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Abstract— This paper presents a semantics-aware rule rec-
ommendation and enforcement (SARRE) system for taming
information leakage on Android. SARRE leverages statistical
analysis and a novel application of minimum path cover algo-
rithm to identify system event paths from dynamic runtime
monitoring. Then, an online recommendation system is developed
to automatically assign a fine-grained security rule to each
event path, capitalizing on both known security rules and
application semantic information. The proposed SARRE system
is prototyped on Android devices and evaluated using real-
world malware samples and popular apps from Google Play
spanning multiple categories. Our results show that SARRE
achieves 93.8% precision and 96.4% recall in identifying the
event paths, compared with tainting technique. Also, the average
difference between rule recommendation and manual config-
uration is less than 5%, validating the effectiveness of the
automatic rule recommendation. It is also demonstrated that by
enforcing the recommended security rules through a camouflage
engine, SARRE can effectively prevent information leakage and
enable fine-grained protection over private data with very small
performance overhead.

Index Terms— Android privacy, rule recommendation, statis-
tical analysis, path identification, rule enforcement.

I. INTRODUCTION

W ITH its increasing popularity, Android continues to
claim the largest share of malware [1] among all

smartphone platforms. It has been shown in recent research
findings that 51.1% of Android malware collects and leaks
users’ private data such as accounts and SMS [2], and 45.3%
of Android malware samples are able to send out background
messages without triggering user awareness. In addition, users’
private information can also leak out through apps downloaded
from Google Play, as evidenced in [3]. Information leakage
and privacy issue remains to be a challenging problem for
hardening smartphone security.

The limitations of Android’s current permission-based secu-
rity mechanism have been well recognized in prior work,
e.g., [2], [4]. A number of proposals are made to tackle this
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challenging problem by runtime security enhancement solu-
tions based on Access Control [5], [6], static information flow
analysis [7], and data obfuscation technique [8], [9]. However,
the burden of manually constructing extensive security rules
for various apps still lies with smartphone users or app devel-
opers, who may find it overly convoluted and difficult to adjust
on the fly. The problem is further complicated when different
information flows accessing the same data require differenti-
ated security rules. For instance, while GPS coordinates are
routinely queried by information flows in map/tracking apps, it
could raise serious privacy concerns if they are accessed by an
alarm clock app, whether it contains repackaged malware or
benign ad libraries collecting user location data. Traditional
automated software security specification methods based on
static code analysis [10], [11] are not applicable to Android
platform, because developers extensively adopt code encryp-
tion, code obfuscation and dynamic code loading techniques.
Recent studies begin to investigate automated rule assignment
in smartphone systems [12], but only consider a one-size-fits-
all solution for each data source and fall short on providing
fine-grained security rules for different information flows and
app semantics.

Automated fine-grained semantics-aware rule enforcement
is a long-standing hard problem. First, events that can be
leveraged for malicious purposes co-exist with other events
in a mobile platform, and analyzing all the runtime events
together is not trivial. Second, the sequences of runtime
events are further affected by user behaviors, OS scheduling
of multi-processes and other runtime randomness such as
network delays. Third, different types of sensitive data may
be requested in an app and users may have varied security
preferences towards different types of sensitive data. Besides,
even the same data can be requested for different purposes,
and under different contexts.

