
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

187,000 205M

TOP 1%154

7,000



Chapter

Polygonal Approximation of
Digital Planar Curve Using Novel
Significant Measure
Mangayarkarasi Ramaiah and Dilip Kumar Prasad

Abstract

This chapter presents an iterative smoothing technique for polygonal
approximation of digital image boundary. The technique starts with finest initial
segmentation points of a curve. The contribution of initially segmented points
toward preserving the original shape of the image boundary is determined by
computing the significant measure of every initial segmentation point that is sensi-
tive to sharp turns, which may be missed easily when conventional significant
measures are used for detecting dominant points. The proposed method differenti-
ates between the situations when a point on the curve between two points on a
curve projects directly upon the line segment or beyond this line segment. It not
only identifies these situations but also computes its significant contribution for
these situations differently. This situation-specific treatment allows preservation of
points with high curvature even as revised set of dominant points are derived.
Moreover, the technique may find its application in parallel manipulators in
detecting target boundary of an image with varying scale. The experimental results
show that the proposed technique competes well with the state-of-the-art
techniques.

Keywords: dominant point, projection position, iterative smoothing, minimal
number of points, polygonal approximation

1. Introduction

Shape representation and shape classification are efficiently facilitated by
polygonal approximation. This approach is popular due to its compact representa-
tion and insensitive to noise. These salient features are found useful in many
applications [1–8]. The main objective of polygonal approximation is to approxi-
mate the shape of a curve using a polygon whose vertices are specified by a subset of
points on the curve. These points are referred to as dominant points and are often
the points with high curvature. An example is illustrated in Figure 1. A digital curve
representing the shape of snowflake is displayed in Figure 1(a), and its identified
dominant points are shown in Figure 1(b). The anticipated output of polygonal
approximation using dominant point can be seen in Figure 1(c). Broadly polygonal/
closed curve approximation of a digital planar curve may be cast as min ε problem
or min 6¼ problem. In min ε problem, the techniques derive polygonal approxima-
tion with specified number of line segments or dominant points. These techniques
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ensure that the deviation between the curve and the approximate polygon is mini-
mal, condition to the specified number of dominant points. Min # techniques derive
polygonal approximation with a specified error. These techniques generate the
approximate polygon with minimal number of dominant points while ensuring the
measure of closeness is not larger than the specified error. In recent years, there are
many dominant point-based polygonal approximation techniques that were
presented in the literature [9–19].

And few older ones can be found in [20–22]. The techniques presented in [9, 10,
12, 20, 21] use reverse polygonization, where instead of detecting the real points the
techniques make a search to detect redundant points and delete points iteratively.
The methods in [11, 15] use breakpoint suppression, where the techniques apply
criterion measure on the finest approximated set of points to suppress the redun-
dant points and make the approximation. The methods in [3, 13, 16, 18] present a
solution using dynamic programming, where the techniques make exhaustive
search to detect points on curve, thereby making final approximation. The method
in [14] makes polygonal approximation by detecting ADSS (Approximate Digital
Straight Segment). The method in [17] uses MIP (mixed integer programming)
model. The method in [19] uses vertex relocation procedure around neighbors. In
this method, while approximating the output curve by detecting the dominant
point, the technique allows neighborhood points to become a dominant point pro-
vided that new dominant point facilitates in reduction of approximation error. The
method in [22] uses split and merge, where the method makes a search to find the
points with maximum deviation in the splitting stage using the proposed criterion
function and merge all the points identified in the splitting stage using the threshold

Figure 1.
(a) A digital curve representing the shape of a snowflake, (b) initial set of dominant points, and (c) suitable
polygonal approximation are shown here.
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value. Most of the dominant points [9–12] detecting methods use the magnitude of
orthogonal projection of a point on the line segments, which connect adjacent high
curvature points to influence the process of detecting dominant points. The
methods in the literature [9–12, 14, 15, 20, 23] do not address the issue where the
projection of point lies beyond its candidate line segment, where the situation may
be often anticipated during approximation. The techniques that neglect to check
this criterion may miss good curvature points, which are critical for shape repre-
sentation. The technique proposed in this chapter measures the positions of pro-
jections of a point on the curve, thereby invoking different metrics for computing
the significant measure of the dominant points. This practice makes the proposed
technique to preserve the original shape of the curve even at very minimal number
of dominant points. Such characteristic is very essential for compact representation.
And it is very essential for object detection and shape classification applications.
Especially, the proposed technique can facilitate the parallel manipulators in cutting
and milling operations by preserving the actual shape of the target boundary points.
The rest of the chapter is organized is as follows: Section 2 presents a brief review of
some of the state-of-the-art methods along with an insight into their demerits
wherever possible. Section 3 presents the proposed work. Section 4 summarizes the
experimental results. Section 5 concludes the chapter.

