
S3: Joint Scheduling and Source Selection for
Background Traffic in Erasure-Coded Storage

Shijing Li1, Tian Lan1, Moo-Ryong Ra2, Rajesh Panta2
1ECE, George Washington University, 2AT&T Labs Research
{shijing, tlan}@gwu.edu, {mra, rpanta}@research.att.com

Abstract—Erasure-coded storage systems have gained consid-
erable adoption recently since they can provide the same level of
reliability with significantly lower storage overhead compared to
replicated systems. However, background traffic of such systems
– e.g. repair, rebalance, backup and recovery traffic – often
has large volume and consumes significant network resources.
Independently scheduling such tasks and selecting their sources
can easily create interference among data flows, causing se-
vere deadline violation. We show that the well-known heuristic
scheduling algorithms fail to consider important constraints, thus
resulting in unsatisfactory performance. In this paper, we claim
that an optimal scheduling algorithm that aims to maximize
the number of background tasks completed before deadlines
must simultaneously consider deadline-aware scheduling, net-
work topology, chunk placement, and time-varying resource
availability. To solve this problem, we propose a novel algo-
rithm, called Linear Programming for Selected Tasks (LPST)
to maximize the number of successful tasks and improve overall
utilization of the datacenter network. It jointly schedules tasks
and selects their sources based on a notion of Remaining Time
Flexibility, which measures the slackness of the starting time of a
task. We evaluated the efficacy of our algorithm using extensive
simulations. Our results show that, under certain scenarios, LPST
can perform 7x∼70x better than the heuristics which blindly treat
the infrastructure as a collection of homogeneous resources, and
46.6%∼65.9% better than the algorithms that take into account
the network topology.

I. INTRODUCTION

Many commercially available large scale storage systems
are increasingly adopting erasure-coding technology [1], [2],
[3], [4]. Erasure-coded storage systems can provide the same
level of reliability as replicated systems, but with significantly
lower storage space overhead [5]. However, a major drawback
of large scale erasure-coded storage systems is that they
generate large amounts of background traffic. The background
traffic tends to be large in volume, and consequently consumes
significant network resources [6].

Existing practical systems often schedule each background
task independently without considering the impact on one
another. These distributed tasks share network, compute,
and storage resources of the underlying infrastructure, which
causes interference among competing data flows, resulting
in poor resource utilization and violation of Service Level
Agreements (SLAs) associated with the background tasks.
To mitigate this problem, [7] proposed a technique that can
allocate bandwidth between servers and there exists many
related work [8], [9]. With these techniques, necessary amount
of network resources can be assigned to each background task,

taking into account total resource budget.
This paper proposes a novel and practical way of scheduling

background jobs in a holistic manner by jointly taking into
account all current background jobs together. Deadline-aware
scheduling has been studied extensively in many domains [10],
[11], [12]. However, scheduling background tasks in an
erasure-coded storage system running in a large datacenter
environment is unique and arguably more difficult, because it
introduces three challenging dimensions to the problem — task
scheduling over time, data source selection, and bandwidth
allocation in each network segment to each background task.

Existing scheduling algorithms designed for other problem
domains consider mostly the first challenge and often assume
homogeneous resources, e.g., processor scheduling across
CPUs, MapReduce jobs across worker processes, etc.

In order to address these problems, we develop an online
algorithm to maximize the number of tasks that successfully
meet deadlines,under data placement, network topology and
bandwidth constraints. To optimally schedule each task, we
need to jointly solve: (i) a chunk selection problem that deter-
mines the (erasure-coded) chunks used to generate background
traffic, (ii) a bandwidth allocation problem that apportions
bandwidth at TOR and aggregation switches among active
tasks, and (iii) a scheduling problem that schedules tasks with
respect to their deadlines.

We evaluate existing algorithms as well as our proposed
algorithm extensively in simulation. We demonstrate that the
proposed algorithm can indeed improve the number of tasks
meeting deadlines significantly under various combinations of
arrival patterns, system parameters and resource availability.
Our results show that, under certain scenarios, our proposed
algorithm can perform 7x∼70x better than the heuristics which
blindly treat the infrastructure as a collection of homogeneous
resources, and 46.6%∼65.9% better than the algorithms that
take into account the network topology (Sec. IV).