In this paper, we present SARRE, a Semantics-Aware
Rule Recommendation and Enforcement system that enables
automated security rule recommendation and enforcement to
prevent information leakage. To tackle the first two challenges,
we employ statistical inference to identify information flows
through light-weight runtime event monitoring. In particular,
SARRE constructs an event graph by correlation analysis
between events. Based on that, the problem of identifying
event paths is formulated as a minimum path cover prob-
lem in graph theory, which is NP-hard [13] and solved
by our heuristic algorithm. The third challenge is solved
by logging critical system events and semantic information
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through our specially designed Event Monitor, associating
information flows with the event paths identified and recom-
mending security rules to event paths. To make a successful
rule recommendation, SARRE employs collaborative filtering
technique widely used in online recommendation systems [14]
and leverages knowledge of (i) known security rules of similar
paths and (ii) the corresponding app’s semantic information.
A recommendation is made for each new information flow by
combining the rules of K nearest known flows with similar
semantics. This approach allows SARRE to construct security
rules that are both effective and in-context in an unsupervised
manner. Finally, recommended security rules are implemented
by a runtime enforcement mechanism that obfuscates data on
information flows. Our entire SARRE system is prototyped on
real Android devices and is evaluated with real-world malware
samples and popular apps from Google Play, spanning multiple
categories.

The main contributions of our paper are as follows:
1) We propose a novel approach to automate security

rule construction for Android system. It makes novel use of
collaborative filtering to build a recommendation system that
assigns a security rule to each information flow based on both
known path rules and application semantics, enabling fine-
grained, semantics-aware protection of users’ private data.

2) We develop a lightweight event monitor for runtime event
logging and a path identification system to statistically infer
information flows from event paths in real time. The problem
is formulated as a minimum path cover in graph theory and
a heuristic algorithm is developed to solve this NP-hard prob-
lem. Evaluating SARRE using 1706 app samples, including
1473 apps collected from Google Play and 233 malware
samples, we show SARRE achieves 93.8% precision and
96.4% recall in identifying the event paths, compared with
runtime tainting technique.

3) The proposed SARRE system is prototyped on Android
devices. Using real-world malware samples and popular apps
from Google Play, we show that the average difference
between our automatic rule recommendation and manual con-
figuration is less than 5%. Enforcement of the recommended
rules demonstrates SARRE is effective to provide fine-grained
protection over private data, while performance overhead
remains small.

II. MOTIVATIONAL EXAMPLES

Two types of references utilized when making a rule recom-
mendation in our system include: (i) similarity between event
paths and (ii) semantic information. We use two sets of real-
world examples to motivate their necessity, but our system is
not limited to these two types of scenarios.

A. Location

Consider different uses of location data by three apps:
(A) App My Tracks relies on accurate location data for tracking
functionality. (B) Game Drag Racing’s main functionality
doesn’t rely on location data, but accesses it for advertisement
purpose. Totally forbidding the access may make the app
stop working, but user may want to limit the location data

access to some limited accuracy level or with some noise
included. (C) Malware Nickispy [16] repackages benign apps,
but stealthily monitors GPS coordinates and sends the data out
by network sockets.

To distinguish these scenarios, apps’ declared functionality
can serve as evidence to infer whether the runtime events
are justified. Such evidence is obtainable by natural language
processing used in prior work [17]. However, this is not
enough because malware repackaging a game app shouldn’t
get the same accuracy level as a real game. To further distin-
guish this, runtime events presented as event paths can serve
as another type of reference information. For advertisement
purposes, games occasionally query the location by APIs
such as getLastKnownLocation, especially when ‘Activity’1

is stopped or paused. In contrast, to track location stealthily,
malware registers for LocationListener and retrieves loca-
tion updates, used together with getLastKnownLocation, or
getLatitude, getLongitude. By identifying the event paths, the
above two cases can be further differentiated.

This example also justifies the need to monitor events that
are not directly used for data access or transmission, but can
serve as different triggers for event paths, and therefore help
to differentiate paths and enforce semantics-aware rules. Such
events include the critical system events like GPS updated,
SMS received, Activity’s onStop method, and etc.

B. Contacts Data

Consider different uses of contacts data by three apps:
(A) Communication app Truecaller’s functionality relies on
contacts data. (B) Social networking app Facebook only uses
contacts data for purposes like inviting friends, and users
may want to limit their access to certain limited availability
level, for example, make only the email address and last
name available. (C) Malware Love Chat [18] is disguised as
a communication app, but harvests contacts data and sends it
out to its server.

