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Abstract— Urban Traffic Networks are characterized by their
high dynamics and increased traffic congestion cases, leading
to a more complex road traffic management. The present
research work suggests an innovative advanced vehicle guidance
system based on Hierarchical Interval Type-2 Fuzzy Logic model
optimized by the Particle Swarm Optimization (PSO) method.
Indeed, this system allows an intelligent and prompt adjustment
of the road traffic network in a dynamic way and improves the
entire road network quality, particularly in case of congestions or
jams, considering real-time traffic information. The best followed
road is selected according to the quality of traffic and route
length, together with contextual factors pertaining to the driver,
the environment, and the path. The proposed system is executed
and simulated using SUMO (Simulation of Urban Mobility), for
which four large areas situated in the cities of Sfax, Luxembourg,
Bologna and Cologne have been tested. The simulation results
proved the effectiveness of learning the Hierarchical Interval
Type-2 Fuzzy Logic model using PSO real time technique to
accomplish multi-objective optimality regarding two criteria:
number of cars that attain their destination and average travel
time. The obtained results have confirmed the efficiency of the
proposed system.

Index Terms— Hierarchical interval type-2 fuzzy system, traffic
congestion, dynamic travel route guidance, traffic simulation,
knowledge representation, particle swarm optimization.

I. INTRODUCTION
YNAMIC Traffic Management is a very important
component of human life and economy that leads to
positive effects on throughput, pollution, and safety [1]. The
objective of road traffic management is not only to improve
traffic fluency on road networks, assigning dynamically
the traffic flows, but also to decrease the number of traffic
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congestions states and their negative effects (i.e. waiting time,
drivers stress, delays, carbon footprint or emergency vehicles
blocking) [2], [3].

To disperse traffic congestions in urban networks,
the re-searchers mainly interested in traffic assignment and
signal optimization models, which may be unable to afford
accurate and fast route guidance due to the absence of
real-time information and individual traffic demands. The
dynamic route guidance system can provide real-time infor-
mation and optimal driving paths to destination for the driver,
considering current and anticipated traffic conditions [4]-[7].
Thus, there is a need for a predictive system that offers
each driver in real time, the best choice at each intersection
for every destination and present traffic state pair. However,
conventional traffic management decisions are made driven
simply by engineers’ experience and static and outdated traffic
behavior assumptions, with the subsequent gap to an utmost
efficient use of the traffic infrastructures. Moreover, the mea-
surement of several decisions, objectives and constraints are
commonly difficult to be realized by crisp values. Hard com-
puting models cannot be treated effectively with the transport
decision-makers ambiguities and uncertainties. To deal with
these problems in road perceptions, the application of Interval
Type-2 Fuzzy Logic is considered an appropriate mathematical
device for decision making in transportation engineering [8].
Actually, guaranteeing control by using Interval Type-2 Fuzzy
Logic has been proven to be a great success in a large variety
of applications [9]-[12]. Nevertheless, the performance of
a designed controller is likely to change depending on the
method used in the design process. The definition of the
appropriate parameters of membership functions values of a
Fuzzy Logic System (FLS) in both antecedent and ensuing
parts is difficult because their calculation is time-consuming.
The major problem in designing an FLS lies in how to fix the
suitable fitting membership values.

In most previous recent works, attention has extensively
been drawn to the optimization of fuzzy systems. Indeed,
optimization algorithms can be a useful tool as they can
solve nonlinear problems, well-constrained or even NP-hard
problems. Among the most used optimization methods, we can
find: Genetic Algorithms (GA) [13], [14], Ant Colony Opti-
mization algorithms (ACO) [15] and PSO [16], etc.
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PSO is a new evolutionary optimization technique that is
quick, simple, and likely to be used for looking for the best
solution in a wide search space. In fact, PSO has been proven
to be effective in several applications [17]-[19].

This paper describes the application of PSO as optimization
methods to instantly tune the MFs of our HIT2FKRS model
and design optimal Fuzzy Logic Controllers (FLC) which
assist the driver to achieve his/her destination, while eluding
congestions. The purpose of the suggested system is to adjust
promptly the road traffic in a dynamic way and ameliorate the
entire road network quality, particularly in case of congestions
or jams, considering real-time traffic information and drivers’
travel time to attain their destinations. Thanks to our advanced
system, the user-optimal route is selected before going through
each intersection according to the quality of traffic and route
length, together with contextual factors pertaining to the driver,
the environment, and the path. Essentially, it pertains to the
automatic diversion of the traffic into the ideal choice of a
set of alternatives or the combination of alternatives towards
each vehicle’s destination node. In our daily life, our system
can be widely used as a useful mobile application to facilitate
driving in familiar or unfamiliar environment providing drivers
with the best route choice. To corroborate our methodology,
we have used traffic simulation. The open source microscopic
road traffic simulator (SUMO) has been used [20].

Concretely, our contributions are summarized as follows:

o We propose a PSO based Adaptive Hierarchical Interval
Type-2 Fuzzy Knowledge Representation System (PSO-
AHIT2FKRS) for travel route guidance. The suggested
system is carried out to select the best followed road to
achieve destination, according to the quality of road traffic
in real time, evading crowded areas, and thus conceding
route length and time.

o We develop a HIT2FLS for itinerary evaluation,
combined six contextual factors associated with the
decision-making process, namely environmental condi-
tions, path and driver characteristics.

o Our proposal is tested under different conditions of real
road network dimension and traffic density.

o Compared with Dijkstra method, HIT2FKRS and
HIT1FKRS, our suggested system (PSO-AHIT2FKRS)
provides multiobjective optimality regarding two criteria:
number of cars that attain their destination and average
travel time.

The rest of the paper is organized as follows.
Section 2 overviews the use of Fuzzy Logic, Interval
Type-2 Fuzzy Logic and PSO for the route choice problem.
Section 3 presents the basic concepts of Particle Swarm
Optimization and the theory of Interval Type-2 Fuzzy
Logic. The details of the proposed Evolutionary Hierarchical
Interval Type-2 Fuzzy Knowledge Representation System
for travel route guidance are displayed in the fourth section.
Indeed, this section firstly describes the PSO base Adaptive
Hierarchical Interval Type-2- Fuzzy Logic System (PSO-
AHIT2FLS) for route choice evaluation and its components,
and secondly presents the significant role of the a recognized
traffic simulator SUMO. Section 5 exhibits the conducted
simulations using SUMO, as well as the analysis of the
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results obtained to validate our approach. The paper ends
with a conclusion and some perspectives for future research
work.