2. Background

Several polygonal approximation techniques have been proposed in the recent
decades. Some of them use various optimization approaches [3, 13, 16–19]. On the
other hand, there are other techniques that use local/global geometric features of a
curve to influence the process of determining the polygon with minimal number of
line segments [9–12, 23–26], and these techniques prove its competence against
many real-time datasets. Among these, this section briefly analyzes some of the
bench mark techniques.

Prasad [23] proposed a non-parametric framework to detect points of high
curvature. The framework uses the maximum deviation incurred between pixels
from a digitized boundary as an upper bound to make approximation. The authors
proved that the analytical bound can be incorporated by dominant point detection
framework to get rid of specification in terms of the tolerable error (for min #
approaches) or the number of points (for min ϵ approaches). The authors
established the robustness of their framework against scaling invariance as well as
noise tolerance. However, there are applications in which the curve needs to be
approximated using a specified number of dominant points, which is not possible
through this framework. Though the approximation bounded below to digitization
value, points detected on the curve seem to be redundant for human visual percep-
tion. Prasad [24] used metrics such as precision and reliability as measures to fit the
polygon edges. Depending upon the threshold values for these measures, the tech-
nique produces coarser or finer approximation. Thus, this technique can flexibly
control the degree of smoothness required for an application. And also the paper
suggests some performance metrics to quantify the techniques. Parvez [19]
obtained the digital boundary using contour extraction techniques. The objective of
the method was to produce approximate polygon with minimal error possible. To
attain this goal, the method relaxes the criteria that dominant points need not be on
the contour. The technique computes neighborhood points for every point pi on the
contour Cd and introduces a new point on the contour provided its presence should
reduce the approximation error. The neighborhood points are not the ones com-
puted using 4 connected graph or 8 connected graph; instead, the technique
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adaptively defines the width for every point on the curve, and thereby, it obtains
the neighborhood points. Fernandez [25] produced symmetric approximation for
symmetric contours. The technique obtains first initial point p1 as the farthest in
terms of distance from the centroid of the curve. The next point p2 is the farthest to
p1. The method proceeds to find point p4, which is farthest from p2, and point p3,
which is farthest from p1. Likewise, the technique obtains the all possible line
segments such as {p1, p2}, {p3, p4}, until the maximum deviation from the curve
does not exceed a threshold value that constitutes the boundary point set. The
authors demonstrate that their method of choosing initial points ensures
symmetricity. The technique then identifies all possible candidate points (q1, q2, ...,
qm) from the boundary point set between every two initial points and computes a
significant value by ensuring symmetry property. Additionally, the technique pre-
sents various thresholding methods to normalize the significant values of the
boundary points. Though the technique produces symmetric approximation for
symmetric curve, it did not establish geometric invariance. And in real-time data
sets, in most of the cases, the points are always distributed asymmetrically on the
planar curve. The main objectives of this chapter are to i) present a framework that
considers the projection position of a point and thereby invokes the proper criterion
measure to compute the contribution; ii) produce output polygon without missing
significant points; iii) produce polygon with minimal possible number of points;
and iv) present a technique that is reasonably strong enough against rotation
invariance. These objectives are achieved and demonstrated through experimenta-
tions of the proposed technique using benchmarking data sets.

3. Proposed work

3.1 Problem formulation

The problem formulation is as follows: let Cd = {p1, p2, … pn} where pi = (xi,yi) is
a digital curve consisting of n points in clockwise direction in the discrete two-
dimensional space. Such curves are the ones extracted from the boundaries of the
digital images using contour detection or edge detection methods. The coordinates
of these n points are integers since these points are extracted from the digital
boundary. The objective of polygonal approximation of Cd is to derive a subset
D = {p1, p2, … , pm} from the super set of Cd, subject to the condition the polygon
formed by the elements of D should represent the shape of the original curve. The
technique starts with any three consecutive points pi, pj and pk on the curve Cd, to
detect the collinearity of these points (pi, pj, pk), the distance measured from a point
pj to the line segment connecting pi and pk. The method shall conclude the three
points are collinear, provided the measured distance is very minimal. On the other
side, the method shall conclude non-collinearity, provided the measured distance is
not very minimal and thus pj becomes an element of D. Thereby, the polygonal
approximation technique finds all the elements of D. With this problem formula-
tion, our chapter focuses on the choice of the significant measure metric. Conven-
tionally, the distance metric is the length of the line dropped from the point pj on
the line segment pipk. This is being referred to as the perpendicular distance. This
metric is generally good for smooth curves, but in some cases (explained later), it
may miss significant points and reject sharp turn, which are essential in shape
representation applications. Dunham [27] makes initial approximation using dis-
tance to a line segment. Ramaiah [28] uses distance to a line segment as a measure to
make polygonal approximation, but the metric used in the technique to compute
deviation is capable of preserving sharp turnings but fails to preserve the original
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shape of digital curve. Apart from the criterion measure proposed in any technique,
the methodology is also an important factor to produce the output polygon without
compromising its actual shape. This implies that the used metric in [28] is
unsuitable for iterative smoothing. The framework proposed in this chapter auto-
matically chooses the suitable significant measure metric based on the candidate
point projection, as explained next.

