction to NFV

The basic concept of NFV is to apply Cloud computing technologies to realize
telecommunication applications. NFV revolves around the concept of virtualiza-
tion, which enables to run multiple systems in isolation on a single hardware sys-
tem. The exploitation of virtualization allows to decouple network functions from
the related (dedicated) hardware [17]. In other words, a software implementation
of different network functions (e.g., modulation, coding, multiple access, firewall,
deep packet inspection, evolved packet core components) can be deployed on top
of a so-called hypervisor, which runs on commercial off-the-shelf servers instead
of dedicated hardware equipment. The hypervisor provides for virtualization
and resource management (e.g., scheduling access to CPU, memory, and disk
for the network functions). In addition, an orchestration framework needs to be
in place, so to combine different virtual functions to obtain higher layer service
chains implementing the end-to-end service. Moreover, the orchestration frame-
work manages the deployment (e.g., which virtual function to place on what
physical server) and the life cycle of the virtual network functions, including the
management of their scalability. The latter comprises several tasks, among which
monitoring performance, scaling either vertically or horizontally resources (i.e.,
either acquiring more powerful computing resources or spawning more replicas
of the same virtual network function and load balancing among them).
Consequently, Virtual Network Functions (VNF's) are different from classical
server virtualization technologies because VNF may form service chains com-
posed of multiple virtual network functions, that exchange traffic which may be

Integrating SDN and NFV with QoS-Aware Service Composition 215

deployed on one or multiple virtual machines running different network func-
tions and replacing thus a variety of hardware appliances [33]. Such software
implementation of network functions is easily portable among different vendors
and may coexist with hardware-based platforms. Thus, the main benefits pro-
vided are a reduction of capital and operational expenditures, offering a reduced
time-to-market as well as scalability to different resource demands.

However, with the introduction of VNFs, additional problems may arise, such
as increased complexity. Additional interfaces need to be defined and maintained
(e.g., between the hypervisor and the orchestration system), which leads to more
complex system design. In addition, as applications can have strict requirements
in terms of latency, performance guarantees are more difficult to be satisfied.
This is because a given implementation of a VNF may perform differently when
deployed on different hardware. For example, the deployment of I/O intensive
VNF (e.g., a home subscriber service) on a server equipped with a standard HDD
may lead to lower performance than the one resulting from a deployment on a
server equipped with an SSD or NV-RAM. Consequently, new benchmarking
tools are required that allow correlating the performance of a given VNF when
deployed on a given hardware with a certain configuration.

2.2 Introduction to Service Composition Using SDN

The second enabling technology is SDN, which separates the network control
plane from the infrastructure (data) plane [31]. It involves logical centralization
of network intelligence and introduces abstraction of physical networks from
the applications and services via standardized interfaces. SDN is considered
an enabling technology for high volumes of traffic flows and responds “at run-
time” on dynamic demand for network resources by avoiding time-consuming and
costly manual reconfiguration of the network. Thus, it increases network resource
exploitation and decreases time to market. Furthermore, service-orientation is
introduced to enable the runtime discovery and deployment of services. When
combined with NFV and SDN technologies, this feature can significantly improve
the efficiency of network operations.

Figure 1 presents a high-level architecture, emphasizing three distinct man-
agement layers that are coordinated by a vertical deployment manager to provide
possibly coordinated QoS-aware decisions about service deployment.

At the infrastructure layer, routers and switches are distributed over the
network topology. These devices have their logical representation that is used
for control and management purposes. Decisions of centralized network control
are transferred over the standardized physical interfaces to operate over devices
in this layer.

Network resources are virtualized in the virtualization layer. Each virtual
resource has its logical representation that enables efficient management. The
virtual resources may be interconnected into a graph-like topology. Again,
autonomous decisions about their interconnection and placement are subject
of the management entity at this layer.

216 V. Cardellini et al.

APPLICATION LAYER

(data stream processing service chain service workflow N

B Ad service composition
@ Sy

service library

\ J

Management of
Service Compositions

VIRTUALIZATION LAYER
4
Q composition of
— virtual resources

virtual resources

~

DEPLOYMENT
MANAGER

»

Management of
Virtual Resources

\ J

i

[Jes—S <=
[]
\ /

Orchestration
Manager INFRASTRUCTURE LAYER
4

~N

NFV
physical resources

»

SDN
Controller

Management of
Physical Resources

[

Fig. 1. High-level network overview.

Finally, at the application layer a number of basic component services are
available in distributed data centers and exposed in service libraries. The com-
plex services may be composed of many basic services that are accessible through
service registries and can be composed on the basis of different goals. In the three
use cases, we present later in this chapter, we consider network service chains,
Web service and eScience workflows, and data stream processing (DSP) applica-
tions. A network service chain allows assembling services out of multiple service
functions typically using basic patterns for service composition, e.g., a sequence
of VNFs, with one or multiple instances needed for each VNF. Web services and
eScience workflows usually organize their component services using more com-
plex workflow patterns, e.g., conditional choice, loops, and fork-and-join. Finally,
a DSP application is represented as a directed acyclic graph, that can be seen
as a workflow diagram.

A service composition deployment on top of SDN allows cross-layer optimiza-
tions, as the services interact with the SDN controller through its northbound
Application Programming Interface (API) protocols and using REpresentational
State Transfer (REST) [39], Advanced Message Queuing Protocol (AMQP) [42],
and Message Queue Telemetry Transport (MQTT) [32] transport protocols. On
the other hand, the SDN controller orchestrates the data center network that the
services are deployed on, through its southbound API protocols such as Open-
Flow [28] and NetConf [16]. Such a cross-layer optimization supported by SDN
allows QoS guarantees at the service and network levels.

Integrating SDN and NFV with QoS-Aware Service Composition 217

NFV and SDN do not rely on each other. NFV is providing flexible infras-
tructure, while SDN software can run and can provide flow-based configura-
tion of network functions. Both technologies, when used in cooperation, can
offer enhanced QoS guarantees. In such new network architecture, the network
logic is abstracted on several layers of abstraction. The management decisions of
each layer may have reflections on the QoS provided by the network. Thus, the
selection of collected management decisions within deployment manager should
balance between flexibility provided at each level of network abstraction and
optimal QoS.

An ongoing standardization endeavor is Next Generation Service Overlay
Network (NGSON), aiming to establish a collaborative framework among the
stakeholders from various networks and technology paradigms in order to unify
their vision on common service delivery platform. Thus, the end-user need for
complex service delivery across the network borders would be satisfied. The
standard aims to identify self-organizing management capabilities of NGSON
including self-configuration, self-recovery, and self-optimization of NGSON nodes
and functional entities.

2.3 Overview of Use Cases

In this chapter, we will look into three illustrative use cases of integrating SDN
and NFV with QoS-aware service composition.

Section 3 presents an overview on green strategies for VNF embedding, sup-
ported by SDN and NFV. Here, the key idea is to manage the NFV infras-
tructure, namely the composition of compute and networking resources includ-
ing servers and networking equipment in an energy efficient way. By powering
down unused servers and switches, the total energy of the infrastructure can be
minimized. Important questions to ask are then what is the minimum number
of servers, switches, and links that are necessary in order to provide the SLA
desired for the service chains that need to be embedded into the physical net-
work and compute infrastructure, where to place the functions and how to route
the service chain traffic in order to find a balance between energy efficiency,
performance and SLA.

Section4 presents how the integration of an SDN controller with a DSP
framework allows to adjust the network paths as per-application needs in the
Qos-aware deployment of DSP applications on the computing and network
resources. In the proposed integrated framework, SDN is used to expose to the
DSP framework the network topology and network-related QoS metrics. Such
information is exploited in a general formulation of the optimal placement prob-
lem for DSP applications, which jointly addresses the selection of computing
nodes and of network paths between each pair of selected computing nodes.

