
AIMer v2.0
Seongkwang Kim1, J. Cho1, J. Ha2, J. Kwon1, B. Lee1,

J. Lee3, J. Lee2, S. Lee1, D. Moon1, M. Son2, and H. Yoon1.
1Samsung SDS, 2KAIST, 3Sungshin Women’s University.Poster QR

KEY REFERENCES

[1] Jolijn Cottaar et al. Report on evaluation of KpqC candidates. Cryptology ePrint Archive, Paper
2023/1853. 2023.

[2] Kyungbae Jang et al. Quantum Implementation of AIM: Aiming for Low-Depth. Cryptology ePrint
Archive, Paper 2023/337. 2023.

[3] Seongkwang Kim et al. “AIM: Symmetric Primitive for Shorter Signatures with Stronger Security”. In:
ACM CCS ’23. Association for Computing Machinery, 2023, pp. 401–415.

[4] Seongkwang Kim et al. Efficacy and Mitigation of the Cryptanalysis on AIM. Cryptology ePrint Archive,
Paper 2023/1474. 2024.

[5] Fukang Liu et al. “Algebraic Attacks on RAIN and AIM Using Equivalent Representations”. In: IACR
ToSC 2023.4 (2023), pp. 166–186.

[6] Kaiyi Zhang et al. “Algebraic Attacks on Round-Reduced Rain and Full AIM-III”. In: ASIACRYPT 2023.
Ed. by Jian Guo and Ron Steinfeld. Springer, 2023, pp. 285–310.

† This diagram was created by using fontawesome icons.

ACKNOWLEDGEMENT AND PARTNERS

• KpqC committee

• Prof. Hwajeong Seo in Hansung University

• Prof. Dong-Guk Han in Kookmin University

MORE INFORMATION

AIMer Website

Seongkwang Kim
Samsung SDS
Security Algorithm Lab
sk39.kim@samsung.com

Posted in the 5th NIST PQC Standardization Conference (11th April 2024, 14:30 EDT)

What is AIMer?
Signer

g

g g

AIM2(¤)
= ü

MPC Simulation

Q
Message

Signature

H(Q) = ■
She knows ¤

Proof:
gg

Fig. Diagram of how AIMer works†

AIMer is a signature scheme obtained from a zero-knowledge proof of preimage
knowledge for a certain one-way function. AIMer consists of two parts: a non-
interactive zero-knowledge proof of knowledge (NIZKPoK) system, and a one-way
function AIM2. The security of both parts solely depends on the security of the
underlying symmetric primitives.

NIZKPoK in AIMer
• Highly-engineered BN++
• Efficient for large fields
• Memory-saving verification

Symmetric Primitive AIM2
• Efficiently provable in BN++
• With in-depth algebraic analysis
• Previous weakness addressed

Improvements in Version 2.0
Change of specification
• Symmetric primitive: AIM → AIM2
• Prehashing now supported
• Halved salt size
• Reduced number of parameter sets

Change of Implementation
• More readable reference code
• Additional ARM64 implementation
• No OpenSSL dependency
• Up to 29% faster signing than v1.0
• Up to 96% less memory in verification

Editorial change
• Improved EUF-CMA security proof
• Implementation-friendly specification

Implementation Results
• Benchmark highlights: signing time of

(aimer128f, aimer128s)
– AVX2: (0.42ms, 3.18ms) on Intel Xeon

E5-1650 v3 (Haswell) @ 3.50 GHz
– ARM64: (1.77ms, 14.1ms) on ASUS Tin-

ker Board 2S, ARM Cortex-A72 @ 2.0
GHz

• A memory-centered implementation turned
out to run well on ARM Cortex-M4.

• For more results, scan the QR code below!

Parameters
pk size sk size Sig. size
(bytes) (bytes) (bytes)

aimer128f 32 48 5,888
aimer128s 32 48 4,160

aimer192f 48 72 13,056
aimer192s 48 72 9,120

aimer256f 64 96 25,120
aimer256s 64 96 17,056

128f 128s 192f 192s 256f 256s

0

5

10

15

20

0.59

4.42

1.38

9.77

2.45

18.7

0.42

3.18

1.04

7.94

2.07

15.3

Signing time comparison in ms (AVX2)

v1.0
v2.0

128f 128s 192f 192s 256f 256s

0

2,000

4,000

6,000

193

1,398

488

3,570

847

6,175

25.8 73.9 50.4 121 112 219

Memory usage comparison for verification in KB

v1.0
v2.0

AIM2

Mer[e1]
−1

Mer[e2]
−1

Mer[e3]
−1

Linpt

γ1

γ2

γ3

Mer[e∗] ct

XOF[iv]

Symmetric primitive AIM is characterized by its parallel structure and Mersenne
S-boxes, which are designed to minimize the signature size [3]. However, there
have been some analyses on AIM (see the next box), we devise a new symmetric
primitive AIM2 to mitigate all the recent cryptanalysis while maintaining the de-
sign strengths of AIM [4]. In AIMer version 2.0, we use AIM2 whose security is
reinforced by following revisions:

Inverse Mersenne S-box

Mer[e]−1(x) = xē

ē = e−1 (mod 2n − 1)

• No low-degree system in λ
variables

• Inherit all the strength of
Mersenne S-box

Constant addition to inputs

S1

S2

S3

pt

γ1

γ2

γ3

Increasing exponents

Mer[ei] Mer[ej ]
−1

const

High degree

High degree

(Third-Party) Analyses on AIMer

5
1

4

1

Security analysis on AIM
• Algebraic analysis [6]
• Fast exhaustive search [5]
• Grover’s search [2]

First-party analysis on AIM2 [4]
• Presentation on TODAY 15:40!

Implementation and performance analysis
• Clean implementation
• Optimized implementation
• ARM Cortex-M4 implementation

Overall report [1]

Future Work
Work in progress
• Implementing AIMer on ARM Cortex-M4 in an optimized form (est. Q3 2024)

– Preliminary result: memory usage ≤ 110 KB for all parameter sets
• Improving the puncturable PRF in the NIZKPoK and adopting AES-based PRG

(est. Q3 2024)
– Preliminary result: signature size 4.8 KB (128f), 3.6 KB (128s)

Future Works
• Plan to apply Hypercube method
• Plan to prove the QROM security of AIMer