3.2 Proposed technique

In this section, we present our proposed method to make polygonal approxima-
tion of Cd. The initial segmentation points are obtained using Freeman chain code
[28], such as given in Algorithm 1. These initially segmented points are referred as
initial set of dominant points. Example of initial segmentation for the snowflake
curve is shown in Figure 1(a) and (b)where the dominant points are highlighted in
bold markers and the final approximated curve is given in Figure 1(c).

To compute the significant measure of every initial dominant point sk, the
proposed method uses the following steps: consider the scenario in Figure 2(a)
where, namely sk-1, sk and sk+1 are three dominant points on the curve with the
following traversing sequence: sk-1- > sk- > sk+1. It may be interpreted as these three
points are collinear by assuming the projections of a point sk that lies on the line
segment, which connects (sk-1sk+1). As a consequence, the approximation technique
[9–12, 14, 15, 20, 23, 29, 30] may decide to drop sk. In this scenario, the projection of
a point (sk) lies between its candidate line segment (sk-1sk+1). Figure 3 shows the
various anticipated position for possible projection of a dominant point (sk) on the
x-y plane. The proposed metric detects the position of projection. In order to predict
the position of a projection, the proposed technique uses the following steps: trans-
late the line segment connecting sk-1 and sk+1 so that the point Si coincides with the
origin of the x-y coordinate system and measures the amount of angle produced by
the translated line segment with the x axis. In order to align the translated line
segment with the x axis, rotate the line segment with a computed amount angle.
The actual x-y coordinate system and new transformed coordinate systems are
displayed in Figure 2(a) and (b). In the next step, by checking transformed x
coordinate of sk’, the method chooses metric to compute the significant measure. If
the x coordinate of sk’ is less than 0, then the significant measure sig(sk) is com-
puted using Eq. (1) (see Figure 3(a)). If xk’ of sk’ lies between 0 and the x coordi-
nate of si, then the significant measure is computed using Eq. (2) (see Figure 3(b).

Figure 2.
Demonstration of the coordinate transform performed for the proposed self-adaptive significant measure
computing metric for dominant point detection. (a) An example curve in the original x-y coordinate system is
shown. (b) The transformed x’-y’ coordinate system is shown in addition to the original x-y system.
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If the xk
’ value is greater than xj

’ of sk+1, then the significant measure of sk is
computed using Eq. (3) (see Figure 3(c)).

sig skð Þ ¼
X

skþ1

k¼sk�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sxk � sxk�1

� �2
þ syk � syk�1

� �2
q

(1)

sig skð Þ ¼
X

skþ1

k¼sk�1

Syk0
�

�

�

� (2)

sig skð Þ ¼
X

skþ1

k¼sk�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sxk � sxkþ1

� �2
þ syk � sykþ1

� �2
r

(3)

In all the three equations (Eqs. (1)–(3)), k range is k-1 < =k < =k + 1. (Note: the
accent sign indicates the coordinates in the transformed coordinate system). While
computing the significant measure associated with a dominant point, let us say sk,
the significant measure of every non-dominant point/boundary point lies between
its candidate line segment and is accumulated to define the significance measure of
sk. These steps are repeated for each dominant point in the initial set, before making
the decision to remove redundant dominant points in the next step. After measur-
ing the significant measure of all initial dominant points, the proposed method
removes the dominant point with minimal significant measure. If more than one
dominant point has the same minimal significant measure, the dominant point
appearing first in the order of sequence is removed. The steps to remove the
dominant point and produce the final output polygon are given in Algorithm 2.

Figure 3.
Demonstration of computation of significant measure of the point sk from the line segment sk-1sk+1.
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Algorithm 1. CIDP (Compute initial set of dominant points).

Input: The inputs are the coordinates of the boundary points.
Cd = pi (xi,yi),i=1,2,3… ..n; n boundary points.
Output: The outputs are the curve indices of initial dominant points.
Begin
Case 1: i=0

If (x(0)-x(n-1) != x(1)-x(0)) or ((y(1)-y(0) != y(0)-y(n-1)) then
D[0]= 0;
Case 2: i=n-1

If (x(n-1)-x(n-2) != x(0)-x(n-1)) or (y(n-1)-y(n-2) != y(0)-y(n-1))
D[j]=i;

Default:
While (i<n-1)
If (x(i)-x(i-1) != x(i+1)-x(i)) or (y(i+1)-y(i) != y(i)-y(i-1))

D[j] = i
End.

Algorithm 2. Polygonal approximation by computing the significant
measure of IDP.

