
The Dangers of Rooting: Data Leakage
Detection in Android Applications∗

Luca Casati† and Andrea Visconti†

Abstract Mobile devices are widely spread all over the world and Android is the1

most popular operative system in use. According to a Kaspersky Lab’s threat statis-2

tic (June, 2017), many users are tempted to root their mobile devices to get an unre-3

stricted access to the file system, to install different versions of the operating system,4

to improve performance, and so on. The result is that unintended data leakage flaws5

may exist. In this paper, we (a) analyze the security issues of several applications6

considered relevant in term of handling user sensitive information, e.g. financial,7

social, and communication applications, showing that 51.6% of the tested applica-8

tions suffer at least of an issue; (b) show how an attacker might retrieve a user access9

token stored inside the device thus exposing users to a possible identity violation.10

Notice that such a token, and a number of other sensitive information, can be stolen11

by malicious users through a man-in-the-middle (MITM) attack.12

Key words: Data leakage · Mobile app · Rooted device · Hooking · Code injection13

Luca Casati
Department of Computer Science, Università degli Studi di Milano, via Comelico 39/41, 20135,
Milano, Italy, e-mail: luca.casati1@studenti.unimi.it

Andrea Visconti
Department of Computer Science, Università degli Studi di Milano, via Comelico 39/41, 20135,
Milano, Italy, e-mail: andrea.visconti@unimi.it

∗ This paper extends and improves our previous work “Exploiting a Bad User Practice to Retrieve
Data Leakage on Android Password Managers” presented at the 11th International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS 2017).

† The authors declare that there is no conflict of interest regarding the publication of this paper.

1

Luca
Evidenziato
See point J) in the response cover sheet.

Luca
Evidenziato

Luca
Evidenziato

Luca
Evidenziato

Luca
Evidenziato
See point E) and M) in the response cover sheet.

Luca
Evidenziato

Luca
Evidenziato

Luca
Evidenziato

2 Luca Casati† and Andrea Visconti

1 Introduction14

In everyday routine, smartphones, laptops, tablets or, more in general, mobile de-15

vices have become an essential need for everyone. They are widely used to read e-16

mails, carry out financial transactions, browse maps, chat with other people, and so17

on. Mobile devices have to face a number of issues due to the resource constraints18

(performance issue [26, 24], for example) and also security issues (data leakage19

[18, 48], privacy concern [50, 17], etc.). In particular, the latter may be affected by20

the applications installed. Usually users choose such applications focusing on the21

number of total downloads [9], the reviews provided by users [45, 19], and so on.22

A typical environment where ratings can be easily found is Google Play Store, the23

largest app store which counts over 3 million applications available [12] split into24

two major categories: Apps and Games — with 2.5 million and 500 thousand apps,25

respectively [11]. However, it often happens that people who provide ratings evalu-26

ate the appearance, functionality, usability, performances of an application without27

focusing on security aspects. In addition, as reported in the Kaspersky Lab’s threat

Table 1 The top 10 (out of 100) countries where Android devices are rooted most frequently and
where mobile devices are attacked most often by a malware [22].

Country
Rooted
devices

Place in top 100
countries attacked

Bangladesh 13% 2
Indonesia 12% 3
Nepal 12% 5
Algeria 19% 7
Nigeria 13% 9
Ghana 12% 10
Venezuela 26% 13
Moldova 15% 22
Ecuador 11% 25
Italy 12% 66

28

statistic (June, 2017) [22] summarized in Table 1, security issues are further ampli-29

fied by users when they root their phones. Notice that users obtain superuser access30

privileges to change the current Android version, to get access to the file system31

without restrictions, to install modified apps and gain more privileges, to improve32

performance, and so on. However, these access privileges may affect the security33

of installed applications [22, 21, 47], providing an access door to many sensitive34

information [42, 23, 32]. In this scenario, unintended data leakage flaws may exist.35

In order to identify such flaws, in this paper we extend and improve our pre-36

vious work [15]. In particular, we improve our testing activities by analyzing not37

only the security issues of Android Password Managers but also those applications38

that are considered particularly relevant in term of handling user sensitive informa-39

tion, such as financial, social, and communication applications. Notice that we do40

Luca
Evidenziato
See point B) and J) in the response cover sheet.