We define services that access, process, and manage Big Data as big services.
They pose computation and communication challenges due to their complex-
ity, volume, variety, and velocity of Big Data they deal with. Moreover, they
are often deadline-bound and mission-critical. Each big service is composed

218 V. Cardellini et al.

of multiple services to be able to execute it in the Internet-scale at the dis-
tributed clouds. Such a componentization of big service improves its resilience
and latency-awareness. For example, consider a big service for weather fore-
cast. It consists of various services including sensor data retrieval, data analysis
services, and prediction. These component services are inherently distributed,
including the ones that manage the actuators and the sensors in land, sea, and
satellites. By leveraging the SDN and NFV paradigms, SDSC ensures an effi-
cient service composition from the replicated and globally distributed services.
Section 5 discusses how SDSC leverages SDN to build and efficiently execute
complex scientific workflows and business processes as service compositions.

3 Green Strategies for VNF Embedding

Next generation 5G networks will rely on distributed virtualized datacenters to
host virtualized network functions on commodity servers. Such NFV will lead to
significant savings in terms of infrastructure cost and reduced management com-
plexity. Virtualization inside modern datacenters is a key enabler for resources
consolidation, leading towards green strategies to manage both compute and
network infrastructures where VNFs are hosted. However, green strategies for
networking and computing inside data centers, such as server consolidation or
energy aware flow routing, should not negatively impact on the quality and
service level agreements expected from network operators, given that enough
resources exist. For example, given two different resource allocation strategies,
one focusing on performance while the other focusing on energy efficiency, while
both strategies may lead to a resource allocation that satisfies user demands and
SLAs, a green strategy does so by minimizing the energy consumption. Once
fewer resources are available than requested, green strategies should guide the
resource allocation processes towards operational points that are more energy
friendly.

Important tools available for Cloud Operators are server consolidation strate-
gies that migrate Virtual Machines (VMs) towards the fewest number of servers
and power down unused ones to save energy. As VNF's are composed of a set of
VNF Components (VNFC) that need to exchange data over the network under
capacity and latency constraints, the networking also plays an important part.
By using SDN, one can dynamically adjust the network topology and available
capacity by powering down unused switch ports or routers that are not needed to
carry a certain traffic volume [19], thus consuming the least amount of energy at a
potential expense of higher latency. Green strategies try to place the VNFC onto
the fewest amount of servers and to adjust the network topology and capacity to
match the demands of the VNFCs while consuming the least amount of energy
for operating the VNF Infrastructure. Such design of the VNF placement and
virtual network embedding can be formulated as a mathematical optimization
problem, and efficient heuristics can be designed to quickly solve the problem.

We can consider the Virtualized Compute and Network Infrastructure as
the set of hardware resources (which is comprised of the compute and network

Integrating SDN and NFV with QoS-Aware Service Composition 219

infrastructure) that is hosting a certain number of VNFs inside a virtualized
data center. The virtualized data center can be geo-distributed to serve different
users at different locations using the lowest cost in terms of energy, network, etc.
We assume that each VNF is made of a set of service chains, which is a group
of VNFC which have a set of traffic demands and a maximum tolerable latency
allocated towards them. More precisely, the traffic demands specify how much
traffic, between two adjacent services in a chain, the first sends to the second
one. A service needs resources, e.g., in terms of CPU, memory, disk, and so on, to
process packets and then forward the processing results to the next component
of the chain.

The latency of a service chain is the sum of the experienced delays on the
used paths, on which all the demands of the service chain are forwarded. It
also includes the host internal processing related latency, which may be different
for different architectural setups. For example, using standard Linux networking
approach leads to much higher latency and less available capacity compared to
using the recently developed approaches for user-mode packet forwarding and
processing based on proprietary techniques, such as Intel’s Data Plane Devel-
opment Kit (DPDK).! Similarly, Single Root Input/Output Virtualization (SR-
IOV?) is an extension to the PCl-express standard that allows different virtual
machines (VMs) hosting the VNFs in a virtual environment to share a single
network card over fast PCl-express lanes. Consequently, the additional latency
for VNF packet processing depends on the virtualization technology used in the
servers, which may be different for different server types. In addition, when two
VNFC are placed on the same server, there is also a not negligible overhead
when forwarding the packets from one component to another (after proper pro-
cessing) and this overhead (and thus the additional latency and capacity limits)
also depends on the virtualization technology used.

In the following, we assume that we have available a set J of servers and
a network graph G(N, E), where N represents the set of network nodes and F
denotes the links among them. Given the family of service chains, which are
defined as a specific number of traffic demands between couples of a subset
V C V out of all VNFC, the objective of the problem is to allocate all the
VNFCs on the servers and to find the network routes that satisfy the traffic
demands while minimizing the overall power consumption Py n; of the Virtual
Network Infrastructure, which is the sum of the power consumption of the com-
pute (Piervers) and network infrastructure (Pswitches), given the latency, resource
and bandwidth capacity budgets:

min f = Pyn1 = Piervers + Powitches (1)

The key idea for developing green strategies is to place the network functions on
the minimum number of servers and use the minimum number of highly energy

! https://software.intel.com/en-us/networking/dpdk.
2 https://www.intel.com /content/dam/doc/white-paper/pci-sig-single-root-io-virtua
lization-support-in-virtualization-technology-for-connectivity-paper.pdf.

https://software.intel.com/en-us/networking/dpdk
https://www.intel.com/content/dam/doc/white-paper/pci-sig-single-root-io-virtualization-support-in-virtualization-technology-for-connectivity-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/pci-sig-single-root-io-virtualization-support-in-virtualization-technology-for-connectivity-paper.pdf

220 V. Cardellini et al.

efficient network nodes that can serve the required capacity. Consequently, all
unused servers and switches can be powered down to reduce energy consumption.

3.1 Power Model Examples for Compute and Network
Infrastructure

Several power models have been proposed for the compute infrastructure. Typ-
ically, they assume that the CPU of a server is the most power hungry compo-
nent [35], and consequently most models just consider the power consumption
due to CPU load. In general, the relationship between server power consumption
and CPU utilization is linear [24,36] with some small deviations that are due to
processor architecture, CPU cache related aspects and compiler optimizations
leading to a different CPU execution. For performance modeling of green server
and network consolidation strategies, we can simplify that for each server j there
is a unique idle power consumption F;q. ;j, which denotes the energy required
by the server when it is just powered on and does not run any compute (except
the basic Operating System and management services). The maximum power
consumption Fp,qz ; denotes the power consumed by the given server when all
the CPU cores are under full load. In between the two extreme cases, the power
consumption follows a linear model dependent on the CPU utilization.

The network related power consumption can also be simplified to make it
tractable in numerical models. For example, the work in [5] assumes that for
network switches there are two main components that impact the total power
consumption. A static and constant power is required to power the chassis and
the line cards, which is independent of the traffic that the switch serves and
the number of ports used. In addition, depending on the number of ports per
line rate are powered on, there is a dynamic power consumption, which also
depends on the link speed the port is using (e.g., 1 Gbps or 10 Gbps) and the
dynamic utilization of the ports. The power consumption also depends on the
switch manufacturers: the work by Heller et al. [19] provides an overview on
the power consumption of three different 48-port switch models. For example,
one switch has a power consumption of 151 W when the switch is idle and all
the ports are powered down, while it increases to 184 W when all the ports are
enabled and to 195 W when all the ports serve traffic at 1 Gbps. As one can see,
just powering on a switch requires the highest amount of power, while powering
on additional ports does not add much to the total power consumption while the
traffic dependent power consumption is almost negligible. Consequently, many
green strategies try to conserve energy by powering down unused switches and
power down unused ports.

3.2 TIllustrative Example

In this section, we provide a simple example to illustrate the problem in Fig. 2.
We assume there are seven servers (labeled from s; to s7), each one with its
own dedicated power profile specified by a given idle power P"" and maxi-
mum power consumption P"**. Each server has limited resources in terms of,

Integrating SDN and NFV with QoS-Aware Service Composition 221

e.g., CPU, memory and disk capacities. To be more specific, server s; has avail-
able a1; CPU, ao; RAM and asz; DISK. Each server is connected to a specific
router (e.g., the Top of Rack Switch in case of a Data Center).