Input: Digital curve Cd, Number of dominant points (k) in the output polygon.
Output: Output polygon with the specified number of dominant points (k).
Begin.
Step 1: Invoke the function CIDP.
Step 2: Compute significant measure associated with all initial dominant points

(sk’s).
Step 3: Repeat.

i. Identify the dominant point sk with minimal significant measure in Cd.

ii. Remove the dominant point sk and recalculate the significant measure of at
sk-1 and sk + 1.

iii. Compute the performance measures with the available dominant points

Until (No. of DPs == k).
End

4. Experimental results

The proposed technique is tested on a variety of challenging curves to demon-
strate its efficiency. The results are presented for two experiment sets. The experi-
ment set 1 consists of synthetic curves usually used in the literature [9, 11, 16, 19,
24, 25, 31–38]. In experiment 2, the proposed method is tested extensively with
images in MPEG data set [39]. We first present the quality assessment metrics for
polygonal approximation of digital curves. Then, we present the results on the two
experimental sets. Additionally, we include one experiment to demonstrate
geometric invariance of the proposed technique.
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4.1 Quality assessment

The best method to assess output of polygonal approximation is visual percep-
tion. Thus, we include extensive qualitative results. Moreover, we include quanti-
tative performance measures as well for comparison of the performance of the
tested methods, including the proposed technique. This chapter considers the fol-
lowing metrics to measure the goodness of the results: (i) compression ratio (CR),
(ii) integral square error (ISE), (iii) figure of merit (FOM), (iv) weighted sum of
square errors (WE), (v) modified version of WE (WE2). Details of these metrics
are provided in Table 1. These metrics are taken from [9–11, 15, 19, 33, 36]. The
readers interested in them are encouraged to read these articles and the references
therein.

4.2 Experimental set 1

The quantitative performance measure for the synthetic curves chromosome,
leaf, semicircle and infinity in experiment set 1 is given in Table 2. The visual shots
are shown in Figures 4–6. The methods in [16–19, 34, 36, 37] present optimal
solutions for the polygonal approximation. The proposed method output is close to
optimal solution for all the curves and further supports reduction of the number of
dominant points while retaining the shape information of the curve. Table 2 sum-
marizes the results from various articles [9, 11, 15–19, 23, 24, 26, 31–38] for the
given input synthetic curves. For the chromosome curve display using 15 amount of
dominant points, the proposed technique produces a low value for ISE than the
method in [32–34]. The snapshot of chromosome curve at 6 number of points using
the proposed method as well as by the methods [9, 23, 24] snapshots can be found
in Figure 4. For the leaf curve, where the output curve at 21 number of dominant
points, the proposed method produces the low value for ISE than [11, 24, 34] (in
turn FOM value is high, which is appreciable) and high value than [19]. The
snapshot for leaf output curve produced by the proposed method along with some
of the state-of-the-art methods results is displayed in Figure 5. The final synthetic
curve for this experiment set is a curve that intersects itself, that is, infinity-shaped
curve. In the attempt of producing the output curve using 10 number of points, the
proposed produce the minimal possible error than [11, 26]. And also the summa-
rized results reveal that the proposed method output is better than [9, 11, 19, 24,
26, 33] in terms of ISE, WE and FOM. The graphic shots for the same can be found
in Figure 6. According to human visual perception, four points are sufficient

Metric Indicator of

goodness

Mathematical representation

CR Larger is better CR ¼ n
k, where n is the number of points in the initial segmentation, while k

is the number of dominant points in the final polygonal approximation.

ISE Smaller is better ISE ¼
Pn

k¼1ek, where ek is the perpendicular distance of a point pk on the

original digital curve from the nearest line segment on the polygonal

approximation.

FOM Larger is better FOM ¼ CR
ISE

WE Smaller is better WE ¼ ISE
CR

WE2 Smaller is better WE2 ¼ ISE
CR2

Table 1.
Quality assessment metrics for comparing polygonal approximation methods.
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Contour Methods k CR ISE WE FOM

