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Chapter

Depth Learning Methods for
Bridges Inspection Using UAV

Hicham Sekkati and Jean-Francois Lapointe

Abstract

This paper is investigating learning methods using depth as a cue measurement
that can be used for bridge inspection. We investigate learning methods based on
mono, stereo, and multiview image input and discuss the constraints that allow some
methods to perform better than others in various scenarios. We go over the state-
of-the-art deep learning methods, including supervised and unsupervised methods.
These methods will be compared and evaluated, based on constraints, performance,
and accuracy, and how top methods should be selected for each scenario. The same
database should be used for fair comparison between all methods ensuring that eval-
uations are unbiased, replicable, and meaningful.

Keywords: depth, 3D reconstruction, deep learning, bridge inspection, UAV

1. Introduction

Tragedies such as the recent collapse of the Morandi bridge in Italy [1] remind us
of the importance of good and regular bridge inspections. Such inspections are
conducted mainly manually but the advent of new technologies such as drones and
depth estimation using deep learning paradigms has the potential to automate part of
the task. Depth map estimation for bridge inspection can provide valuable informa-
tion about the three-dimensional structure of the bridge. It allows for the identifica-
tion of surface irregularities, cracks, deformations, and overall conditions. This
process provides valuable information for analyzing the structural integrity and iden-
tifying potential issues. Several techniques can be used for depth map estimation in
bridge inspection, including Time-of-Flight (ToF) cameras, Structured Light scanning
(SL), Laser scanning or Light Detection and Ranging (LiDAR) systems, as well as
photogrammetry-based depth estimation. ToF cameras emit infrared light and mea-
sure the time it takes for the light to bounce back from the bridge surface. This
information is used to estimate the distance to each point on the surface, creating a
depth map. ToF cameras can provide real-time depth information, making them
suitable for dynamic inspections. SL scanning involves projecting a pattern of light
onto the bridge surface and capturing the deformed pattern using a camera. By
analyzing the distortions in the pattern, depth information can be calculated. This
technique is effective for capturing detailed depth maps of bridge surfaces and can be
performed using handheld devices or mounted on vehicles or drones. LIDAR
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technology can also be utilized for depth map estimation, by emitting laser pulses and
measuring their time of flight, LIDAR scanners can generate accurate depth informa-
tion of the bridge’s surface. High-resolution LiDAR scanners can capture detailed
depth maps, facilitating precise analysis of the bridge structure. In photogrammetry-
based techniques, and by employing computer vision algorithms, depth maps can be
estimated from regular images captured by Unmanned Aerial Vehicles (UAVs) or
drones during bridge inspections. Various techniques, such as depth from single
image, structure from motion (SfM), or multi-view stereo, can be employed to extract
depth information from the image data.

Each of the above techniques has its advantages and limitations, and the choice
depends on factors such as the desired level of accuracy, resolution, portability, and
budget. It is advisable to consult with experts in the field of bridge inspection or 3D
imaging to determine the most suitable depth estimation method for a specific bridge
inspection project. However, this paper focuses on photogrammetry-based methods
and specifically the last advances using deep learning techniques to generate depth
maps from images.

This paper first talks about depth perception and then discuss various ways of
obtaining depth, be it by using pictorial cues, from monocular video, or from stereo
and multi-view.

2. Depth perception

Perception refers to the ability to interpret and organize stimuli from the sur-
rounding environment, enabling effective understanding and behavior. The visual
system plays a crucial role as one of the primary sources of stimuli for human beings.
It comprises more than one million axons from each eye, responsible for capturing
light reflected by objects. Research on human perception suggests that the visual
system utilizes multiple sources of information to comprehend and infer the depth
structure of scenes. The human visual system relies on various monocular or binocular
cues present in two-dimensional retinal images to gather information that helps in
perceiving the depth of the scene. Monocular cues can be divided into two categories:
pictorial cues and motion-based cues.