Apart from the reference information we discussed above
in previous example, this example also motivates another type
of semantic information, the parameters associated with API
calls such as the destination address of a network socket. The
malware Love Chat is disguised as a communication app,
and exhibits similar event path, which queries contacts data
through ContentResolver and sends it to remote server by
HttpPost. By recording the parameters associated with API
calls, the event paths can still be further distinguished and
later associated with different rules.

III. PROBLEM DESCRIPTION

An app’s log file L = {(e1, t1), . . . , (eN , tN )} is a set of
2-tuples consisting of the event name en , and associated occur-
rence time tn in the system. SARRE first employs statistical
analysis to build an event graph G = (V, A) where each
vertex represents an event and each arc represents a transition,
and then identifies a set P of event paths on G for each app.

1‘Activity’ is a class name in Android app development to manage app’s
lifecycle.
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Fig. 1. An identified event path and its associated security rules for app My Tracks [15].

Fig. 2. Workflow diagrams of rule recommendation (left) and rule enforcement (right) phases. 1.1 , 1.2 and 1.3 are steps for rule recommendation. 3.1 ,

3.2 and 3.3 are steps for rule enforcement. 2.1 and 2.2 are optional steps for users to overwrite recommended rules.

A security rule Rr (0 ≤ Rr ≤ 1) is then to be assigned to
each path Pr ∈ P . The rule indicates the level of protection
required. In particular, Rr = 0 implies that path Pr should
be completely prevented from happening, while 1 leaves the
path intact. Any other value corresponds to different level of
protection and will be discussed in details in Section IV-D.
Such security rule assignment needs to accommodate indi-
vidual user’s security preference. Besides, since similar paths
can show up in different contexts and serve for different goals,
the rule assignment needs to take semantic information into
account.

SARRE makes use of collaborative filtering [14] tech-
nique to recommend a security rule for each path based
on both known security rules of similar paths and semantic
information. Declared functionality is one type of semantic
information we consider. We use DF label to denote a label
we assign to an app to represent its declared functionality. DF
labels aim to represent apps’ main functionalities and justify
apps’ needs for access to certain data or services. Obtaining
apps’ DF labels can be assisted by the category information
provided by app markets and also natural language processing
of app descriptions [17], [19].

An example of identified event path and some of its
semantics-aware security rules for app My Tracks [15] are
shown in Fig. 1. The path consists of four events, which
access location data whenever GPS coordinates are updated,
then transmit data via network socket. Such path is kept
untouched (Rr = 1) for ‘Maps’ apps, while for ‘Games’ and
‘Communication’ apps, information flowing through this path
needs different levels of security protection. In Section IV-D
we will discuss how numerical rules map to different rule
enforcement methods, depending on the types of data involved.

Threat Model: In this paper, our primary concern is the
undesirable information leakage that exists in malware, as well

as apps from Google Play. Information leakage flows can be
associated with event paths in the system. All the applications
are assumed to be untrusted on the mobile system, but we
assume that the encrypted log files generated by our system
won’t be intercepted and decrypted by normal applications.

IV. OUR SARRE SYSTEM

This section provides our system design details and algo-
rithms. We use two workflow diagrams to depict two key
phases when rule recommendation (Fig. 2 left) and rule
enforcement (Fig. 2 right) happen. In rule recommendation
phase, Secure Sender sends the event logs generated by Event
Monitor to Path Identifier 1.1 , which will identify event

paths from the logs and forward to Rule Recommender 1.2 .

Referring to Reference Rule DB 1.3 , Rule Recommender
then makes rule recommendations to event paths. Meanwhile,
option is reserved for users to overwrite recommended rules in
Rule DB on mobile devices 2.1 , and the overwritten rules are

immediately synchronized to Reference Rule DB 2.2 . In rule
enforcement phase, Camouflage Engine is made aware of the
events by Event Monitor 3.1 . Recommended rules are stored

in Rule DB on mobile devices 3.2 and made available to

Camouflage Engine 3.3 , which will enforce the rules to mon-
itored events. We dedicate each following subsection to one
of the four main parts: (i) Event Monitor, (ii) Path Identifier,
(iii) Rule Recommender, and (iv) Camouflage Engine.

