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Abstract
The exponential increase in the availability of large-scale mobility data has fueled the vision of smart cities that will transform
our lives. The truth is that we have just scratched the surface of the research challenges that should be tackled in order
to make this vision a reality. Consequently, there is an increasing interest among different research communities (ranging
from civil engineering to computer science) and industrial stakeholders in building knowledge discovery pipelines over such
data sources. At the same time, this widespread data availability also raises privacy issues that must be considered by both
industrial and academic stakeholders. In this paper, we provide a wide perspective on the role that big data have in reshaping
cities. The paper covers the main aspects of urban data analytics, focusing on privacy issues, algorithms, applications and
services, and georeferenced data from social media. In discussing these aspects, we leverage, as concrete examples and case
studies of urban data science tools, the results obtained in the “City of Citizens” thematic area of the Horizon 2020 SoBigData
initiative, which includes a virtual research environment with mobility datasets and urban analytics methods developed by
several institutions around Europe. We conclude the paper outlining the main research challenges that urban data science has
yet to address in order to help make the smart city vision a reality.

Keywords Big data · Urban data science · SoBigData ·Mobility datasets

1 Introduction

The digital revolution witnessed in the last decade offers
tremendous opportunities to improve people’s quality of life
and to transform the way they interact with each other and
experience their environment. Living in cities is a big part
of modern society. Today, 55% of the world’s population
lives in urban areas, a proportion that is expected to increase
to 68% by 2050.1 Nowadays, an unprecedented amount of
data is collected about human life in cities and other environ-
ments. Furthermore, the amount of gathered data is expected

1 https://population.un.org/wup/.
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to increase in volume, variety, and granularity, in the coming
years. The massive amount of available data is the result of
monitoring and recording a wide range of human activities
by amultitude of sensors and devices. Examples of data asso-
ciated with the smart city initiative include mobility traces
of citizens collected by mobile phones [110], vehicle tra-
jectories collected by GPS devices [76], geolocated content
uploaded by citizens to social media platforms [107], social
relationships data recorded through mobile phone networks
and online social networks [42], passenger trajectories col-
lected by travel cards and other transportation devices [117],
transportation data collected by vehicle sharing services [23]
(bikes, scooters, cars, etc.), traffic volumes gathered by road
sensors, video and photograph streams produced by cam-
eras deployed in different parts of the city, spatiotemporal
pollution levels, electricity and water grid data [108], satel-
lite images, credit card transaction data, shopping records
[54], crime and other safety-related open data [20], andmuch
more.
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Distilling value from the available data to support the
smart city vision is a major challenge that requires multi-
disciplinary research in engineering, city planning, opera-
tions research, statistics, economics, computer science, e-
governance, policymaking, sociology, and more. The objec-
tive is to use the data in order to improve the quality of life
of citizens, and at the same time optimize resources, reduce
costs, and increase sustainability. Thus, big data analytics can
be leveraged to provide new smart services to citizens or to
help government and policymakers in making decisions sup-
ported by data. This is the goal of urban data science. Many
steps forward have been made in the last few years, and the
aim of this paper is to provide the reader with a systematic
overview of the main cutting-edge topics regarding big data
algorithms, methods, data issues, and tools that are shaping
the transition to the digital urban environment. In order to
illustrate these topics with concrete examples, we leverage
the different research activities conducted within the “City of
Citizens” exploratory of the SoBigData European project.2

The project SoBigData [50] covers a wide range of topics in
the area of data science applied to human social life, ranging
from migration studies and demography 2.0 to sports analyt-
ics and analysis of the polarization in the political discourse.
SoBigData features an entire thematic area (the “City of Citi-
zens” exploratory) devoted to the topic of urban data science,
whose results we discuss in the paper in order to illustrate
its potential for improving the individual and collective well-
being of people living in cities.

We begin our overview with Sect. 2, where we introduce
algorithmic tools that address critical challenges in urban
data science and that can be leveraged and combined to
provide innovative urban services. First, we discuss how
to model information extracted from location-based social
networks in order to detect the rhythms of urban activities
throughout the day. Then, we discuss the problem of location
detection, which entails inferring the semantic (e.g., work
or home) of the physical locations in which users roam.
Another challenging problem considered in this section is
that of trajectory generation, i.e., how to design algorithms
able to generate a population of agents whose mobility pat-
terns are indistinguishable from those of real individuals.
Moving from descriptive to predictive approaches, we dis-
cuss two different prediction problems, namely predicting
individual movement (next location) and predicting move-
ment agenda (locations a user will visit during a given day).
These types of predictive problems can be used to plan events
and infrastructures, for individual gains as well as for public
good. In Sect. 3, we present several methods of visual ana-
lytics for geolocated social media data, with an emphasis
on photograph sharing and micro-blogging platforms. We
accompany our discussion on visual analytics with several

2 http://www.sobigdata.eu.

examples showcasing our methods for the tasks of detecting
events and annotating them with explanatory tags for real-
world data taken from locations around the world. Next, we
move to services and applications (Sect. 4). First, we dis-
cuss how to leverage big data analysis to provide sightseeing
recommendations to tourists. Then, we present an overview
of how car sharing services can be improved by exploiting
data analytics techniques. We next discuss the use of big
data analytics for studying the link between human mobil-
ity, socioeconomic development, urban sustainability, and
net negative cities. In Sect. 5, we overview the main software
platforms developed and made available within SoBigData.
These platforms (M-Atlas and EPOS) are fully fledged soft-
ware solutions ready to be used and deployed in real systems.
The important topic of data gathering with respect to privacy
issues is discussed in Sect. 6. We emphasize the crucial issue
of personal data privacy, and we present a distributed crowd-
sensing approach for data collection, which can offer ameans
for the users to control their data contribution and data pri-
vacy. We conclude our presentation in Sect. 7 by discussing
a number of future challenges.

2 Algorithms for urban data analytics

In this section, we discuss algorithmic tools that are not
focused on a specific urban application, but that can be lever-
aged and combined to provide advanced services to the cities
of the future. Specifically, we discuss algorithms for extract-
ing information about urban activities (i.e., how people
engage with the different areas of a city) from location-based
social networks like Foursquare (Sect. 2.1), for extracting the
most important locations (e.g., home, workplace, etc.) of a
user (Sect. 2.2), for simulating realistic human mobility pat-
terns (Sect. 2.3), and for predicting people movements in a
city (Sect. 2.4).

2.1 Characterizing urban activities

Location-based social networks (LBSNs) are online social
platforms that allow their users to share their whereabouts
with their friends and the public [107]. For example,
Foursquare enables its users to generate “check-ins,” i.e.,
digital notifications that inform their friends of their where-
abouts. Each check-in contains information that reveals who
(which user) spends time where (at what location), when
(what time of day, what day of the week), and doing what
(according to the kind of venue: shopping at a grocery store,
dining at a restaurant, and so on).

By analyzing large amounts of activity traces from
location-based social networks, we can obtain a fine-grained
description of how citizens experience their cities and, in
particular, a description that indicates what activity takes
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Fig. 1 A screenshot of the GeoTopics system. Users of the system can explore how urban activity is decomposed into different local activity
“topics”

place at different locations of the city. For example, urban
activity traces might reveal that citizens visit one region
mainly for shopping in the morning, while another for din-
ing in the evening. This information is presently collected
by municipalities through costly, typically small-scale sur-
veys involving direct interviews with people. Leveraging
LBSN allows us to scale up and automatize data collection
in a very efficient way, at the same time enabling real-time
now-casting of urban activities. Furthermore, once such an
urban activity description is available, one can ask more
elaborate questions. For example, one might ask what fea-
tures distinguish one region from another—some regions
might be different in terms of the type of venues they host
and others in terms of the visitors they attract. As another
example, one might ask which regions are similar across
cities.

One way to obtain such a description is to use location-
based social network activity traces to build a GeoTopics
model [34]. Inspired by topicmodels for text documents [19],
a GeoTopics model aims to describe urban activity in terms
of a number of geographic “topics”—where each topic is
defined as a probability distribution that describes a particular
type of activity. Specifically, each topic models activity that
takes place in the vicinity of a city region and is characterized
by a certain distribution of activities, users who participate
in them, and times when they do that. GeoTopics models are
straightforward to train from urban activity datasets, such as
Foursquare activity datasets.

GeoTopics models have at least two characteristics that
make them desirable in many scenarios of urban analysis.
First, they are easily interpretable, as each topic corresponds
to the activity ofwell-defined features. Second, they are prob-
abilistic, and so, they allow for the numerical quantification
of various aspects (e.g., derive a probability-based similarity
of twopredefined regions in terms of activity they host).Mak-
ing use of GeoTopics models trained on Foursquare activity
data, we built3 a synonymous interactive system [33], which
allows users to explore and understand urban activity in tens
of large cities around the world. The output of GeoTopics for
the city of San Francisco is provided in Fig. 1.

2.2 Personal location detection

One of the key tasks in mobility data analysis (and a neces-
sary preprocessing step for many applications) is detecting
the locations of users. The objective is to identify the users’
personal location, i.e., the areas where users perform their
activities, based on the analysis of the locations (essen-
tially, GPS points) that they have stopped, herein called stop
observations. Examples of locations are home, workplace,
supermarket, gym, fuel station, etc. More precisely, given a
set of users GPS stop observations, i.e., coordinates in which
the users have stopped, the location detection problem con-
sists in grouping together the observations corresponding

3 https://mmathioudakis.github.io/geotopics/.
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Fig. 2 TOSCA main steps.
Orange points are the stop
observations. Blue dotted circles
correspond to X -means clusters
and the blue points to their
medoids, which are then
processed by single linkage. On
the resulting dendrogram, we
highlight the differences among
distances

to the same location. Correctly discovering such personal
locations is an important problemwith a wide range of appli-
cations. In the literature, this problem is typically addressed
using a grid partitioning of the studied area or generic clus-
tering algorithms like DBSCAN [43] or OPTICS [10].