Luca
Evidenziato

Luca
Evidenziato

Luca
Evidenziato

Luca
Evidenziato

Luca
Evidenziato

Luca
Evidenziato
See point E) and M) in the response cover sheet.

Luca
Evidenziato

Luca
Evidenziato

Luca
Evidenziato

Luca
Evidenziato
See point A) and H) in the response cover sheet.

The Dangers of Rooting: Data Leakage Detection in Android Applications 3

not describe innovative techniques but rather we measure the impact of well-known41

technique (e.g. Xposed framework) on a rooted device, executing an extensive test-42

ing activities and observing that several applications do not implement the minimum43

security requirements. In addition, we show the possibility to retrieve an access to-44

ken, exposing users to a possible identity violation. Finally, we show that the same45

token (and many other sensitive information) can be retrieved through a man-in-the-46

middle (MITM) attack because several applications do not implement adequately47

cryptographic techniques for data protection, or do not implement them at all.48

The remainder of the paper is organized as follows. In Section 2, we describe49

a number of approaches that can be used to analyze applications. In Section 3, we50

show the solution adopted to retrieve sensitive information from Android applica-51

tions. Particular attention is paid to describe hooking techniques. In Section 4, we52

present our testing activities, showing how malicious users might retrieve sensitive53

information. Finally, conclusions are drawn in Section 5.54

2 Different Approaches to Analyze Applications55

When an application lands on the market, it becomes suddenly available to be used56

by everyone. This means that it can be tested and analyzed under all possible con-57

ditions. Every internal element of an app should share the necessary information58

to perform a specific task without any data leakage. Unfortunately, this does not59

always happen.60

In order to recognize possible data leakages, two well known approaches can be61

used: static and dynamic analysis.62

• Static analysis is based on the examination of an application without the execu-63

tion of it [16]. Its radius of action is quite limited, because many applications64

adopt obfuscations [31, 49] and dynamic code loading [36] to restrict access to65

internal information. However, it may be interesting to understand if the appli-66

cation’s associated files, such as database, backup, or log files, are encrypted. In67

this case, entropic techniques are very useful [27].68

java.security.Signature

����������	�
��������

�����������������������������	 �

�������	���������������	������ �����

�����������������	��������

�

�

calling

��

Hooker calling

�initSign() : voidPK engineInitSign()PK’

Fig. 1 An example of the hooking technique in action, specialized in spying.

Luca
Evidenziato

Luca
Evidenziato

Luca
Evidenziato

Luca
Evidenziato

4 Luca Casati† and Andrea Visconti

• Dynamic analysis, instead, relies on the execution of the applications [40, 8]. The69

main idea is to collect (at runtime) the values that gradually come out from the70

called instructions. The advantage of this approach is to be less susceptible to71

code obfuscation. In general, Android applications can assume many behaviors,72

thus it is necessary to monitor their activities, for example, through interface or73

automatic event injectors [13, 28, 29].74

But there is also a third approach, situated halfway between the previous: the hy-75

brid analysis [43, 44]. To work well, a system which adopts this technique must be76

designed in such a way that, if the first was lacking, the second would take place,77

covering the gap [43].78

In mobile device analysis, there is not a standard approach (static or dynamic) to79

collect data optimally. More precisely, we collect data via static analysis and then80

we employ them in a dynamic scanning. This was accomplished through hooking3
81

techniques, setting up the scenario shown in Figure 1. Taking into account a Java82

class named Signature, notice that (a) the method initSign is invoked, (b) initSign83

receives a PrivateKey object, (c) initSign pass the object itself to another method —84

i.e., engineInitSign of Figure 1 — and (d) Hooker could take control of the method85

call, spying or replacing its contents.86

To better understand how this mechanism works, we explain in detail the hooking87

techniques — Xposed framework [7] — in the next section.88

3 How to Retrieve Sensitive Information89

A generic Android application is a single compressed archive which includes es-90

sential information about the app [25]. Among all this information, we focus on the91

DEX file (see Figure 2) because it provides interesting features related to the target92

application [34, 33].93

We developed a tool, called Apk2Method, which:94

classes.dex

.apk

String_IDs

Type_IDs

Proto_IDs Methods Data

ClassesFieldsHeader

AndroidManifest.xml

META-INF/

assets/

lib/

res/

resources.arsc

Fig. 2 A compact view of an APK file, pointing out the DEX file components.