Pictorial cues, or image cues, are derived from visual features observed in a static
view of a scene. The most common pictorial cues used in computer vision methods for
depth estimation from a single image are texture variations [2], shading [3], and
defocus [4]. Texture variations are translated such as objects that are closer to the
viewer tend to exhibit more detailed and distinct textures, while objects that are
farther away appear to have less detailed or blurred textures. This texture gradient
helps us infer depth. The distribution of the direction of edges or lines in a scene
changes as objects recede into the distance. The spacing between these lines becomes
smaller as objects get farther away, giving us a sense of depth. Depth from shading is a
technique used to estimate the depth or 3D structure of a scene based on the shading
or variations in brightness and contrast within an image. It relies on the principle that
the distribution of light and shadows on objects can provide valuable information
about their shape and depth. Depth from defocus is a depth estimation technique that
utilizes the blur or defocus information in an image to infer the distance of objects.
These algorithms take advantage of the fact that objects in the focus plane of a camera
appear sharper, while objects that are out of focus exhibit varying degrees of blur. By
analyzing the amount of blur in an image, these algorithms can infer the relative depth
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of different objects in the scene. A good survey on methods using depth from defocus
can be found in ref. [5]. Let us remind that depth from defocus technique is funda-
mentally different from depth from focus in the sense that the later uses a stack of
images to model the blur in image while the former technique uses a single image. The
stack of images can be obtained by varying the camera aperture like in ref. [6] or the
focal length like in refs. [7-11]. In the next section, we only review learning depth
from a single image.

On the other hand, motion-based cues make use of observer motion and leverage
motion parallax, that is, nearby objects appear to move faster in the retinal image
compared to distant objects. In contrast, binocular cues rely on the perception of
depth through disparities between two different viewpoints of the same scene. By
comparing the differences in the views from each eye, the brain can accurately
triangulate the distance to an object. Binocular cues offer a high level of precision in
estimating distances. The aim of the following sections is to go over the last advanced
research on deep learning techniques for each category to estimate depth.

3. Depth from pictorial cues

Deep learning methods have been successfully applied to estimate depth from a
single image, leveraging the power of neural networks to learn complex
mappings between image features and depth information. The first deep-learning
method to estimate depth from a single image was proposed in ref. [12]. Image
cues are learned as multi-scale features. The method uses two-step process
involving two deep neural networks to predict depth information for a given scene.
The first step is performed by a coarse-scale network. This network takes an input
image as its input and predicts the depth of the scene at a global level. The second step
involves a fine-scale network. This network takes the coarse depth map (output of the
coarse-scale network) and refines it within local regions. The method achieves state-
of-the-art results on both NYU Depth [13] and KITTI [14] datasets. The authors in ref.
[15] proposed a framework to model the conditional probability on depth with condi-
tional random field (CRF) and learn the probability distributions using deep
convolutional neural network (CNN). The method has outperformed the classical
methods on both indoor and outdoor scenes using both the public datasets NYU depth
and the Make3D range image [16]. In ref. [17], the method also uses two CNN to
capture both global and local scales while jointly estimating depth and semantic
segmentation from a single image. The method in ref. [18] has trained a CNN to learn
the relative depth ordering between pairs of points in the image. The same network
was trained to learn independently the reflectance and shading in the image, however,
no interaction between these metrics was taken into account. A better structural
relationship between points in the image was learned by a CNN in ref. [19]. This
method involves training a neural network to characterize the local geometry of a
scene by predicting depth derivatives of various orders, orientations, and scales at
every image location. In ref. [20], a method that combines a CNN and regression forest
was presented to regress depth in the continuous domain. In ref. [21], the authors
proposed a fully convolutional architecture (ResNet) for depth prediction enabling the
generation of dense output maps with higher resolution, while significantly reducing
the number of parameters required. Furthermore, the model can be trained using
one-tenth of the data compared to the previous state-of-the-art approaches. An
improvement of the previous method’s accuracy was presented in ref. [22] by applying
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a post-processing via fully-connected conditional random fields (CRF). More
improvements using CRFs in cascades was presented in ref. [23]. In ref. [24], two
cascade-deep fully connected CNNs were proposed to learn both global and local
feature maps that are propagated to estimate depth. Most methods learn depth as a
regression model and code implicit structure of the scene with CNNs features, but in
ref. [25], a method was presented that explicitly modeled the defocus blur in an image
and link it to image depth. In ref. [26], a method was presented that learns depth from
defocus, unfortunately only qualitative results on NYU depth dataset were shown.
Quantitative comparisons with state-of-arts learning methods on this dataset were not
reported. Tables 1 and 2 summarize the evaluation of depth estimation from state-
of-the-art pictorial-based methods using both Make3D [16] and NYU Depth [13]
datasets, respectively.