« @-0-i----8--0-0
- @0 —H-0—0Q
- @0 i B 0 O

Foreach SC ¢
- allocate VNFCs
- embed network

s3(a13323333

s4(a14324839 \\\

s5(a15325933

Demand

Demand

Fig. 2. The joint VNF placement and network embedding problem [26].

Each link that connects the servers to the switch or the switches with each
other has a dedicated capacity and latency. In the example, the latency for
the link between ni and ns is denoted as [15. The latency has typically several
components. The first one is the latency due to the capacity that the links oper-
ate, which is constant. There is also latency due to the virtualization technique
applied, which depends on the load of the servers and other configurations (e.g.,
CPU cache misses). Furthermore, there is a load-dependent latency due to queu-
ing, which is typically non-linear. However, under low load, such latency can be
assumed to be linearly increasing, while under higher load, we can use a piece-
wise approximation to model the latency due to traffic being routed over the
interface. In addition, each link has a dedicated capacity (omitted from Fig.2
due to complexity).

In the given example, we should embed into this NFV Infrastructure three
service chains (¢1, ¢o and c3). Each service chain has its unique latency bound,
a dedicated traffic source S7, Sz and S3 and sink Dy, Dy and Dj3. For example,
in 5G for machine-to-machine traffic low latency should be enforced while for
multimedia traffic latency bounds could be more relaxed. Also, the model can be
specified flexibly to model also control plane related service chains, with more
stringent delay requirements. In the example, we have three different VNFCs
(v1, v2 and v3) and we assume that the traffic source for ¢; is the Sender Sy,

222 V. Cardellini et al.

which is connected to router no and injects a certain volume of traffic into the
service chain towards v;. Then, vy processes the packets (for which it needs
resources such as CPU, memory, and disk) and forwards the processed traffic
(which may have a different volume than the one injected) towards VNFC v,
which again processes it and forwards a certain volume to the destination D,
that is connected to router ns.

Note that Fig.2 assumes additional source/sink nodes where traffic for a
service chain is created/terminated. The figure shows an example of joint VNF
placement and network embedding into the physical substrate network. VNFC
v1 would be placed onto server sz, v onto server s4, and so on. Servers hosting
no VNFC would be powered down (s1, s2, S5, s7) together with all the nodes
not carrying any traffic (ny).

4 Integrating SDN into the Optimal Deployment of DSP
Applications

In the section, we present a use case of integrating SDN with QoS-aware service
composition that focuses on Data Stream Processing (DSP) applications. The
advent of the Big Data era and the diffusion of the Cloud computing paradigm
have renewed the interest in DSP applications, which can continuously collect
and process data generated by an increasing number of sensing devices, to timely
extract valuable information. This emerging scenario pushes DSP systems to a
whole new performance level. Strict QoS requirements, large volumes of data, and
high production rate exacerbate the need for an efficient usage of the underlying
infrastructure. The distinguishing feature of DSP applications is their ability to
processing data on-the-fly (i.e., without storing them), moving them from an oper-
ator to the next one, before reaching the final consumers of the information. A DSP
application can be regarded as a composition of services [1] with real-time pro-
cessing issues to address. It is usually modeled as a directed acyclic graph (DAG),
where the vertexes represent the processing components (called application opera-
tors, e.g., correlation, aggregation, or filtering) and the edges represent the logical
links between operators, through which the data streams flow.

To date, DSP applications are typically deployed on large-scale and central-
ized (Cloud) data centers that are often distant from data sources [18]. However,
as data increase in size, pushing them towards the Internet core could cause
excessive stress on the network infrastructure and also introduce high delays. A
solution to improve scalability and reduce network latency lies in taking advan-
tage of the ever-increasing presence of near-edge/Fog computing resources [4]
and decentralizing the DSP application, by moving the computation to the edges
of the network close to data sources. Nevertheless, the use of a diffused infras-
tructure poses new challenges that include network and system heterogeneity,
geographic distribution as well as non-negligible network latencies among dis-
tinct nodes processing different parts of a DSP application. In particular, this
latter aspect could have a strong impact on DSP applications running in latency-
sensitive domains.

Integrating SDN and NFV with QoS-Aware Service Composition 223

APPLICATION ‘\
LAYER ®<:. /.—>‘
1t 4

NETWORK CONTROL SDN Monitor
LAYER controller QoS Routing
INFRASTRUCTURE
LAYER

Fig. 3. DSP framework with SDN controller integration.

To address these challenges, we have proposed the solution depicted in Fig. 3
and named SDN-integrated DSP Framework (for short, SIDF), which combines
and integrates a DSP application framework with an SDN controller. To this
end, we have:

— extended the architecture of Apache Storm, a well known open-source DSP
framework, by designing, developing, and integrating few key modules that
enable a distributed QoS-aware scheduler architected according to the MAPE
(Monitor, Analyze, Plan, and Execute) reference model for autonomic sys-
tems [7,8];

— designed, developed and implemented the controller logic for standard SDN
controller and the associated API to provide network monitoring and dedi-
cated stream routing configuration in an SDN network.

The proposed solution represents a full vertical integration of the application
and network layers. The resulting architecture is highly modular and capable of
taking full advantage of the SDN paradigm in modeling and optimizing the per-
formance of Fog-based distributed DSP applications. In particular, SIFD enables
the cross-layer optimization of the Fog/Cloud and SDN layers, whereby the SDN
layer exposes to the upper layer the network topology and QoS metrics. This
allows the optimal deployment of DSP applications by exploiting full knowl-
edge of the computational and network resources availability and status. In this
setting, an optimal deployment algorithm determines not only the application
components placement on the underlying infrastructure but also the network
paths between them.

224 V. Cardellini et al.

For the sake of comparison with a non-SDN based solution, the proposed
solution is backward compatible with legacy IP network, whereby network paths
are solely determined by the underlying routing protocol and cannot be adjusted
as per-application needs, thus providing no control by the DSP framework. In
this setting, the DSP manager can at most monitor the network performance
between candidate endpoints (see, e.g., [13] for a scalable network monitoring
service) and determine operator placement on the underlying infrastructure by
taking account the observed network delays.

4.1 The SIDF Architecture

SIDF uses a layered architecture to combine a DSP framework with an SDN
controller (Fig. 3). The layered infrastructure enforces separation of concerns and
allows to obtain a loosely coupled system. Each layer realizes new functionalities
on top of lower-level services and exposes them as a service to the higher layer.
SIDF comprises three main layers: infrastructure layer, network control layer,
and application layer.

At the lowest level, the infrastructure layer and the network control layer rep-
resent the classical SDN network. Specifically, the infrastructure layer comprises
network equipment, such as SDN devices and legacy IP devices. The former
enables to monitor and dedicate communication paths, whereas the latter only
exposes paths as black-boxes, resulting from their routing protocol.

The network control layer manages the heterogeneity of network devices
and controls their working conditions. SIDF includes a network controller that
realizes two functionalities: monitor and QoS routing. The monitoring compo-
nents periodically observe the network so to extract metrics of interest; to limit
the footprint of monitoring operations, we only retrieve network delays among
network devices and computing nodes. Observe that these monitoring opera-
tions can be realized in an SDN controller assisted manner as proposed in [41],
where the SDN controller periodically sends probes on links to measure their
transferring delays, or in a distributed manner, where neighbor SDN devices
autonomously compute latencies. As a result, the network control layer can
expose a view of the infrastructure as a connected graph (or network graph),
where network devices and computing nodes are interconnected by network
links; the latter are labeled with monitoring information (e.g., network latency).
Observe that, with legacy IP devices, the link between two network nodes rep-
resents the logical connectivity resulting from the routing protocols. As regards
the QoS routing functionalities, the SDN controller allows installing dedicated
stream routing configurations in the underlying infrastructure. Leveraging on
the exposed network graph, the application layer of SIDF can instruct the net-
work to route streams on specific paths, according to application needs. For
example, the application might require to route data using either a best-effort
path, the path that minimizes the number of hops, or the one that minimizes
the end-to-end delay between two computing nodes.