However, this type of clustering methods shows various
drawbacks. First, some of them are focused on specific opti-
mization criteria, such asmaximizing compactness or density
connectivity,which does not always correspond exactly to the
notion of locations, and therefore, the results, though opti-
mal with respect to its own criteria, are not good locations.
Second, in some cases, the algorithms need parameters that
are not easy to guess (e.g., the size of the cell for the grid par-
titioning and the radius and minimum points for DBSCAN)
and that should be tuned ad hoc for the data of each user ana-
lyzed. Indeed, in most cases an experienced analyst or some
expensive self-tuning procedure might be needed to select
accurately the parameters. On the other hand, in most cases
such parameters are fixed for all users, while each individual
might show specific features that require a treatment different
from the others.

TOSCA (two-step clustering algorithm) [52] overcomes
these drawbacks. TOSCA is a robust, efficient, statisti-
cally well-founded, and parameter-free algorithm explicitly
shaped for personal location detection. The two steps of
TOSCA are realized by combining two clustering methods
and a statistical analysis approach. TOSCA enables in this
way to produce high-quality clusters with a low computa-
tional cost. The idea behind TOSCA comes from the need
to detect the locations of the users in an efficient way with-
out sacrificing the clustering quality and, most importantly,
without any tuning phase for the parameters.

Extensive experimentation showed that center-based clus-
tering methods tend to correctly identify subgroups of
observations that should belong to the same location. The
side effect of such constraints is that the result usually splits
real locations into several pieces that are connected with

each other in a relatively loose way. On the other hand,
single-linkage and density-based clusteringmethods are very
good at spotting such loose connections, with the draw-
back of not distinguishing well those loose connections that
are actually boundaries with other clusters. By exploiting
these observations, the two main steps of TOSCA work as
follows (see Fig. 2): (1) extract (sub-)clusters and corre-
sponding medoids through center-based methods. X -means
[83] algorithm was selected through empirical evaluations;
and (2) cluster the medoids through a single-linkage hierar-
chical algorithm [106]. Stop the iterative cluster aggregation
(or, equivalently, cut the dendrogram resulting from a com-
plete run of the algorithm) through a statistically determined
threshold on the increase in the distance between the clusters
to be merged at each iteration. The cut criteria considered in
TOSCA come from the outlier detection theory [16]. The dis-
tribution of the difference of the distances in the dendrogram
returned by single linkage experimentally shows a sudden
spike indicating the change in trend in the aggregation of the
clusters.

It has been shown how, in contrast to algorithms com-
monly used in the literature, TOSCA automatically detects a
good distance threshold for the clusters produced, thus adapt-
ing the clustering to the individual mobility behavior of each
user in the data [52]. Therefore, it is perfectly suitable asauto-
focus clustering algorithm for analyzing individual mobility
data. TOSCA evaluation against a large set of competitors
over data generated from a null model and a mobility-like
model shown that both in the mobility-like model and in the
real case study TOSCA performs better than the general-
purpose algorithms producing the desirable clustering for
personal mobility data mining (see Fig. 3).

2.3 Simulating realistic mobility

The goal of generative algorithms of human mobility is to
create a population of agents whose mobility patterns are
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Fig. 3 Personal locations detected with X -means (left) and TOSCA (right). Different colors denote the different clusters (personal locations) to
which each point is assigned

statistically indistinguishable from those of real individu-
als [48]. Typically each generative algorithm focuses on
just a few properties of human mobility. A class of algo-
rithms aims to realistically represent spatial properties such
as the trip distance distribution [49] or the visitation fre-
quency to a set of preferred locations [80]. Another class
of algorithms focuses on accurately representing the time-
varying behavior and the routine schedules of individuals
[64,100]. However, the major challenge for generative algo-
rithms lies in the creation of realistic temporal patterns and
in the description of both routine and out-of-routine mobility
patterns.

DITRAS (DIary-based TRAjectory Simulator) [79] is a
framework to simulate the spatiotemporal patterns of human
mobility (Fig. 4). DITRAS separates the temporal character-
istics of human mobility from the spatial ones by operating
in two steps. In the first step, DITRAS uses a diary generator
to generate a mobility diary, i.e., an algorithm that captures
the temporal patterns of human mobility by specifying the
arrival time and the time spent in each location visited by
the individual. A diary generator is an algorithm that gener-
ates a mobility diary for an individual given a diary length.
Pappalardo and Simini [79] propose a data-driven algorithm
called Mobility Diary Learner (MDL) which is able to infer
from real mobility data a Markovian diary generator (MD)
which captures the propensity of individuals to follow quasi-
periodic daily schedules as well as to modify their mobility
habits.

In the second step, DITRAS transforms the mobility diary
into a trajectory by using a mechanism for the exploration of

Fig. 4 Outline of the DITRAS framework. DITRAS combines two
probabilistic models: a diary generator and trajectory generator. The
diary generator uses a typical diary to produce a mobility diary D. The
mobility diary D is the input of the trajectory generator together with
a weighted spatial tessellation of the territory L . From D and L , the
trajectory generator produces a sampled mobility trajectory S

locations on the mobility space. Pappalardo and Simini [79]
suggest to use the d-EPR trajectory generator [80,81], which
embeds mechanisms to explore new locations and return to
already visited locations. The exploration phase takes into
account both the distance between locations and their rele-
vance on the mobility space, though taking into account the
underlying urban structure and the distribution of population
density.
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The combination through DITRAS of the d-EPR trajec-
tory generator and the MD diary generator constitutes the
generative algorithm d-EPRMD. A comparison with nation-
wide mobile phone data, region-wide GPS vehicular data
and synthetic trajectories produced by other generative algo-
rithms showed that d-EPRMD simulates the spatiotemporal
properties of human mobility in a realistic manner, typically
reproducing the mobility patterns of real individuals better
than the other considered algorithms.

TheDITRASmodeling framework goes toward a compre-
hensive approach that combines network science and data
mining to improve the realism of human mobility models.
Recently, to foster the combination of generative algorithms
through the DITRAS framework as well as the compari-
son among existing generative algorithms, the Python library
scikit-mobility4. has been developed [82].

2.4 Predictingmobility

A prediction (or forecast) is a statement about the way
things will happen in the future, often, but not always, based
on experience or knowledge. Although error-free prediction
about the future is in most cases impossible, prediction is
necessary to allow plans to be made about possible develop-
ments. Human predictability can be used to plan events and
infrastructures, both for the public good and for private gain.
Predictability is a vast research field, tackled with a number
of approaches and for a number of different reasons. Mobil-
ity data mining is a field of research in which prediction is a
fundamental task widely studied in the literature.

Powered by the increasing diffusion of location-based ser-
vices, predicting the future locations of a mobile user is
a flourishing research area. Knowledge of the position of
mobile users can support applications that require access to
this information in order to operate efficiently. Examples of
such services are traffic management, navigational services,
mobile phone control, etc. Many location-based services are
based on the current or future locations of a user. By using
the knowledge about locations, it is possible to fetch relevant
information, such as nearby points of interest and available
services. Moreover, predicting future positions can inform a
driver about services like restaurants, banks, and shops that
are present in future locations, or traffic problems that may
occur along her route. The strong interest in this kind of
applications led to the study of several approaches in the lit-
erature addressing the location prediction problem. Some of
them base the prediction on single users’ movement history,
while others extract common behaviors from the histories of
all the users in the system.

Indeed, the approaches proposed in the literature for loca-
tion and trajectory prediction can be classified according

4 https://github.com/scikit-mobility/scikit-mobility

to the prediction strategy used. The majority of the studies
addressing the location prediction problem propose methods
that base the prediction only on the movement history of
the object itself. These approaches use an individual strategy
for the prediction of user future positions. Other approaches
in this category adopt time series analysis [32,102] to fore-
cast user behavior in different locations. In this case, it is
necessary to define the set of interesting locations to be con-
sidered in the analysis (see Sect. 2.2). The main problem of
approaches implementing the individual strategy is that they
fail in predicting future locations of non-systematic users.
In these cases, applying a collective strategy could improve
the prediction. Prediction approaches belonging to this cate-
gory first extract mobility behavior for each user considering
only the user’s movement history, like in the individual strat-
egy, and then, they merge all the individual models for the
construction of the predictor [74].

2.4.1 Individual movement prediction

MyWay [112] is a system to forecast the exact future posi-
tions of a user, while she is moving. In line with the Personal
Data Analytics paradigm [51], MyWay predictors exploit the
individual systematic behaviors of a single user, the individ-
ual systematic behaviors of all the users in the system (called
collective behavior), and an hybrid combination of them. To
predict the future positions of a user, MyWay first uses her
systematic behaviors and, if they are not sufficient, it exploits
the systematic behavior of the crowd. This idea is based on
the conviction that typically any user systematically visits a
small set of locations and regularly moves between them by
choosing the best movements learned by the daily experience
[49].

MyWay requires that each individual computes an abstract
representation of her systematic behavior: the individual
mobility profile that captures the paths that are regularly fol-
lowed by the user, called routines [111]. Thus, each routine is
a representative trajectory (obtained through clusteringmeth-
ods applied to raw trajectory data) and the collection of the
routines of each person constitutes her mobility profile. (An
example of mobility profile composed of two routines is pro-
vided in Fig. 5).

MyWay predictions leverage the individual mobility pro-
files in the following way. The individual strategy predicts
the future positions using only the routines part of the user’s
individual mobility profile. The collective strategy considers
the routines of all users exploiting the possibility that a user
could follow a path that is atypical for her, but systematic for
another user. The hybrid strategy uses the collective strategy
when the individual one fails. The MyWay framework with
the three strategies is illustrated in Fig. 6, where, for each
prediction flow, a different color line is used: individual his-
tory, the individual profile, and the individual predictor (red
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Fig. 5 Individual mobility
profile formed by two routines
A and B

Fig. 6 MyWay prediction strategy system

lines) reside on the user local device, while the collective
predictor (blue lines) is outside and therefore handled by a
third party that orchestrates the users’ information as well as
the hybrid predictor (green lines). This third party, usually
called coordinator, has the responsibility for the storage and
management of the users’ profiles. In the case of the hybrid
strategy, the coordinator stores all the mobility profiles of the
users (which are compact representations of their mobility)
and receives the query for the prediction only in the case the
individual predictor of a specific user fails.