A. Event Monitor

Event Monitor intercepts and logs the events (within a
configurable list) at the framework level of Android system.
Our scope of monitored events include: (i) apps’ calls to
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TABLE I

SUMMARY OF MONITORED APIs AND OTHER EVENTS

standard APIs that can be leveraged for data collection,
processing, and transmission, such as API calls to access
location, query SMS, and network services; and (ii) other
system events or phone state changes that are not directly
related to information flows, but facilitate identification and
characterization of them, for example, an incoming phone
call, new SMS, and screen ON/OFF switch frequently serve
as different triggers for information flows, with or without
users’ awareness. These system events or state changes help
to build the full scenarios of event paths. For example, an
event path in malware Nickispy [16] to access SMS and send
it out by network sockets triggered by an incoming SMS
can be distinguished from similar paths in data backup apps
normally triggered by users’ actions. Critical events related
to sensitive information flows and frequently employed by
malware have been widely studied in the literature [4], [20]
and malware reports [21]. Based on these, we compose a list of
70 classes of key events for our prototype of SARRE’s Event
Monitor, as shown in Table I. In the table we summarize the
sensitive resources and system states in the first column, and
the corresponding APIs used to access the resources or listen to
system state changes and system events in the second column.
While this list shows sufficient events coverage in our study, it
can be further expanded to provide more extensive information
regarding various event paths and information flows.

There exists a tradeoff between the coverage of events
and the performance overhead introduced by event monitor.
A large list to monitor may unnecessarily cover non-critical
events and cause high overhead, while a small list may
neglect critical events, resulting in unsatisfactory path identi-
fication. To exploit this tradeoff, SARRE’s rule recommender
in Section IV-C formulates an optimization problem, which
attaches a weight to each monitoring event and selects events

that are critical for path identification and rule recommen-
dation by optimizing the weights on a large training set.
Basically, it starts with a large set of monitored APIs and
later leaves out those APIs with small weights from monitoring
list. The optimization decision is fed back into event monitor
to customize it for the optimal coverage and performance
tradeoff. Details about our optimization-based approach for
selecting monitored events is discussed in Section IV-C.

Considering that the same event may be employed by
different event paths serving different purposes, to accurately
construct event paths, we must be able to differentiate the
same event attributed to different execution points in the same
app. To achieve this, apart from the names of events, we also
record the package name, the line number where an event
is activated, and key parameters (e.g. the recipient’s address
of sendTextMessage API), all of which are hashed together
to uniquely identify an event and further differentiate various
event paths associated with the same event. The sensitive data
returned to API calls on event paths are not logged in the
log files to protect users’ sensitive data. The log files only
contain a sequence of events occurred, the unique hashed
value and associated timestamps information. The log files
are encrypted and transmitted periodically to Path Identifier
by Secure Sender.

B. Path Identifier

Path Identifier quantifies the transitions between events
within the log file for each app, then uses our path cover
algorithm to extract the event paths.

In association rule mining problems [22], the metric
confidence of transition ei ⇒ e j is measured by the number
of transactions containing both events ei and e j , divided by
that containing ei . To identify event transitions, we extend
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Fig. 3. Event Graph of the Nickispy malware. Each vertex is an event, uniquely identified by event name, key parameter, and last 4 digits of hashed line
number. Each event’s number of occurrence is shown in the end of vertex.