Integrating SDN and NFV with QoS-Aware Service Composition 225

The application layer includes the DSP framework, which abstracts the com-
puting and network infrastructure and exposes to users simple APIs to execute
DSP applications. Many DSP frameworks have been developed so far. Never-
theless, most of them have been designed to run in a clustered environment,
where network delays are (almost) zero [9]. Since in an infrastructure with dis-
tributed computing resources (like in the Fog computing environment) network
delays cannot be neglected, SIDF includes a custom distributed DSP framework
that conveniently optimizes the execution of DSP applications. This framework,
named Distributed Storm [8], has been implemented as an extension of Apache
Storm [40], one of the mostly adopted open-source DSP frameworks. Distributed
Storm oversees the deployment of DSP applications, which can be reconfigured
at runtime so to satisfy QoS requirements (e.g., maximum application response
time). To this end, the framework includes few key modules that realize the
MAPE (Monitor, Analyze, Plan, and Execute) control cycle, which represents
the reference model for autonomic systems [7,8]. During the execution of MAPE
phases, Distributed Storm cooperates with the other layers of SIDF so to jointly
optimize the application deployment and the QoS-aware stream routing. Specif-
ically, during the Monitor phase, the framework retrieves the resource and net-
work conditions (e.g., utilization, delay) together with relevant application met-
rics (e.g., response time). Network conditions are exposed by the network control
layer. During the Analyze phase, all the collected data are analyzed to determine
whether a reconfiguration of the application deployment should be planned. If it
is worth to reconfigure the application as to improve performance (or more gener-
ally, to satisfy QoS requirements), in the Plan and Execute phases the framework
first plans and then executes the corresponding adaptation actions (e.g., relocate
the application operators, change the replication degree of operators). The Plan
phase determines the optimal deployment problem, whose general formulation is
presented in the next section. If a reconfiguration involves changing the stream
routing strategy, the Execute phase also interacts with the network control layer,
so to enforce new forwarding rules.

4.2 DSP Deployment Problem

We now illustrate the optimal deployment problem for DSP applications with
QoS requirements. We provide a general formulation of the optimal placement
problem for DSP applications which jointly addresses the operator placement
and the data stream routing by modeling both the computational and networking
resources. A detailed description of the system model can be found in [9)].

For a DSP application, solving the deployment problem consists in determin-
ing for each operator i:

1. the operator placement, that is the computational node where to deploy the
operator ;

2. the network paths that the data streams have to traverse from an operator i
to each of the downstream operator j.

226 V. Cardellini et al.

For the sake of simplicity, here we do not consider the operator replication
problem, that is the determination of the number of parallel replicas for each
operator to deploy in order to sustain the expected application workload. Never-
theless, the following arguments can be can easily extended to the general case,
e.g., using the approach presented in [10].

A deployment strategy can be modeled by associating to each operator i a
vector x' = (z%,...,2%), where z!{, = 1, with u € {1,..., R} representing a
computing resource, if the operator ¢ is placed on the node u and 0 otherwise.
Similarly, for each stream (4, j) from operator i to operator j, the vector yd) =
(yﬁm) ,y%’])), where y{") = 1, with 7 € {1, ..., IT} representing a network
path, if the data stream from operator ¢ to operator j follows the path 7, and
0 otherwise.

The Operator Placement and Stream Routing (OPSR) problem takes the
following general form:

P

min F(x,y) 2)
subject to: Q“(x,y) < Q%

max

Q°(x,y) > Q0.
x,y € A

where x = (x, ..., x%) is the vector of the operator deployment binary variables
and y = (y("71) . y(nin)) is the vector of the network path variables.

Here, F(x,y) is a suitable objective function to be optimized which can con-
veniently represent application QoS metrics, e.g., response time, system and/or
network related metrics, e.g., amount of resources, network traffic, or a com-
bination thereof. Q(x,y) and Q®(x,y) are, respectively, those QoS attributes
whose values are settled as a maximum and a minimum, and x € A is a set of
functional constraints (e.g., this latter set includes the constraint . z! = 1,
which requires that a correct placement deploys an operator on one and only one
computing node, and > y&w) = 1, which requires that, in a correct routing, a
stream flows on a single path).

The formulation above represents the most general problem formulation
whereby we jointly optimize the application deployment x, by placing the oper-
ator on suitable nodes in the network, while at the same time determining the
network paths y to carry the stream between operators.

Using standard arguments, see, e.g., [9] for a similar problem, it can be proved
that the resulting OPSR problem is NP-hard. As a consequence, efficient heuris-
tics are required to deal with large problem instances in practice. Nevertheless,
the proposed formulation can supply useful information for designing heuristics
that, not only reduce the resolution time, but guarantee provable approximation
bounds on the computed solution.

Integrating SDN and NFV with QoS-Aware Service Composition 227

Fig. 4. SDN-supported placement of a DSP application.

4.3 Illustrative Example

OPSR determines how the computing and network resources should be utilized
so to execute a DSP application with QoS requirements (e.g., response time, cost,
availability). We observe that the application performance depends not only on
computing resources, but also on network links that realize the communication
among the computing nodes. This is especially true in geo-distributed environ-
ment (like Fog computing) and when Big Data have to be efficiently transmitted
and processed. The strength of OPSR is the ability to jointly optimize (i.e., in
a single stage) the selection of computing nodes and of network paths between
each pair of selected computing nodes.

We exemplify the problem using Fig.4. We consider a simple DSP applica-
tion that filters and forwards important events to a notification service within a
limited time interval (i.e., it has QoS requirements on response time). The appli-
cation comprises a pipeline of three operators: a data source o1, a filter o2, and a
connector to the external notification service oz. For the execution, OPSR has to
identify computing and network resources from the available infrastructure that,
in our example, comprises 4 processing nodes (r; with i € {1,...,4}), 7 network
devices (n; with ¢ € {1,...,7}), and 10 network links (I;, with ¢ € {1,...,10}—
observe that the network is not fully connected). To better show the problem
at hand and reduce its complexity, we assume that each computing node r; can
host at most one operator and that o; and o3 have been already placed on r
and ry4, respectively. Therefore, OPSR has to deploy only the filtering operator
09 selecting between two possible choices: 75 and 3.

Interestingly, the network control layer can expose different views of the
network, so that the upper application layer can select the most suitable network
characteristics for running its applications. In our example, we consider that the

228 V. Cardellini et al.

network control layer exposes paths with different QoS attributes in terms of
communication latency and available bandwidth.

— In case 05 is deployed on ro, OPSR has to further select the network paths for
streams (01, 02) and (02, 03), which should flow between (ry,r2) and (rg,74),
respectively. For the first stream (01, 03), the network controller exposes w1 =
{l1,14}, with 10 ms latency and 100 Mb/s bandwidth, and w2 = {l2,l5},
with 25 ms latency and 1 Gb/s bandwidth. Similarly, for the second stream
(02,03), the network controller exposes 73 = {lg,l3}, with 10 ms latency and
300 Mb/s bandwidth, and 74 = {l7,l10}, with 15 ms latency and 850 Mb/s
bandwidth.

— In case oy is deployed on r3, OPSR can determine the network paths for
streams (01, 02) and (02, 03), which should flow between (r1,r3) and (rs,r4),
respectively. For the first stream (01, 02), the network controller exposes m5 =
{l1,13}, with 10 ms latency and 100 Mb/s bandwidth, and mg = {la,15,ls},
with 30 ms latency and 600 Mb/s bandwidth. For the second stream (o2, 03),
the network controller exposes m7 = {ls}, with 5 ms latency and 100 Mb/s
bandwidth, and mg = {lg, 110}, with 15 ms latency and 600 Mb/s bandwidth.