3 Hooking means to intercept methods with a known signature called by an application, acquiring
its complete control.

The Dangers of Rooting: Data Leakage Detection in Android Applications 5

XposedBridge.jar

Android Boot Sequence

…

hookMethodNative(•)

handleHookedMethod(•)

a b c d e

app_process

loading

Xposed

overriding

A

A*B

Fig. 3 A diagram that shows how Xposed works in detail while intercepting a method.

• opens the APK of the target application;95

• identifies the classes.dex file looks for a specific marker — i.e., 6465 780a96

3033 3500 in Hex;97

• reads all methods invoked related to cryptographic field, and finally98

• outputs a text file where all gathered data are stored in a convenient format for a99

subsequent parsing. For sake of simplicity, we call such a file file.txt.100

Then, we developed an Android application which:101

• inputs data previously stored in file.txt and parses such a file using Java reflections102

and regular expressions;103

• runs inside a module of the Xposed framework, called Prober, which is able to104

select the target application.105

More precisely, Prober represents the real execution engine of hooking technique,106

implemented by Xposed. The Xposed framework, in turn, takes control of each107

method called by the target application, spying or replacing each passed argument.108

Doing so, the control flow of an application can be changed, providing us the ability109

to execute our own code enriched with specific security tests.110

Notice that it may happen that a portion of the target application’s information111

are encrypted or obfuscated [35], using specific tools such as Proguard, DashO, and112

DexProtector. These tools rename classes, methods and variables assigning them113

meaningless names [39]. Consequently, the parsing activity will be very difficult114

and sometimes impossible (even with the support of the reflections [43]). In all115

other cases, if applications release sensitive information, our approach is able to116

detect these leaks.117

Luca
Evidenziato
See point K) in the response cover sheet.

Luca
Evidenziato

Luca
Evidenziato

Luca
Evidenziato

Luca
Evidenziato

Luca
Evidenziato

Luca
Evidenziato

6 Luca Casati† and Andrea Visconti

Init app_process Xposed AndroidRuntime XposedBridge

1: main
2: initTypePointers
3: xposedInfo
4: addXposedToClasspath
5: start
6: startVM
7: onVmCreated
7.1: xposedOnVmCreated
8: startReg
9: main

1

2

3

4

5

6
7

7.1

8

9

Fig. 4 The sequence diagram illustrates how the system changes while the framework is active.

3.1 The Xposed framework118

The framework used [7] is identified by four individual components: the Xposed, the119

XposedBridge, the XposedInstaller and the XposedMods system. Among these, the120

first two are responsible for preparing the device to accommodate the framework.121

Let us briefly explain what happens when two generic methods, A and B, are called122

(see Figure 3 and 4).123

When the device is switched on,124

1. the boot sequence starts: (a) the Boot ROM code starts executing from a pre-125

defined location, loading the Bootloader into RAM, (b) the Bootloader setups in126

two stages the necessary resources — i.e., network, memory — needed to run the127

kernel, (c) the Android kernel setups a group of resources — i.e. cache, protected128

memory, scheduling and drivers — and looks for init in the system files, (d) init129

is the very first process, which sets the environment for Zygote [10] and daemons,130

and (e) daemons are invoked;131

2. once the daemons are invoked, an extended version of process /system/bin/app pro-132

cess [38] is called, which is meant to load the necessary classes designed to per-133

form hooking — i.e., XposedBridge.jar;134

3. as soon as an application calls a generic method (A), it is intercepted and redi-135

rected firstly to hookMethodNative, which increases the privilege level of the136

method received as argument, and secondly to handleHookedMethod, which137

links the method implementation to its own native generic method. In this way,138

it is possible to read all the arguments;139

4. finally, the flow resumes naturally.140

The Dangers of Rooting: Data Leakage Detection in Android Applications 7

4 Testing Activity141

We download and analyze several applications from Google’s official Android Mar-142

ket, using two mobile devices — i.e., Wiko Wax (Android KitKat, rooted with King-143