Method Error (C;) Error (C;)
AbsRel log10 RMS AbsRel log10 RMS
Saxena et al. [2] — — — 0.370 — —
Roy et al. [20] — — — 0.260 0.119 12.400
Liu et al. [15] 0.314 0.119 8.600 0.307 0.125 12.890
Anwar et al. [24] 0.213 0.075 2.560 0.202 0.312 0.079
Laina et al. [21] 0.176 0.072 4,460 — — —
Xu et al. [23] 0.184 0.065 4.380 0.198 4.530 8.560
Table 1.

Result comparisons of depth evaluation from pictorial-based methods on the Make3D dataset. Best performance is
marked with bold fonts.

Method Error Accuracy

AbsRel log10 RMS 5<1.25 6<125 §<1.25°

Zoran et al. [18] 0.400 0.420 1.200 — — —
Liu et al. [15] 0.230 0.095 0.824 0.614 0.883 0.971
Wang et al. [17] 0.220 0.094 0.745 0.605 0.890 0.970
Eigen et al. [12] 0.215 0.285 0.907 0.611 0.887 0.971
Roy et al. [20] 0.187 0.078 0.744 — — —
Chakrabarti et al. [19] 0.149 0.205 0.620 0.806 0.958 0.987
Cao et al. [22] 0.141 0.060 0.540 0.819 0.965 0.992
Laina et al. [21] 0.127 0.055 0.573 0.811 0.953 0.988
Xu et al. [23] 0.121 0.052 0.586 0.811 0.954 0.987
Anwar et al. [24] 0.094 0.039 0.347 — — —
Carvalho et al. [25] 0.036 0.016 0.144 0.993 1.000 1.000
Table 2.

Result comparisons of depth evaluation from pictorial-based methods on the NYU depth dataset. Best performance
is marked with bold fonts.
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3.1 Loss functions

Learning depth from a single image is a challenging task due to the inherent
ambiguity. However, there are techniques that leverage deep learning models to
estimate depth from a single image. When training such models, a common choice for
the loss function is the depth regression loss, which measures the difference between
the predicted depth map and the ground truth depth map. One popular loss function
for depth regression is the mean squared error (MSE) loss, given by:

Ly =Y (Z(x,y) - Z*(x,9))’ (1)

X5y

where Z* (x,y) is the depth map predicted by the model and Z(x, y) is the ground
truth depth map. The MSE loss penalizes large errors between the predicted and
ground truth depth values. Minimizing this loss helps the model learn to estimate
depth accurately. Alternatively, you can also use other variations of the loss function
such as the Huber loss or the smooth L1 loss, which provide a balance between the
absolute and square losses and can be less sensitive to outliers. These loss functions
can be advantageous when dealing with noisy or sparse depth measurements. When
training models to learn depth from a single image, additional constraints or regular-
ization terms might be necessary to improve the quality of the estimated depth. Some
common techniques include incorporating geometric or semantic information,
enforcing local smoothness, or using multi-scale depth supervision. Overall, the
choice of the loss function depends on the specific requirements and characteristics of
depth estimation task. Experimentation with different loss functions and regulariza-
tion techniques can help find the most suitable approach for different applications.