The utilization of any of these paths is upon request, because the SDN con-
troller has to allocate resources so to guarantee that QoS performance does not
degrade over time (e.g., due to link over-utilization). Since selecting one path
or another deeply changes the application performance, OPSR picks the most
suitable one driven by the DSP application QoS requirements, which are cap-
tured by the objective function F(x,y). Our DSP application needs to forward
event notifications with bounds on delay, therefore it prefers to transfer data
using the paths with minimum communication latency. Hence, OPSR maps 05
on r3 and selects the paths 75 and 77, which introduce a limited communication
latency of 15 ms. Observe that, in case the DSP application aimed to optimize
the amount available bandwidth (as in case of media streaming applications),
OPSR would have mapped oy on ry and selected the paths 7y and my, which
provide a bandwidth of 1 Gb/s and 850 Mb/s, respectively.

Although this is a toy example, it gives a flavor of the potentialities coming
from the cooperation between SDN and distributed DSP applications. At the
same time, the example shows the combinatorial nature of the OPSR problem,
which calls for the development of new efficient heuristics.

4.4 Related Work on Big Data and SDN

With the renewed interest in DSP applications, in the last years many research
works have focused on the placement and runtime reconfiguration of DSP appli-
cations (e.g., [2,9,10,25,45] and therein cited works). However, some of these
works [2,45] do only consider the deployment of the DSP application in a clus-
tered and locally distributed environment. Moreover, to the best of our knowl-
edge, none of them exploits the support for the flexible and fine-grained pro-
grammable network control offered by SDN.

Integrating SDN and NFV with QoS-Aware Service Composition 229

Enlarging the focus to Big Data applications, of which DSP applications
represent the real-time or near-real-time constituent, SDN is considered as a
promising paradigm that can help to address issues that are prevailing with
such a kind of applications [11,37]. These issues comprise data processing and
resource allocation in locally and geographically distributed data centers, includ-
ing micro data centers in Fog and edge computing, data delivery to end users,
a joint optimization that addresses the tight coupling between data movement
and computation, and application scheduling and deployment.

So far, in the Big Data scenario, most works have leveraged SDN to opti-
mize the communication-intensive phase of Hadoop MapReduce [15] by placing
MapReduce tasks close to their data, thus reducing the amount of data that must
be transferred and therefore the MapReduce job completion time [29,38,43,44].
A first work that explores the tight integration of application and network con-
trol utilizing SDN has been presented by Wang et al. [43], which explores the idea
of application-aware networking through the design of an SDN controller using
a cross-layer approach that configures the network based on MapReduce job
dynamics at runtime. The Pythia system proposed by Neves et al. [29] employs
communication intent prediction for Hadoop and uses this predictive knowledge
to optimize at runtime the network resource allocation. The Pythia network
scheduling component computes an optimized allocation of flows to network
paths and, similarly to the QoS routing in our SIDF architecture, maps the log-
ical flow allocation to the physical topology and installs the proper sequence of
forwarding rules on the network switches. Xiong et al. propose Cormorant [44],
which is a Hadoop-based query processing system built on top of SDN, where
MapReduce optimizes task schedules based on the network state provided by
SDN and SDN guarantees the exact schedule to be executed. Specifically, SDN is
exploited to provide the current snapshot of the network status and to install the
network path having the best available bandwidth. Their experimental results
show a 14-38% improvement in query execution time over a traditional app-
roach that optimizes task and flow scheduling without SDN collaboration. Qin
et al. in [38] propose a heuristic bandwidth-aware task scheduler that combines
Hadoop with the bandwidth control capability offered by SDN with the goal to
minimize the completion time of MapReduce jobs.

The integration of SDN into the control loop of self-adaptive applications has
been studied by Beigi-Mohammadi et al. [3] with the goal of exploiting network
programmability to meet application requirements. This is a new trend in the
design of self-adaptive systems. We also explore it with the SIDF architecture:
the integration of SDN allows us to adapt at runtime the stream routing so
that the QoS requirements of the DSP application can still be guaranteed when
network operating conditions change. Besides the SDN appealing features, the
strict cooperation between adaptive systems and the SDN controller might easily
become a scalability bottleneck. Indeed, SDN controller are often implemented as
a single centralized entity, whereas adaptive systems can span over geographically
distributed infrastructures. Further research investigations are needed to enable
the exploitation of SDN features in a scalable manner.

230 V. Cardellini et al.

5 Context-Aware Composition of Big Services

Big services are typically composed of smaller web services or microservices,
each with multiple alternative deployments to ensure performance, scalability,
and fault-tolerance. Such service compositions enable the design and implemen-
tation of complex business processes, eScience workflows, and Big data applica-
tions, by aggregating the services. Services are often implemented using several
approaches, languages, and frameworks still offering the same API, standardized
as RESTful or Service Oriented Architecture (SOA) [30] web services.

As the demand for QoS and data quality is on the rise, along with the ever-
increasing scale of Big data, service compositions execute in computational nodes
that are geographically distributed in the Internet-scale. SDN can be extended
and leveraged to manage the underlying network that interconnects the build-
ing blocks of such complex workflows, to enhance the scalability and potential
use cases in services computing. An integration of SDN and NFV into service
composition facilitates efficient context-aware distribution of service execution
closer to the data, minimizing latency and communication overhead.

5.1 Software-Defined Service Composition (SDSC)

SDSC is an approach to a distributed and decentralized service composition,
which leverages SDN for an efficient service placement on the service nodes.
Following the SDSC approach, a typical eScience workflow is mapped onto a
geographically distributed service composition. SDSC exploits both the data-
as-a-service layer and network layer for the resource allocation. System admin-
istrators can monitor the health of the service compositions, through the web
service engines that host the services, by observing the runtime parameters such
as the executed requests and the requests on the fly can be monitored. The list
of multiple web service deployments can be retrieved from the web service reg-
istry. In addition to these, SDSC leverages the global network knowledge of the
SDN controller to find the network parameters such as bandwidth utilization to
fine tune the services placement, offering features such as congestion control and
load balancing, which can better be achieved in the network layer.

By separating the execution from the data plane of the overall system, SDSC
facilitates integration and interoperability of more diverse implementations and
adaptations of the services. A resilient execution of service composition can be
guaranteed through the network management capabilities offered by SDN, in
finding the best alternative among various service implementations and deploy-
ments among the multiple potential services deployments for the service compo-
sition execution. SDSC thus facilitates an increased control over the underlying
network, while supporting the execution from various traditional web services
engines and the distributed execution frameworks.

The core of SDSC is constituted by the communication between inter-
domain SDN controllers, facilitated by various Message-Oriented Middleware
(MOM) [12] protocols such as AMQP and MQTT. The service requests are
mapped to the network through SDN, and the resource provisioning is managed

Integrating SDN and NFV with QoS-Aware Service Composition 231

with the assistance of the SDN controller. Hence, each domain is aware of the
services that are served by the services hosted in them. By offering communica-
tion between inter-domain controllers, resources are allocated efficiently for each
service request.

There is an increased demand for configurability to service composition.
Context-aware service composition is enabled by exploiting SDN in deploying
service compositions. The Next Generation Service Overlay Network (NGSON)
specification offers context-aware service compositions by leveraging virtualiza-
tion [20]. SDN and NFV support context-awareness and traffic engineering capa-
bilities [34], to manage and compose services. Research efforts focus on efficient
resource utilization as well as enabling pervasive services [23] motivated by the
standardization effort of NGSON.

5.2 Componentizing Data-Centric Big Services on the Internet

Workflows of mission-critical applications consist of redundancy in links and
alternative implementations and deployments in place, either due to parallel
independent developments or developed such to handle failures, congestion, and
overload in the nodes. Distributed cloud computing and volunteer computing
are two examples that permit multi-tenant computation-intensive complex work-
flows to be executed in parallel, leveraging distributed resources.