Root [3]) and Samsung Galaxy Nexus (Android Lollipop, rooted with Nexus Root144

Toolkit [5])4.145

Our analysis follows two main directions. A first approach targets events result-146

ing from data leakage of the method calls. These leaks are usually characterized by147

an improper use of objects as arguments, for example using string as passwords,148

making whole structures visible, and so on. Then, to improve the ability to recog-149

nize data leakage, a second approach has been developed with the aim to find leaks150

on data transmitted over the Internet by the phone.151

②

APK
APPS

Network
area

①

Device
area

Processing
area

Apk2Method
③

④

⑤

file.log

⑦

⑥

Prober
Xposed
Installer

Google play

alpha.apk

alpha.apk

file.txt

alpha.apk

Fig. 5 The entire project control flow which represents how an Android application is analyzed.

4 At time of writing, Android KitKat and Lollipop represent nearly half (about 47%) of the market
[6]

8 Luca Casati† and Andrea Visconti

4.1 First Approach152

We downloaded 135 Android applications from Google Play Store, where 36 appli-153

cations belong to “TOOLS” category, 54 to “PRODUCTIVITY”, 7 to “SOCIAL”,154

8 to “COMMUNICATION”, and 30 to “FINANCE”, taking care of the installation155

count value. Such indicator represent the number of users who installed the chosen156

application and it can be found at the information panel of each application [2]. In157

addition, let us remark that the choice of a particular application was taken relying158

on the fact that is used for security purposes and deal with data that are particularly159

sensitive for user-side. For each application, we collect and store classes, methods,160

arguments and return values.161

More precisely, our approach works as follows (see Figure 5):162

1 an application alpha.apk is downloaded from Google Play Store and installed on163

the device;164

2 then alpha.apk is transferred on the computer, using the Android Debug Bridge165

(ADB) [1];166

3 the Apk2Method tool inputs alpha.apk;167

4 the Apk2Method tool outputs classes and methods, storing them in file.txt previ-168

ously mentioned in Section 3. The top of Figure 6 shows a toy example, pointing169

out that classes and methods of an application might be obfuscated;170

5 such a file is copied in a specific path of our application Prober, and a rebooting171

of the mobile device is required to apply changes to system;172

���

�������	
���	 �����	�������������� ������������������������ ������������������

������	���
��

������������ ������������������������������� ���������������������� ���������!"

� #���� ��
��

$������������������������$

��%� �
���� �������

���������������������#&'(���	�	���&���)*+�,,+-.

��/�������������

0���&&1/&%����������2
�	����3�4�	44+,5',�',+4***-�*��444�6.�.4	**�65�*-6��77'���

���

��������	�
��89���������� %�:;�����	�����<<����#����� �������:

������������������������ ��������������

������������������������ �������������

���������������������� ���������

���������������������� ��������

���

����	���� �

����	���� �

������������� �� ���=�������&�����

��������	 �� ���>���&� �

���

file.txt

file.log

Fig. 6 A toy example of the outputs obtained by analyzing an application alpha.apk.

Luca
Evidenziato
See point O) in the response cover sheet.

Luca
Evidenziato

Luca
Evidenziato

Luca
Evidenziato
See point K) in the response cover sheet.

Luca
Evidenziato

Luca
Evidenziato
See point L) in the response cover sheet.

The Dangers of Rooting: Data Leakage Detection in Android Applications 9

Table 2 The results of the analysis, obtained with the Android 5.x device.

No leakage Abnormal behavior Privacy concerns Secret data

Tools 18 0 2 18
Productivity 23 3 1 31
Social 7 5 0 0
Communication 8 3 0 0
Finance 17 16 7 13

6 when the alpha application runs — e.g., the user inputs ID, password, e-mail,173

personal data, and so on — Prober stores methods invoked, arguments and return174

values in file.log, as shown in the lower part of Figure 6;175

7 finally, in file.log we are able to identify the presence of data leakage.176

All apps analyzed have been cataloged using four levels of granularity: (1) no leak-177

age: the application is safe; (2) abnormal behavior: the application suddenly freezes178

or crashes; (3) privacy concerns: the application releases unprotected sensitive in-179

formation — i.e., IMEI, phone number, geolocation, OS, and so on; (4) account180

info: the application reveals account information — i.e., login IDs and passwords.181