Chromosome Teh and Chin [32] 15 4.00 7.20 1.80 0.56

n = 60 Wu [33] 15 4.00 7.20 1.80 0.56

Masood [9] 12 5.00 7.76 1.55 0.64

Carmona et al. [11] 11 5.45 14.49 2.66 0.38

Parvez [34] 10 6.00 14.34 2.39 0.42

Madrid et al. [26] 12 5.00 5.82 1.16 0.86

Nguyen and Debled-Rennesson [35] 25 3.33 4.06 1.22 0.82

Nguyen and Debled-Rennesson [35] 15 4 5.69 1.42 0.70

Parvez [19] 11 5.45 7.09 1.30 0.77

Aguilera et al. [17] 10 6.00 8.07 1.35 0.74

Lie et al. [18] 14 4.29 7.58 1.77 0.57

Lie et al. [18] 12 5.00 7.96 1.59 0.63

PRO0.6 [24] 11 5.45 11.00 2.02 0.50

RDP2 [24] 8 7.50 59.99 8.00 0.13

RDP3 [24] 6 10.00 91.18 9.12 0.11

Proposed 15 4.00 4.87 1.22 0.82

Proposed 6 10.00 45.49 4.55 0.22

Leaf Teh and Chin [32] 29 4.14 14.96 3.61 0.28

n = 120 Wu [33] 24 5.00 15.93 3.19 0.31

Marji and Siy [15] 17 7.06 28.67 4.06 0.25

Carmona et al. [11] 21 5.71 17.97 3.15 0.32

Parvez [34] 21 5.71 13.82 2.42 0.41

Parvez [19] 21 5.71 11.98 2.10 0.48

Nguyen and Debled-Rennesson [35] 33 3.64 5.56 1.53 0.65

Backes and Bruno [36] 20 6.00 14.1 2.35 0.43

Wang et al. [16] 20 6.00 13.9 2.32 0.43

Madrid et al. [26] 22 5.45 11.16 2.05 0.49

PRO0.6 [24] 21 5.71 21.70 3.80 0.26

PRO1.0 [24] 18 6.67 36.70 5.50 0.18

RDP1 [24] 22 5.45 19.17 3.51 0.28

RDP2 [24] 16 7.50 65.46 8.73 0.11

Proposed 21 5.71 13.25 2.32 0.43

Proposed 16 7.50 44.52 5.94 0.17

Semicircle Teh and Chin [32] 22 4.64 20.61 4.44 0.23

n = 102 Yin [37] 17 6.00 19.78 3.30 0.30

Salotti [38] 14 7.29 17.39 2.39 0.42

Wu [33] 27 3.78 9.01 2.38 0.42

Marji and Siy [15] 15 6.80 22.70 3.34 0.30

Masood [9] 21 4.86 9.82 2.02 0.49

Carmona et al. [11] 26 3.92 4.91 1.25 0.80
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enough to represent the infinity curve; please see Figure 6(g). On the outset, it is
perceived that the proposed technique gives the best or second best ISE values for
all the cases. This indicates competitiveness of the proposed technique.

4.3 Experiment set 2

In this section, the performance of the proposed methods has been demon-
strated using image in MPEG database [39]. Fernandez [25] presents a technique to
produce output polygon from a given digital boundary. Authors in [25] demon-
strated the efficiency of their method by comparing their results with method [23],

Contour Methods k CR ISE WE FOM

Parvez [34] 17 6.00 19.02 3.17 0.32

Nguyen and Debled-Rennesson [35] 25 4.08 5.42 1.33 0.75

Backes and Bruno [36] 14 7.29 19.80 2.72 0.37

Wang et al. [16] 15 6.80 14.30 2.10 0.48

Parvez [19] 15 6.80 18.22 2.68 0.37

Aguilera et al. [17] 14 7.29 17.39 2.39 0.42

Madrid et al. [26] 10 10.20 40.79 4.00 0.25

Lie et al. [18] 14 7.29 29.30 4.02 0.25

PRO 0.6 [24] 18 5.67 18.12 3.20 0.31

Proposed 18 5.67 15.45 2.72 0.37

Proposed 17 6.00 16.59 2.76 0.36

Proposed 14 7.29 17.73 2.43 0.41

Proposed 12 8.50 40.62 4.78 0.21

Infinity Teh and Chin [32] 13 3.46 5.93 1.71 0.58

n = 45 Wu [33] 13 3.46 5.78 1.67 0.60

Masood [9] 11 4.09 2.90 0.71 1.41

Carmona et al. [11] 10 4.50 5.29 1.18 0.85

Parvez [34] 9 5.00 7.35 1.47 0.68

Parvez [19] 7 6.43 7.69 1.20 0.84

Madrid et al. [26] 10 4.50 6.40 1.42 0.70

PRO0.6 [24] 9 5.00 6.29 1.26 0.79

PRO1.0 [24] 7 5.63 19.94 3.54 0.28

RDP1 [24] 9 5.00 6.67 1.33 0.75

RDP2 [24] 7 6.43 19.94 3.10 0.32

RDP3 [24] 5 9.00 53.82 5.98 0.17

Masood [9] 8 5.63 10.24 1.82 0.55

Carmona et al. [11] 6 7.50 31.68 4.22 0.24

Proposed 10 4.50 4.44 0.99 1.01

Proposed 5 9.00 35.61 3.96 0.25

Table 2.
Comparative results of synthetic contour (chromosome, leaf, semicircle, infinity).
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which is capable of producing output polygon in non-parametric mode. So the
better counterpart method to compare the proposed method is the one proposed in
[25]. Table 3 summarizes the results of the proposed method along with the results
claimed as the best in [25] for the contours in MPEG database [39]. For the bell-7
contour, the snapshot at 23, 22, 20 and 7 number of dominant points, the proposed
method produces a less approximation error in terms of ISE WE WE2 than others
mentioned in [9, 11, 23, 25]. Especially the output approximation at 7 DPs, the

Figure 4.
Polygonal approximation of chromosome curve at varying amount of dominant points. (a) RDP2 [24] at 11
DPs, (b) RDP3 [24] at 6 DPs, (c) Masood [9] at 9 DPs, (d) Masood [9] at 6 DPs, (e) Prasad [23] Masood
opt at 11 DPs, (f) Prasad [23] Carmona opt at 10 DPs, (g) Proposed method at 11 DPs, (h) Proposed method
at 6 DPs.