Figure 5 represents a multi-tenant cloud environment with various tenants.
The tenants execute several big services. Many aspects such as locality of the
executing cloud data center and policies must be considered for an efficient
execution of the service workflow. An SDN controller deployment can ensure QoS
to the cloud, by facilitating an efficient management of the network-as-a-service
consisting of SDN switches, middleboxes, and hosts or servers. The controller
communicates with the cloud applications through its northbound API, while
controlling the SDN switches through its southbound API. Thus, SDN facilitates
an efficient execution of big services.

In practice, no complex big service is built and deployed as a singleton or a
tightly coupled single cohesive unit. Mayan [21], which is a distributed execution
model and framework for SDSC, defines the services that compose a big services
workflow as the “building blocks” of the workflow. SDSC aims to extend the
SDN-enabled service execution further to the Internet-scale.

Representation of the Model. We need to consider and analyze the poten-
tial execution alternatives of the services, to support a context-aware execution
of service compositions. In this section, we formally model the big services as
service compositions and consider the potential execution alternatives for their
context-aware execution. Services are implemented by various developers follow-
ing different programming languages and paradigms.

Vn € Zt;Va € {A,B,...,N}:s" represents the o'’ implementation of
service s™.

Each implementation of a service can have multiple deployments, dis-
tributed throughout the globe, either as replicated deployments or independent

232 V. Cardellini et al.

Tenant Services S @)
&S -
Tenant—1O

Multi-Tenant Cloud

prthbound API: REST, AMQP, ..

QoS
SDN Controller

Southbound API: OpenFlow, NetConf, ..

= SDN
E == “==3 Switch =
networl B u Network-as-a-Service
S)
Middlebox

Fig. 5. Network- and service-level views of a multi-tenant cloud.

deployments by different edge data centers. These multiple deployments facili-
tate a bandwidth-efficient execution of the services.

Vm € Z*: s, represents the m!" deployment of s7.

Each service can be considered a function of a varying number of input
parameters. Any given big service S can be represented as a composite function
or a service composition. These service compositions are composed of a subset
of globally available services.

Vx€Zt, x<n;S=s'os?0...05".

The minimum number of execution alternatives for any service can be rep-
resented by k,, where:

N
Vs € Siky = Y. Mg.
a=A

Here, N different service implementations and a varying number m, of
deployments for each implementation of s are considered.

Minimum and Maximum Execution Alternatives. Now we will formalize
the maximum and minimum execution alternatives for any service composition,
considering the multiple implementations or deployed replicas of the same ser-
vice. More execution alternatives will offer more resilience and scalability to the
service composition.

ng represents the number of alternative execution paths for each big service S.
The service that has the minimum alternatives limits the minimum number of
potential alternatives for a service composition.

Ng > min(k;: x < n) > 1.

Integrating SDN and NFV with QoS-Aware Service Composition 233

Taking into account the alternatives due to various service combinations in
the big service, the maximum alternatives is limited by a product of alternatives
for each service.

s < [lhei Ko

Hence,

min(kg: x <n) <ng < [0_; ks

Various protocols and web services standards unify the message passing
between the services, and enable seamless migration among the alternatives,
in a best-effort and best-fit strategy. SOA and RESTful web services support
common message formats through standardizations. These efforts unify and rev-
olutionize the way services are built on the Internet.

5.3 Illustrative Example

Figure 6 illustrates a sample workflow that represents a service composition. This
workflow can be an eScience workflow or a complex business process. The work-
flow represents multiple possible execution paths when the service composition
is decomposed or componentized into services (Services 1, 2, ..,n). A, B, C, .., Z
represents the alternative implementations for each of the services. Thus, service
implementations such as 1A, 1B, and 1Z can function as an alternative to each
other (here, each of these is an implementation of service 1).

As illustrated by Fig.6, if service 3A is either congested or crashed, the
service execution can be migrated to the next best-fit (chosen based on locality
or some other policy) deployment 3B. (2,3)Z represents a service that is equal to
the service composition of 3A(2A), the output of 2A as an input to 3A. Hence, it
is not an alternative to 2A or 3A. It is also possible that not all the services have
alternative deployments in considered environments (as indicated by the lack of
Service 2 as in 2C). Service deployment details need to be specified in the service
registry to be able to compose and execute the service workflows seamlessly.

5.4 eScience Workflows as Service Compositions

The Internet consists of various data-centric big services. Complex eScience
workflows leverage multiple big services for their execution and can be decom-
posed into various geo-distributed web services and microservices. eScience work-
flows can, therefore, be represented by service compositions. Thus, these big
services, centered around big data, can be expressed into simpler web services,
which can be executed in a distributed manner.

Mayan seeks to find the best fit among the alternatives of available service
execution options, considering various constraints of network and service level
resource availability and requirements, while respecting the locality of the service
requests. Mayan proposes a scalable and resilient execution approach to offer
a multi-tenant distributed cloud computing platform to execute these services
beyond data center scale.

Mayan enables an adaptive execution of scientific workflows through feder-
ated SDN controllers deployed in a wide area network. Hence, Mayan leverages

234 V. Cardellini et al.

1A 1B 1C 1Z
< 2A 2B | o
< } , 23) |=
) = &3 -
o
< g 8
g. B/l [ac .-
(o]
| = ;=
; ; ; i
nA nB nC nZ

Fig. 6. Simple representation of multiple alternative workflow executions.

the various potential alternative execution paths existing between the service
compositions, while exploiting the network knowledge of the SDN controller.
Furthermore, Mayan utilizes the local workload information available at the
web service engine and web services registry. The information received from
this services layer includes web service requests on the fly and web services
served at any time by the web service deployment. As an implementation of an
SDSC, Mayan exploits both the control plane and services plane in offering a
load-balanced, scalable, and resilient execution of service compositions. Mayan
leverages OpenDaylight’s data tree as an efficient control plane data store while
using an AMQP-based messaging framework to communicate across multiple
network domains in service resource allocation.

5.5 Inter-domain SDN Deployments

The SDN architecture needs to be extended for an Internet-wide service compo-
sition. A global view of the entire network hierarchy may not even be feasible
to achieve for a single central controller due to the organizational policies. An
inter-domain SDN deployment is necessary to cater for this scale and segregation
of the network. Here, each domain (that can represent a cloud, organization, or
a data center) is orchestrated by an SDN controller cluster.

The clustered deployment prevents the controller from becoming a single
point of failure or a bottleneck. As eScience workflows are deployed on a global
scale, a federated deployment of controller clusters is leveraged to enable com-
munications between inter-domain controller clusters, without sharing a global
network view. The federated deployment allows network level heuristics to be
considered beyond data center scale, using MOM protocols in conjunction with
SDN. Inter-domain controllers communicate through MOM messages between
one another. Hence, SDN controllers of different domains have protected access
to data orchestrated by one another, based on a subscription-based configuration
rather than a static topology.

Integrating SDN and NFV with QoS-Aware Service Composition 235

Some research work has previously leveraged federated SDN controller
deployments for various use cases. CHIEF [22] presents a scalable inter-domain
federated SDN controller deployment for wide area networks, as a “controller
farm”. It builds a large-scale community cloud orchestrated by various indepen-
dent controller clusters sharing data through a protected MOM API. Such con-
troller farm may support collaboration between multiple organization networks,
otherwise limited from network-level coordination. SDSC can be extended to cre-
ate a Service Function Chaining (SFC), that is an ordered sequence of middlebox
actions or VNF's such as load balancing and firewall.