As theorized by Guidotti et al. [51], MyWay exploits the
possibility to use two levels of knowledge (individual and
collective), obtaining advantages from the previous strate-
gies.Moreover, in linewith TOSCA (Sect. 2.2),MyWay does
not apply any a priori spatial discretization. In fact, most of
the works proposed so far in the literature apply a spatial
discretization such a fixed grid on the space [78] or a terri-
tory tessellation obtained by clustering spatial points [63].
The spatial discretization often affects the precision of the
prediction that instead of returning spatiotemporal points, it
returns regions with higher granularity.

The prediction strategy that uses only individual mobility
profiles is comparablewith a prediction strategy based on raw
movement data. There are some important advantages: (i) it
dramatically minimizes the quantity of information required
since a mobility profile is a concise representation of the
information of the user; (ii) it can help to reduce the privacy
risks: The mobility profile represents a systematic behav-
ior, i.e., paths that are regularly followed by the user, but

does not reveal all the details of her past spatiotemporal posi-
tions. An evaluation ofMyWay on large real-world trajectory
data show that the best prediction strategy is the hybrid one.
Furthermore, a study of how the participation of the user
affects the overall performances through an analysis of the
prediction rate and the accuracy varying the percentage of
users sharing their profiles shows how a greater sharing of
routines enables better performances. Furthermore, the pre-
diction rate dramatically increases at each step, while the
accuracy slightly decreases. This happens because a larger
number of trajectories become predictable allowing more
errors, but the overall performances clearly improve.

2.4.2 Individual agenda prediction

The combination of procedures like TOSCA [52] and
MyWay [112] can be used to further improve the predic-
tion of humanmobility. RAMA (Routinary ActionsMobility
Agenda) is an approach that extracts the user’s personal
mobility model and uses it to reproduce the user’s personal
mobility agenda representing the predicted positions where
the user accomplishes her activities during the whole day
[53]. RAMA is completely unsupervised and adaptive to dif-
ferent users and mobility scenarios. In particular, RAMA
combines the personal locations extracted by TOSCA with
the routines and the technique of prediction of MyWay in
the individual mobility network defined by Rinzivillo et al.
[100].

RAMAfirst learns the personal mobility model by observ-
ing the personal mobility history and then exploits the model
learned to reproduce future personal mobility agendas. In
Figure 7, there is an example of mobility history (a) and
personal mobility model (b). In summary, RAMA uses the
personal mobility model together with the probabilities of
staying in a location or of moving from a location to another
one along a certain routine to predict the whole user mobil-
ity agenda at predefined time intervals. RAMA has shown
to be very flexible and able to adapt to various city contexts
obtaining comparable results over Rome, London, Boston,
and Beijing. The agenda reproduction obtains a good perfor-
mance in comparison with naive approaches from the state
of the art.

123



318 International Journal of Data Science and Analytics (2021) 11:311–340

Fig. 7 Example of mobility history (left) and RAMA personal mobility model (right)

3 Visual analytics for urban data

Visual analytics is a research discipline that aims to support
synergistic human–computer analytical workflows by com-
bining computational analysis techniques with interactive
visual interfaces supporting human interpretation, judgment,
and reasoning [66]. Micro-blogging platforms, such as Twit-
ter, and platforms for sharing photographs and videos, such
as Flickr and Instagram, allow the users for the annotation
of their content with geographic coordinates. The high pop-
ularity of these services in conjunction with the widespread
proliferation of devices capable of providing location infor-
mation has led to great and constantly increasing volumes of
location- and time-referenced data produced by myriads of
users [38]. By analyzing these data, it is possible to extract
interesting new information about various places and events
as well as about people’s interests, mobility behaviors, and
lifestyles. For these reasons, the analysis of social media data
is currently a popular topic in visual analytics.

In the following, we provide the reader with a brief litera-
ture overviewof the published literature, with an emphasis on
works published within SoBigData describing visual analyt-
ics approaches to extract different kinds of information from
georeferenced social media data. Most of the works do not
focus on extracting a single type of information, but deal with
several types.

3.1 Analysis of georeferenced photograph data

Photographs published on Flickr, Panoramio, and other pho-
tograph sharing platforms are supplied with metadata, which
include the dates and times of the shots and may also include
titles and text tags indicating the content of the photographs.
For many photographs, the metadata include the coordi-
nates of the locations where the photographs had been taken.
Collections of metadata records including geographic coor-
dinates have been analyzed in multiple ways according to the
possible analysis foci (space and place or people) and respec-
tive tasks [3]. The photograph datasets have been considered
from two distinct perspectives: as spatial events (independent
points in space and time) and as trajectories of people (i.e.,
the photograph owners). We discuss these two perspectives
below.

Event-based analysis of photographs In analyzing the data
as spatial events, spatial density-based clustering has been
used for identifying popular places, which have attracted the
attention of the photograph owners.Visualization of the times
when the photographs had been taken in these places has
revealed different seasonal patterns of the visited places. To
study the spatial distribution of the photographs over a terri-
tory and compare the temporal patterns of visiting different
parts of it, the territory is divided into compartments, e.g.,
by a regular [3] or irregular [5,62] grid, and the photograph-
taking events are aggregated by these compartments and by
time intervals. The resulting time series of the event counts
are visualized on a map [4] or on a time graph [5,62], which
is linked to a map display through interactive techniques,
including synchronous highlighting, selection, and filtering
of corresponding visual objects. By analyzing the time series
using either mostly interactive [62] or computationally sup-
ported [5] techniques, the researchers detected places with
interesting temporal patterns of visits, such as periodic peaks
at particular times of the year, very high irregularly occurring
peaks, and significant increase in place popularity starting
from a particular time. To support a better understanding of
these patterns, the visualization is supported with tools for
extracting frequently occurring words and word combina-
tions from the titles of the photographs that had been taken
in the places and times of the peaks or sudden increases
in attendance. In most cases, the extracted words refer to
various public events (festivals, open-air shows, and con-
certs), but also to interesting natural phenomena, such as
cherry tree blossoming or abundant snowfalls. A different
approach to identify public events and other happenings
attracting people’s attention is by using spatiotemporal clus-
tering of the photograph-taking events [6, section 6.2.3],
where the authors find occurrences of multiple photographs
taken closely in space and time, i.e., spatiotemporal clusters.
For the clusters, frequently occurring words and word com-
binations are extracted and investigated using a text cloud
display linked to a map, as shown in Figure8.

An example of an in-depth analysis of the time series
resulting from the presence of distinct photographers in
regions of Switzerland is presented in the book of Andrienko
et al. [6, Sections 7.2.1-7.2.5]. The analysis includes, among
other techniques, visually supported clustering of the time
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Fig. 8 Top: the frequent
occurrences of words and
combinations in the photograph
titles within spatiotemporal
clusters of Flickr photographs
are represented on a map by
point symbols colored according
to the spatial positions of the
clusters. Bottom: the words and
combinations are represented in
a text cloud display, the font
sizes being proportional to the
frequencies, and the colors
corresponding to the spatial
locations, as in the map. One of
the word combinations
(“Interlaken red bull air race”) is
selected in the text cloud view
by mouse pointing; the
corresponding point is
highlighted on the map (marked
with an arrow)

series and interactive generation of models for predicting
the number of photographers who are expected to visit the
regions in the future at different times of the year. The time
series can also be viewed from a different perspective: as a
sequence of spatial distributions of the photographers’ pres-
ence at different time intervals. To study the temporal patterns
of the occurrence of similar and dissimilar spatial distribution
patterns, the distributions are clustered by similarity, summa-
rized by the resulting clusters, and compared using multiple
map displays and special interactive operations supporting
comparisons [6, Section 8.1.1]. The temporal distribution of
the clusters is visually represented on temporal displays. The
example demonstrates how the analysis reveals an interac-
tion between temporal periodicity and temporal trends in the
sequence of the spatial distributions of the presence of Flickr
photographers over the territory of Switzerland.
Trajectory-based analysis of photographs Trajectories of
people can be constructed from georeferenced photograph
data by arranging the records of each individual photographer

in a chronological sequence—the same idea applies to any
kind of georeferenced data that include identifiers of individ-
uals, in particular, to data from YouTube, Twitter, Instagram,
and other social media. Trajectories of individuals can be
aggregated into flows between compartments of a territory
division and visualized on flow maps to enable studying of
mass movement patterns [3]. The aggregation of trajectories
into flows can be done by time intervals for studying seasonal
differences between the mass movement patterns [62]. A set
of trajectories can also be analyzed for discovering frequent
sequences of place visits [6, Section 7.3.4]. The extracted fre-
quent sequences can be explored using a text cloud display
combined with an interactive map and a space–time cube. By
analyzing people’s trajectories, one can also detect meetings
of two or more individuals, including repeated meetings of
the same pairs or groups of individuals, and joint trips of two
or more photographers [3]; however, performing such anal-
ysis may be unethical, as it may compromise the privacy of
the individuals.
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This overview gives an idea about the diversity of possible
approaches to analyzing georeferenced photograph data and
the kinds of information and knowledge that can be extracted
from such data. The same range of approaches is also appli-
cable to georeferenced micro-blogging data, such as data
from Twitter. The types of information that can be extracted
from the two different sources of data are the same, but the
interpretation may be different. Thus, people mostly take
photographs when they encounter interesting places, objects,
or events; besides, not all taken photographs but only the best
or the most interesting ones may be published. It should also
be taken into account that photographs are rarely taken in
low-light conditions, and that there are situations and places
in which taking photographs is prohibited. Therefore, the
photograph data cannot be considered representative of peo-
ple’s presence andmovements over a territory and of people’s
everyday activities. Figure 8 shows that photograph datamay
reflect people’s leisure activities and touristic travels. How-
ever, it would be wrong to assume that this is always the
case. The possible relation of the published photographs to
the author’s leisure time, travels, or professional activities
can be judged from the temporal frequency and regularity of
the photographs and from their spatial distribution.

3.2 Analysis of georeferencedmicro-blog data

Postingmicro-blogmessages frommobile devicesmayoccur
more frequently and spontaneously and in a wider range of
places and situations than taking and publishing photographs.
Besides, there is no time gap between producing and publish-
ing a message, while photograph authors may not publish
their photographs immediately after taking them, but may do
this after some (often quite long) time. Therefore, unlike pho-
tographs, micro-blog data are suitable for real-time analyses,
which may discover information about currently happening
events, in particular, abnormal and disastrous events, such
as earthquakes, floods, storms, and even terrorist attacks
[7,12,14,35]. All these activities require the processing of
the message text.