this metric to construct two novel measures: forward confi-
dence μ f and backward confidence μb, which respectively
measure the confidence of two hypothesis testing “ei is fol-
lowed by e j ” and “e j is preceded by ei ”. Let o(ei ) and o(e j )
be the numbers of occurrences for events ei and e j in a log
file. Further, we calculate the number of instances that event e j

happens after ei and that event ei happens before e j , denoted
by o(ei → e j ) and o(ei ← e j ), respectively. This gives us the
definition of forward and backward confidence (μ f and μb)
as follows:

μ f (ei , e j ) = o(ei→e j )
o(ei )

, μb(ei , e j ) = o(ei←e j )
o(e j )

(1)

The definition of μb and μ f is not redundant. These
two metrics measure directional relationship between events.
Consider an example app that frequently conducts network
activities, at the same time, the app also occasionally queries
sensitive information from the user devices, afterwards, it
always opens a network socket to transmit it out. Assuming
ei denotes the events for sensitive data query, and e j denotes
the events related to network activities, such high correlation
between the two types of events is captured by the significant
forward confidence μ f (ei , e j ), while the backward confidence
μb(ei , e j ) is not significant. Similarly, the backward confi-
dence μb captures the correlation in the opposite cases. In the
special cases when ei and e j always happen together in pairs,
the forward confidence and backward confidence are equal.

We say transition between ei and e j exists if the unified
confidence μu(ei , e j ), i.e. maximum of μ f and μb exceeds
threshold γ :

μu(ei , e j ) = max(μ f (ei , e j ), μb(ei , e j )) ≥ γ, (2)

which allows us to mine event transition between any pair
of events in log files. It results in an event graph, which
collectively aggregates all event transitions of a given app and
is formally defined as Definition 1.

Definition 1: An Event Graph is a weighted, directed
graph G = (V, A) with a set V of vertices and a set A
of arcs, satisfying:
(i) Each vertex vi in V represents a unique event in log file,

(ii) An arc (vi , v j ) exists if and only if the unified confidence
satisfies μu(vi , v j ) ≥ γ . Each existing arc (vi , v j ) is
assigned μu(vi , v j ) as non-negative weight.

The event graph constructed for a malware sample Nickispy
(package name com.nicky.lyyws.xmall [16]) is depicted
in Fig. 3. On the graph, each arc represents an observed
transition, and is assigned with a weight equal to the unified
confidence measured between arc’s head and tail vertices by
Equation (2).

Paths Identification on Event Graph: We formulate the
Application Path Identification Problem as a variation of the
minimum path cover problem [13], finding minimum number
of paths P = {P1, . . . , Pr , . . . , PR} with a set of path counts
{cr , ∀r} to cover the graph G. Unique considerations exist
in our problem from the traditional path cover problem:
First, since a larger arc weight μu(vi , v j ) implies higher
confidence of the transition between two events ei and e j

linked by the arc, optimal set of paths covering G should
have the largest accumulated arc weights. Second, using o(vi )
to denote number of occurrences of vertex vi in the log
file, to ensure identification of those paths with infrequent
appearances in log files, a sufficient path cover of G should
cover each vertex at least o(vi ) times. This ensures all appear-
ances of events during runtime are accounted for in path
identification.

The standard path cover problem for general graphs is
proven to be NP-hard [13]. We propose effective heuristics
based on greedy algorithm to solve the Path Identification
Problem. To be specific, our algorithm iteratively picks a
source (i.e., the first vertex in a path) from graph G and
grows a path by iteratively adding tail vertices until a sink
vertex (vertex without children) is reached. In each step
to add a tail vertex v j , the algorithm picks the one with
largest arc weight μu(vi , v j ) among all candidate tail vertices.
Once a path Pr is constructed, the algorithm calculates the
minimum remaining number of occurrences of the vertices
on the path, and assigns it to the path as the path count cr .
Then, cr is deducted from remaining numbers of occurrences
of the vertices. Due to the monotonicity of remaining number
of occurrences, the algorithm is guaranteed to converge. The
algorithm is summarized in Fig. 4. The paths identified for the
malware sample Nickispy mentioned before, with event graph
depicted in Fig. 3, are shown in Table II. The accuracy of path
identification is validated in Section V-B.
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TABLE II

LIST OF PATHS IDENTIFIED BY OUR PATH COVER ALGORITHM FOR SAMPLE Nickispy

Fig. 4. Proposed algorithm to solve the Path Identification Problem.