4. Depth from monocular video

Estimating 3D interpretation from a monocular video is a fundamental and chal-
lenging topic in visual perception. Two common techniques used for this purpose are
structure from motion (SfM) and simultaneous localization and mapping (SLAM). In
the context of monocular video, SfM involves jointly estimating the camera motion
and depth map of the scene, while SLAM involves jointly estimating the camera
trajectory and the 3D structure of the scene. Monocular depth prediction using pairs
of frames or more can be particularly challenging. This is because it requires reasoning
about the relative camera pose, as well as estimating the disparity or optical flow
between the frames. Furthermore, there is an inherent ambiguity in scale when using
only monocular input, unless additional information or a consistent SLAM recon-
struction pipeline is employed. The relative camera pose estimation is crucial for
understanding the spatial relationship between frames and is necessary to compute
accurate depth maps. Determining the camera motion accurately becomes more diffi-
cult when dealing with larger displacements, occlusions, or scene dynamics. Incor-
rectly estimated camera poses can lead to inaccurate depth predictions. Additionally,
estimating disparity or optical flow between frames is challenging due to factors such
as textureless regions, occlusions, and large displacements. These factors can intro-
duce errors and ambiguities in the depth estimation process. Moreover, when using
only monocular input, there is an inherent scale ambiguity. That is, without additional
information, it is challenging to determine the absolute scale of the scene, leading to

5



Drones — Various Applications

depth maps that are only accurate up to an unknown scale factor. Despite the diffi-
culties, researchers continue to develop methods that leverage monocular depth pre-
diction using pairs of frames. These methods often combine deep learning techniques
with geometric constraints and SLAM-like approaches to improve the accuracy of
depth estimation and mitigate the inherent challenges. Ongoing research in this area
aims to push the boundaries of monocular depth prediction and address the inherent
limitations of single-camera input.

4.1 Supervised deep learning methods

Supervised deep learning methods have made significant progress in addressing
the problem of determining 3D interpretation from monocular video. By training
neural networks on large-scale annotated datasets, these methods can learn to esti-
mate depth, motion, and other geometric properties from single-camera input. One
popular approach to estimate depth is to use convolutional neural networks (CNNs)
applied independently at each frame of the video. These networks take an image as
input, as seen in the previous section, and output a depth map that represents the
scene’s 3D structure. By leveraging the large amounts of labeled data, CNNs can learn
to infer depth cues such as perspective, texture gradients, and occlusion patterns. A
common dataset used to compare methods in this category is KITTI [14]. In ref. [27],
given a pair of frames and camera intrinsics, a deep architecture, computes depth, 3D
camera motion, a set of 3D rotations and translations for the dynamic objects in the
scene, and corresponding pixel assignment masks. However, the method uses a single
image deep architecture for depth estimation.

Additionally, recurrent neural networks (RNNs) and particularly the
convolutional LSTM networks have been employed to capture temporal dependencies
and motion information in video sequences. By incorporating temporal context into
the learning process, these models can estimate not only depth but also camera
motion, object motion, and scene dynamics. In ref. [28], the proposed ConvLSTM
network learns depth maps from a set of N consecutive video frames in a depth-
supervised setting, allowing the ConvLSTM network to perform spatiotemporal rea-
soning about the image-depth map relationship.

To further enhance performance, supervised methods often make use of additional
cues, such as optical flow or semantic segmentation. Optical flow provides dense
pixel-level motion information [29], which can aid in-depth estimation and object
tracking. Semantic segmentation helps in understanding the scene’s layout and can
guide the depth estimation process by leveraging object boundaries and semantic
context.

However, it is important to note that despite the advancements, challenges remain
in accurately determining 3D interpretation from monocular video. Factors such as
occlusions, lighting variations, and scene complexity can still pose difficulties for
supervised methods. Nonetheless, ongoing research and the continuous development
of more sophisticated deep learning architectures hold promise for further improve-
ments in tackling this problem.