II. LITERATURE REVIEW OF ROAD
TRAFFIC MANAGEMENT

Thanks to the effective techniques and methodologies from
artificial intelligence which are able intelligently to solve
the complex problems related to transportation systems [21],
researchers have been interested in their use. We would like
to give a succinct survey of few significant research works in
road traffic management which aim not only to manage traffic
but also to optimize it. For instance, Fu [22] has proposed
an adaptive routing algorithm for an in-vehicle navigation
system with real-time information. The variable of the link
travel time was taken randomly with known mean and standard
deviation. The realization of travel time can be estimated based
on real-time data collected over the links. While, in [23],
a route choice model, using a hybrid probabilistic-possibilistic
model has been proposed. This model is used to quantify
the latent attractiveness of alternative routes. However, in this
research work, the prediction was poor in case the driver’s
behavior was heterogeneous. In another work [24], Wang et al.
have introduced real-time route guidance in large-scale express
ring roads focusing on feedback routing performance, in case
of incidents. Real-time dynamic user equilibrium (DUE) was
established within the freeway network by suggesting alter-
native routes to users. Ding et al. [25] have investigated a
real-time vehicle route guidance system based on V2V (Vehi-
cle to Vehicle) and V2R (Vehicle to Roadside) communication.
This work has mainly focused on two parts which are: a smart
route query and reply strategy of route finding algorithm,
as well as a detour algorithm in order to bypass void areas
without running cars. Literature in road traffic management is
quite extensive, thus our focus will be on the review of the
latest models that rely on Fuzzy Logic, Interval Type-2 Fuzzy
Logic and PSO.

A. Fuzzy Logic-Based Road Traffic Management

Many classical methods have been suggested to primarily
contend with the problem of choosing the route using the
discrete choice models such as Logit and Probit models, in the
majority of cases [26], [27]. Such techniques cannot adapt with
the ambiguities and uncertainties of the perceptions of envi-
ronment, and thus they are considered as an inefficiency gap
to account for the dynamicity and complexity of transportation
systems. Hence, many researchers are resolving transportation
problems by using soft computing, specifically Fuzzy Logic,
as a useful tool for treating those uncertainties [28]. Among the
well-known transportation related engineering problems traffic
light management, route guidance, traffic assignment and road
traffic management [2], [6], [29]-[31] can be mentioned.

Table I presents some research works pertaining to Fuzzy
Logic-based road traffic management. Despite the fact that
Type-1 Fuzzy Logic System (T1FLS) is considered as one of
the well-known types of FLS, it remains an unsatisfactory rep-
resentation of the real-time traffic uncertainties. Furthermore,
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TABLE I
RELEVANT RELATED WORKS ON TYPE-1 FUzZZY LOGIC- BASED ROAD TRAFFIC MANAGEMENT

Refs Year Objective Main features Strength Weakness
- Hierarchical fuzzy model - Fine-tune the road traffic in
Road Traffic . Y the network in line with the real - No real time management
[2] 2014 - Multi-agent system based . . . .
management . times using an adaptive vehicle - No real networks
on the ant colony behavior .
route guidance system
- Analytical hierarchy process - Reasonable optimal route choice
Road Traffic Aty y p combining the road segments’ cost - Restricted number of route
[6] 2014 using a Fuzzy Logic - S
management (AHP-FUZZY) and the overall O/D cost. choice criteria
- Decrease Traffic congestion.
Traffic congestion || - Hierarchical fuzzy system —.Decrezflses the input variables -No simulations
[29] 2014 .. . . size while preserving -Test the study on only
prediction system - Genetic algorithm . .
a good precision segment of highway
. - Best assessment of the current
[30] 2016 Cor}gest;d road - Fuzzy Logic inVANET situation of vehicle compared - Low interpretability of results
notification system|| context aware congested road . . .
to the congestion situation.
Cvelists route - Reasonable optimal route choice - No real networks
[31] 2017 Ye st - Fuzzy Inference System system to bike users which - Restricted number of route
guidance system . . . - S
is embedded in a mobile platform. choice criteria
TABLE II
RELEVANT RELATED WORKS ON TYPE-2 FuzzY LOGIC-BASED ROAD TRAFFIC MANAGEMENT
Refs Year Objective Main features Strength Weakness
. . - Optimize the green time .
[8] 2011 || Urban traffic manage- || 'IMUI;I-?%:CuHZ[ZSIg(;?isCingL dule - Diminish vehicles total delay _Sgazzglde route
ment M y - Diminish vehicles’ total travel time &
- Distributed multi-agent . .
(34] || 2012 || Traffic signal control || architecture - Determine the green time that - No results for
- diminishes the overall delay. real networks
- Type-2 Fuzzy decision system
. - Decrease the waiting line length
(35] || 2014 || Traffic congestion - Type-2 Fuzzy Logic - Diminish vehicles delay at the - No results for
- Genetic algorithm . . real networks
ntersection.
- Lessen the impact of noise - One road
[36] 2016 Z;:gj; flow data fore- - Interval Type-2 Fuzzy sets theory from the detection data. network test
- Reduction of the travel time - One road
[37] 2017 Road traffic manage- - Interval Type-2 Fuzzy sets theory and congestion situations
. network test
ment - Improvement of traffic quality.
- Adjusting the green time based
- Interval Type-2 Fuzzy sets theor on the number of vehicles from the - Arterial traffic
[38] 2018 Traffic Signal Control val 1yp Y Sets y intersection to the downstream that includes five
- Gravitational search algorithm . . . .
intersection intersections
- Extend green wave band

road traffic management problems often face several sources
and elevated levels of uncertainty [32]. Therefore, it is crucial
to integrate Type-2 Fuzzy Logic in road traffic management.

B. Type- 2 Fuzzy Logic- Based Road Traffic Management

Type-2 Fuzzy set [33] represents an extension of the concept
of Type-1-Fuzzy set. Indeed, Type-2 Fuzzy sets offer a more
precise way to design uncertainty in a system. For instance,
they can handle linguistic uncertainties by modeling informa-
tion’s vagueness and lack of reliability.