One first and crucial issue in processing textual messages
is related to the scarcity of explicit and native geoloca-
tions. While multimedia posts are often complemented with
geotags, the same only occurs in 1% to 4% of text-only
micro-blog posts [12,36]. Tomitigate this issue and to enable
geospatial textual analyses of micro-blogs, a wide array of
geoparsing techniques have been proposed [15]. The high-
level goal of geoparsing is that of enriching any given piece
of text with the geographic coordinates of places and loca-
tions mentioned within the text itself. In this way, even if
the original message did not explicitly carry geotags, it can
still be placed on a map by leveraging the geotags discovered
during the geoparsing operation. Traditional approaches to
geoparsing involved natural language processing of the text

Fig. 9 GSP geoparsing technique links a textual document Ti to an
entitywithin a knowledge base, via a semantic annotation process. Then,
it exploits the Linked Open Data knowledge graph to find additional
candidate entities from which to extract geographic information about
the input text

to identify geographic named entities that were subsequently
matched against gazetteers (i.e., databases containing associ-
ations between toponyms and their geographic coordinates)
such as Geonames or OpenStreetMap [77]. More recent and
more accurate approaches developed within SoBigData are
instead based on a combination of machine learning applied
to the rich and structured information contained in Linked
Open Data. In particular, the geosemantic-parsing (GSP)
technique [15] first applies semantic annotation to highlight
relevant portions (i.e., tokens) of the input text and to link
them to pertinent entities in one or more knowledge bases,
such as DBpedia andWikidata. Then, the algorithm traverses
the knowledge graph in order to find a set of candidate enti-
ties from which to extract geographic information, as shown
in Figure9. In a subsequent step, all candidates are evaluated
and possibly pruned. Finally, all entities that have not been
pruned contribute to determining the geographic coordinates
of the text, by majority voting [15]. The adoption of geop-
arsing techniques, such as GSP, has been shown to increase
the number of geolocated messages from less than 5% up to
50% [12] across several benchmark datasets.5

Given a set of geolocated messages, further analyses can
be applied to extract meaningful knowledge on interesting
events. One of the possible approaches is prefiltering of
the messages for selecting only those that contain analysis-
relevant keywords, such as terms denoting extreme weather
conditions [7,12,14]. Another approach is extracting signif-
icant terms, i.e., such words that do not occur frequently in
micro-blog messages in general or in the times (seasons) or
places where they have occurred [25,35]. Each occurrence

5 http://data.d4science.org/ctlg/ResourceCatalogue/geo-annotated_
tweets_eng-ita.
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Fig. 10 Emergence and evolution of spatiotemporal clusters of georeferenced tweets related to a hurricane on October 28, 2013

of a significant term is treated as a separate spatial event. A
spatiotemporal concentrations (clusters) of events with the
same term may indicate that something is happening in this
place and time, and the term gives an idea of what may be
happening. The significant terms from such spatiotemporal
clusters are shown on a map display using the text cloud
technique, with the font size being proportional to the num-
ber of the term occurrences. The map is constantly updated
in real time as new messages appear [14]. By means of an
interactive tool called Content Lens, the user can select a par-
ticular area and explore in more detail the term occurrences
in this area. To increase the relevance of the information
that is shown to the user, various user-constructed filters can
be applied to the data [25]. In the other approach [7], the
message texts are only used for the selection of potentially
relevant messages and not used in further analysis. The work
focuses on real-time detection of spatiotemporal clusters of
relevant events, taking into account only the event locations
and times, but not the texts, and on tracing the cluster evo-
lution (growing, shrinking, moving, merging, and splitting)
over time (Figure 10). The individual events making the clus-
ters and their message texts can be accessed on demand. Yet
another approach focuses on identifying geographically rel-
evant areas in the aftermath of an event (e.g., for detecting
those areas mostly stricken by a disaster) [13]. This time,
micro-blog texts are analyzed in order to detect mentions of
known locations. Then, the mentioned time series of each
location are computed and compared to reference values
or baselines. Relevant locations are those for which, at a
given point in time, the related time series are significantly

greater than the references. Finally, each location is graph-
ically highlighted by drawing choropleth maps—that is, by
using different shades of colors for different locations in a
geographic map, depending on the relevance of the locations
[12,14].

An example of an off-line investigation of micro-blog
posts related to a disastrous event (an epidemic) is presented
by Andrienko et al. [6, Section 6.3.2]. Although it uses syn-
thetically generated data (which, however, are generated by
a model learned from real data), it shows the principal possi-
bility of using micro-blog data for identifying the origin and
possible cause of an epidemic, the ways of disease propaga-
tion, the spatial spread, and the evolution over time. Other
studies [12,14,77] are instead based on real-world Twitter
data related to disastrous earthquakes and floods. Figure11
shows the results of such studies that allowed to promptly
identify mostly stricken areas in order to guide first respon-
ders.

However, detecting and investigating disastrous or abnor-
mal happenings are not the only possible use case for
micro-blog data. Georeferenced micro-blog posts, at least
those from active bloggers, may to some extent be consid-
ered as representative of the people’s daily lives and used
for studying people’s behaviors. Thus, an analysis of a col-
lection of tweets posted by residents of the Seattle area
(USA) revealed interesting patterns of collective and indi-
vidual behaviors [109]. For this analysis, the tweets were
classified according to their topics, such as family, work,
education, food, and sports, based on the occurrences of
topic-specific keywords. (For example, the topic “family” is
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Fig. 11 Real-time geospatial analyses of social media allow to promptly obtain accurate maps of stricken locations in the aftermath of mass
emergencies

Fig. 12 Left: the spatial distribution of the tweet topics “coffee” and “tea” in the central area of Seattle. Right: the spatial distribution of the topic
“transportation”

associated with the terms denoting family members: mother,
mom, father, daddy, and soon.)The researchers exploredhow
much the tweet topics are related to the locations fromwhich
the tweets were posted and to the times when this happened.
For this purpose, they aggregated the tweets by the topics,
areas in space, and time intervals and visually explored the
results using maps and time histograms. It was found that
there are areas where particular topics prevail, which may

be related to the kinds of objects or facilities located in the
areas (e.g., a university or a stadium) or to the character-
istics of the population (e.g., an international district; see
Figure 12, left panel). The researchers also looked at the
spatial distributions of the different topics and found that
some of them are correlated with the distribution of certain
kinds of objects or facilities. Thus, the topic “transporta-
tion” occurs along the main transportation corridors (Figure
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12, right panel). Regarding the temporal distributions of the
tweet topics, the researchers found several very interesting
patterns of when certain topics occupy the peoples’ minds.
Thus, “food” occursmore frequently during lunch and dinner
times, “coffee” during/after breakfast and over the forenoon,
“transportation” duringworking day rush hours, and “sports”
and “alcohol” in the evenings and over the weekend.

Although the study shows that the contents of somemicro-
blog posts are related to the places the authors visit and/or the
activities they perform, these data in general contain a large
proportion of noise, which includes texts with unidentifiable
topics and texts with topics that are not relevant to the places
of message posting. (Thus, a person may tweet about work
while being at home or about food while traveling in pub-
lic transport.) In fact, the proportion of noise outweighs the
proportion of potentially relevant data. Therefore, it makes
sense to analyze the topic distribution in space and time at
the level of a large population of micro-bloggers, to have
a sufficiently large amount of potentially relevant data and
to be able to use valid statistical summaries. At the level of
individuals, the message texts can hardly be indicative of
the individuals’ activities or purposes for visiting different
places.

In analyzing mobility behaviors of individuals, it is rea-
sonable to look not at the message texts, but at the temporal
patterns of visiting different places [8]. Significant (repeat-
edly visited) personal places are extracted from the collection
of posts of each individual by spatial clustering of the post
locations. Place semantics (i.e., the meanings, purposes for
visiting, or activities performed in the places) can be deter-
mined based on the times over the weekly cycle when the
individuals were present in the places. Thus, a place where
a person is present in the evenings and nights of all days can
be identified as the person’s home place. However, separate
consideration of the data of each individual is unfeasible and
harmful for personal privacy. Andrienko et al. [8] proposes a
privacy-respecting approach, in which data of a large number
of Twitter users are analyzed all together using a combination
of computational techniques and visualizations presenting
the data and analysis result in aggregated form. After extract-
ing personal places and identifying their meanings in this
manner, the original georeferenced data are transformed into
trajectories in an abstract semantic space. The semantically
abstracted data can be further analyzed without the risk of re-
identifying people based on the specific places they attend.
The paper presents an example of analyzing mobility behav-
iors of Twitter users in the area of San Diego, California,
USA.

To summarize, georeferenced data from social media can
be analyzed as spatial events (i.e., independent points in space
and time) and as trajectories of people. To analyze such data,
visual analytics proposes a number of approaches combining
computational techniques (clustering, aggregation, statisti-

cal summarization, pattern detection, etc.) with interactive
visualizations. By means of these approaches, it is possible
to extract interesting information and gain new knowledge
about places, events, and people’s interests, behaviors, and
habits. Metadata of the photographs published through pho-
tograph sharing services can reveal people’s interests in
tourist attractions, public events, and other happenings, or
natural phenomena and patterns of touristic behavior. Geo-
referenced micro-blog posts can be analyzed in real time for
early detection of abnormal or disastrous events. It may also
be useful to analyze the evolution of such events by look-
ing at the spatiotemporal distribution of the event-related
posts. Besides the information concerning unusual happen-
ings, micro-blog data may be a source of knowledge about
everyday mobility and activities of people. As both the pop-
ularity of social media and the interest in analyzing social
media data are growing, we can expect the appearance of
new analysis methods and new use cases for information
that can be extracted by these methods.

4 Shaping the urban landscape: applications
and services

In order to showcase the potential of applying data science
techniques to improve the quality of life of people engaging
with the city, aswell as tomake citiesmore sustainable, in this
section we discuss three challenging applications domains of
urban data science: tourism (Sect. 4.1), smart transportation
(Sect. 4.2), and sustainable urban development (Sect. 4.3).