4.1.1 Supervised loss function

When learning supervised depth from motion, a common approach is to use a loss
function that compares the predicted depth map with the ground truth depth map.
One such loss function is the photometric loss, which measures the difference
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between the rendered image using the predicted depth map and the actual input
image. The photometric loss can be defined as follows:

L1 = Y (Lxy) — L(x,9))? 2)

Xy

where I is the original input image and I, is the image rendered using the
predicted depth map and camera parameters, which can be done using techniques
such as differentiable warping or inverse depth warping. In addition to the photo-
metric loss, you can also incorporate smoothness regularization to encourage smooth
depth predictions. The smoothness loss penalizes large depth gradients and helps
produce more visually coherent depth maps. One common smoothness regularization
term is the total variation loss, which can be defined as follows:

L, =) IIvZ| 3)
x,y

where |VZ|| is the gradient of the predicted depth map in the x and y directions.
The total loss for learning depth from motion can be a combination of the photometric
loss and the smoothness regularization term:

L=1Ly+al, (4)

where a is a weighting factor that controls the relative importance of the photo-
metric loss and the smoothness regularization term. By minimizing this total loss using
techniques like gradient descent, you can train a model to learn depth from motion.
Keep in mind that this is just one possible approach, and depending on your specific
requirements and constraints, you may need to modify or customize the loss function
accordingly.

4.2 Unsupervised deep learning methods

While supervised deep learning methods have achieved notable progress in deter-
mining 3D interpretation from monocular video, unsupervised deep learning methods
have also shown promise in tackling this problem. Unsupervised approaches aim to
learn 3D representations from unlabeled or self-supervised data, eliminating the need
for costly manual annotations. One popular technique in unsupervised learning is based
on the concept of “self-supervision.” By leveraging the temporal coherence of consecu-
tive video frames, unsupervised methods can learn representations that capture the
underlying 3D structure of the scene. These methods often utilize techniques such as
photometric consistency, geometric consistency, or depth and ego-motion prediction.

In photometric consistency-based methods, the network learns to generate a synthe-
sized view of the input frame from a different viewpoint using estimated depth or
motion. The consistency between the synthesized view and the actual input frame is
maximized during training, encouraging the network to learn meaningful depth rep-
resentations. In ref. [30], the photometric consistency was achieved by training the
network in a manner analogous to an autoencoder.

Geometric consistency-based methods exploit the geometric relationship between
frames. They aim to minimize the disparity or reprojection error between multiple
views of the same scene. By leveraging geometric constraints, the network can learn to
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estimate depth and camera motion. The method in ref. [31] takes into account this
geometry by learning camera pose between each two frames.

Depth and ego-motion prediction methods train the network to directly predict depth
maps or motion vectors from single images or consecutive frames. These predictions are
compared to ground truth or photometrically warped frames, respectively, to supervise
the learning process. In ref. [32], photometric consistency was taken into account in
training step while 3D geometry consistency was achieved by reconstructing 3D points
cloud from depth and directly comparing the points cloud in a common reference
frame. Nonrigid motion of dynamic objects in the scene was taken into account in ref.
[33] by adding ResFlowNet architecture [34]. Photometric and geometric consistencies
were combined in ref. [35] in a way to minimize the discrepancy between the
reconstructed optical flow obtained from depth and egomotion, and the optical flow
generated using FlowNet [36]. Dynamic scenes were handled in ref. [37] by learning
objects motion independently from the egomotion without an explicit motion segmen-
tation. Likewise, the motion model of moving objects in the work [38] is tackled by
optical flow estimation using view synthesis objective as supervision, again with the
assumption of photometric consistency. In ref. [39], a method was presented by adding
another term that explicitly segments the scene into competing background and fore-
ground masks. In most unsupervised methods, including mono or stereo-SfM (Struc-
ture from Motion) approaches, photometric consistency is a crucial principle used to
guide the learning process. Photometric consistency is based on the assumption that the
appearance of the same point in different views should remain consistent under differ-
ent camera poses. In the context of monocular or stereo video, this consistency is
expressed using a warping function and is often referred to as the view-synthesis loss
[31]. In ref. [40], a generalization of the photometric loss was used by coupling the
spatiotemporal variations in image sequence to the scene geometry with the goal to
supervise both camera motion and depth in a new learning framework. Table 3 sum-
marizes the evaluation of depth estimation from state-of-the-art monocular motion-
based methods using KITTI [14] dataset.