Numerous prominent research works [8], [34]-[38], sum-
marized in Table II, have dealt with many problems in traffic
management that have been solved applying IT2FLS. Most
of the developed models for route selection depended on few
possible alternatives taking into account the restricted number
of criteria to prevail over the rule-explosion problem. This is
an enhancement for the present work to further continue and
rely on a Hierarchical Interval Type-2 Fuzzy Logic system
for the itinerary evaluation that can take into consideration
numerous selection criteria to select the best itinerary.

C. Swarm Intelligence (PSO)-Based Road Traffic
Management

The extensive use of swarm intelligence was to model
complex traffic and transportation processes [39]. In fact,
Ant Colony Optimization (ACO) has been extensively used
to solve transportation problems, such as Vehicle Rout-
ing Problem (VRP) and Traveling Salesman Problem (TSP)
[40], [41]. However, there exist a few publications based on
swarm intelligence, especially PSO, to solve road traffic man-
agement problems. PSO algorithm is a population intelligence
algorithm that has good performance in optimization. The most
important features of the pertinent related works on traffic
management based on PSO are summarized in Table III.

In most of the presented studies, the PSO was applied
to control and optimize traffic signals. Moreover, some of
these studies are not based on real scenarios and the dynamic
real-time information during the journey. This is the reason
behind taking the initiative to test the reliability of PSO for
learning our HIT2FLS to dynamic travel route guidance using
real scenarios.
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TABLE III
RELEVANT RELATED WORKS ON SWARM INTELLIGENCE (PSO)-BASED ROAD TRAFFIC MANAGEMENT

Refs Year Objective Main features Strength Weakness
[17] 2012 Traffic - PSO- based - Enhance the traffic efficiency - Only roundabout for
light control fuzzy controller of new roundabouts. simulation
. . - Quantitative enhancements for
Traffic - PSO fpr finding efficient the both objectives: vehicles’ number - One of scenarios is
[42] 2013 . traffic signal cycle programs . . - .
light control that attain their destination and overall virtual.
- SUMO .
travel time.
- Bayesian Network model coupled with
Traffic the Cellular .Automaton model for building- - Ot?te'un.opnmal trafﬁc. §1gnals - No real traffic data.
[43] 2013 . up a probability model for traffic - Minimize the probability of traffic .
Signal Control jam jam - Simple road network
- PSO based on the probability model
- Cell TransmISSI.on Model (CTM) - Minimize the overall delay on the
Traffic to model the online traffic network - No real traffic data.
[44] 2016 . - traffic network
Signal Control - PSO for optimizing the control of the . - Sub-network to test
. - Lower the fuel consumption.
traffic signal network
Traffic - Novel traffic management model .
S o . . . . - Virtual road network.
management based on Multi-Objective Particle - Optimize vehicle re-routing .
[45] 2017 - A - . .. - Nine-node network for
and traffic light Swarm Optimization method - Optimize signal timing.
test
control - SUMO
Traffic flow - A multi-objective optimization model - Enhance the traffic efficiency, - Limited number of
[46] 2019 Lidance of traffic flow guidance based on - Decrease the travel time and delay intersections
g PSO method - Reduce the traffic jam. - Simple road network

D. Synthesis

To obtain an effective road traffic management, the traffic
models necessitate maximum real-time information. However,
most of the developed models, detailed in the previous subsec-
tions, are used to evaluate only few possible alternatives taking
into account a restricted number of criteria to select the best
route to follow. The selection of the optimal route with limited
criteria such as distance and travel time is not always efficient.
Moreover, the majority of research works have not dealt with
models close to reality i.e. by considering dynamic information
in large and real networks. To overcome these limitations,
this paper proposes a route guidance model based on adaptive
Hierarchical Interval Type-2 Fuzzy Logic that can take into
consideration the most important contextual factors which
assist drivers to take decision for choosing the best itinerary.
In addition, to achieve the desired level of robust performance
for controllers, the PSO algorithm was performed for evolving
the proposed hierarchical model controller. For evaluating our
system, four big realistic traffic scenarios have been tested
using the simulator SUMO. Actually, the proposed system
contributes to the improvement in traffic fluency while taking
into account the real-time model road traffic information.

III. FUNDAMENTALS OF PARTICLE SWARM OPTIMIZATION
AND INTERVAL TYPE-2 Fuzzy LOGIC

This section introduces the basic concepts of PSO and the-
ory of the Interval Type-2 Fuzzy Logic which is a generation
of Type-1 Fuzzy Logic.

A. Particle Swarm Optimization (PSO)

PSO is a simple and robust technique of optimization
proposed by Eberhart and Kennedy [16]. It was inspired by
the social behavior of birds within a flock. It is an evolutionary
technique that looks like Genetic Algorithms (GA). PSO
operates with a solution population called particles and the

entire population is called the swarm. The swarm is initialized
with random solutions. A swarm is composed of N particles
in an M dimensional search space. The values of position and
velocity are denoted for each particle of the swarm which are
in range [Xuin, Xmax] and [Viin, Vinax], respectively. Each
particle consecutively adjust its position on the basis of its
own experience and to the experience of neighboring particles,
using the best position encountered by itself and its neighbors.
All particles of the swarm have objective values that are
assessed by a fitness function, to be optimized.

In what follows the equations representing the velocity and
the position of a j particle respectively:

Vi(tt + 1) = w* V;(tt) + Cy %11 % (ppess — X j(11))

+C2 * 12 * (gpest — Xj(”))
Xitt+1)=X;t)+ A —-w)V;(tt +1)

ey
)

where C1 and C; are constant factors, w is the inertia weight.
r1 and ro are random numbers in [0, 1]. ppes; denotes the
particle’s best position. gpes: is the global best position of the
swarm. The steps of PSO algorithm are explained as follows:

o Stepl: Swarm initialization: the swarm size, location and
velocity of each particle and the random parameters.

o Step2: Calculation of the objective value of individual
particle. Assessment of the best position of the parti-
cle and the global best position of the swarm. Then,
the particle updates its velocity and position according
to equations (1) and (2).

o Step3: Termination on some stopping conditions or return
to step 2.

o Step4: Finding the global optimal solution which offers
the latest gbest.

The PSO algorithm is used in several engineering prob-
lems [47]-[52] indicating a successful performance, even
in comparison with other contemporary optimization tech-
niques [53]. Despite that, the use of PSO is still limited for
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IT2FSs Engine IT2FSs
Fig. 1. The structure of a Type-2-FLS.

travel route guidance and other problems related to the road
traffic management.