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a datacenter storage system with an aggre-
gator switch connecting u Top-of-Rack (TOR) switches. r
storage servers (R = {1, 2, . . . , r}) are placed in u racks
(U = {1, 2, . . . , u}), each of which is connected to a TOR
switch. As shown in Figure 1, the traffic between servers in
the same rack does not need to flow to the aggregator switch,
while the traffic between servers in different racks needs to
flow through two TOR switches and the aggregator switch.

Fig. 1. An illustrative example with 3 racks and 9 servers

Each file i is stored using (ni, ki) erasure coding. We consider
Maximum-Distance-Separable (MDS) codes, which ensures
that any ki out of ni chunks are sufficient for reconstructing
the file i.

A. Problem Formulation

Our problem formulation is described as follows. Let A =
{A1, A2, . . . , Am} denote a set of background tasks, such as
backup, repair, and re-balance. Each task, Ai, is associated
with a number of parameters, including ni potential sources
of data chunks (denoted as oi,1 ∈ U , oi,2 ∈ U , . . ., oi,ni ∈ U),
one destination (denoted as pi ∈ U), the number ki of chunks
to be retrieved, volume (denoted as vi) for each chunk, task
starting time (denoted as si), and task deadline (denoted as di).
Task starting time and deadline are given in seconds, satisfying
0 ≤ si ≤ di. To formally formulate this optimization problem,
we consider a time slotted system. Suppose yi,j is a binary
chunk selection variable, such that yi,j = 1 if chunk j is
selected to execute task Ai, and yi,j = 0 otherwise. Since ki
data chunks must be selected, we have∑

j

yi,j = ki, ∀i (1)

where the selection remains fixed while task i is running.
To count the number of successfully completed tasks, we

use a binary variable zi, which is 1 if task Ai is finished before
the deadline, and 0 otherwise. Let xt,i,j be the bandwidth
assigned in time slot t to the data flow transferring chunk
j of task Ai. If the task is successfully completed before a
deadline di, all of the k flows should finish before di, implying
a deadline constraint for successful tasks:

di∑
t=si

xt,i,jyi,j ≥ vi, if zi = 1,∀i,∀j, (2)

Since each source-destination pair has a predetermined route,
for a given set of tasks, we use RCg to denote the set of
tasks/chunk flows traversing a (TOR or aggregator) switch g,
i.e., (i, j) ∈ RCg if flow of chunk j of task i uses switch g.
Similarly, SCh is the set of tasks/chunk flows using a server
h. Further, each TOR has capacity limit CTA, and each server

m number of tasks
(n, k) erasure code parameters
A A set of m tasks A1, . . . , Am

RCg A set of tasks traversing TOR/aggregator switch g
SCh A set of tasks using server h
r number of storage servers
u number of racks

CST Link capacity from servers to each TOR
CTA Link capacity from each TOR to the aggregator
xt,i,j Bandwidth assigned at t to send chunk j of task Ai

wi Number of candidate sources/chunks for task Ai

zi Whether task i is completed before deadline
oi,1, . . . , oi,wi Candidate sources/chunks for task Ai

o
′
i,s Selected source/chunk for sub-task A

′
i,s

pi (p
′
i) Destination of task Ai (sub-task A

′
i,s)

vi Volume (chunk size) of task Ai

di Deadline of task Ai

si Starting time of task Ai

LRB Least required bandwidth of task Ai

fi (f
′
i,s) RTF of task Ai (sub-task A

′
i,s)

TABLE I
TABLE OF KEY NOTATIONS

has capacity limit CST . Thus, we have the following capacity
constraints: ∑

(i,j)∈RCg

xt,i,jyi,j ≤ CTA, ∀g, t (3)

∑
(i,j)∈SCh

xt,i,jyi,j ≤ CST, ∀h, t (4)

Our goal is to maximize the number of tasks that can
be successfully completed before deadline in erasure-coded
storage. This is formulated as a joint Scheduling and Source
Selection (denoted as S3) problem, i.e.,

max
∑
i

zi (5)

s.t.
∑
j

yi,j = ki, ∀i (6)

di∑
t=si

xt,i,jyi,j ≥ vizi, ∀i, (7)∑
(i,j)∈RCg

xt,i,jyi,j ≤ CTA, ∀g, t (8)

∑
(i,j)∈SCh

xt,i,jyi,j ≤ CST, ∀h, t (9)

var. xt,i,j ≥ 0, yi,j ∈ {0, 1}, zi ∈ {0, 1} (10)

Here the deadline constraint (7) is exactly (2) for successful
tasks with zi = 1, and is superfluous when zi = 0. Note that
replication can be considered as a special case of our proposed
optimization with ki = 1, i.e., the entire file is replicated across
the network.