Figure 5.
Polygonal approximation of leaf curve at varying amount of points. (a) Prasad [24] PRO 0.6 at 18 DPs,
(b) Prasad [24] RDP2 at 16 DPs, (c) Masood [9] at 16 DPs, (d) Prasad [23] Masood_opt at 18 DPs,
(e) Carmona [11] at 20 DPs, (f) Prasad [23] Carmona_opt at 18 DPs, (g) Proposed method at 16 DPs.
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Figure 6.
Polygonal approximation of infinity curve at varying amount of DPs. (a) Masood [9] at 8 DPs, (b) Prasad
[23] Masood _opt at 9 DPs, (c) Carmona [11] at 8 DPs, (d) Carmona [11] at 7 DPs, (e) Prasad [24] PRO
1.0 at 7 DPs, (f) Prasad [24]_RDP 3 at 5 DPs, (g) Proposed method at 6 and 4 DPs.

Contour Methods k CR ISE WE WE2

Bell-7 Fernandez [25] 23 17.65 165.14 9.35 0.53

n = 407 Fernandez [25] 22 18.45 200.93 10.89 0.59

Fernandez [25] 20 20.3 255.083 12.56 0.61

Rosin [40] 7 58 2186.6 37.7 0.65

Masood [9] 20 20.35 408.08 20.5 0.98

Carmona [11] 23 17.69 332.563 8.84 0.23

Prasad [23] RDP 28 14.53 97.60 6.71 0.46

Proposed 22 18.5 176.54 9.54 0.51

Proposed 20 20.35 210.16 10.32 0.50

Proposed 7 58.14 453.91 7.80 0.13

Octopus-14 Fernandez [25] 79 15.33 236.62 15.44 1.00

n = 1211 Fernandez [25] 55 22.02 1270.17 57.69 2.62

Fernandez [25] 50 24.22 1847.81 76.29 3.15

Rosin [40] 43 28.16 2617.37 92.94 3.30

Masood [9] 201 6.02 9268.43 1538.36 255.75

Prasad [23] RDP 55 22.01 392.15 17.81 0.80

Proposed 79 15.33 212.00 13.83 0.90

Proposed 43 28.16 1927.15 68.43 2.42

Ray-17 Fernandez [25] 35 19.69 240.26 12.20 0.62

n = 689 Fernandez [25] 28 24.61 660.00 26.82 1.09

Fernandez [25] 24 28.71 1152.83 40.16 1.40

Rosin [40] 14 49.21 6999.71 142.23 2.89

Masood [9] 24 28.71 749.01 26.09 0.91

Masood [9] 14 49.21 8627.89 175.31 3.56
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Contour Methods k CR ISE WE WE2