4.1 Sightseeing tour recommendations

When visiting a new city, it is difficult for tourists to
decide which attractions match their preferences better [39].
Likewise, it is also difficult for city stakeholders and city
administrators to advertize the right attractions to the right
people. The TRIPBUILDER service tries to fill this gap.

TRIPBUILDER, an application available in the SoBig-
Data infrastructure, offers a service that can help tourists
organize sightseeing tours within a city, given a set of
temporal constraints and preferences, e.g., building a 6-h
sightseeing tour where museums and churches are preferred
to local architecture or entertainment. TRIPBUILDER is an
unsupervised system for building personalized sightseeing
tours. Given the target destination, the time available for the
visit, and the user’s profile, the system recommends a time-
budgeted tour that maximizes user’s interests and takes into
account both the time needed to enjoy the attractions and
the time to move from one point of interest to the next one.
Moreover, the knowledge base feeding TRIPBUILDER rec-
ommendation model is entirely and automatically extracted
from publicly available Web services, namely Wikipedia,

123



324 International Journal of Data Science and Analytics (2021) 11:311–340

Modeling Trajectory

TripCover

PoIs Users PoI 
History

Trajectory 
Set

Modeling Users PoI 
History

Users
Photos

Mining Users PoI 
Interest

Users PoI 
Interest

Data Collection Data Processing

Traveling 
Time TrajSP

Covering

Scheduling

Fig. 13 Overview of the unsupervised process used to build the TRIPBUILDER knowledge base and service

Flickr andGoogle maps. Each photograph comes with useful
information such as tags, comments, and likes from Flickr
social network, number of views, information about the user,
time stamp, GPS coordinates of the place where the photo-
graph was taken. This allows us to roughly reconstruct the
movements of users and their interests by analyzing the time-
ordered sequence of their photographs.

The problem of planning the visit to the city is a two-step
process. First, given the profile of the user and the amount
of time available for the visit, the TripCover problem is
addressed: choosing the set of itineraries across the points
of interest that best fits user interest and respects the given
time constraint. Second, the selected itineraries are joined
in a sightseeing itinerary by means of a heuristic algorithm
addressing the trajectory scheduling problem (TrajSP), a
particular instance of traveling salesman problem (TSP). The
formalization of TripCover as an instance of the general-
ized maximum coverage (GMC) problem can be found in an
earlier work [26,28], while a subsequent study [27] demon-
strates the capabilities of the TRIPBUILDER application.6

Figure 13 depicts an overview of the TRIPBUILDER
architecture. The component related to “data collection”
retrieves relevant data from Flickr, Wikipedia, and Google
Maps. The second component called “data processing”
extracts the knowledge used to devise relevant points of inter-
est and model users’ visiting behaviors from data provided
by the “data collection” component. Given a budget B, the
third component “covering” deals with the exploitation of
the models and the knowledge base to compute the solution
to the TripCover(B) problem. The result is a set of trajecto-
ries in the chosen city on the basis of user interests and time
budget that are finally scheduled on the user agenda by the
fourth component “scheduling.”

The TRIPBUILDER knowledge base, generated in an
unsupervised way, covered initially three Italian cities: Pisa,
Florence, and Rome, important from a sightseeing point of
view and which guarantee variety and diversity in terms
of size and richness of public user-generated content avail-

6 http://tripbuilder.isti.cnr.it/.

Table 1 Performance of TRIPBUILDER (TB) on the Pisa dataset by
varying the parameter α and the baselines (Tpop, Tppro) according to
various metrics

Days Recall-P Recall-C Spro
u Svt

Pisa

Tpop 1/2 0.480 0.755 0.298 14443

1 0.833 0.990 0.609 28984

Tppro 1/2 0.560 0.803 0.391 14535

1 0.797 0.962 0.618 28272

TB,(0) 1/2 0.712 0.910 0.391 16086

1 0.822 0.988 0.601 28968

TB,(0.5) 1/2 0.725 0.904 0.565 16027

1 0.863 0.984 0.709 29452

TB,(1) 1/2 0.721 0.898 0.570 15931

1 0.871 0.984 0.715 29510

The column Days denotes the itinerary length

able for download: Rome, Florence, and Pisa. Obviously, the
methodology can be applied to other cities as well.

The effectiveness of TRIPBUILDER is assessed by: (i)
selecting a set of trajectories of interest for a given user
(TripCover) and (ii) scheduling that set on the user agenda
(TrajSP). The performance is compared to those obtained by
competitive baselines: one (Tpop) that considers the trajec-
tory popularity and one (Tppro) that relies on a normalized
user/POI similarity score, using evaluation metrics that con-
sider the actual behavior of test users as mined from Flickr,
as explained in detail by Brilhante et al. [28].

The results on the Pisa dataset are reported in Table1.
(Similar results have been obtained for Florence and Rome.)
The TRIPBUILDER approach aims at maximizing the user’s
total profit/interest over the PoIs fitting her budget. In terms
of Personal Profit Score Spro

u , a measure of the relevance with
respect to the user preferences, the solution improves over the
baselines with up to 91% in Pisa (up to 173% in Florence and
130% in Rome, not shown in the table). In addition, it builds
trips that increase Visiting Time Score Svt (i.e., the actual
time spent enjoying attractions and not traveling to reach one)
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up to 25min in Pisa (about 4h in Florence and approximately
11 h in Rome). Therefore, it suggests itineraries that better
match user preferences and involve lower intra-POI move-
ment time than the baselines. In terms of PoIs and categories
recall (Recall-P, for PoIs, and Recall-C, for Categories, in
Table 1), all algorithms get at least 75% of the relevant PoIs
and 96% of the categories for Pisa. Looking at PoIs recall, on
the other hand, TRIPBUILDER gets better results than the
baselines: 87% compared to 83% of Tpop and 79% of Tppro
for the one-day time budget. The proposed solution outper-
forms the baselines in terms of all the metrics adopted for
assessment, by suggesting itineraries that better match user
preferences. Such itineraries present higher visiting time and,
consequently, lower intra-point of interest movement time
than the baselines, meaning users spend the budget in actu-
ally visiting points of interest rather than in transit.

4.2 Data-driven urban transportation: the car
sharing case

Soon after their invention, cars have boosted people’s per-
sonal mobility, but at the price of environmental pollution,
city congestion, and huge public health issues (such as air
pollution-related diseases or the stress associated with traf-
fic and long commutes). An increasing awareness by policy
makers and citizens alike has brought traditional automobile
transportation at a turning point, and at the center of this
personal mobility revolution are the concepts of data-driven
smart transportation, sharing economic, and green vehicles:
Shared vehicles with small carbon footprints whose usage
is optimized by data-fueled approaches may be the solution
for the mobility of the future. In this context, car sharing is
emerging as one of the most promising examples of Mobil-
ity as a Service [104]. The members of a car sharing system
can pick up a shared vehicle of the car sharing fleet when
they need it. Different operators may implement different
pickup/drop-off policies [22]. Here,we focus on free-floating
car sharing—such asCar2go,DriveNow,Enjoy—whose cus-
tomers can pick up and drop off vehicles anywhere within a
predefined service area.

Urban data science is at its heart the science of detecting
and putting to good use the many signals that stratify into an
urban landscape. Car sharing remains a weak signal, though:
the fraction of people using car sharing for their daily trips
is rapidly increasing, but it is still in the order of single-
digit percentage points in the best cases [73]. The standard
approach for studying car sharing is still relying on surveys
and direct interviews with car sharing members [103,104].
In many cases, car sharing is not even included in households
travel diaries periodically collected by city councils. How-
ever, the digital upgrade of cities thanks to the cyber-physical
convergence of urban infrastructure and ICT means that we
can now know exactly when and where cars are available,

and we can observe shared vehicle flows as they happen in
the city. This knowledge opens up a new avenue of research
that goes in the direction of the new science of cities [17] and
urban computing [116]: using data and electronic devices to
extract knowledge and to improve urban solutions.

In this section, we showcase how urban computing ideas
can be applied to the car sharing domain. To this aim, we rely
on a dataset comprising pickup and drop-off times of vehicles
in 10 European cities for one of the major free-floating car
sharing operators [23]. For nine of these cities, data have been
collected between May 17, 2015 and June 30, 2015. For the
remaining one, data cover the period from March 11, 2016,
to May 12, 2016. The data have been collected every 1 min
using the available public API.

These data can be explored in a variety of directions. As
an example, in [23] they are analyzed in relation to geo-
referenced socio-demographic and urban fabric indicators,
coming from official institutes for statistics and Foursquare,
respectively. The outcome of this analysis is that, while a sin-
gle explanatory pattern does not emerge across the cities, they
share indeed several similarities. In general, the car sharing
demand is positively associated with high educational attain-
ment and negatively correlated with commuting outside of
the municipality area. These findings confirm the conclu-
sion of the most recent socio-demographic surveys about
car sharing services, but at a much finer spatial granular-
ity and without relying on expensive and time-consuming
interviews/questionnaires. With regard to the urban fabric
indicators, the only activity category that seems to have a
statistically significant effect on car sharing demand is that
of nightlife-related activities, suggesting that leisure is the
most typical trip purpose.

In the rest of the section, we will focus our attention on
the problem of vehicle relocation. It is a well-known issue
in car sharing that there are often empty stations in an area
of high demand and at the same time stations with several
cars in areas of low demand. The solution to this unbalance
problem is tomove cars fromone area to the other one, but the
redistribution is costly for the car sharing operator (personnel
costs plus the costs of these “rides without customers”); thus,
it has to be optimized as much as possible [21]. To this aim,
being able to characterize the demand is crucial. We leverage
the above datasets in order to illustrate how to predict future
demand at specific geographic locations.

Features: From our dataset, we extract the following fea-
tures for prediction: number of events e(i,d,t) observed in cell
i at time t of day d, the time of the day (corresponding to bin
t), the day of the week (Sunday, Monday, etc.), whether the
day is a weekday or not, and the average number of events
ê(i,d,t) observed at bin t of day d in the neighboring cells (we
consider 2-hop neighbors only).