III. LPST ALGORITHM DESIGN AND COMPETITORS

In this section, we describe our proposed algorithm, called
Linear Programming for Selected Tasks (LPST), which har-
nesses resource-aware chunk selection, deadline-aware task

Algorithm 1: LPST Algorithm
1 // Phase I: Source Selection Procedure
2 foreach task i do
3 Least required bandwidth: LRBi = vi/(di − t);
4 Sort wi candidate sources by the largest congestion factor in each path from

source to destination;
5 Find ki source servers with least fulfilled path;
6 Create ki new subtask A

′
i,s;

7 Add LRBi to congestion factor of links in each subtask’s path;
8 end

9 // Phase II: Selecting Emergent Tasks
10 foreach subtask i do
11 Calculate RTF fi = mins

(
d
′
i −max(t, si)− v

′
n/Coi,s,pi

)
;

12 end
13 Initialize T = {}, remaining bandwidth for each link;
14 Find task i with smallest fi;
15 while task i is feasible w.r.t. remaining bandwidth do
16 T ← T

⋃
{Ai}

17 Assign initial bandwidth bi = LRBi;
18 Update remaining bandwidth;
19 Find next task i with smallest fi;
20 end

21 // Phase III: Optimize bandwidth for admitted tasks in T ;
22 Solve the following optimization problem using LP;

23 max
∑

i:Ai∈T
bi

24 s.t.
∑

(i,s)∈RCg
bi ≤ CTA, ∀g

25
∑

(i,s)∈CSh
bi ≤ CST , ∀h

26 bi(di − si) ≥ vi ∀i
27 var. {bi, ∀i ∈ T }

prioritization, and bandwidth optimization via linear program-
ming. As a result, LPST maximizes the number of tasks
that can meet their deadlines. We compare LPST to a set
of heuristic algorithms and their qualitative descriptions are
presented in Section III-B. Quantitative comparison results are
in Section IV.

A. Linear Programming for Selected Tasks (LPST)

LPST algorithm takes three steps to determine a scheduling
strategy at any given time – selecting sources of erasure coded
data, selecting emergent tasks and assigning bandwidth for
each task.

Selecting Sources (Phase I): When a new task Ai arrives to
the system, it is split into ki subtasks, each of which has a
distinct source. Each subtask A

′

i,s (s=1..ki) has 5 properties: a)
source (o

′

i,s), b) destination (p
′

i,j = pi), c) volume (v
′

i = vi),
d) starting time (s

′

i = si), and e) deadline (d
′

i = di). Note
that while each subtask A

′

i,s has its own selected source, all
subtasks belonging to Ai must be completed before di to meet
a common deadline. For each of the ki subtasks, we calculate
its least required bandwidth (LRB), defined by the minimum
amount of bandwidth that is necessary to finish the task before
the deadline. Let t be the current system time. LRB can be
calculated using the following equation.

LRBi = vi/(di − t). (11)

Then, for the corresponding servers or TORs in the path, we
add LRBi to their congestion factors. Then we calculate the
congestion factors for all subtasks, and we select ki sources

with least fulfilled links (smallest congestion factor).

Prioritizing Tasks (Phase II): Once the sources are chosen,
we could generate a plan on how we may allocate bandwidth
for the tasks to satisfy our objective, e.g., maximizing net-
work utilization of our datacenter. However, blindly applying
existing optimizing technique, such as linear programming, is
likely to cause a scalability problem (Section IV). Therefore,
in LPST we first sort all subtasks based on a metric, called re-
maining time flexibility (RTF), which quantifies the flexibility
in scheduling a task with respect to its deadline and resource
availability, reflecting how emergent the task is. After a list of
admitted tasks are identified, a linear programming problem
is solved to optimize bandwidth allocation for maximizing
network utilization for the admitted tasks.