Prasad [23] RDP 54 12.75 342.36 26.93 2.10

Proposed 35 19.69 208.48 10.59 0.53

Proposed 14 49.21 455.32 9.25 0.18

Chicken-5 RDP [29, 30] 255 5.35 285.54 53.38 9.98

n = 1364 Masood [9] 401 3.40 147.86 43.47 12.79

Carmona et al. [11] 134 10.18 906.52 89.06 8.74

Fernandez [25] 54 25.26 2424.51 95.99 3.80

Prasad [23] RDP 218 6.25 782.53 125.20 20.3

Proposed 255 5.35 275.42 51.49 9.61

Proposed 54 25.26 1994.15 78.95 3.12

Device 6–9 RDP [29, 30] 50 31.80 303.37 9.54 0.30

n = 1590 Masood [9] 84 18.93 189.89 10.03 0.53

Carmona [11] 22 72.27 3395.17 46.98 0.65

Fernandez [25] 33 48.18 348.22 7.23 0.15

Prasad [23] RDP 38 41.84 741.416 17.02 0.42

Proposed 84 18.93 216.24 11.42 0.60

Proposed 22 72.27 761.58 10.54 0.14

Bell-10 RDP [29, 30] 110 10.92 181.25 16.59 1.52

n = 1202 Masood [9] 4 — — 4.95

Carmona [11] 104 11.78 549.52 46.64 3.96

Fernandez [25] 42 28.61 687.56 24.03 0.84

Prasad [23] RDP 81 14.83 326.47 22.01 1.48

Proposed 110 10.92 241.45 22.06 2.02

Proposed 42 28.61 615.77 7.98 0.75

Truck-07 n = 277 RDP [29, 30] 40 6.92 24.45 3.53 0.50

Masood [9] 40 6.92 37.17 5.37 0.77

Masood [9] 11 25.18 1133.29 45.00 1.78

Carmona [11] 12 23.08 1132.45 49.06 2.11

Fernandez [25] 40 6.92 24.15 3.48 0.50

Prasad [23] RDP 33 8.39 59.17 7.05 0.84

Proposed 12 23.08 319.24 13.83 0.59

Proposed 11 25.18 318.34 12.64 0.50

Butterfly-13 RDP [29, 30] 344 5.19 383.30 73.85 14.23

n = 1786 Masood [9] 525 3.40 199.06 58.54 17.22

Carmona-Poyato et al. [11] 171 10.44 1450.70 138.95 13.31

Fernandez [25] 65 27.47 2195.88 79.93 2.91

Proposed 525 3.40 197.58 58.11 17.09

Proposed 65 27.47 2063.91 75.13 2.73

Table 3.
Comparative results for the MPEG database contours.
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proposed method and Rosin [40] method produce the curve with the mandatory
points compared to others, but the proposed method produces minimal error
measure than Rosin [40], and the output can be found in Figure 7(c) and (h).

For the octopus-14 contour, the proposed efficiently produces the output curve
with minimal deviation from the original curve compared to others. By observing
Figure 8(e), the proposed produces an outlying approximation that is visibly

Figure 7.
The output approximation for the bell-7 contour by various methods: (a) Prasad [23] RDP at 28 DPs, (b)
Fernandez [25] at 23 DPs, (c) Rosin [40] at 7 DPs, (d) Masood [9] at 15 DPs, (e) Carmona [11] at 15 DPs,
(f) Proposed method 20 DPs, (g) Proposed method at 7 DPs.

Figure 8.
The output polygon from octopus-17 by various methods: (a) Carmona [11] at 43 DPS, (b) Prasad [23] RDP
at 55 DPs, (c) Prasad [23] Carmona_opt, (d) Fernandez [25] at 43 DPS, (e) Proposed method at 43 DPs.
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excellent than [25]. In order to support this claim, the output curve for octopus-14
can be found in Figure 8 along with results of [11, 23, 25]. When the input is the
ray-17 contour, at 14 number of DPs, the new proposal produces minimal error than
the results of [9, 40], and then for the same curve at 35 DPs, the results are good
than [25] in terms of ISE, WE and WE2. The graphic shots of the proposed method
along with [11, 23, 25, 40] can be found in Figure 9. When the input for the
proposed method is chicken-5 curve, the proposed method approximation error
measures are compared with results produced by the techniques in [9, 11, 23, 25,
29, 30], and by using all the quantitative performance evaluators, the proposed
work produces the output curve with minimal error possible, and the visual snap-
shots are shown in Figure 10. For the input curve device 6-9, the proposed method
results are compared with the results in [9, 11, 23, 25, 29, 30], it is been conceived
that the proposed one produces the minimal error (ISE ,WE) than the error pro-
duces by the methods in [9, 11, 23, 25]. The output curve for device 6–9 can be
found in Figure 11. Then finally for the truck-07 curve, the results of the proposed
method at 40, 12 and 11 dominant points are compared with the results of [9, 11,
23, 25]. In all iterations against the mentioned dominant points, the proposed
method outperforms well than others. Especially output curve at 11 dominant
points, the proposed method efficiently chooses the good curvature points in such a
way that the output curve does not deviate much than the original input curve
(please see the snapshot at Figure 12(a), (b) with (g)).

Figure 9.
Output approximated curve for ray-17 contour by various methods: (a) Carmona [11] at 14 DPs, (b) Prasad
[23] RDP_opt at 54 DPs, (c) Fernandez [25] at 24 DPs, (d) Rosin [40] at 14 DPs, (e) Proposed method
results at 24 DPs, (f) Proposed method at 14 DPs.
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4.4 Rotation invariance

To test the efficiency of the proposed method against rotation invariance, bell-7
contour is rotated using varying amount angle. Then, the rotated contour is given as
an input to the proposed method as well as to the technique in [9]. The results are

Figure 10.
Final approximation of chicken-5 contour by various methods: (a) Carmona [11] at 54 DPs, (b) Prasad [23]
RDP_opt at 218 DPs, (c) Prasad [23] Carmona_opt 258 DPs, (d) Fernandez [25] at 54 DPs, (e) Proposed
method at 54 DPs, (f) Proposed method at 29 DPs.