6 Benefits and Open Issues

Network virtualization and programmability of network resources enable
dynamic creation of service chains that satisfy QoS demands of complex ser-
vices at runtime. Runtime control of traffic and usage of network resources is
provided from infrastructure to control layer thus enabling runtime management
decisions. Abstracting the network infrastructure plane is a movement similar
as introducing higher levels of abstraction into programming languages. The
key benefit of such abstraction is enabling less experienced developers to eas-
ier program new applications, using abstract objects of network resources, with
the help of formal programming frameworks and environments. The risks of pro-
grammer faults are minimized through formalisms implemented in programming
languages. The main benefit is in offloading new application developers of very
complex network skills, thus opening application development even to not skilled
people and innovation opportunities to the wider community. Abstraction of net-
work resources will benefit with opening innovation opportunities based on the
use of unlimited network resources.

A direct consequence of opening network resources to wider developers com-
munity is in accelerating the process of offering new features to end users and
minimizing development costs. Another result of abstraction is the introduction
of standard interfaces that enable evolution and change of each layer indepen-
dently. Contrary to traditional networks where there is a dominant vendor lock-
in solutions, in new network architecture, with introduced standard application
platform interfaces between network layers, the independence to provider equip-
ment has opened numerous opportunities for innovation by using an unlimited
poll of network resources and services offered by various networks.

Furthermore, the programmable network enables numerous possibilities for
network automation. New service management models may be developed at each
network layer independently with runtime control of network resources. These
may be used to autonomous control efficiency of network resource use while
addressing specific QoS requirements of the particular application.

Nowadays, service compositions and Big Data applications must deal with
changing environments and variable loads. Therefore, to guarantee acceptable
performance, these applications require frequent reconfigurations, such as adjust-
ments of application component placement or selection of new services. In this

236 V. Cardellini et al.

respect, SDN capability of programming, the network at runtime allows a cross-
layer management of computational and networking resources, thus enabling a
joint optimization of application placement (or service composition) and data
stream routing. The cross-layer management can be beneficial especially in geo-
distributed environments, where network resources are heterogeneous, subject
to changing working conditions (e.g., congestion), and characterized by non-
negligible communication delays. In an SDN environment, the application control
layer (e.g., service composition broker, DSP framework) can regard the network
as a logical resource, which can be managed as a computing resource in a virtu-
alized computing environment. Specifically, the programmability allows to auto-
mate and control the network so to adjust its behavior as to fulfill the applica-
tion needs. For example, multiple paths or paths with specific QoS attributes can
be reserved for transmitting data, data streams can be redirected during applica-
tion components downtime, or network devices can be programmed to carry out
new functions. Moreover, the use of standardized interfaces between the applica-
tion layer and network controller (i.e., Northbound APIs) allows simplifying the
implementation and utilization of new network services (e.g., QoS-based routing).

With respect to the integration of SDN and Big Data and specifically to
the SIFD architecture presented in Sect.4, we observe that when the network
controller in SDN is used for Big Data applications, its performance could be
degraded due to the rapid and frequent flow table update requests which might
not be sustained by today SDN controllers. The problem is exacerbated if the
controller serves multiple applications/frameworks as it can easily become the
performance bottleneck of the entire architecture. To this end, we need to define
solutions which cater for the presence of multiple applications, with possible
diverse and conflicting QoS requirements by defining policies which ensure fair
usage of network resources in the face of competing resources requests. The prob-
lem becomes relevant in large-scale distributed environments, where a centralized
approach might not scale, and distributed solution becomes preferable.

New service development formalisms may be required to standardize processes
at the network management level. In the future use of such a programmable net-
work environment, a network is seen as an unlimited pool of resources. So, it is
expected a significantly increase in the network use with a number of new and
innovative services. Such increase in diversity of network services and a number
of new application interfaces would need to redefine service development and man-
agement models. New design principles would be needed, and this need would be
recognized with increased diversity at network application layer. For such pur-
poses, there is a need for new developments in formal methods for introducing the
controlled behavior in programming network. Development of network compilers
is ongoing research activity for these purposes. Furthermore, new mathematical
models are needed that would be able to describe network behavior. There is a
need for some generative models that can predict the parameters from the internal
properties of the processes we are controlling. Such models would not only bring
efficiency in processing network control algorithms, but would also be stimulating
phenomena in network behavior.

Integrating SDN and NFV with QoS-Aware Service Composition 237

7 Conclusions

In this chapter, we looked into how SDN and NFV enable QoS-aware service
compositions, and how SDN can be leveraged to facilitate cross-layer optimiza-
tions between the various network and service layers. So far, SDN has been
largely and separately exploited mainly in telecommunication environments. For
example, NFV placement and SDN routing for network embedding have been
used to achieve energy efficiency as explained in Sect.3. However, there is an
increasing interest in exploring the network control opportunities offered by
SDN in the Big Data context, as discussed for the deployment of DSP appli-
cations on the underlying computing and networking resources. In the use case
presented in Sect. 4, SDN is used to expose to the service management layer the
network topology and network-related QoS metrics. The service management
layer determines both the application components placement on the underlying
computing resources and the network paths between them. In this way, SDN
allows autonomous adjustment of the network paths as per-application needs.
Furthermore, in Sect. 5 we provided an example of using SDN for the design and
implementation of complex scientific and business processes.

Through these three examples, we presented different deployment manage-
ment decisions for service compositions over the layers of a network architecture
that integrates SDN and NFV. As future research direction, we identify the need
for the development of an autonomous management framework that can coordi-
nate cross-layer decisions taken by different management layers while deploying
service compositions that satisfy QoS guarantees in an Internet-scale distributed
network. Future work is also needed to investigate the side effects that may arise
from the coordination among management decisions at different layers.

References

1. Abadi, D.J., Carney, D., Cetintemel, U., Cherniack, M., et al.: Aurora: a new model
and architecture for data stream management. VLDB J. 12(2), 120-139 (2003)

2. Aniello, L., Baldoni, R., Querzoni, L.: Adaptive online scheduling in Storm. In:
Proceedings of 7th ACM International Conference on Distributed Event-Based
Systems, DEBS 2013, pp. 207-218 (2013)

3. Beigi-Mohammadi, N., Khazaei, H., Shtern, M., Barna, C., Litoiu, M.: On effi-
ciency and scalability of software-defined infrastructure for adaptive applications.
In: Proceedings of 2016 IEEE International Conference on Autonomic Computing,
ICAC 2016, pp. 25-34 (2016)

4. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of 1st Workshop on Mobile Cloud Computing,
MCC 2012, pp. 13-16 (2012)

5. Boru, D., Kliazovich, D., Granelli, F., Bouvry, P., Zomaya, A.: Energy-efficient
data replication in cloud computing datacenters. Cluster Comput. 18(1), 385-402
2015

6.](30ug1)16ttaya, A., Singh, M., Huhns, M., Sheng, Q.Z., et al.: A service computing
manifesto: the next 10 years. Commun. ACM 60(4), 64-72 (2017)

7. Cardellini, V., Grassi, V., Lo Presti, F., Nardelli, M.: On QoS-aware scheduling
of data stream applications over fog computing infrastructures. In: Proceedings of
IEEE ISCC 2015, pp. 271-276, July 2015

238

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

V. Cardellini et al.

Cardellini, V., Grassi, V., Lo Presti, F., Nardelli, M.: Distributed QoS-aware
scheduling in Storm. In: Proceedings of 9th ACM International Conference on
Distributed Event-Based Systems, DEBS 2015, pp. 344-347 (2015)

Cardellini, V., Grassi, V., Lo Presti, F., Nardelli, M.: Optimal operator placement
for distributed stream processing applications. In: Proceedings of 10th ACM Inter-
national Conference on Distributed and Event-Based Systems, DEBS 2016, pp.
69-80 (2016)

Cardellini, V., Grassi, V., Lo Presti, F., Nardelli, M.: Optimal operator replication
and placement for distributed stream processing systems. ACM SIGMETRICS
Perform. Eval. Rev. 44(4), 11-22 (2017)

Cui, L., Yu, F.R., Yan, Q.: When big data meets software-defined networking: SDN
for big data and big data for SDN. IEEE Netw. 30(1), 58-65 (2016)