As shown in Tables 2–3 and in Figure 7, testing results suggest that some issues182

have been identified for the categories tools, productivity, and finance. In particular,183

in such categories 51.6% of the tested applications suffer from one (at least) of the184

following issues:185

• the application does not perceive to be observed;186

• the application does not warn the user about the presence of a jailbroken/rooted187

device;188

• private keys used during a communication (e.g. the OpenSSLRSAPrivateCrtKey189

or the RSAPrivateKey and the associated parameters) are in plaintext;190

• personal data, such as IMEI and geolocation are not protected;191

Table 3 Correlation between the installation count and the 4 levels of granularity.

Installation count No leakage Abnormal behavior Privacy concerns Secret data

1 000 000 000-5 000 000 000 4 1 0 0
500 000 000-1 000 000 000 3 1 0 0
100 000 000-500 000 000 6 4 0 0
50 000 000-100 000 000 2 2 0 0
10 000 000-50 000 000 2 0 0 1
1 000 000-5 000 000 3 5 2 9
500 000-1 000 000 4 2 0 7
100 000-500 000 19 8 5 11
50 000-100 000 7 3 1 3
10 000-50 000 10 1 2 9
5 000-10 000 3 0 0 4
50-5 000 10 1 0 18

10 Luca Casati† and Andrea Visconti

0

10

20

30

Tools Productivity Social Communication Finance

No leakage
Abnormal behavior
Privacy concerns
Secret data

Fig. 7 The histogram shows the results of all ranges of Table 2.

• the master password (of the password manager) or the users account password192

(login IDs and password) are handled in plaintext.193

On the contrary, the applications tested which belong to social and communication194

are not affected by the same issues.195

4.2 Second Approach196

A second issue is related to the leakage of encrypted data transmitted over the In-197

ternet and stored in the device itself. To avoid a user being forced to create a new198

account, a common practice is to exploit a third-party app that handle the authen-199

tication phase using a delegation protocol — e.g. OAuth 2.0 [20]. In particular, the200

authentication phase is done through an access token that is stored in the appli-201

cation’s internal directory, preventing user from entering the login credentials (see202

Alice in Fig. 8). Since (1) the access token can be seen as a set of user attributes203

used to prove that a user is authenticated, (2) the client application usually does not204

use a mechanism to validate the access token, and (3) in rooted devices this token205

Table 4 Number of apps that are potentially vulnerable to a MITM attack.

Number of apps MITM vulnerability

Tools 2 1
Productivity 16 12
Social 4 1
Communication 10 6
Finance 35 17

The Dangers of Rooting: Data Leakage Detection in Android Applications 11

↪

Alice

Trusted third
party server

Application
server

↪

Eve

1
����

:
2
����

:
3
����

:

user login credentials
user encrypted access token
user private data

Alice’s access token stolen

Fig. 8 A graphical representation of the problem concerning the delegation scheme implemented
by some applications.

can be easily found by browsing the application’s folder, an attacker may retrieve206

such a token and inject it during a new authentication phase, stealing the identity207

of the victim (see Eve in Fig. 8). Moreover, for all users who ignore the alerts and208

unknowingly accept everything, the token may be steal on the channel through a209

man-in-the-middle attack.210

For this set of users, we also tried to identify different types of possible attacks.211

Therefore, we downloaded and analyzed 67 Android apps that send data over the212

Internet and should take care about user sensitive information. As described in213

Table 5 Correlation between the installation count and MITM vulnerability.