Methods: We use the first 80% of the days in the dataset
for training, and we predict the remaining 20%. We set the
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time windowT to 1 h, implying that we want to forecast
pickups and drop-offs happening in a 1-h time frame. We
only consider cells that have more than 30 events during the
observation period. Then, we run the prediction algorithms
and we measure the prediction error in terms of root mean
squared error (RMSE).

We now define a set of relevant prediction techniques
to be evaluated on the datasets at hand. In the following,
we use the general term event to denote either pickups or
drop-offs. HA and HM are two simple prediction functions
returning the average and the median, respectively, number
of events observed in the same time window across different
days. As car sharing typically exhibits marked differences
between weekdays and weekends [22], we also test a version
of the algorithms (denoted asHA+andHM+) that distinguish
betweenworking days andweekends.ARIMA is the standard
autoregressive integrated moving average technique, popu-
lar among time series forecasting methods. Then, we also
consider random forest (RF) and a neural network (NN) com-
posed of a single-layer perceptron with as many neurons in
the input layer as the features described above and one hidden
layer. For completeness, we also test the custom algorithm
proposed byWeikl and Bogenberger [114] (WEIKL), whose
rationale is to represent each timeslot of each day through a
vector, whose components are the number of events at each
cell during the timeslot.

Results show that for most cities, the error is small, with
forecasts off, on average, by less than one drop-off/pickup for
the vast majority of cells. However, there are a few cells for
which the prediction error is high. These cells are typically
near the airport, and both the high volume of traffic observed
at the airport and the bustier nature of arrivals and departures
there may explain this variability.

The fact that future car sharing requests can be predicted
quite accurately using state-of-the-art prediction algorithms
is decisively good news for car sharing: It shows that vehicle
redistribution could generally be performed very efficiently
and this is crucial for improving the reliability of the service
(i.e., maximizing the chances that users find shared carswhen
and where they need them) and, as a consequence, customer
satisfaction regarding urban transportation.

4.3 Urban sustainability and net negative cities

As discussed earlier, the twenty-first century is the century of
the city. Since 2007, more than half of the global population
lives in cities and this figure is expected to grow up to 60%
by 2050. In developing countries, which have experienced
the most growth during the last two decades, urbanization is
growing fast and is leading to the formation of huge urban
agglomerations (UN, 2014). At the pinnacle of urbanization,
megacities, i.e., urban agglomerationswithmore than 10mil-
lion people, are a perfect example of the urban growth that

our society is experiencing over the last decades. In a global
scale, the number of megacities was 7 at the beginning of
1960, grew up to 27 in 2010, and in 2020 the number is
expected to be over 37 [69]. Due to their size and complex-
ity, megacities tend to concentrate and amplify drawbacks
of urbanization-like inequalities (e.g., slum formation and
unequal distribution of income), environmental pollution,
greenhouse gas emissions, and unequal use of resources. On
the other hand, they can provide a test bed for developing best
practices and good examples of sustainability solutions from
which many can learn. Understanding the drivers of energy
and material flows in megacities is of paramount impor-
tance for addressing topics, such as global environmental
stress, efficiency in resource use, and resource competition.
To this aim, urban metabolism studies have become cru-
cial for understanding urban sustainability [45,70] and for
identifying the actions needed to address urban sustainabil-
ity worldwide.

The structural and functional organization of urban sys-
tems is a classic example of a multi-scale system of systems
[101], in which new connections are established and new
behaviors emerge. On a smaller scale, since their first emer-
gence about 10,000years ago, cities have always played an
important role in concentrating goods, minds, and social
relationships. It can be argued that cities are an emergent
phenomenon made of people who build social relationships
on a larger scale, and that the development and growth of
urban systems are directly related to the richness and the
quality of relationships. The concentration of minds repre-
sents a formidable engine for technological, cultural, and
social innovation, and cities are places where new behaviors,
cultures, economies, and technologies emerge. Thus, cities
are not only growing in size, but also in complexity, with
more and more layers of interaction between their inhabi-
tants and various actors as a consequence of the shifts from
flows of energy to flows of information.

Each city, each local economic system, produces services,
goods, and cultures, playing a complex role in the general
dynamics of global sustainability, which cannot be described
simply by a numerical value. The same level of energy
has a different meaning in Mumbai or Detroit, so a new
global geography, equipped with physical, thermodynamic,
and economic indicators, is needed in order to consider the
quality of the energy flows crossing urban boundaries, and
to indicate and reinforce those flows, thereby contributing to
the development of the city rather than to its growth.

The concept of urban metabolism provides a means of
understanding the sustainable development of cities by draw-
ing an analogy with the metabolic processes of organisms.
The parallels are strong: “Cities transform raw materials,
fuel, and water into the built environment, human biomass
and waste” [41]. In practice, the study of urban metabolism
(in urban ecology) requires quantification of the inputs, out-
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puts, energy storage, water, nutrients, materials, and wastes.
Indeed, urban metabolism is a suitable approach for the
quantification of raw materials and energy supply [87]. This
methodology is defined as “the sum total of the technical
and socioeconomic processes that occur in cities, resulting
in growth, production of energy, and elimination of waste”
[68]. In other words, urban metabolism is a metaphorical
framework that can be used to evaluate the interactions (i.e.,
flows) between natural and urban ecosystems. In order to
assess the sustainability of a city, these interactions should be
quantified with appropriate measurement methods that apply
a holistic approach in order to account for all the interactions
occurring in a system [87].

While urban metabolism has to be considered a mature
framework [67], its influence on sustainable urban develop-
ment is still restricted due to a number of limitations [105].
These include: (a) lack of data at the city scale; (b) strong
requirements in data and resources; (c) lack of follow-up and
evaluation of the evolution of a city’s urban metabolism; and
(d) difficulties in identifying cause-and-effect relationships
for the metabolic flows.

As a response to these limitations and to the growing dig-
itization of cities worldwide, the concept of smart urban
metabolism has been suggested by Shahrokni et al. [105].
The implementation of the smart urban metabolism concept
in the case of StockholmRoyal Seaport [60] demonstrated its
potential to improve data quality, with regard to both resolu-
tion and frequency, and to reduce the number of assumptions
and simplifications required when using statistical data.
Thus, Internet of Things (IoT), real-time heterogeneous data
sources, and real-time analytics can act as the foundation to
study the flow of materials and energy in urban areas in new
ways. For instance, by integrating information and commu-
nication technology (ICT) and smart city technologies, the
smart urban metabolism model can provide real-time feed-
back on energy and material flows, from the level of the
household to that of the urban district and the city. Despite the
high potential, it should be noted that smart urbanmetabolism
is a real-time, data-dependent approach with a number of
challenges that must be overcome to unleash its potential.
While open datasets relevant to urban metabolism may exist
in some circumstances, much of the real-time data or big data
needed is contained in silos owned by public or private util-
ities. Gaining and securing long-term access to such data is
thus an essential but challenging task.

Within the framework of smart urbanmetabolism, big data
methods play a fundamental role in improving urban sustain-
ability, especially in large regions and urban areas, where
millions of meters and sensors can be installed for the imple-
mentation of a real-time monitoring of energy and water
flows, as well as providing citizens and policy/decision-
makers with a real-time picture of air quality, traffic, and
public transportation. Impact on energy and water infras-

tructures is also relevant: Analysis of real-time data flows
is detrimental for the full deployment of renewable energy
sources and micro-grids and for the new emerging market
of peer-to-peer electricity [44]. Furthermore, an immediate
impact of real-time data monitoring of cities can be found
in supporting the realization of net negative electric cities,
i.e., an electricity fueled city with a negative carbon balance
[71,72,108].

5 SoBigData software suites

In this section, we overview the main software platforms
developed and made available within SoBigData. While the
works described so far are accompaniedmostly by standalone
packages or demonstrators, the platforms discussed in this
section are fully fledged software solutions ready to be used
and deployed in real systems.

5.1 TheM-Atlas tool

M-Atlas is developed with the main objective of providing
a tool to express the analytical power of massive collections
of trajectory and positional data in unveiling the complexity
of human mobility. M-Atlas is a mobility querying and data
mining system centered on the concept of spatiotemporal
data. Besides the mechanisms for storing and querying tra-
jectory data, M-Atlas has mechanisms for mining trajectory
patterns and models that, in turn, can be stored and queried.
The knowledge discovery process is based on these kinds
of data and helps the user to answer his/her questions of
mobility analysts. M-Atlas is equipped with a querying and
mining language that makes this analytical process possible
and providing the mechanisms to master the complexity of
transforming raw GPS tracks into mobility knowledge. M-
Atlas is centered on the concept of a trajectory, but is able
to handle other kinds of data such as positional data (e.g.,
Call Data Records), and the mobility knowledge discovery
process can be specified by M-Atlas queries that realize all
the steps of the knowledge discovery process.

In Fig. 14, an example of the interaction with the system
is shown. AWeb-based interface is developed and integrated
into SoBigData to be used for teaching purposes as well as
the downloadable version which is suitable for researchers
and industry who may want to use it on their local server and
data.

5.2 Self-regulating sharing economies: the EPOS
system

Citizens’ participation in bottom-up sharing economies of
smart cities can contribute to several sustainability goals
of the United Nations [61]. Three application scenarios are
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Fig. 14 Web-based interface of M-Atlas. On the left: a tree structure with the analytical steps already computed are shown; in the center, the
geographic layers selected on the tree are shown; on the right, the panel where data analytical tools are listed

studied: (i) residential energy management, (ii) charging
management of electric vehicles to improve the smart grid
reliability, and (iii)managing the utilization of shared bikes to
improve the load balancing of bike sharing stations [96,98].

Sharing economies in the aforementioned application sce-
narios face a foundational challenge of aligning individual
(citizens) and collective (system/city) objectives. On the one
hand, citizens make autonomous choices of how they con-
sume or produce resources; for instance,when to turn on their
laundry machine, the power level of the heating and cooling
system, when to plug in an electrical vehicle to charge or
even at which bike sharing station a citizen picks up and
leaves a bike. These citizens’ decisions all together have
a tremendous collective system-level impact; for instance,
consuming power at high peak hours can cause blackouts,
high power generation costs, and inefficient penetration of
renewable energy resources. Similarly, bike sharing stations
can become overloaded or underloaded, which increases the
operational costs due to manual bike relocations by their
system operators. Formally, when agents have a number of
discrete options to choose from and coordination is required
to minimize a nonlinear cost function such as balancing or
matching resource consumption/production, the computa-
tional problem of finding the optimal choice for each agent
is a combinatorial problem known to be NP-hard [96].