C. Rule Recommender

1) Quantifying Path Similarity: Each identified path is an
ordered sequence of events and transitions. Different events
may have different levels of importance for identifying similar
event paths and making rule recommendations. We introduce
W as a set of non-negative weights and w(ei ) ∈ W as the
weight assigned to event ei . Such weights will be optimized
later to minimize recommendation error. We introduce equa-
tion (3) to measure the similarity between two paths Pr and Pz :

s(Pr , Pz, W) =
∑

ei∈(Pr∩Pz ) w(ei )
∑

e j∈(Pr∪Pz ) w(e j )
(3)

We use ‘∩’ in (3) to denote path intersection, the longest
common subsequence (event transitions) of paths Pr and Pz .
Our notion of path intersection here has sequence mean-
ing, because similarity of event paths not only depends on
the common events, but also their transitions (i.e., order-
ing on the paths). For example, for Pr = [1, 2, 5, 7] and
Pz = [2, 5, 1, 3, 7], Pr ∩ Pz should be [2, 5, 7], rather
than [1, 2, 5, 7]. To illustrate this, we consider the example
in Fig. 1. If the last two vertices Socket.getOutputStream and
Socket.connect happen before all other vertices, it becomes
less likely that they are used to transmit sensitive data retrieved
at other vertices of the path. Therefore, transitions between
events are critical in defining path similarity. The ‘∪’ denotes
path union, which is defined in this paper as the set of unique
nodes of two paths.

2) Recommending Security Rules: Our objective is to rec-
ommend security rule Rr ∈ [0, 1] to a path Pr whose parent
app has given DF label, based on a set P of existing paths, their
security rules R, and their parent apps’ DF labels. Our key
idea is to use collaborative filtering [14], a technique widely
used to build various recommendation systems. First, our
recommendation algorithm searches for K -nearest neighbor
paths denoted by PK , satisfying that (i) Pr and any Pz ∈ PK

share common DF labels, implying that the two paths’ parent
apps have matching semantics, and (ii) Pr and any Pz ∈ PK

have the highest similarity, i.e., s(Pr , Pz , W) ≥ s(Pr , Pt , W)
for all Pt ∈ P− PK .

The set of K -nearest neighbor paths serves as reference
to make semantics-aware security rule recommendation for
path Pr . The recommended rule is calculated by a weighted
average of the K -nearest neighbor paths’ security rules:

Rr =
∑

i:Pi ∈PK
s(Pi ,Pr ,W)×Ri

∑
i:Pi ∈PK

s(Pi ,Pr ,W)
(4)

where s(Pi , Pr , W) is path similarity calculated by equa-
tion (3). The choice of weights W is important because some
events such as sending a SMS are more critically related to
sensitive paths than other events such as moving a cursor in
SQLite database. Hence, these critical events warrant higher
influence in calculating path similarity, which should not be
biased by the number of events shown up in the paths. Besides,
to avoid possible human bias introduced by manual weight
assignment [23], we formulate an optimization problem to
determine the optimal weights by minimizing recommendation
error on training datasets.