In particular, for subtask A
′

i,s, a chunk of size v
′

i needs to
be transferred, from source server o

′

i,s to destination server
p

′

i, which has pre-determined route with maximum available
capacity Coi,s,pi

. The task starting time is si and deadline
is d

′

i. Then RTF f
′

i,s of the subtask A
′

i can be calculated as
follows.

fi,s
′
= d

′

i −max(t, si)− v
′

n/Coi,s,pi
(12)

where t is current timestamp and Coi,s,pi is the maximum
available link capacity from source server o

′

i,s to destination
server p

′

i. Next, the RTF of task Ai is defined as the minimum
RTF of all its subtasks, i.e.,

fi = min
s

f
′

i,s. (13)

Intuitively RTF fi measures the maximum allowed delay to
begin processing task Ai, in order to meet its deadline. If fi
value is smaller, the task is more emergent and we may need
to schedule it right away by delaying some other tasks that
have higher RTF values.

Finally, we rank all tasks according to their RTF in ascend-
ing order, and admit tasks one-by-one until no more task with
higher RTF can be added.

Assigning Bandwidth (Phase III): After we get a final list
of feasible tasks, we formulate a network optimization to
assign bandwidth bi for each task by maximizing network link
utilization. While this step does not directly affect the number
of tasks that are completed before deadline, it maximizes
resource utilization and thus reduces the overall completion
time required by currently admitted tasks. This has two
benefits. First, when we use the proposed LPST algorithm in
an iterative fashion, optimizing bandwidth utilization allows
us to accommodate more tasks by re-running the procedure
in Phase I and II. Second, this is particularly important in an
online setting – by completing the current, admitted tasks as
fast as possible, we can make more resources available for
new tasks that arrive in the future. The bandwidth assignment
in Phase III is solved as a linear programming problem with
network capacity and deadline constraints. The admitted tasks
are guaranteed to meet their individual deadlines.

Supporting Different Network Topologies: Although in

this paper we formulate our optimization for a hierarchical
datacenter network topology involving TOR and aggregator
switches, the results can be readily extended to arbitrary
topologies such as fat-tree or Bcube [15] [16]. In particular,
source selection (Phase I) and bandwidth assignment (Phase
III) need to reflect updated link capacity constraints due to new
network topologies, while task prioritization (Phase II) remains
the same. More complicated network topologies, such as B-
cube or fat-tree, may introduce more link capacity constraints,
but they are still linear constraints and can be solved by
linear programming. Since LPST uses task prioritization, the
complexity of linear programming will still be limited due to
small number of variables.

B. Competing Algorithms

We compare LPST against several variants of well-known
heuristic scheduling algorithms. The competing algorithms
that we considered in this paper are three-fold – FIFO and
its variants, EDF and its variants, and Linear Programming.

FIFO family: First In First Out (FIFO) schedules a task to
the first available resource in a sequential manner. FIFO has
an obvious inefficiency when two consecutive tasks share the
same network link. In Fig. 1, consider the case in which the
task A1 is transmitting data from server 2 to server 1 and the
task A2 is sending data from server 8 to server 5. In FIFO, A2

will need to wait until A1 completes. To address this issue,
we come up with a disjoint version of FIFO (DisFIFO). In
DisFIFO, the tasks that do not share network links can be
scheduled at the same time, and consequently result in better
performance. Lastly, all algorithms in FIFO family choose
sources randomly in erasure-coding case.

EDF family: Earliest Deadline First (EDF) algorithm is
also well-studied in the scheduling literature. In our problem
setting, the EDF algorithm has the same problem like FIFO.
So we developed DisEDF using the similar technique. The
difference between EDF and DisEDF is exactly the same as
that between FIFO and DisFIFO. Moreover, we developed an
enhanced version of DisEDF called DisEDF-S, which does
a better job of source selection. In DisEDF-S, k chunks with
the smallest task number in their transmission path are selected
from n sources. This means that they have less opportunities
to have conflicts with other transmission tasks.