Method Error Accuracy 6

AbsRel SqRel RMS RMSlog <125 <125 <125

Supervised Vijayanarasimhan et al. [27] — 0770 — — — — —
Kumar et al. [28] 0.137 1.019 5.187 0.218 0.809 0.928 0.971
Unsupervised Zhou et al. [31] 0.208 1768 6.856 0.283 0.678 0.885 0.957
Garg et al. [30] 0.169 1.080 5.104 0.273 0.740 0904 0.962
Mahjourian et al. [32] 0.163 1240 6.220 0.250 0.762 0.916 0.968
Yin et al. [33] 0.155 1.296 5.857 0.233 0.793 0931 0.973
Zou et al. [35] 0.150 1.124 5.507 0.223 0.806 0933 0.973
Casser et al.(M) [37] 0.141 1.026 5.291 0.215 0.816 0.9452 0.979
Rajan et al. [39] 0.140 1.070 5326 0.217 0.826 0.941 0.975
Sekkati et al. [40] 0.137 0.947 5.019 0.216 0.838 0.933 0.970
Chen et al. [38] 0.135 1.070 5230 0.210 0.841 0.948 0.980

Table 3.

Result comparisons of depth evaluation from monocular motion-based methods on the KITTI dataset. Best
performance is marked with bold fonts.
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By training on vast amounts of unlabeled video data, unsupervised methods can
capture 3D cues and learn to interpret depth, motion, and other scene properties.
They can also handle challenging scenarios, such as dynamic scenes, textureless
regions, and varying lighting conditions. While unsupervised methods have shown
promising results, there are still challenges to overcome. The quality and accuracy of
the learned representations heavily depend on the design of the self-supervision tasks
and the data distribution. Additionally, the unsupervised learning process can be
computationally expensive and may require substantial computational resources.
Nevertheless, the development of unsupervised deep learning methods for 3D inter-
pretation from monocular video holds great potential for advancing our understand-
ing of the 3D world and enabling applications in robotics, augmented reality, and
autonomous systems.

4.2.1 Unsupervised loss functions

Let us consider two nonconsecutive frames from the image sequence I(x,y,t) at
time #; and t,, denoted by I1 = I(x,y,t1) and I, = I(x, y,1,), respectively. The general
idea followed by a previous work [41], and subsequently by others, is to minimize the
photometric loss generated by the image difference:

Ly = Zlh(x,y) — I(z(x,y))l (5)
x5y

where 7 is the warping function that maps pixel from I, to I;. Using image warping
and image similarity metrics to supervise learning frameworks has certain limitations,
particularly when dealing with large baseline views, occlusions, and image gradients.
While these approaches can be effective in many cases, they may not fully capture the
complexities of the scene geometry and structural edges, leading to some shortcom-
ings. Several methods have been proposed to address these limitations, but they may
not always be explicitly related to scene geometry. For example, image similarity
metrics can help guide the learning process, but they might not directly capture the
underlying scene geometry. Estimating depth and understanding the 3D structure of
the scene is inherently related to scene geometry, which involves estimating accurate
depths and surface orientations. Simple image similarity metrics may not fully encap-
sulate these geometric properties.

Now let us consider two consecutive frames of the image sequence I(x,y,t) at
times ¢ and ¢ + 1. We denote the spatiotemporal derivatives of the image sequence by
(Ix, I, It). Then, the 3D brightness constraint for rigid objects’ motion can be
expressed by ref. [42]

F(T,w,Z):It+s';+q'w:O (6)

where s and q are two quantities expressed in terms of image gradients and camera
intrinsic parameters. Then, the problem of learning jointly the depth Z and
egomotion, parameterized by translational and rotational motions (T, ®), can be
stated as the following loss minimization

L =Y IN(T,,Z)| + ulVZ| 7)
XyY
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where the first term reduces the loss when the prediction deviates from the 3D
brightness constraint, and the second term stands for smoothing depth to avoid both
overfitting and the trivial null solution. Minimization of the loss L, will overcome all
the above shortcomings related to minimizing L; and by adding other constraints
instead.