3) Optimizing Event Weights: We divide the initial list of
monitored events into 5 groups based on their functionality
and relevance to sensitive resources [4], [20]. Using training
dataset consisted of paths PT , with pre-configured security
rule R̃r for each Pr ∈ PT , we calculate the recommended
rule Rr using (4), and path similarity using (3). We minimize
the overall square error between Rr and pre-configured rule R̃r

by optimizing the weights W, as shown in Equation (5).

minimize
∑

Pr∈PT
ε(Pr ), (5)

subject to ε(Pr ) = |Rr − R̃r |2, 1 �W � 0

Solving the optimization problem (5) serves as a training
stage in SARRE’s Rule Recommender to enable fine-tuning
of the recommendation algorithm to fit each user’s preference
and security expectation. It also allows the recommendation
algorithm to keep improving in an unsupervised fashion as
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Fig. 5. Example consisted of 3 apps to illustrate the Rule Recommender. The end of text in each vertex is the event’s weight.

more knowledge (i.e., security rules and paths) becomes
available on the fly.

4) An Illustration Example: To show more clearly how
quantifying path similarity and recommending security rules
are conducted, we give an illustration here. For the sake of
clarity, we use 3 samples consisted of relatively simple paths
and some irrelevant vertices are left out. Note that this is
only for illustration purpose and SARRE is able to analyze
more complex samples in an unsupervised way, as we will
show later in Section V. We set the number of neighbors
chosen when making recommendation as 1 here instead of 5,
which is commonly adopted in our implementation and given
more discussions in Section V-C. The sample packages’ names
and their event graphs are depicted in Fig. 5. The weights
assigned through optimization formulation (5) are considered
as given here and shown at the end of vertices. Identified paths
are labeled by dotted lines. Package 1 is assigned ‘Social’,
package 2 and 3 are assigned ‘Information Retrieval’ as DF
labels. Suppose P2,1 is the one requires rule recommendation.
First, the packages which share at least one common DF
label with package 2 are chosen (package 3 in this case),
the similarity score between any reference path in the chosen
packages and P2,1 is calculated by Equation (3). The P3,1 is
selected as the 1 nearest neighbor with similarity score 0.6667
to P2,1. The recommended rule for P2,1 is calculated by
Equation (4), which gives result 0.2. Thus, a security action
corresponding to 0.2 is enforced for the information flow on
this event path. Mapping from this number 0.2 to security
action is discussed in the next subsection. Note that, in
real usage scenarios involving many packages and paths, all
calculations are not trivial as current illustration example. Also
note that for a path Pr needs recommendation, even if some
similar paths exist in packages which share no common DF
label with the parent app of Pr , their rules will not serve as
references for recommendation, because of their mismatched
semantic information.

D. Camouflage Engine

For a given security rule Rr (0 ≤ Rr ≤ 1) for path
Pr , an appropriate camouflage action that depends on the
underlying data types is selected to enforce the security rule
and obfuscate information flow at run time. Our Camouflage

Engine defines and enforces three families of camouflage
actions for (1) numerical data, (2) string data, and (3) struc-
tured data.

1) Camouflaging Numerical Data: For numerical data
such as GPS coordinates provided by LocationManager,
we replace the original data X by a noise-corrupted ver-
sion π X + (1− π)Y , where Y is randomly generated noise
and π is a proper obfuscation level determined by the security
rule (e.g., Rr = 0.8 implies location obfuscation at street level,
Rr = 0.2 implies obfuscation at city level). The mapping
between π and security rule Rr is calibrated for each data
source.

2) Camouflaging String Data: For a regular string or static
data such as DeviceID and phone number, we map each
security rule Rr to partial scrambling of certain characters
and digits. For the situations where even partial revelation
causes information leakage (e.g., registered operator name
can be inferred by a few letters of the value returned by
getNetworkOperatorName), we only enforce a binary security
rule Rr ∈ {0, 1}.

3) Camouflaging Structured Data: Some data are accessed
using structures containing multiple data fields. For example,
using the query method to access contacts data, the returned
cursor can be used to access different fields of the entry such
as first name, last name, and email address. We map each
security rule Rr to the obfuscation of certain fields in the
data structure, e.g., only first name is visible when Rr = 0.2,
while first name and email are both shown when Rr = 0.4.
This mapping is defined for different types of structured data.