B. Interval Type-2 Fuzzy Logic

Interval Type-2 Fuzzy Sets (IT2FSs), originally introduced
by Zadeh [54], provide additional degrees of freedom in
Mamdani and TSK Fuzzy Logic Systems (FLSs), which
can be efficient in situations where lots of uncertainties
and imprecision are present [55]. The Interval Type-2 Fuzzy
Logic Systems (IT2FLS) have the potential to afford better
performance than a T1FLS. As a result of the uncertainties
present in the surrounding environments, TIFLS might not
be suitable because they may cause deterioration in the FLS
performance. We might stop wasting time in frequently tuning
or redesigning the T1FLS so that it can deal with the various
encountered uncertainties. IT2FLSs employing IT2FSs offer
possibility to handle elevated levels of uncertainties to provide
good performances and better modeling. An Interval Type-
2 Fuzzy set is characterized by a fuzzy membership function,
so the membership value for each element of this set is a
fuzzy set in [0,1], unlike a Type-1 Fuzzy set in which the
membership value is a crisp number in [0,1].

The membership function (MF) of IT2FLS is called the
footprint of uncertainty (FOU) which is bounded up by a lower
membership function (LMF) and by an upper membership
function (UMF). The FOU of IT2FSs provides an extra
dimension which gives additional degrees of freedom to model
and handle uncertainties [56]. An IT2FLS is very similar in
structure to TIFLS. The only difference is the extra output
process component which is called the type-reducer before
defuzzification, as can be seen in Figure 1 for a Mamdani
model [57].

In details, an IT2FLS works as follows: the crisp inputs are
first fuzzified to input Type-2 Fuzzy sets that are fed to the
inference engine which maps the input Type-2 Fuzzy sets to
output Type-2 Fuzzy sets using the rule base. The output set
is then processed by the type-reducer in the type reduction
section that generates a Type-1 output set. An IT2FS, named
A, is expressed in the universe of discourse X by a Type-
2 membership function x 7(x, u) which is equal to 1:

A“:/ / 1/(x,u)Jx €10, 1] (3)
xeX Juel

LMF and UMF are expressed by ﬁg(x) and 7 5 (x) respec-
tively. So, the FOU is defined by the following relation:

FOU) = |Jue b do = [T ;0] @)

xeX

IV. ADAPTIVE Fuzzy LoGIC CONTROL BY
PSO OPTIMIZATION

To achieve the desired level of robust performance for a
controller, the exact tuning of the membership functions is
very important. This paper intends to apply PSO algorithm
to dynamically adjust the MFs of our HIT2FKRS model and
design optimal Fuzzy Logic Controllers (FLC). The suggested
PSO algorithm consist of the following sequential steps:

o Stepl: Set the number of fuzzy sets N for each fuzzy
variable and the initial fuzzy rules. Define the initial
individuals of PSO for the control parameters of Fuzzy
Logic Controller (FLC). All parameters of every FLC are
tuned through the optimization algorithm. Every FLC is
assessed through the objective function. Fetch the best
fitness value (pbest).

o Step2: Update the parameter value of FLC whilst con-
trolling the maximum velocity of particle.

o Step3: After the update of velocities, every particle mod-
ifies its position by the following equations:

Vimp(tt + 1) = w X vipp(tt) +cl xrl()
X (pbestipf(tt) — ximg (1)) + c2 x r2()
x(G(11) — ximg (t1)) (5)
Ximp (tt + 1) = Ximyp (t1) + vimg (tt + 1) (6)

where v, is called the velocity of particle i; xjpy
represents the position of particle i with objective value
fitness; ¢ is the time step; w indicates the inertia weight;
r1() and r2() are random values in the range [0,1]; c1, ¢2
are acceleration parameters; pbest;, s denotes the local
best of particle i; G indicates the global best in the swarm.
o Step4: Readjust the local best pbest and the global best G.
o StepS: Termination on some stopping conditions or return
to step 2.
o Step6: The latest global best G generated from the FLC
represents the optimal FLC.
At each step time, the PSO algorithm trains the parameters of
FLC to instantly extract the best values which assist the driver
to achieve his/her destination, while eluding congestions.

In the process of fuzzy membership function adjusting
via PSO, each particle is shaped to represent the fuzzy
control rules and their corresponding MFs parameters of
the FLC’s inputs and outputs. Each particle represents a
potential solution. These parameters are used to define the
particles of PSO algorithm and look for the global best
fitness.

V. ARCHITECTURE OF OUR PSO BASED ADAPTIVE
HIERARCHICAL INTERVAL TYPE-2 Fuzzy KNOWLEDGE
REPRESENTATION SYSTEM (AHIT2FKRS)

This section presents in details the suggested PSO based
Adaptive Hierarchical Interval Type-2 Fuzzy Knowledge Rep-
resentation System (PSO based AHIT2FKRS) for travel route
guidance. The objective of the suggested system is the selec-
tion of the best route for every car according to the quality
of road traffic in real time by the addition of other con-
textual factors associated with the decision-making process,
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namely environmental conditions, path and driver characteris-
tics. Thus, the suggested PSO based AHIT2FKRS for travel
route guidance draws in two main phases. Concerning the first
one, it is initiated from a PSO based AHIT2FL model us to
choose the best route among the possible routes by offering
information from the simulator SUMO, which has an influence
on the route choice. As for the second phase, it hinges on the
road traffic simulator SUMO.

A. PSO Based Adaptive Hierarchical Interval Type-2 Fuzzy
(AHIT2F) Model for Travel Route Guidance

To reach destination, the proposed system increases the
vehicles’ average speed on the road network, whilst choosing
the best route in terms of the road traffic quality in real-time. It
is noteworthy to note that the best itinerary is selected accord-
ing to the distance and the expected travel time, together with
contextual factors linked to the driver, the environment and
path. Because of the uncertainty, ambiguity and dynamicity
of these factors, it is very difficult to formulate a suitable
deterministic mathematical model. However, the development
of Interval Type-2 Fuzzy Logic seems justified in this situation
thanks to its ability to approximate a real continuous func-
tion with a good accuracy. With respect to the increasingly
numerous choice criteria for selecting the best alternative,
the use of Fuzzy Logic for itinerary choice problem including
a big number of inputs causes the rule-explosion problem.
The use of hierarchical architecture seems to be the good
solution to surmount this problem. It means that the number
of rules increases linearly related to the number of inputs
rather than exponentially. In fact, the Standard Fuzzy Sys-
tem (SFS) with large input dimensions is decomposed into

several lower dimensional sub fuzzy systems which are related
in a hierarchical way. For example, suppose that we have a
SFES which has six inputs each represented by three fuzzy
sets, in this case the number of rules is equal to 36 = 729
rules. Nevertheless, in the case of hierarchical fuzzy system
like it is shown in Figure 2, each SFS has 32 rules, as a
result, the total number of rule is equal to 6%3%2 = 54
rules.