EPOS,7 theEconomic Planning and Optimized Selections
[95,96], is a fully decentralized learning system to address
such challenging computational problems for self-regulating
sharing economies. In EPOS, a software agent runs in citi-
zens’ personal devices and generates a number of possible
plans that represent the operational flexibility of the citizen
in terms of resource scheduling/allocation. In practice, a plan
is a sequence of real values. For instance, determining a time
window instead of a certain desired time to turn on a home
appliance is a way to generate possible energy consumption
plans. Similarly determining several stations from which a
citizen iswilling tomove to pick up or leave a bike is also pos-
sible allocation plans of bike sharing stations. These plans are
generated under the full authority of the citizens to preserve
their autonomy. Plans can be alternative or citizens may have
preferences over them, i.e., certain plans may cause higher
inconvenience and discomfort than others, e.g., a bike sharing
station at far proximity or using a home appliance too late at
night. Agents need to make a choice that satisfies the global
system-wide objective as well as the citizens’ preferences.

EPOS performs coordinated decision-making by self-
organizing the communication network of agents in a
tree topology over which aggregation of information and

7 http://epos-net.org.
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Fig. 15 Decentralized learning and coordination concept of EPOS. An
agent makes a plan choice by taking into account (i) the aggregate
agent choices in the tree branch underneath and (ii) the aggregate agent
choices of the previous learning iteration which is the ones to improve

decision-making can be efficiently performed [96]. Learn-
ing is performed by consecutive bottom-up and top-down
learning iterations during which agents interact in a peer-
to-peer fashion. The algorithm resembles backpropagation
learning, but in the context of remote agents communicating
via a network. Each learning iteration results in a combi-
nation of selected plans among the agents. These plans are
aggregated (summed up) to evaluate a global objective, for
instance the minimization of the variance that is an indicator
of load balance in energy consumption and bike sharing sta-
tions. A next learning iteration generates a new combination
of selected plans such that the variance decreases. Coordi-
nation is performed during the process of plan selection by
taking into account (i) the aggregate agent choices in the
tree branch underneath the agent that selects its plan and (ii)
the aggregate agent choices of the previous learning itera-

(a) (b)

Fig. 17 Load balancing of power demand with EPOS [96]

tion which is the ones to improve. Figure15 illustrates the
concept.

The EPOS algorithm has some striking properties: Its
improvement over the learning iterations is fast (3-10 itera-
tions) and monotonous. In terms of optimality, the top 3% of
the solutions are found in systemswith over amillionpossible
solutions. The high performance of EPOS is also confirmed
by comparison with the related work as the ones shown in
Fig. 16. EPOS is released as an open-source community soft-
ware artifact to encourage further research and adoption of
decentralized self-management systems for bottom-up shar-
ing economies.

Moreover, EPOS provides the option to the agents to
bias the algorithm toward their preferred plans. On the con-
trary, system operators and utility companies can (monetary)
incentivize citizens to sacrifice some of their comfort so that
EPOS finds a better solution that contributes to the public
good. Socio-technical trade-offs between (i) cost reduction,
e.g., variance, (ii) discomfort, e.g., load shifting of energy
consumption [91], and (iii) fairness, e.g., dispersion of dis-
comfort among the agents [92] are measured and regulated

(a) t = 2 (b) t = 3 (c) t = 4 (d) t = 5 (e) t = 6 (f) t = 7 (g) t = 8 (h) t = 9

(i) t = 2 (j) t = 12 (k) t = 22 (l) t = 32 (m) t = 42 (n) t = 52 (o) t = 62 (p) t = 72

Fig. 16 Qualitative comparison of the learning process in (a)–(h) EPOS
[96] vs. (i)–(p) COHDA [57,58]. The network snapshots indicate the
stability and convergence of the learning process, where t is the num-
ber of learning iterations. Agents in black change their plan selection

to improve the global solution, while agents in white remain to the
same plan selection. EPOS relies on exclusively aggregate information
exchange, and its convergence speed is significantly faster than the one
of COHDA although the latter uses full information exchange
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(a) (b)

Fig. 18 Decentralized smart grid optimization via coordination of
charging electric vehicles [98]

(a) (b)

Fig. 19 Load balancing of bike sharing stations with EPOS [96]

via the reconfigurable parameters of EPOS. Figures 17, 18
and 19 illustrate the performance of EPOS in three manage-
ment application domains: residential energy, charging of
electrical vehicles, and bike sharing.

6 Privacy-aware data gathering and
management

As discussed in “Introduction,” while the widespread avail-
ability of mobility data opens up new and exciting opportu-
nities to design the smart cities of the future and to improve
the quality of urban life, the downside is that such availabil-
ity may put the privacy of people at risk. In this section, we
discuss two approaches for mitigating this problem: mining
data (Sect. 6.1) and collecting data (Sect. 6.2) in a privacy-
preserving way.

6.1 Privacy-preserving datamining

One of the main reasons for users to share their location is
to take advantage of location-based services (LBS). Exam-
ples are the trip planning services, where users ask for tips
on the nearest point of interest (POI) with respect to their
actual location. The typical network structure for location-

based service infrastructure relies on wireless technologies,
such as WiFi, 3G, or GSM, and has a simple client–network
architecture: Users upload their location and they get back
the service they have asked for. There are many examples
of this kind of application: Consider, for instance, trip plan-
ners, which are useful for finding the closest points of interest
(hotels, restaurants, touristic places, etc.) [39].

Existing platforms that provide location-based services
include location-based social networks, such as Foursquare.
Other popular services include route planners that are aware
of traffic conditions, e.g., Google maps or the most common
navigation assistants. These systems monitor the road net-
work state and suggest to the users the best paths for reaching
the requested destination.

In order to provide better services, location-based ser-
vice platforms collect and mine user data, which are used
to develop recommendation systems. Collecting user data
raises privacy concerns, and the problem of developing
privacy-preserving models has been intensively studied in
the literature [47]; however, it is still an open problem. Many
users do not perceive the privacy threat, because they are shar-
ing their location only on few occasions, or simply because
they are not aware of the privacy implications and consid-
erations. However, the increasing attention drawn to privacy
issues hasmade the field ofmobility-related big data research
even more challenging.

Dealing with individual and collective views of personal
data handling is still a process not taken into account. Actu-
ally, the state-of-the-art works focus mainly on the role of
who has to handle and analyze a huge amount of personal
data. According to Clifton et al. [37], a definitive understand-
ing of what is meant by privacy is still missing. However,
privacy-preserving data mining is a research field rich in
activities and studies. Bonchi et al. [24] report that in themost
commonly used approaches of privacy-preserving data min-
ing there are different levels of privacy, as shown in Fig. 20,
from individuals to corporations, to more complex levels of
privacy-preserving methods for spatiotemporal data mining.
One of the commonly used techniques for privacy-preserving
datamining is data perturbation,which relies on either adding
noise to the original data or randomizing it. Data perturbation
techniques were initially used for statistical disclosure con-
trol [1] and later on for privacy-preserving data mining [2].
When considering spatiotemporal data mining, the research
on privacy issues is still evolving. As an example, to address
privacy considerations in spatiotemporal data, and in partic-
ular mobility trajectories, Hoh et al. [59] propose the path
confusion algorithm for perturbing object trajectories. The
idea is that if the proximity of two non-intersecting paths falls
below the threshold called perturbation radius, these paths are
crossed and their ids are interchanged after the intersection.
The objective is that an adversary cannot identify whether
these two paths were intersecting in the original dataset or
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Fig. 20 A classification of
different approaches to
privacy-preserving data mining

not, since path confusion is only applied to non-intersecting
paths.

A new point of view in this field is the so-called new deal
on data [86], where Alex Pentland outlines an open informa-
tion market: Users have the right to possess their data with
full control over it, and they may choose to sell their data
to some companies, getting in return services or revenue.
While there still is not a protocol or a model that implement
this new deal on data, we believe that in the near future users
will pay more attention to what private information they are
disclosing and what is the payback for them.

From a technical perspective [11], data sharing can be
modeled as an optimization problem to regulate privacy–
utility trade-offs under information self-determination [46].
Such trade-offs are, for instance, the obfuscation of citizens’
location vs. the prediction accuracy of traffic congestion. The
parameters of differential privacy mechanisms can be com-
puted to satisfy several Pareto efficient privacy–utility values
as shown in Fig. 21. These parameters can be set universally
or autonomously by citizens via, for instance, user-friendly
privacy settings [9]. The latter finding is proved both empir-
ically and theoretically and it has significant implications
on the design of (monetary) incentivization schemes of ser-
vice providers to acquire citizens’ data using more socially
responsible practices.

A different approach,which is based on privacy-by-design
methodology, can be found in earlier studies [84,85,99].
Here, the framework PRUDEnce is presented, providing an
approach that, before applying any privacy-preserving trans-
formation, allows looking at the effective risk there is in the
data, as well as the service or purpose for which the data
are queried, instead of relying only on theoretical results in
terms of privacy. The proposed approach is validated using
different data formats underlying many services, defined on
real mobility data.

(a) (b)

(c) (d)

Fig. 21 Optimization of privacy–utility trade-offs [11]: Ellipses denote
privacy–utility values for differential privacy settings evaluated accord-
ing to privacy and utility metrics. Privacy settings are filtered out to
form a Pareto efficient trajectory of privacy–utility values

From a social perspective [18], citizens’ grouping can
be used as a masking mechanism to lower the information
revealed to third-party service providers. Grouping can be
performed according to semantic criteria (for instance, the
proximity of privacy preferences) or according to physical
criteria (e.g., geographic location). It is shown that when data
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(a) (b)

Fig. 22 Average local group error (privacy) and global error (quality
of service—aggregation accuracy) in crowdsensing via citizens’ group-
ing [18]. Increasing the group sizes improves privacy, while quality of
service remains constant

Fig. 23 Modeling data sharing as a supply–demand system [93].
Citizens self-regulate the data they share via data summarization or
obfuscation techniques [65]. In contrast, data consumers can incen-
tivize citizens via (monetary) rewards to share more data to improve the
quality of service, i.e., the accuracy of data analytics. Therefore, data
sharing is an equilibrium and a result of trade-offs: (i) privacy versus
rewards for data suppliers and (ii) quality of service versus reward costs
for data consumers. The model has been empirically evaluated with
real-world data from smart grid pilot projects and smartphone sensor
data

are aggregated at a group level before being shared to third-
party service providers, the privacy of citizens increases,
while service providers preserve the same level of quality
of service (Fig. 22).