Figure 11.
Final approximation obtained from device 6–9 curve: (a) Carmona [11] at 22 DPs, (b) Prasad [23] RDP_opt
at 38 DPs, (c) Prasad [23] Carmona_opt at 77 DPs, (d) Fernandez [25] at 33 DPs, (e) Proposed method at
22 DPs.
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summarized for the reader’s perusal. How do researcher determine a polygonal
approximation is rotation invariant or not and what extent? The answer is the
metrics such as area of polygon, perimeter and compactness may be suggested to
use along with results from human perception. The authors in [41] use the above-
mentioned metrics to prove whether the technique is able to produce the polygon
with the same positioned points before as well as after the rotation. This can be
measured using compactness metric. Moreover, the authors in [41] demonstrated
that the techniques proposed in [9, 11, 12] are scaling as well as translation invariant
using compactness metric.

The mathematical interpretation of compactness metric (COMP) has been
mentioned in Eq. (2). Table 4 summarizes the value obtained by using COMP for
the bell-7 contour by the proposed method.

comp ¼ Area=Perimeter2 (4)

To compare the robustness of the technique against rotation, the snapshots using
bell-7 contour are displayed in Figures 13 and 14. The output polygon at 20

Figure 12.
Final approximation obtained from truck-07 curve: (a) Masood [9] at 11 DPs, (b) Carmona [11] at 12 DPs,
(c) Prasad [23] Carmona_opt at 29 DPs, (d) Prasad [23] RDP_opt at 33 DPs, (e) Fernandez [25] at 40
DPs, (f) Proposed method at 44 DPs, (g) Proposed method at 11 DPs.

Contour k max(dm) ISE Area Perimeter Compactness

Bell-7 20 2.03 210.164 9231 299.13 0.10

Bell-7 at 20° 2.60 281.57 9.2475e+03 343.81 0.07

Bell-7 at 30° 2.70 348.868 9260 358.08 0.07

Bell-7 at 70° 2.91 325.29 9.254.5e+03 344.83 0.07

Bell-7 at 80° 2.59 319.50 9151 327.10 0.08

Bell-7 at 180° 2.03 210.164 9231 299.13 0.10

Table 4.
Robustness of the proposed method against rotation using quantitative measurement.
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amounts of dominant points is used here to check if the technique is robust enough
against rotation invariance. Most of the techniques considered in this chapter pro-
duce polygon in non-parametric mode. The best thing to compare the efficiency of
rotation invariance is to compare the output at minimal possible amount of points
since the input curve may contain more redundant points. So the result of the
proposed method is compared with Masood [9]. By using [9], any researcher can
produce a curve with specified number of dominant points. In Table 4, the value
for geometric invariance assessment metrics (area of polygon, perimeter and com-
pactness) reveals that the results by proposed method using rotated contours mea-
sure against compactness metric are more or less nearer to the value produced by
the proposed method before rotation, and the visual snapshots in Figure 13 also
support the same. The results of Masood [9] in terms of quantitative measurements
can be found in Table 5. Bell-7 at 30° value for compactness metric varies high
while comparing the results obtained before rotation. In the remaining angles, the
rotated contours compactness metric is more or less nearer to the value obtained by

Figure 13.
The output polygon at 20 DPs by proposed methods in varying amount of angles: (a) Polygon at 20 DPs, (b)
Polygon at 20°, (c) Polygon at 30°, (d) Polygon at 45°, (e) Polygon at 70°, (f) Polygon at 80°, (g) Polygon at
180°.
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the method before rotation. Masood [9] snapshots can be found in Figure 14. When
the authors noticed that in the output curve produced by Masood [9], the position
of the dominant point is heavily dislocated after rotation, whereas the proposed
methods try to maintain the same positioned dominant points in the rotated
contours too (see Figure 13).

5. Conclusion

The proposed significant measure computing metric predicts the position of a
projection of every boundary point between its candidate line segment, thereby
invoking suitable significant measure computing metric and accumulating its

Figure 14.
The output polygon at 20 DPs by Masood [9] in varying amount of angles: (a) Polygon at 20 DPs, (b) Polygon
at 20°, (c) Polygon at 30°, (d) Polygon at 45°, (e) Polygon at 70°, (f) Polygon at 80°, (g) Polygon at 180°.

Contour k max(dm) ISE Area Perimeter Compactness

Bell-7 20 3.48 315.00 6835 321.78 0.06

Bell-7 at 20° 2.77 311.84 9130 333.32 0.08

Bell-7 at 30° 1.99 270.51 9.1255e+05 190.61 0.25

Bell-7 at 70° 3.79 381.35 9.1615e+03 343.59 0.07

Bell-7 at 80° 2 266.677 9.1585e+03 326.90 0.08

Bell-7 at 180° 3.487 315.00 6835 306.95 0.07

Table 5.
Robustness of Masood [9] against rotation using quantitative measurement.
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significant measure to define the significant value of every candidate of dominant
points. The technique is demonstrated using wide variety of data sets, where the
image contours are with different level details in terms of curvature as well as size.
The proposed technique suits for parallel manipulators aspiring to produce the
digital boundary with minimal number points without compromising its shape
according to human perception as well as using benchmarking performance mea-
suring metrics.
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