Linear Programming: We utilize a recent advance in dat-
acenter networking, i.e. bandwidth reservation, to devise an
algorithm called Linear Programming applied on All tasks
(LPAll). Whenever a new task arrives to the system or a
task finishes, LPAll assigns bandwidth to a given set of tasks
using the linear programming technique. The formulation is
same as that of LPST bandwidth allocation scheme, i.e., the
objective function is to maximize bandwidth utilization under
link capacity and task deadlines constraints.

IV. EVALUATION

A. Methodology, Simulator Setup

We built a custom simulator of all algorithms in a java
platform. We implemented a task generator to feed tasks.
The simulator takes the task generator’s output as input and
simulates the behavior of various algorithms. The simula-
tor captures essential resource constraints including network
topology, bandwidth limitation, task deadlines, and erasure-
code source selection. The task generator and simulator are
synchronized. The task information in simulator updates when-
ever the generator generates a new task. The constructed
topology is similar to Fig. 1, with each rack consisting of
10 servers.

All results presented in this paper in each setup are average
values computed over 2000 tasks. We evaluate different algo-
rithms using three metrics — number of tasks completed by
the remaining volume, and link utilization. Remaining volume
refers to the amount of data in GB, whose transmission to the
destination server was not completed by the deadline. Link
utilization is the ratio of the total amount of data that can be
transferred through a given network link to the total amount
of data that was actually transferred through that link. In all
settings, erasure-coded chunks are placed uniformly following
the best practices of many distributed storage system in a real
world as discussed in Section III.

B. Sensitivity Analysis via Simulations

Next we thoroughly investigate the effect of several parame-
ters on the performance of various agorithms. We chose three
important parameters – arrival rate, available link capacity,
and data size. Fig. 2 shows the results. Overall, for almost all
parameter space we explored, we found that LPST either out-
performs competing algorithms, or performs at least as good
as other algorithms. The parameters used for the simulation
runs are described in Table II.

Arrival Rate: The rate at which background jobs arrive in
the system is an important parameter that can affect perfor-
mance. We conducted a simulation study with different arrival
rates while fixing other parameters. The results are shown in
Fig. 2(a)∼2(c). The impact of arrival rate is quite significant,
e.g. the number of completed tasks can be degraded by 66%
under demanding arrival rates. Not surprisingly, as the arrival
pattern becomes more sparse, the performance gap between
LPST and greedy alternatives gets narrower. In the most sparse
arrival pattern we tried (arrival rate of 0.033 tasks per second),
many algorithms perform equally well.

Link Capacity: Available link capacity is yet another impor-
tant factor. We vary the link capacity from 100 Mbps to 600
Mbps. The results are presented in Fig. 2(d)∼2(f). It turns
out that the impact of changing link capacity is very similar
to that of changing deadlines. With more available bandwidth,
LPST has more room for optimization, so it outperforms other
algorithms. However, if we have just enough bandwidth for
a given workload, many algorithms show good performance.

of Tasks Erasure
Code

Arrival Rate(s−1) Chunk Size Link (Mbps) Deadline

Baseline 200 (9,6) Poisson, 0.1 1 GB 250/875 +LRT * Uniform(1,15)
Arrival Rate 200 (9,6) Poisson, 1/30∼2 1 GB 400/1400 LRT * 10
Link Capacity 200 (9,6) Poisson, 0.1 1 GB 100/350, 200/700,

. . ., 500/1750
LRT * 10

Volume 200 (9,6) Poisson, 0.1 1∼6 GB 400/1400 Mbps LRT * 10
TABLE II

PARAMETERS USED FOR SIMULATION & EXPERIMENTS. +LEAST REQUIRED TIME.

(a) # of Completed Task (b) Remainig Volume (c) Link Utilization (Server↔TOR)

(d) # of Completed Tasks (e) Remaining Volume (f) Link Utilization (Server↔TOR)

(g) # of Completed Tasks (h) Remaining Volume (i) Link Utilization (Server↔TOR)

Fig. 2. Sensitivity analysis via simulation: arrival rate (2(a), 2(b), 2(c)), link capacity (2(d), 2(e), 2(f)), and data sizes (2(g), 2(h), 2(i)).

As with the case of changing deadlines, the link utilization
decreases gradually for the same reason.