5. Depth from stereo and multi-view

Deep learning methods have been widely employed for depth estimation from
stereo or multiview images. These methods leverage convolutional neural networks
(CNNs) to learn the mapping between input image pairs or sets and their
corresponding depth maps. DispNet is a popular deep-learning architecture specifi-
cally designed for stereo depth estimation. It consists of a CNN-based encoder-
decoder network that takes a stereo pair of images as input and predicts a dense
disparity map, which can be converted to depth. The network is trained using a
supervised learning framework with ground truth depth maps. Pyramid Stereo
Matching Network (PSMNet) is another deep learning architecture for stereo depth
estimation. It introduces a spatial pyramid pooling module to capture multi-scale
information and a stacked hourglass network structure to refine the disparity estima-
tion. PSMNet has demonstrated excellent performance in stereo depth estimation
tasks. MC-CNN is a deep learning method that takes advantage of multiple views of a
scene to estimate depth. It takes a set of calibrated images as input and processes them
through a shared CNN architecture to predict the depth map. MC-CNN exploits the
inter-view geometric relationships to improve depth estimation accuracy. Generative
Adversarial Networks (GANs) have also been utilized for depth estimation from
stereo or multiview images. GAN-based methods often involve training a generator
network to generate depth maps from input images and a discriminator network to
distinguish between real and synthesized depth maps. This adversarial training helps
improve the quality and realism of the predicted depth maps. The disparity estimation
method in [41] uses a CNN network for computing matching distances between
image patches followed by a cross-based aggregation to compute the disparity map. In
ref. [43], a CNN was trained in a supervised way to estimate disparity between stereo
images from stereo video datasets. An implementation in GPU was presented in ref.
[44] to learn feature correspondences faster. In ref. [45], stereo matching is enhanced
using conditional random fields (CRF) to improve the accuracy and coherence of the
depth estimates. CRF Is a pro”abil’stic graphical model that models the dependencies
between variables in a structured manner. In the context of Semi-Global Matching
(SGM) [46], the spatial-variant penalty parameters were learned by regularization
terms applied to the disparity map to enforce smoothness and coherence. SGM
employs a penalization approach where the disparity differences between neighboring
pixels are penalized and controlled by the penalty parameters. In ref. [47], a CNN
method with differentiable layers was presented that learns an end-to-end mapping
from an image pair to disparity map. A refinement by adding another CNN stage was
presented in ref. [48].

In ref. [49], a method was presented to train a CNN network that performs end-to-
end unsupervised depth estimation with a training loss that enforces left-right depth
consistency inside the network. Similarly, the method in ref. [50] learns self-
supervised stereo matching as finding the disparity map that best warps between the
stereo image pair. In ref. [51], CNN architecture was proposed to jointly unsupervise
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Method Error Accuracy 6

AbsRel SqRel RMS RMSlog D1, <125 <125 <1253

Supervised Mayer et al. [43] — — — — 4.34% — — —
Wang et al. [45] — — — — 4.32% — — —
Zbontar et al. [41] — — — — 3.89% — — —
Seki et al. [46] — — — — 3.09% — — —
Kendall et al. [47] — — — — 2.87% — — —
Luo et al. [43] S — — = 2.56% — — —
Pang et al. [48] — — — — 2.67% — — —

Unsupervised Zhong et al. [50] — — — — 3.57% — — —
Godard et al. [49] 0.148 1.344 5.927 0.247 — 0.803 0922 0.964
Yang et al. [52] 0.109 1.004 6.232 0.203 — 0.853 0.937 0.975
Liu et al. [51] 0.051 0.532 3.780 0.126 — 0957 0982 0991

Wang et al. [53] 0.049 0.515 3.404 0121 5943% 0.965 0.984 0.992

Jiao et al. [54] 0.049 0.522 3.461 0.120 — 0.961 0.984 0.992

Table 4.
Result comparisons of depth evaluation from stereo-based methods on the KITTI dataset. Best performance is
marked with bold fonts.

learning optical flow and stereo depth map. By jointly estimating optical flow and
stereo depth using unsupervised deep learning like in refs. [52, 53], the network can
exploit the shared features and dependencies between the two tasks, leading to
improved performance compared to separate estimation methods. Exploiting seg-
mentation in the context of stereo motion learning can lead to further improvements
in-depth estimation as in ref. [54]. Table 4 summarizes the evaluation of depth
estimation from state-of-the-art stereo-motion-based methods using KITTI [14]
dataset.