This indicates that the system enjoys a significant decrease
in the total number of rules due to its hierarchical structure. As
regards the traffic management, this tool was used effectively
in some research works [2], [58] and [59]. The present work
develops an HIT2FLS for itinerary evaluation, fed with six
fuzzy inputs influencing itinerary selection decision which are
density, maximum speed allowed in the path, familiarity of the
driver with the path i, usual driving speed, departure time and
weather information. The structure of HIT2FLS for itinerary
evaluation is presented in Figure 2. In some fuzzy hierarchical
architectures, outputs can be the inputs of the following fuzzy
layer [58], compromising the interpretability of the overall
model since the intermediate outputs do not possess a physical
meaning.

To overcome this problem, the combination of inputs was
considered as a resort to reduce limitations linked to the
physical meaning loss in intermediate outputs/inputs. Indeed,
inputs are reorganized in three categories, namely the route
criteria, driver criteria and environment criteria.

Our HIT2FLS has six fuzzy controllers, each of which has
two inputs and one output. The fuzzy sets of each input
are presented in Figure 3. The first Path Fuzzy Controller
input is the density of path i which has three member-
ship functions, ’free flow’, ’synchronized flow’ and ’Jam
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Fig. 3. Inputs membership functions.

flow’. The second input is the maximum speed in path i
which is represented also by three membership functions
corresponding to ’slow’, medium’ and ’high’. Whereas the
Path Fuzzy Controller output is the path preference, it has
three membership functions which are ’weak’, medium’
and ’strong’. The inputs of Driver Fuzzy Controller are
driver's familiarity with path i and driving speed of
the driver. The driver’s familiarity input is chosen ran-
domly which has three membership functions as *unfamiliar’,
’medium’ and ’familiar’. The second input has also three
membership functions which are ’slow’, 'medium’ and ’high’.
The output of Driver Fuzzy Controller has three membership
functions which are *weak’,’medium’ and ’strong’. Concerning
the Environment Fuzzy Controller, it has in turn two inputs
which are departure time and weather information that
are both of them chosen randomly because SUMO can’t
furnish their values. The first input represents the time of
traveling within the day which has five membership func-
tions as ’night’, 'morning’, *'midday’, evening’ and ’night’.
The second input is the weather information which has
three membership functions as ’bad’, 'medium’ and ’good’.
Environment preference is the output of Environment
Fuzzy Controller, its membership functions can be ’weak’,
’medium’ and ’strong’. Moreover, the others fuzzy controllers
like PD (Path/Driver), DE (Driver/Environment) and PDE
(Path/Driver/Environment) have all of them three membership
functions which are ’weak’, 'medium’ and ’strong’. Further

TABLE IV
THE Fuzzy RULES OF THE DRIVER FLC

Rule no Inputs Output
Driver familiarity Usual-driving Driver preference
with path i speed P

1 Familiar High Strong
2 Familiar Medium Strong
3 Familiar Slow Medium
4 Medium High Strong
5 Medium Medium Medium
6 Medium Slow Medium
7 Unfamiliar High Weak
8 Unfamiliar Medium Medium
9 Unfamiliar Slow Medium

details about these fuzzy controllers are presented in previous
research works [37], [60] and [61].

The method used for the fuzzy controllers’ inference process
is Mamdani(max-min). Table IV lists the fuzzy rules of the
Driver Fuzzy Controller, based on the rules type if-then. In the
majority of FLC applications, the forms of MFs are defined
by humans arbitrarily. However, it cannot ensure providing
the optimal control for the corresponding system. To promote
the performance of the FLC, PSO technique is adopted to
optimize the shapes of the MFs. At each step time, the PSO
algorithm trains the FLC parameters of the final block (PDE
Fuzzy Controller) since we do not have a suitable interpretable
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fitness function for the other Interval Type-2 Fuzzy blocks.
The proposed FLC has two inputs and one output, each
of them contains three MFs which have trapezoidal forms.
Figure 4 shows the proposed FLC membership functions
optimised by PSO.

To find the optimal MFs’ adjustments, their correspondent
search range, minimum and maximum values were initialized.

Table V illustrates the Interval Type-2 parameters of (PDE)
FLC before PSO tuning process. Therefore, the purpose of
PSO algorithm application in fine-tuning the membership
functions of PDE Fuzzy Controller is to further help the driver
to be well guided to his/her destination, while circumventing
jam/congestion situations. Hence, to find the candidate solu-
tion having the best performance, positions of all particles
should be evaluated by fitness function.

The evaluation function used in our algorithm depended
principally on a central criterion which is the density in the
path. Our goal was to minimize the fitness function calculated
as follows:

Density of the lane

Fitness
> Density of possible lanes

) vehicle count
Density of the lane = —— 7

length edge

where Density of the lane designs the density of the planned
next lane to reach among all the possible lanes to achieve
the destination and calculated by the division between vehicle
count and length edge during the simulation. Based on several
experiments, we choose to fix the equation 5 cl and ¢2’s
parameters values equal to 2, getting almost the best general
performance. Besides, the size of population swarm is 100 and
the maximal number of iterations is set to NI = 50 iterations.
Nonetheless, regarding the inertia parameter w, it was chosen

to be fixed to a value equal to 0,99 according to many tests
as well.

B. Road Traffic Simulations

Traffic simulation is an important tool for modeling the
operations of dynamic traffic systems. It helps analyzing the
causes and potential solutions of traffic problems such as
traffic jams, congestions, and traffic safety. We are interested
in the microscopic type of simulation. There is a lot of traffic
simulators available nowadays with different features, such as
VISUM, Vissim, CORSIM, MATsim and SUMO [62].

In our research study, the simulator SUMO was chosen as it
enables its users to load different road networks and set various
traffic streams. SUMO helps to investigate several research
topics like traffic light, route choice and communication sim-
ulation between vehicles [63]. It is thanks to its numerous
benefits that SUMO is extensively used. Firstly, it is an open
portable source for microscopic simulation of road traffic [20].
Furthermore, this package has the capacity to design both road
network infrastructure and traffic demand.