Installation count MITM vulnerability

1 000 000 000-5 000 000 000 3
500 000 000-1 000 000 000 2
100 000 000-500 000 000 5
50 000 000-100 000 000 1
10 000 000-50 000 000 3
1 000 000-5 000 000 5
500 000-1 000 000 1
100 000-500 000 11
50 000-100 000 3
10 000-50 000 1
5 000-10 000 0
50-5 000 1

12 Luca Casati† and Andrea Visconti

Section 4.1, these applications belong to the following categories: 2 apps belong214

to “TOOLS”, 16 to “PRODUCTIVITY”, 4 to “SOCIAL”, 10 to “COMMUNICA-215

TION” and 35 to “FINANCE”. The main issue found is that several applications do216

not perform the SSL/TLS client authentication, thus making them potentially vul-217

nerable to a man-in-the-middle attack. Tables 4–5 summarize our testing activities.218

More precisely, we found leaks on 55.2% of the apps tested, where 50.0% comes219

from “TOOLS”, 75.0% from “PRODUCTIVITY”, 25.0% from “SOCIAL”, 60.0%220

from “COMMUNICATION” and 48.6% from “FINANCE”.221

5 Conclusions222

Since mobile devices are widely spread and used for everything, the protection of223

information, transaction data and privacy has to be taken into account seriously.224

In this paper, we focused on the real case scenario of rooted devices, analyzing225

the most installed Android applications with the aim to check how safe they are. We226

showed that 62 out of 135 apps suffer of data leakage, and 37 out of 67 apps, which227

send sensitive information over the Internet, are potentially vulnerable to man-in-228

the-middle attacks. The most significant flaws found concern (a) password man-229

agers5 that may release ID–password of several accounts or the master password of230

password manager themself; (b) financial applications that sometimes release secret231

codes or account credentials, and (c) applications who do not implement a SSL/TLS232

client authentication, making them potentially vulnerable to a MITM attack. Notice233

that the issues described in this paper can be easily faced by app developers — for234

example exploiting obfuscation/encryption mechanisms, passing sensitive data us-235

ing objects, or implementing two-step verification techniques — and users — e.g.,236

installing a stock ROM instead of a custom one.237

6 Acknowledgments238

The authors would like to thank Marco Mauri and Giovanni Intorre who executed239

part of the testing activity described in Section 4.2.240

References241

1. Android Debug Bridge. URL https://developer.android.com/studio/242

command-line/adb.html. [Online, accessed 19 February 2017]243

5 We assume that password managers store user passwords implementing the minimum require-
ments for cryptographic applications, for example adopting a password-based key derivation func-
tion [4, 30] and avoiding the well-known issues described in literature [41, 46, 37, 14].

Luca
Evidenziato
See point G) in the response cover sheet.

Luca
Evidenziato

Luca
Evidenziato

Luca
Evidenziato

Luca
Evidenziato

The Dangers of Rooting: Data Leakage Detection in Android Applications 13

2. Google Play Console Help Center. https://support.google.com/googleplay/244

android-developer/. [Online, accessed 1 October 2017]245

3. KingRoot. URL https://kingroot.net/. [Online, accessed 27 February 2017]246

4. Password hashing competition. URL https://password-hashing.net247

5. Nexus Root Toolkit v.2.1.9 (2016). URL http://www.wugfresh.com/nrt/. [Online,248

accessed 27 February 2017]249

6. Dashboards - Platform Versions (2017). URL https://developer.android.com/250

about/dashboards/index.html. [Online, accessed 18 July 2017]251

7. Xposed Module Repository (2017). URL http://repo.xposed.info/. [Online, ac-252

cessed 27 February 2017]253

8. Aafer, Y., Du, W., Yin, H.: Droidapiminer: Mining api-level features for robust malware de-254

tection in android. In: International Conference on Security and Privacy in Communication255

Systems, pp. 86–103. Springer (2013)256

9. Alegre-Sanahuja, J., Camacho, J., Cortés López, J.C., Santonja, F.J., Villanueva Micó, R.J.:257

Agent-based model to study and quantify the evolution dynamics of android malware infec-258

tion. In: Abstract and Applied Analysis, vol. 2014. Hindawi Publishing Corporation (2014)259

10. Andrus, J., Nieh, J.: Teaching operating systems using android. In: Procs of the 43rd ACM260

technical symposium on Computer Science Education. ACM (2012)261

11. AppBrain: Most popular Google Play categories. URL http://www.appbrain.com/262

stats/android-market-app-categories. [Online, accessed 12 July 2017]263

12. AppBrain: Number of Android applications. URL http://www.appbrain.com/264

stats/number-of-android-apps. [Online, accessed 12 July 2017]265

13. Azim, T., Neamtiu, I.: Targeted and depth-first exploration for systematic testing of android266

apps. In: ACM SIGPLAN Notices, vol. 48, pp. 641–660. ACM (2013)267

14. Bossi, S., Visconti, A.: What users should know about full disk encryption based on LUKS.268

In: Proc.s of the 14th International Conference on Cryptology and Network Security (2015)269