5.1 Loss function

When learning depth from stereo or multi-view images, we can use a loss function
that compares the predicted depth map with the ground truth depth map derived
from stereo or multi-view disparity information. One commonly used loss function is
the smooth L1 loss, which is defined as:

a
Z(x,9) =Z"(x.9)l =5 f1Z(x.y) = Z7(x,p)| >«
Ll;smooth - 1 (8)

Z(Z(x,y) —Z*(x,y))z otherwise

where Z(x,y) is the depth map predicted by the model and Z* (x, y) is the ground
truth depth map derived from stereo or multi-view disparity information. The smooth
L1 loss provides a balance between the L1 loss (absolute difference) and the L2 loss
(squared difference). It reduces the impact of outliers while still providing gradient
information for training. In stereo depth estimation, the ground truth depth map can
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be obtained by converting the disparity map (derived from stereo correspondence) to
depth using the camera parameters and baseline distance. The disparity map repre-
sents the horizontal pixel shifts between corresponding points in the stereo images.
For multi-view depth estimation, we can use multiple views (more than two) of the
same scene to derive the ground truth depth map by triangulation. By estimating the
disparity or correspondence between each view and a reference view, we can trian-
gulate the 3D points and obtain the ground truth depth map. Additionally, we can
incorporate other regularization terms or constraints into the loss function to further
improve the depth estimation. Some common techniques include incorporating geo-
metric consistency, enforcing smoothness or sparsity, or leveraging semantic infor-
mation. Remember that the choice of the loss function and additional constraints may
vary depending on the specific requirements and characteristics of stereo or multi-
view depth estimation task.

6. Conclusion

Deep learning methods have significantly advanced the field of depth estimation
by providing effective approaches for inferring depth from various types of input
data. They are highly data-driven and excel in learning complex patterns and repre-
sentations from large-scale datasets, enabling them to capture intricate depth cues and
generalize well to different scenes and scenarios. Deep learning allows for end-to-end
learning, where the model learns to directly predict depth from input data, such as
monocular images, stereo pairs, or multi-view images. This eliminates the need for
explicitly designing handcrafted features or intermediate steps in the depth estimation
pipeline. In the case of monocular case, learning models can estimate depth from a
single image, which is a challenging task due to the inherent ambiguity. Despite the
limitations, many approaches have achieved impressive results by leveraging large-
scale annotated datasets and incorporating various techniques like multi-scale
processing, context aggregation, and geometric constraints. Deep learning methods
have also shown remarkable success in-depth estimation from stereo and multi-view
images. By utilizing the correspondence or disparity information between multiple
views, deep models can leverage geometric constraints to provide accurate depth
estimation. The choice of loss functions and regularization techniques plays a crucial
role in training deep learning models for depth estimation. Common loss functions
include mean squared error (MSE) loss, smooth L1 loss, and photometric loss. Regu-
larization techniques like smoothness regularization, geometric consistency, and
semantic guidance can further enhance the quality of depth estimation. Pretrained
models on large-scale datasets, such as KITTI, have been successfully applied to depth
estimation tasks, while transfer learning allows leveraging the knowledge learned
from a source task to improve performance on a target depth estimation task with
limited data. The choice of deep learning methods for depth estimation depends on
the specific application requirements. Factors such as real-time performance, accu-
racy, robustness to noise and occlusions, and memory efficiency need to be considered
when selecting or designing deep learning models for depth estimation. Overall, deep
learning methods have revolutionized depth estimation by providing powerful tech-
niques that can learn depth from different input modalities, generalize well to diverse
scenes, and achieve state-of-the-art performance. Ongoing research continues to
refine and enhance these methods, making depth estimation an active and evolving
area of study.
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