A network file (.net.xml) comprises information concerning
the map structure: nodes (junctions), edges (streets), and
the connections between them. In fact, the network can be
imported from OpenStreetMap (OSM). A route is a long trip,
whose definition comprises the first and the last edges, along
with all edges the car will pass. These routes are saved in a
route file (.rou.xml). Supplementary files (.add.xml) can be
added to SUMO information pertaining to the map or the
traffic lights. The output of a SUMO simulation is recorded in
a journey information file (.tripinfo.xml) that contains informa-
tion relating to each car’s departure time, the time the car waits
to start at (offset), the time the car arrives, the travel time and
the number of steps in which the car velocity is below 0.1m/s
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TABLE V
PARAMETERS OF THE MEMBERSHIP FUNCTIONS

Inputs/Outputs MF Range Min Max
Weak [al,a2; b1,b2; c1,c2; d1,d2] [0,0;0,0;0.25,0.15;0.45,0.3] [0,0;0,0;0.35,0.25;0.55,0.4]
PD preference Medium [al,a2; b1,b2; c1,c2; d1,d2] [0.01,0.18;0.32,0.48;0.68,0.51;0.88,0.72] [0.11,0.28;0.42,0.58;0.78,0.61;0.98,0.82]
I Strong [al,a2; b1,b2; c1,c2; d1,d2] [0.4,0.6;0.75,0.84;1,1;1,1] [0.5,0.7;0.85,0.94;1,1;1,1]
Weak [al,a2; bl,b2; c1,c2; d1,d2] [0,0;0,0;0.3,0.15;0.6,0.4] [0,0;0,0;0.4,0.25;0.7,0.5]
DE preference Medium lal,a2; bl,b2; cl,c2; d1,d2] [0.15,0.3;0.37,0.4;0.57,0.54,0.75,0.7] [0.25,0.4;0.47,0.5;0.67,0.64;0.85,0.8]
Strong [al,a2; bl,b2; c1,c2; d1,d2] [0.4,0.6;0.75,0.84;1,1;1,1] [0.5,0.7,0.85,0.94;1,1;1,1]
Weak [al,a2; bl,b2; cl,c2; d1,d2] [0,0;0,0;0.3,0.15;0.6,0.4] [0,0;0,0;0.4,0.25;0.7,0.5]
(0] Preference index Medium [al,a2; bl,b2; c1,c2; d1,d2] [0.15,0.35;0.35,0.5;0.6,0.5;0.873,0.75] [0.25,0.45;0.45,0.6;0.7,0.6;0.973,0.85]
Strong [al,a2; bl,b2; c1,c2; d1,d2] [0.4,0.6;0.75,0.84;1,1;1,1] [0.5,0.7,0.85,0.94;1,1;1,1]

(temporal stops in driving). SUMO offers a high flexibility
level, such that the user can find and modify the objects
during simulation and permit the adaptation of the simulation
online owing to TraCl (Traffic Control Interface) [64]. TraCI-
Python, TraCl4;j (TraCI for Java) and TraCI4Matlab are three
essential implementations of the TraCI protocol which allow
the interaction with SUMO [65].

VI. PERFORMANCE EVALUATION OF
PSO BASED AHIT2FKRS

The road traffic management necessitates a clear under-
standing of the flows, especially jam or congestion situations
and it is very expensive to carry out the real plan.

That is why, the traffic simulation is the best recourse to
test, to make predictions in a scientifically proven way and
to evaluate different cases. Indeed, they demonstrate their
ability to predict efficient solutions to complex problems like
routing problem [17], [45], [66]. The routing problem consists
in finding strategies of choosing itineraries to vehicles to
minimize their travel time and reduce traffic jam on the
road network. Thus, the route choice process is significant
to enhance the traffic fluency situation and road quality. It
pertains to the selection of alternative routes between origin
and destination (O-D) in road networks. The simplest strategy
found in literature is Dijkstra algorithm [67] that allows every
vehicle to find the shortest route between every (O-D) pair.
Although most contemporary routing algorithms allow tremen-
dously fast computation of the shortest paths, they necessitate
some preprocessing of the traffic network and storage of data
which is produced from this preprocessing.

Therefore, this paper introduces a route guidance algo-
rithm using both the shortest road information and that of
jam/congestion on diverse paths. Before each intersection,
the suggested PSO based AHIT2FKRS is carried out to
choose the best following road to attain destination evading
crowded areas, and thus conceding route length and time. The
results of the proposed approach were compared with those
of Dijkstra’s algorithm (1959), HIT2FKRS, HITIFKRS and
those of HITIFKRS optimized by PSO based on the average
travel time and path flow criteria.

Table VI lists the routing algorithm. In this study, our pro-
posal was tested with four wide and heterogeneous metropoli-
tan areas with different total roads number, total intersections,
traffic signals and varying number of vehicles situated in
the cities of Sfax (Tayeb Mhiri zone), Luxembourg (LuST),
Bologna and Cologne.

TABLE VI
ROUTING ALGORITHM

Routing algorithm

1. Initialize the trip (Origin and Destination).

2. If vehicle x detect an intersection y

3. Look for the following possible links (roads)

4. Assess every subsequent possible road making use of the
evolutionary HIT2FLS

5. Compare the preference index of every road and choose
the best route which has the highest value of preference index

Fig. 5.

Road network topology of Tayeb mbhiri zone.

The characteristics of the chosen realistic traffic areas are
presented as follows:

The map of Tayeb Mhiri zone (Sfax, Tunisia) was
imported from OSM and essentially edited using JOSM (Java
OpenStreetMap Editor) before applying SUMO’s Netconvert
(Figure 5). SUMO includes three likely routing applica-
tions, namely DUAROUTER, JTRROUTER and DFROUTER,
which allow to compute routes. In this scenario, we used
the DUAROUTER application for generating traffic flow and
routes. The area covered by this scenario is about 18 km? with
a total of 852 of roads. Table VII reveals information about
the selected road network topology.

