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Fig. Diagram of how AIMer works†

AIMer is a signature scheme obtained from a zero-knowledge proof of preimage
knowledge for a certain one-way function. AIMer consists of two parts: a non-
interactive zero-knowledge proof of knowledge (NIZKPoK) system, and a one-way
function AIM2. The security of both parts solely depends on the security of the
underlying symmetric primitives.

NIZKPoK in AIMer
• Highly-engineered BN++
• Efficient for large fields
• Memory-saving verification

Symmetric Primitive AIM2
• Efficiently provable in BN++
• With in-depth algebraic analysis
• Previous weakness addressed

Improvements in Version 2.0
Change of specification
• Symmetric primitive: AIM → AIM2
• Prehashing now supported
• Halved salt size
• Reduced number of parameter sets

Change of Implementation
• More readable reference code
• Additional ARM64 implementation
• No OpenSSL dependency
• Up to 29% faster signing than v1.0
• Up to 96% less memory in verification

Editorial change
• Improved EUF-CMA security proof
• Implementation-friendly specification

Implementation Results
• Benchmark highlights: signing time of

(aimer128f, aimer128s)
– AVX2: (0.42ms, 3.18ms) on Intel Xeon

E5-1650 v3 (Haswell) @ 3.50 GHz
– ARM64: (1.77ms, 14.1ms) on ASUS Tin-

ker Board 2S, ARM Cortex-A72 @ 2.0
GHz

• A memory-centered implementation turned
out to run well on ARM Cortex-M4.

• For more results, scan the QR code below!

Parameters
pk size sk size Sig. size
(bytes) (bytes) (bytes)

aimer128f 32 48 5,888
aimer128s 32 48 4,160

aimer192f 48 72 13,056
aimer192s 48 72 9,120

aimer256f 64 96 25,120
aimer256s 64 96 17,056
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Symmetric primitive AIM is characterized by its parallel structure and Mersenne
S-boxes, which are designed to minimize the signature size [3]. However, there
have been some analyses on AIM (see the next box), we devise a new symmetric
primitive AIM2 to mitigate all the recent cryptanalysis while maintaining the de-
sign strengths of AIM [4]. In AIMer version 2.0, we use AIM2 whose security is
reinforced by following revisions:

Inverse Mersenne S-box

Mer[e]−1(x) = xē

ē = e−1 (mod 2n − 1)

• No low-degree system in λ
variables

• Inherit all the strength of
Mersenne S-box
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(Third-Party) Analyses on AIMer
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Security analysis on AIM
• Algebraic analysis [6]
• Fast exhaustive search [5]
• Grover’s search [2]

First-party analysis on AIM2 [4]
• Presentation on TODAY 15:40!

Implementation and performance analysis
• Clean implementation
• Optimized implementation
• ARM Cortex-M4 implementation

Overall report [1]

Future Work
Work in progress
• Implementing AIMer on ARM Cortex-M4 in an optimized form (est. Q3 2024)

– Preliminary result: memory usage ≤ 110 KB for all parameter sets
• Improving the puncturable PRF in the NIZKPoK and adopting AES-based PRG

(est. Q3 2024)
– Preliminary result: signature size 4.8 KB (128f), 3.6 KB (128s)

Future Works
• Plan to apply Hypercube method
• Plan to prove the QROM security of AIMer