Curry, E.: Message-oriented middleware. In: Middleware for Communications, pp.
1-28. Wiley, Hoboken (2005)

Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: a decentralized network
coordinate system. SIGCOMM Comput. Commun. Rev. 34(4), 15-26 (2004)
Davy, S., Famaey, J., Serrat, J., Gorricho, J.L., Miron, A., Dramitinos, M., Neves,
P.M., Latre, S., Goshen, E.: Challenges to support edge-as-a-service. IEEE Com-
mun. 52(1), 132-139 (2014)

Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107-113 (2008)

Enns, R., Bjorklund, M., Bierman, A., Schonwélder, J.: Network Configuration
Protocol (NETCONF). RFC 6241, June 2011

Han, B., Gopalakrishnan, V., Ji, L., Lee, S.: Network function virtualization: chal-
lenges and opportunities for innovations. IEEE Commun. 53(2), 90-97 (2015)
Heinze, T., Aniello, L., Querzoni, L., Jerzak, Z.: Cloud-based data stream process-
ing. In: Proceedings of 8th ACM International Conference on Distributed Event-
Based Systems, DEBS 2014, pp. 238-245 (2014)

Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee,
S., McKeown, N.: ElasticTree: saving energy in data center networks. In: Proceed-
ings of Tth USENIX Conference on Networked Systems Design and Implementa-
tion, NSDI 2010 (2010)

John, W., Pentikousis, K., Agapiou, G., Jacob, E., Kind, M., Manzalini, A., Risso,
F., Staessens, D., Steinert, R., Meirosu, C.: Research directions in network service
chaining. In: 2013 IEEE SDN for Future Networks and Services. SDN4FNS (2013)
Kathiravelu, P., Galinac Grbac, T., Veiga, L.: Building blocks of Mayan: Compo-
nentizing the escience workflows through software-defined service composition. In:
Proceedings of 2016 IEEE International Conference on Web Services, ICWS 2016,
pp- 372-379 (2016)

Kathiravelu, P., Veiga, L.: CHIEF: controller farm for clouds of software-defined
community networks. In: Proceedings of 2016 IEEE International Conference on
Cloud Engineering Workshop, IC2EW 2016 (2016)

Liao, J., Wang, J., Wu, B., Wu, W.: Toward a multiplane framework of NGSON:
a required guideline to achieve pervasive services and efficient resource utilization.
IEEE Commun. 50(1) (2012)

Lim, S.H., Sharma, B., Nam, G., Kim, E.K., Das, C.R.: MDCSim: a multi-tier data
center simulation platform. In: Proceedings of 2009 IEEE International Conference
on Cluster Computing and Workshops, August 2009

Lohrmann, B., Janacik, P., Kao, O.: Elastic stream processing with latency guar-
antees. In: Proceedings of IEEE ICDCS 2015, pp. 399410 (2015)

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Integrating SDN and NFV with QoS-Aware Service Composition 239

Marotta, A., D’Andreagiovanni, F., Kassler, A., Zola, E.: On the energy cost of
robustness for green virtual network function placement in 5G virtualized infras-
tructures. Comput. Netw. 125, 64-75 (2017)

Matsubara, D., Egawa, T., Nishinaga, N., Kafle, V.P., Shin, M.K., Galis, A.: Toward
future networks: a viewpoint from ITU-T. IEEE Commun. 51(3), 112-118 (2013)
McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks.
ACM SIGCOMM Comput. Commun. Rev. 38(2), 69-74 (2008)

Neves, M.V., De Rose, C.A.F., Katrinis, K., Franke, H.: Pythia: faster big data
in motion through predictive software-defined network optimization at runtime.
In: Proceedings of IEEE 28th International Parallel and Distributed Processing
Symposium, IPDPS 2014, pp. 82-90 (2014)

Newcomer, E., Lomow, G.: Understanding SOA with Web Services. Addison-
Wesley, Upper Saddle River (2005)

Nunes, B.A.A., Mendonca, M., Nguyen, X.N., Obraczka, K., Turletti, T.: A survey
of software-defined networking: past, present, and future of programmable net-
works. IEEE Commun. Surv. Tutorials 16(3), 1617-1634 (2014)

OASIS: MQTT version 3.1.1 (2014)

Osseiran, A., Monserrat, J.F., Marsch, P.: 5G Mobile and Wireless Communica-
tions Technology, 1st edn. Cambridge University Press, New York (2016)
Paganelli, F., Ulema, M., Martini, B.: Context-aware service composition and deliv-
ery in NGSONSs over SDN. IEEE Commun. 52(8), 97-105 (2014)

Panda, P.R., Silpa, B.V.N., Shrivastava, A., Gummidipudi, K.: Power-Efficient
System Design, 1st edn. Springer, Boston (2010). https://doi.org/10.1007/978-1-
4419-6388-8

Pedram, M., Hwang, I.: Power and performance modeling in a virtualized server
system. In: Proceedings of 39th International Conference on Parallel Processing
Workshops, ICPPW 2010, pp. 520-526 (2010)

Qadir, J., Ahad, N., Mushtaq, E., Bilal, M.: SDNs, clouds, and big data: new
opportunities. In: Proceedings of 12th International Conference on Frontiers of
Information Technology, pp. 28-33 (2014)

Qin, P., Dai, B., Huang, B., Xu, G.: Bandwidth-aware scheduling with SDN in
Hadoop: a new trend for big data. IEEE Syst. J. 11(4), 2337-2344 (2015)
Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media, Inc., Sebastopol
(2008)

Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., et al.: Storm@Twitter. In:
Proceedings of ACM SIGMOD 2014, pp. 147-156 (2014)

Van Adrichem, N.L., Doerr, C., Kuipers, F.A.: OpenNetMon: network monitoring
in OpenFlow software-defined networks. In: Proceedings of 2014 IEEE Network
Operations and Management Symposium, NOMS 2014 (2014)

Vinoski, S.: Advanced message queuing protocol. IEEE Internet Comput. 10(6)
(2006)

Wang, G., Ng, T.E., Shaikh, A.: Programming your network at run-time for big
data applications. In: Proceedings of 1st Workshop on Hot Topics in Software
Defined Networks, HotSDN 2012, pp. 103-108. ACM (2012)

Xiong, P., He, X., Hacigumus, H., Shenoy, P.: Cormorant: running analytic queries
on MapReduce with collaborative software-defined networking. In: Proceedings of
3rd IEEE Workshop on Hot Topics in Web Systems and Technologies, HotWeb
2015, pp. 54-59 (2015)

Xu, J., Chen, Z., Tang, J., Su, S.: T-Storm: traffic-aware online scheduling in Storm.
In: Proceedings of IEEE 34th International Conference on Distributed Computing
Systems, ICDCS 2014, pp. 535-544 (2014)

https://doi.org/10.1007/978-1-4419-6388-8
https://doi.org/10.1007/978-1-4419-6388-8

240 V. Cardellini et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Integrating SDN and NFV with QoS-Aware Service Composition
	1 Introduction
	2 Overview of Basic Concepts
	2.1 Introduction to NFV
	2.2 Introduction to Service Composition Using SDN
	2.3 Overview of Use Cases

	3 Green Strategies for VNF Embedding
	3.1 Power Model Examples for Compute and Network Infrastructure
	3.2 Illustrative Example

	4 Integrating SDN into the Optimal Deployment of DSP Applications
	4.1 The SIDF Architecture
	4.2 DSP Deployment Problem
	4.3 Illustrative Example
	4.4 Related Work on Big Data and SDN

	5 Context-Aware Composition of Big Services
	5.1 Software-Defined Service Composition (SDSC)
	5.2 Componentizing Data-Centric Big Services on the Internet
	5.3 Illustrative Example
	5.4 eScience Workflows as Service Compositions
	5.5 Inter-domain SDN Deployments

	6 Benefits and Open Issues
	7 Conclusions
	References