Data Size: Lastly, we examine the sensitivity of various algo-
rithms with respect to erasure-coded chunk size. Fig. 2(g)∼2(i)
show that LPST performs consistently better than other al-
gorithms in the entire range of data size we used in our
experiments. In other words, unlike other resources tightly
coupled with the infrastructure, data size has less impact on
the relative performance of these algorithms. This is mainly
because data size impacts all algorithms in a similar way. Data
size does not impact the factors for which these algorithms
are designed. Specifically, data size does not directly affect
parameters like network topology, source selection, bandwidth
allocation, and deadlines.

V. RELATED WORK

Although LPST is the first algorithm to tackle S3 problem
(Sec. II), it is inspired by vast amount of related work.

Our notion of remaining time flexibility is inspired by a
classic scheduling algorithm called Least Slack Time First
(LSTF) [17]. LSTF used a metric called slack, which is
conceptually similar to RTF, to schedule tasks to a single
or multiple processors and it can be easily applied to packet
scheduling problem as well [18]. In S3 problem, similar to the
reason that other simple heuristics will not work well, it is not
enough to blindly apply LSTF since we need to additionally
consider source selection and bandwidth allocation problems.

Aside from LSTF, many heuristic algorithms have been
extensively studied in the community. The representative algo-
rithms include Early Deadline First (EDF), First In First Out
(FIFO), and Linear Programming (LP) and we discussed these

algorithms with respect to S3 problem in Sec. III-B.
Some advanced algorithms based on these concepts are

as follows. Algorithms based on FIFO has been applied for
multicast traffic [13] and packet scheduling [14] to maximize
system throughput. In [10], authors described a Global EDF
algorithm to schedule parallel real-time tasks, which has prov-
able performance bounds and overcomes task heterogeneity
noted in [11], [12]. Lastly, using the model of a time-slotted
system, traffic scheduling with deadlines can be formulated as
a Linear Program (LP) problem. The complexity analysis of
LP can be found in [19], [20], [21]. However, traffic scheduling
complexity grows quickly as network size and granularity
increase [22], and it may lead to integer constraints when
source selection and routing are involved [23].

Complementary to our work, substantial amount of work
is proposed on reducing the amount of repair traffic in
erasure coded storage systems. The list includes practical
implementations that maintain local parities [24], [25] and
novel codes that provide theoretical guarantees, e.g., MSR and
MBR codes [26]. Since we assume MDS code in this paper
and the majority of erasure codes used in practice maintain
MDS property, our algorithm can be directly applicable to
most work in this category.

Tangentially related to our work, there exist a set of studies
that can fortify the importance of S3 problem. [6] character-
ized backup workloads in EMC Data Domain backup systems
in production use and showed that on average, background
traffic per week is equivalent to about 21% of total stored data.
For repair traffic, a study of failure and repair characteristics
of tasks and servers using the Google Cloud trace is provided
in [27]. Within the trace spanning 29 days, there were over
144 million and 37 thousand events for tasks and servers
respectively. The vast majority of repair times are relatively
short but had large deviation [28], leading to undesirable
impact to the infrastructure.

VI. CONCLUSIONS

In this paper, we consider the problem of optimizing back-
ground traffic in erasure-coded distributed storage systems, to
maximize the number of tasks meeting deadlines under data
placement, network topology and bandwidth constraints. The
proposed solution makes use of Remaining Time Flexibility
to select active tasks for each scheduling interval and linear
programming to apportion bandwidth among the them. Our
evaluation results based on both simulations and experiments
on a real cluster showed that our proposed algorithm signifi-
cantly outperforms six competing algorithms. In the future, we
plan to evaluate LPST using other topologies, such as fat-tree
or Bcube, and prove a performance bound for the algorithm.

REFERENCES

[1] “Ceph,” http://ceph.com/.
[2] “Yahoo Cloud Object Store,” http://yahooeng.tumblr.com/post/

116391291701/yahoo-cloud-object-store-object-storage-at.
[3] “Google Colossus File System,” http://static.googleusercontent.

com/media/research.google.com/en/university/relations/
facultysummit2010/storage\ architecture\ and\ challenges.pdf.

[4] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang et al., “F4: Facebooks warm blob
storage system,” in OSDI, 2014.

[5] Hakim Weatherspoon and John D. Kubiatowicz, “Erasure coding vs.
replication: A quantitative comparison,” in Peer-to-Peer Systems, 2002,
pp. 328–337.