From an economic perspective [93], data sharing regula-
tory systems designed to manage trade-offs between privacy
and utility can be modeled as supply–demand systems run-
ning socially responsible data markets as shown in Fig. 23.
Such systems make citizens more aware of their privacy
and the value of their data, monetize citizens’ data and ulti-
mately incentivize participatory crowdsensing campaigns for
the public good.

6.2 Challenges and opportunities in data gathering:
distributed crowdsensing

An approach to gathering data at large scale and in aggre-
gate form, while addressing some privacy considerations, is
distributed crowdsensing. In this approach, citizen data are
required at an aggregate level to run a data-intensive service,
for instance, computing the total load of a power grid tomon-
itor power peaks that may cause catastrophic blackouts [56]
or computing the average speed of vehicles as an indicator
of traffic congestion [113]. A critical system design choice
is how aggregation is performed, which party performs the
aggregation, and what the implications of the aggregation
design are for the citizens.

On the one hand, collecting individual citizen data to
perform a centralized aggregation at the site of the ser-
vice provider requires the reveal of personal data and opens
up opportunities for discriminatory data analytics [31,115].
For instance, utility companies can perform energy dis-
aggregation to infer with high accuracy the lifestyle and
residential activities of citizens [55]. Similarly, the vehicle
speed and locations can reveal infractions of the traffic laws
and sensitive mobility patterns [18]. Moreover, centralized
computations are not scalable and can be single points of
failure.

On the other hand, crowdsourcing the aggregation process
to citizens by using distributed algorithms for information
dissemination and collective computations on the citizens’
interconnected devices, e.g., smartphones and wearables,
provides privacy-by-design, scalable, trusted, and account-
able computations. In this approach, the aggregation of the
information is turned into public good by citizens and for
citizens.

Performing real-time distributed computations of aggre-
gation functions over a network of citizens’ interconnected
devices is challenging. More specifically, different aggre-
gation functions, e.g., summation, average, maximum, etc.,
usually require different algorithms for the same input data
[30,40]. The feasibility to provide on-time accurate estimates
of the aggregation functions is hindered when input sensor
data are continuously updated, i.e., processing a stream of
sensor data.Moreover, challenges such as double counting of
data, join and drop of devices can deteriorate the performance
further. An alternative paradigm for cost-effective data gath-
ering and management in large-scale decentralized networks
is required for a distributed approach to crowdsensing.

TheDynamic Intelligent Aggregation Service (DIAS)8 has
been introduced by Pournaras et al. [89,90,94] to empower
this alternative socially responsible crowdsensing paradigm.
A schematic view of the DIAS architecture is shown in
Fig. 24. The sameDIAS network system can compute almost

8 http://dias-net.org.
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Fig. 24 DIAS crowdsensing approach [94]. Citizens’ devices are inter-
connected to a large-scale decentralized network on which the data
aggregation process is crowdsourced. Each device acts as both a data
supplier and data consumer, and therefore, data analytics are turned
into a public good run by citizens and for citizens

any aggregation function even under rapid changes in the
input sensor data. Citizens do not need to share their exact
personal data, but rather representative data profiles, which
are used to obtain accurate estimates of the true aggregates.
Although sensor data can rapidly change, e.g., the power con-
sumption records of a smartmeter, DIAS aggregates, instead,
the low, medium, and high profiles of power consumption
that are more stable over time and do not change frequently.
Therefore, a real-time distributed computation is made fea-
sible [89,90,94].

Moreover, when citizens disconnect from the DIAS net-
work, which may happen due to system failures or when
pausing data sharing, self-corrective operations are per-
formed to adjust the values of the aggregation functions to the
latest available data and online devices [89,90]. Data man-
agement is performed over a distributed memory system of
probabilistic data structures, i.e., Bloom filters [29], which
label how sensor data should be counted, e.g., counting new
values or replacing outdated ones.

The DIAS architecture has been extensively evaluated
with real-world data from smart grid pilot projects. Figure25
illustrates some indicative measurements. A fully working
prototype and deployment ofDIAS are available for theEuler
supercomputer infrastructure of ETH Zurich as well as in
servers managed by local communities. Figure26 illustrates
a visualization of such a deployment. DIAS is connectedwith
several front-end systems, such as GDELT [75,97] and the
Smart Agora platform [88].

7 Conclusion and future directions

In this paper, we have discussed awide range of topics related
to urban data science, including data collection and manage-
ment, personal data privacy, distributed crowdsensing data
collection, visual analytics for geolocated social media data,
modeling, generation, location detection, prediction, and rec-
ommendation (see Table2 for a summary).We also presented

resources developedwithin theSoBigData project,which can
be used by researchers, practitioners, or stakeholders. In par-
ticular, we presented the M-Atlas tool, a platform developed
for querying and mining spatiotemporal mobility data, and
EPOS, a fully decentralized system designed to address chal-
lenges on managing self-regulating sharing economies.

The presented research, and other related work in the area
of smart cities, has made advances on different aspects of
data analytics, modeling, and learning from large volumes
of data so as to support applications that have the potential
to improve individual and collective well-being. Yet, several
challenges remain to be addressed andmany steps to be taken
so as to move forward. In the following, we discuss the most
important ones.

Lack of benchmarks First, on a practical level, research in
the area lacks well-established benchmark datasets and well-
identified researchproblems so as tomake it easier to quantify
progress and to allow researchers to push the state of the art on
problem settings with practical validity and high potential for
impact. The “City of Citizens” exploratory of the SoBigData
project, with a strong focus on developing resources that can
be used widely, and cataloguing datasets and methods, is one
step toward this direction. However, more consolidation is
necessary, also with the participation of researchers outside
the SoBigData project.

Trade-off between privacy preservation and social good Sec-
ond, we discussed in some detail the topic of privacy of
personal data. This is a crucial consideration that character-
izes one of the most important dilemmas of big data analysis
for social good, namely identifying the right balance between
offering social benefit by collecting and processing large-
scale data of individuals, with protecting the privacy rights
of the individuals, as well as avoiding bias and discrimi-
nation. In fact, this is an issue of larger scope that goes
beyond smart city applications, but obviously it should be
also addressed within this context. The steps forward should
combine increasing awareness so that citizens become aware
of the privacy considerations and demand their rights to
be respected, with improving the education of scientists to
conduct ethical research, but also with developing the com-
putational solutions required to harness value fromdatawhile
protecting the privacy of individuals.

Multi-modal data In all research tasks that we discussed
in this paper, we have assumed a single data modality, for
example, trajectories, or geolocated social media data or
transportation links. In reality, data come in many different
modalities, and combining those can be used to extract richer
representations and build more accurate models. Developing
methods for combining different data modalities is an impor-
tant research challenge. One should note again the conflict
between aggregating more data sources and personal pri-
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Fig. 25 Decentralized
crowdsensing performance
under different scaling scenarios
(SS) of citizens’ participation
[94]

(a)

(b)

(c)
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Fig. 26 Visualization of a DIAS deployment of 50 nodes at the Euler
supercomputer infrastructure of ETH Zurich. Epochs indicate the time
progress in the emulation of the system operations. The dashed yellow
lines indicate the peer-to-peer connections established by a gossiping
communication protocol used for distributed node discovery.White and
blue solid lines indicate the exchange of sensor data for the local com-
putation of aggregation functions. Nodes are colored red at the very

beginning, indicating an inaccurate estimation of the aggregation func-
tions. Asmore exchanges of sensor data are performed, the nodes turn to
green, indicating amaximal accurate estimation of the aggregation func-
tions. DIAS eliminates the communication cost as accuracy increases
and devices aggregate acquire the available sensor data in the network
[94]

Table 2 Summary of the main topics covered by the paper

Section title Main findings Reference literature

Algorithms for urban data
analytics

Algorithmic tools addressing critical challenges in urban
data science: (i) how to model information extracted from
location-based social networks, (ii) TOSCA,
RAMA—location detection, (iii) DITRAS—simulation of
realistic mobility, (iv) MyWay—individual movement
prediction

[10,34,43,51,52,79,100,107,112]

Visual analytics for urban data Visual analytics for geolocated social media data:
photograph sharing and micro-blogging platforms

[3–5,5,6,38,62]

Shaping urban landscape Use of big data analytics for (i) recommendation to tourists
(TRIPBUILDER), (ii) improving shared mobility, (iii)
studying the link between human mobility, socioeconomic
development, urban sustainability, and net negative cities

[17,21–23,27,39,44,45,60,70,101,114]

SoBigData software suites Fully fledged platforms: (i) the M-Atlas tool for mining
spatiotemporal data, (ii) EPOS for self-regulating sharing
economies

[57,95,96]

Privacy-aware data gathering
and protection

New deal on data: (i) managing mobility data (ii)
anonymization, (iii) PRUDEnce framework, (iv) DIAS

[11,18,37,39,47,59,86,94]

vacy, so this research challenge is as much about learning
with complex and heterogeneous data as it is about privacy-
preserving data mining.

Incentives to user participation We presented a number
of participatory approaches, where citizens are given the
opportunity to contribute their data and in return to har-
nessing gains via access to applications and services. In
many cases, however, citizens are reluctant to contribute
data or use technologically innovative applications, either
because of privacy concerns or because these applications
are not useful enough or simply because they are incon-
venient to use. As a final challenge, we pose the task of
consolidating research in computational methods and data
analysis with psychology, gamification, mechanism design,
and smart computer–human interaction, so as to increase the
participation of citizens in those services and applications by
providing meaningful incentives, but also by designing ser-
vices and applications that are easy to use and transparent.
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