15. Casati, L., Visconti, A.: Exploiting a bad user practice to retrieve data leakage on android270

password managers. In: International Conference on Innovative Mobile and Internet Services271

in Ubiquitous Computing, pp. 952–958. Springer (2017)272

16. Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M.S., Conti, M., Rajarajan, M.: An-273

droid security: a survey of issues, malware penetration, and defenses. IEEE communications274

surveys & tutorials 17(2), 998–1022 (2015)275

17. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android permissions: User276

attention, comprehension, and behavior. In: Proceedings of the eighth symposium on usable277

privacy and security, p. 3. ACM (2012)278

18. Feng, P., Ma, J., Sun, C.: Selecting critical data flows in android applications for abnormal279

behavior detection. Mobile Information Systems 2017 (2017)280

19. Guzman, E., Maalej, W.: How do users like this feature? a fine grained sentiment analysis of281

app reviews. In: Requirements Engineering Conference (RE), 2014 IEEE 22nd International,282

pp. 153–162. IEEE (2014)283

20. Hardt, D.: The oauth 2.0 authorization framework (2012)284

21. Jeon, W., Kim, J., Lee, Y., Won, D.: A practical analysis of smartphone security. Human In-285

terface and the Management of Information. Interacting with Information pp. 311–320 (2011)286

22. Kaspersky Lab: Rooting your Android: Advantages, disadvantages, and snags. URL https:287

//www.kaspersky.com/blog/android-root-faq/17135/288

23. Kim, Y., Oh, T., Kim, J.: Analyzing user awareness of privacy data leak in mobile applications.289

Mobile Information Systems 2015 (2015)290

24. Lettner, M., Tschernuth, M., Mayrhofer, R.: Mobile platform architecture review: android,291

iphone, qt. In: International Conference on Computer Aided Systems Theory, pp. 544–551.292

Springer (2011)293

25. Li, L., Li, D., Bissyandé, T.F., Klein, J., Le Traon, Y., Lo, D., Cavallaro, L.: Understanding294

android app piggybacking: A systematic study of malicious code grafting. IEEE Transactions295

on Information Forensics and Security 12(6), 1269–1284 (2017)296

26. Louk, M., Lim, H., Lee, H.: An analysis of security system for intrusion in smartphone envi-297

ronment. The Scientific World Journal 2014 (2014)298

14 Luca Casati† and Andrea Visconti

27. Lyda, R., Hamrock, J.: Using entropy analysis to find encrypted and packed malware. IEEE299

Security and Privacy 5(2), 40–45 (2007). DOI 10.1109/MSP.2007.48. URL http://dx.300

doi.org/10.1109/MSP.2007.48301

28. Machiry, A., Tahiliani, R., Naik, M.: Dynodroid: An input generation system for android apps.302

In: Procs of the 2013 9th Joint Meeting on Foundations of Software Engineering, pp. 224–234.303

ACM (2013)304

29. Mahmood, R., Mirzaei, N., Malek, S.: Evodroid: Segmented evolutionary testing of android305

apps. In: Procs of the 22nd ACM SIGSOFT International Symposium on Foundations of306

Software Engineering, pp. 599–609. ACM (2014)307

30. Moriarty, K., and Kaliski, B., and A. Rusch: PKCS#5: Password-Based Cryptography Speci-308

fication Version 2.1. RFC 8018 (2017)309

31. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection. In: Com-310

puter security applications conference, 2007. ACSAC 2007. Twenty-third annual, pp. 421–311

430. IEEE (2007)312

32. Nauman, M., Khan, S., Zhang, X., Seifert, J.P.: Beyond kernel-level integrity measurement:313

enabling remote attestation for the android platform. Trust and Trustworthy Computing pp.314