[6] Wallace, Grant, et al., “Characteristics of backup workloads in produc-
tion systems,” in USENIX FAST, 2012.

[7] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R.
Santos, “Elasticswitch: practical work-conserving bandwidth guarantees
for cloud computing,” ACM SIGCOMM Computer Communication
Review, vol. 43, no. 4, pp. 351–362, 2013.

[8] Ballani et al., “Chatty tenants and the cloud network sharing problem.”
in NSDI, 2013, pp. 171–184.

[9] Jeyakumar et al., “Eyeq: Practical network performance isolation for the
multi-tenant cloud,” in HotCloud. USENIX Association, 2012.

[10] Jing Li, Zheng Luo, David Ferry, Kunal Agrawal, Christopher Gill, and
Chenyang Lu, “Global edf scheduling for parallel real-time tasks,” in
Real-Time Syst, 2014.

[11] Abusayeed Saifullah, Jing Li, Kunal Agrawal, Chenyang Lu, and
Christopher Gill, “Multi-core real-time scheduling for generalized par-
allel task models,” in Real-Time Syst, 2012.

[12] Lakshmanan K, Kato S, Rajkumar R., “Scheduling parallel real-time
tasks on multi-core processors,” in Real-Time Systems Symposium
(RTSS), 2010.

[13] Deng Pan and Yuanyuan Yang, “Fifo-based multicast scheduling algo-
rithm for virtual output queued packet switches,” in IEEE TRANSAC-
TIONS ON COMPUTERS, vol. 54, no. 10, 2005.

[14] Kirill Kogan, Alejandro Lopez-Ortiz, Sergey I. Nikolenko, and Alexan-
der V. Sirotkin, “Online scheduling fifo policies with admission and
push-out,” in Theory Comput Syst, 2016.

[15] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: a high performance, server-centric network architecture
for modular data centers,” ACM SIGCOMM Computer Communication
Review, vol. 39, no. 4, pp. 63–74, 2009.

[16] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint vm placement
and routing for data center traffic engineering,” in INFOCOM, 2012
Proceedings IEEE. IEEE, 2012, pp. 2876–2880.

[17] J. Y.-T. Leung, “A new algorithm for scheduling periodic, real-time
tasks,” Algorithmica, vol. 4, no. 1-4, pp. 209–219, 1989.

[18] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker, “Universal packet
scheduling,” in 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), 2016, pp. 501–521.

[19] L. G. Khachiyan, “Polynomial algorithms in linear programming,” USSR
Computational Mathematics and Mathematical Physics, vol. 20, no. 1,
pp. 53–72, 1980.

[20] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” in Proceedings of the sixteenth annual ACM symposium on
Theory of computing. ACM, 1984, pp. 302–311.

[21] N. Megiddo, “Linear programming in linear time when the dimension is
fixed,” Journal of the ACM (JACM), vol. 31, no. 1, pp. 114–127, 1984.

[22] P. R. Kumar and Sean P. Meynf, “Duality and linear programs for
stability and performance analysis of queueing networks and scheduling
policies,” in IEEE Transactions on Automatic Control, vol. 41, no. 1,
1996.

[23] Kamal Al-Subhi Al-Harbi, Shokri Z. Selim, and Mazen Al-Sinan, “A
multiobjective linear program for scheduling repetitive projects,” in
Mazen Cost Engineering, 1996.

[24] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “Xoring elephants: Novel erasure
codes for big data,” in International Conference on Very Large Data
Bases (VLDB), 2013.

[25] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
S. Yekhanin et al., “Erasure coding in windows azure storage.” in Usenix
annual technical conference. Boston, MA, 2012, pp. 15–26.

[26] A. G. Dimakis, P. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” Information
Theory, IEEE Transactions on, vol. 56, no. 9, pp. 4539–4551, 2010.

[27] Peter Druschel and Antony Rowstron, “Storage management and
caching in past, a largescale, persistent peer-to-peer storage utility,” in
ACM SOSP, 2001.

[28] W. Bolosky, J. Douceur, D. Ely, and M. Theimer, “Feasibility of a
serverless distributed file system deployed on an existing set of desktop
pcs,” in Sigmetrics, 2000.