To have a realistic scenario, the area should be big enough
to display the congestion patterns observable in contemporary
cities. Thus, we chose the City of Luxembourg that covers
an area of about 156 km? with a total of 931 km of roads
(Table VII). Figure 6 shows the topology of the LuST Sce-
nario. The aim of using city’s public transport database was
to find information concerning bus itineraries. In this scenario,
a total of 561 bus stops were introduced, with 38 bus itineraries
inside the city for a total of 2240 buses per day [68].
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TABLE VII
TOPOLOGY INFORMATION

Scenariol Scenario2 Scenario3 Scenario4

Area (km?) 18 156 25 400
 Total 362 2365 1539 31614
junctions

Total roads 852 5959 2856 71085

Traffic lights 15 203 99 1219
Vehicles 500 2240 22000 700000
number

Fig. 6. LuST scenario topology.

Scenario 3:

Bologna Ringway Dataset models a realistic traffic scenario
from the city of Bologna [69], Italy, during a typical day
between 8AM and 9AM with more than 22000 vehicles in
a 25 km? area. Figure 7 reveals the topology of the Bologna
Scenario. The traffic demand is defined only over one hour in
a typical morning. This scenario covers only the main streets
of the road network (Table VII).

The data was produced beginning from Induction Loops,
amassed by the iTETRIS European collaborative project [70].

Scenario 4:

The “TAPAS Cologne” simulation scenario represents the
traffic in Cologne city (Germany) for a period of 24 hours
in a typical working day [71]. The Cologne city has around
400 square kilometers, comprising about 700000 individual car
trips (Table VII). The information about the traffic demand
on the macroscopic traffic flows across the Cologne urban
area (the O-D matrix) is obtained via the methodology of
Travel and Activity PAtterns Simulation (TAPAS). The traffic
assignment of the vehicular flows described by the TAPAS-
Cologne O-D matrix over the road topology is achieved using
Gawron’s dynamic user assignment algorithm. Figure 8 shows
the topology of the TAPASCologne Scenario.

A. Results and Discussion

The scalability and efficiency issues of our proposal were
discussed in the scenario 4 (Cologne) using the urban traffic
simulator (SUMO). In this case study, more than 10 simulation
series were carried out with the change of the origins and
destinations, departure time and congestion/jam positions.
In addition, SUMO platform showed that it is possible to
simulate in real time scenarios with more than 100.000 up
to 200.000 vehicles with different right-of-way rules, traffic
lights and lane changing [72]. Regarding scenariol, presented
in Figure 5, a total of 500 cars were encompassed in the
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simulation from various O-D pairs belonging to the same road
network. In some roads of the network, the permitted speed
is 20 m/s, and in others, it is 40 m/s, which is considered as
reasonably elevated. Indeed, the enforcement of a congestion
situation was realized by the simultaneous addition of an
elevated number of vehicles in the closest roads. For this,
100 vehicles (travel demands) were added in area A of the
considered scenario from 1000th to 1500th seconds.

As shown in Figures 9 and 10, the average travel time
and the number of vehicles are more adjustable in the whole
network. It is revealed in Figure 9 that due to congestion,
Dijkstra’s algorithm did not provide the shortest travel time.
Using the proposed approach (PSO+AHIT2FLS), the travel
time was assessed taking into account both distance and
congestion. According to Table VIII, we suggested to the
same car an itinerary which is found by two methods with
the same conditions of road traffic simulation, considering the
congested roads. It is noteworthy that the three possible paths
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TABLE VIII
ROUTE SELECTION OF ONE CAR (FROM ORIGIN
ROAD 30_4 TO DESTINATION ROAD 31_5)
Route selected Route selected Other
Intersection using Dijkstra’s using possible
algorithm EHIT2FLS Route
1 30_3 323 30_3
2 30_2 322 30_2
3 31_0 32_1 30_1
4 31_1 31_0 30_0
5 312 31_1 29 7
6 31_3 312 29_6
7 31_4 313 29 5
8 31_5 31_4 29 4
9 - 315 315
Average speed(m/s) 20 30 30
Travel time (s) 970 738 1056
Distance (m) 7050 9160 11040
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Fig. 11. Vehicles average travel time between O-D pairs (scenario2).

have not the same distance and the same average speed. The
corresponding travel times of each path are diverse depending
on the itinerary selection method. The obtained results con-
firmed the efficiency of the proposed method. To show that
our system behaves well with many realistic traffic scenarios,
we decided to apply it with European cities like Luxembourg,
Bologna and Cologne. The scenarios must be sufficiently big
to demonstrate the standard congestion patterns noticeable
in contemporary cities. Figure 6 reveals the LuST Scenario
topology, with streets colored by type with red for the main
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Fig. 14.  Vehicles number circulating in the road network (scenario3).

arterial roads and black for residential roads. With respect to
traffic flow quality in the road network, Figure 11 presents the
advantages of the proposed PSO+AHIT2FLS, in the decrease
of the average travel time in the whole road network during 6/,
compared to the Dijkstra’s method, to the HITIFKRS, to the
HIT2FLS, and to the HITIFKRS optimized by PSO. For the
third and fourth scenarios, concerning the cars number cir-
culating in the road network, Figures 14 and 15, respectively,
show that PSO4+AHIT2FLS helps a high cars number reached
their destinations early, compared to other methods. Besides,
Figures 13 and 16 display the effectiveness of our system in
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TABLE IX
MEAN OF AVERAGE TRAVEL TIME (ATT) FOR EACH SCENARIO
Scenario 1 (3600 sc) Scenario 2 (21600 sc) Scenario 3 (3600 sc) Scenario 4 (7201 sc) [
Methods Mean of Mean of Mean of Mean of
ATT SD of ATT ATT SD of ATT ATT SD of ATT ATT SD of ATT

M1: Dijkstra 465.50 14.16 07.25e+04 900.94 112.51 05.83 01.47e+06 764.49

M2: HITIFLS 193.49 13.07 06.63e+04 599.29 44.30 0.51 01.22e+06 424.26

M3: PSO+HITI1FLS 175.78 9.84 06.32e+04 287.84 35.29 0.28 01.14e+06 299.81

M4: HIT2FLS 146.67 4.02 06.27e+04 328.26 44.18 0.34 01.21e+06 331.49

M5: PSO+AHIT2FLS 96.40 3.68 06.25e+04 174.80 34.95 0.18 01.13e+06 293.44

TABLE X
ANOVA RESULTS FOR MEAN OF AVERAGE TRAVEL TIME
Methods Scenario 1 (3600 sc) Scenario 2 (21600 sc) Scenario 3 (3600 sc) Scenario 4 (7201 sc)
lwr upr p-value Iwr upr p-value Iwr upr p-value Iwr upr p-value