1–15 (2010)315

33. Octeau, D., Jha, S., McDaniel, P.: Retargeting android applications to java bytecode. In: Procs316

of the ACM SIGSOFT 20th international symposium on the foundations of software engineer-317

ing, p. 6. ACM (2012)318

34. Oh, H.S., Kim, B.J., Choi, H.K., Moon, S.M.: Evaluation of android dalvik virtual machine.319

In: Procs of the 10th International Workshop on Java Technologies for Real-time and Embed-320

ded Systems. ACM (2012)321

35. Park, J., Kim, H., Jeong, Y., Cho, S., Han, S., Park, M.: Effects of code obfuscation on android322

app similarity analysis. J. Wireless Mobile Netw. Ubiquitous Comput. Dependable Appl 6(4),323

86–98 (2015)324

36. Poeplau, S., Fratantonio, Y., Bianchi, A., Kruegel, C., Vigna, G.: Execute this! analyzing un-325

safe and malicious dynamic code loading in android applications. In: NDSS, vol. 14, pp.326

23–26 (2014)327

37. Ruddick, A., Yan, J.: Acceleration attacks on pbkdf2: or, what is inside the black-box of328

oclhashcat? In: 10th USENIX Workshop on Offensive Technologies (2016)329

38. Shabtai, A., Fledel, Y., Elovici, Y.: Securing android-powered mobile devices using selinux.330

IEEE Security & Privacy 8(3), 36–44 (2010)331

39. Sierra, F., Ramirez, A.: Defending your android app. In: Procs of the 4th Annual ACM Con-332

ference on Research in Information Technology. ACM (2015)333

40. Somarriba, O., Zurutuza, U., Uribeetxeberria, R., Delosières, L., Nadjm-Tehrani, S.: Detection334

and visualization of android malware behavior. Journal of Electrical and Computer Engineer-335

ing 2016 (2016)336

41. Steube, J.: Optimising Computation of Hash-Algorithms as an Attacker. URL https://337

hashcat.net/events/p13/js-ocohaaaa.pdf338

42. Sun, S.T., Cuadros, A., Beznosov, K.: Android rooting: Methods, detection, and evasion. In:339

Proceedings of the 5th Annual ACM CCS Workshop on Security and Privacy in Smartphones340

and Mobile Devices, pp. 3–14. ACM (2015)341

43. Tam, K., Feizollah, A., Anuar, N.B., Salleh, R., Cavallaro, L.: The evolution of android342

malware and android analysis techniques. ACM Comput. Surv. 49(4) (2017). DOI343

10.1145/3017427344

44. Tam, K., Khan, S.J., Fattori, A., Cavallaro, L.: Copperdroid: Automatic reconstruction of an-345

droid malware behaviors. In: NDSS (2015)346

45. Viennot, N., Garcia, E., Nieh, J.: A measurement study of google play. In: ACM SIGMET-347

RICS Performance Evaluation Review, vol. 42, pp. 221–233. ACM (2014)348

46. Visconti, A., Bossi, S., Ragab, H., Calò, A.: On the weaknesses of PBKDF2. In: Proc.s of the349

14th International Conference on Cryptology and Network Security (2015)350

47. Vorakulpipat, C., Sirapaisan, S., Rattanalerdnusorn, E., Savangsuk, V.: A policy-based frame-351

work for preserving confidentiality in byod environments: A review of information security352

perspectives. Security and Communication Networks 2017 (2017)353

The Dangers of Rooting: Data Leakage Detection in Android Applications 15

48. Wu, L., Grace, M., Zhou, Y., Wu, C., Jiang, X.: The impact of vendor customizations on354

android security. In: Proceedings of the 2013 ACM SIGSAC conference on Computer &355

communications security, pp. 623–634. ACM (2013)356

49. You, I., Yim, K.: Malware obfuscation techniques: A brief survey. In: Broadband, Wireless357

Computing, Communication and Applications (BWCCA), 2010 International Conference on,358

pp. 297–300. IEEE (2010)359

50. Zhu, K., He, X., Xiang, B., Zhang, L., Pattavina, A.: How dangerous are your smartphones?360

app usage recommendation with privacy preserving. Mobile Information Systems 2016 (2016)361