M1vsM2 | 272.01 | 286.11 | 9.92¢-09 | 6273 6.94e+03 | 9.92e-09 | 68.21 | 71.55 | 9.92e-09 | 247000 | 2.47e+05 9.92¢-09
M1vs M3 | 289.71 | 303.81 | 9.92e-09 | 9.29e+03 | 9.96e+03 | 9.92e-09 | 77.22 | 80.56 | 9.92e-09 | 328710 | 3.29e+05 9.92¢-09
Ml1vsM4 | 318.82 | 33292 | 9.92e-09 | 9.85e+03 | 1.05e+04 | 9.92e-09 | 68.32 | 71.67 | 9.92e-09 | 260690 | 2.61e+05 9.92¢-09
M1vs M5 | 369.09 | 383.19 | 9.92e-09 | 1.00e+04 | 1.07e+04 | 9.92e-09 | 77.56 | 80.90 | 9.92e-09 | 335900 | 3.36e+05 9.92¢-09
M2vs M3 | 17.70 31.80 0.0074 3.02e+03 | 3.69e+03 | 9.92¢-09 | 9.01 12.34 | 2.04e-08 | 81710 8.23e+04 9.92¢-09
M2vs M4 | 46.81 60.91 9.95¢-09 | 3.58e+03 | 4.25e+03 | 9.92e-09 | 0.113 | 3.45 1.00 13690 1.42e+04 9.92¢-09
M2vs M5 | 97.08 111.19 | 9.92e-09 | 3.78e+03 | 4.45e+03 | 9.92e-09 | 9.34 12.68 | 1.39e-08 | 88900 8.94e+04 9.92¢-09
M3vs M4 | 29.11 43.21 4.79¢-06 | 561.80 1.23e+03 | 0.14 -8.89 -5.55 2.45e-08 | -68020 | -6.74e+04 | 9.92e-09
M3vs M5 | 79.38 93.48 9.92¢-09 | 758.80 1.43e+03 | 0.019 0.33 3.68 0.99 7190 7.77e+03 9.92¢-09
M4 vs M5 | 50.27 64.37 9.92¢-09 | 197 867.49 0.91 9.23 12.57 | 1.54e-08 | 75210 7.58e+04 9.92¢-09
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Fig. 15.

Vehicles number circulating in the road network (scenario4).
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Fig. 16. Vehicles average travel time between O-D pairs (scenario4).

terms of average travel time, compared to the other methods.
For a better comparison, we resume results in a quantitative
and statistical way presented in Table IX, by measuring both

the mean of average travel time and standard deviation. The
standard deviation is calculated as follows:

S =TS o

where n is the number of simulations which is equal to 10 in
our case, X; indicates the Average Travel Time (ATT) for
simulation i and X; indicates the mean of ATT.

In fact, Table IX affirms the global results illustrated by
Figures (9-16). For all scenarios, the values of the ATT’s
means and ATT’s SD of our proposal (PSO-AHIT2FLS) are
lower than those computed using the other methods.

Since the results shown in Table IX are not sufficient
to decide about the best method, a statistical analysis is
required to have better discussions of the results and study
the differences between the means computed from the aver-
age travel time (ATT) of 10 different simulations for each
method and each scenario. We applied the standard analysis
of variance (ANOVA) test and performed the mean equality
test by using Tukey’s HSD (Honestly Significant Difference)
test [73]. Table X presents the results of the ANOVA test. In
this table, two means are considered as different if the p-value
is less than 5%.

As a conclusion from this analysis, and based on the
means values, method M5 (PSO-+HIT2FLS) is better than
method M4 (HIT2FLS) for the scenarios 1, 3, and 4. How-
ever, statistically, the difference between the two methods is
not significant in scenario 2 (p-value=0.91>0.05). Moreover,
method M5 is better than the method M3 based on the
means values for the scenarios 1, 2, and 4. But, statisti-
cally, there is no significant differences in the scenario 3 (p-
value=0.99>0.05). Tables IX and X reveal the improvements
using PSO for the learning of HIT2FKRS in terms of average

@)
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travel time compared to the following methods: Dijkstra,
HIT2FKRS, HIT1FKRS, and HIT1FKRS optimized by PSO.
Therefore, about 45% of cars have altered their routes after the
implementation of PSO+AHIT2FLS. The simulation results
comprise the impact of the six above-mentioned external
factors: density, maximum allowed speed in the path, driver
familiarity with the path, usual driving speed, departure time
and weather information. These findings affirm the significant
impact of the chosen contextual factors and the efficacy of
the proposed PSO-based AHIT2FLS in improving the traffic
network quality and circumventing the states of congestion or
jam.

VII. CONCLUSION

In this paper, a PSO based Adaptive Hierarchical Interval
Type-2 Fuzzy Knowledge Representation System for Travel
Route Guidance was presented. This advanced traffic man-
agement system allows an intelligent and prompt adjustment
of the road traffic in the network depending on the real-time
changes. The route is selected according to the quality of traffic
and route length, together with contextual factors pertaining
to the driver, the environment and the path incorporated in
a hierarchical fuzzy model. Actually, the proposed system
contributes to an improvement in traffic fluency (the road
network is enabled to support a much elevated number of cars
without reducing the vehicles average speed) while taking into
consideration the real-time road traffic information. Thanks
to this system, the traffic congestion situations number has
been reduced by evading the extensive use of the same road
at the same time (suggesting routes with lower travel time).
For this study, four big realistic traffic scenarios situated in
the cities of Sfax, Luxembourg, Bologna and Cologne have
been tested while using SUMO, a recognized traffic simulator.
Simulation results affirm that the suggested system (PSO
based AHIT2FKRS) provides a better road traffic quality on
the whole road network without a great loss on individual
travel time compared to the Dijkstra method, HIT2FKRS,
HIT1FKRS and HIT1FKRS optimized by PSO. Furthermore,
our PSO based AHIT2FKRS can ameliorate the cars num-
ber that attain their destination and the mean travel time.
As a future avenue, we plan to provide communications
among nearby vehicles in order to know the state of net-
work in a global way (accidents/Jams). Taking advantage of
V2V (Vehicle to Vehicle) communications for traffic manage-
ment with the effectiveness of our PSO based AHIT2FLS,
we can offer good road traffic quality of all regions of
city.
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