Note that in the example of Fig. 5, we depict different events
with same API name (e.g. getLine1Number in package 3) as
the same vertex because of space limitation. In reality, we
can further distinguish events with the same API name, but
called in different locations in the application, or with different
parameters, as discussed above in the end of Section IV-A.
In this way, SARRE is able to enforce different rules to the
same type of sensitve data when they are associated with
different event paths or under different contexts. In rare cases,
it is still possible that same type of sensitive data is requested
in the same context and with same set of parameters, but lead
to different event paths and thus are assigned with different
rules. During runtime execution, if such case happens, the most
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Fig. 6. Screenshots of SARRE’s GUI.

strict rule is enforced in our implementation for the sensitive
data on the event path.

4) SARRE’s GUI: SARRE on Android system together with
GUI are shown as Fig. 6. The GUI first shows a list of
apps and their summary of event paths managed by SARRE.
Selecting any app gives users access to its event paths with
current security rules. We map the numerical rules in our
implementation to textual descriptions understandable to users.
Clicking on an event node on a path gives brief description
to the event’s meaning. The interface allows user to overwrite
security rules set by Rule Recommender. Since user inputs
reflect their unique preferences, once a modification is made,
the updated rule and their associated path will be added to
the Reference Rule DB. Rule Recommender will automatically
re-compute security rules of other paths in the system based
on the updated information and inference of user preference
through weight optimization (5).

Such option reserved for users to overwrite recommended
rules aims to give users the flexibility to adjust based on
their personal preferences. However, our system doesn’t rely
on users’ rule configurations to be functional. The Reference
Rule DB in Analysis Server depicted in Fig. 2 is initialized
with a rule database obtained from large training set, which
enables the SARRE system to be fully functional from the
beginning. Existence of noise from users’ configured rules
is a common problem for recommendation-based solutions.
Existing works such as [24] solve this problem by detecting
both noise originated from imperfect users’ configurations
and noise deliberately attempted to bias the recommendation
results from malicious users. Besides, exiting works [25], [26]
demonstrate that a crowdsourcing-based recommendation sys-
tem is effective to benefit the ‘normal’ users from the decisions
made by the ‘expert’ users. Our system design involving a
centralized Analysis Server is easily extensible to leverage
such techniques, which are complementary with our work.

In current implementation, rarely, similar reference paths
may be unavailable for a newly-identified path that needs

rule recommendation. This is recognized as code-start prob-
lem [27], which is common in recommendation systems.
SARRE will select a relatively strict rule for such case, at
the same time, it reserves the options for users to overwrite
the assigned rules through GUI in Fig. 6. Besides, currently we
measure the similarity between event paths strictly based on
the events’ numerical indexes. One way to further reduce the
chance of missing reference paths is to extend the recommen-
dation to be aware of the content of the monitored events. For
example, if one user prefers strict rules on his/her contact list,
it is likely similar preference exists for call log information.
Such content-based approach is proved to be effective in
addressing cold-start problem [27] in movie recommendation
system utilizing cast information of the movies, and we leave
such extension as future work.

V. EVALUATION

In this section, we evaluate SARRE from four perspectives:
(i) the accuracy of path identification, (ii) effectiveness of
recommended rules to meet users’ expectations, (iii) the effec-
tiveness of the enforced rules to prevent information leakage,
and (iv) the runtime system overhead introduced by SARRE.

A. Experimental Setup

1) Test Bed Setup: Our evaluation is on Android devices
Galaxy Nexus, powered with dual-core 1.2GHz cortex-A9
processor, 1GB memory and 16GB storage. We implemented
our design on AOSP (Android Open Source Project) v4.1.2.
We collected and tested 1706 app samples, including
233 working malware samples collected from an online mal-
ware sharing site [21], and the other samples from the top
ranking apps on Google Play spanning multiple categories.

2) Testing Tools: For sample testing, we leverage the auto-
mated testing tool Monkey [28] for the experiments. For each
app, we first use Apktool [29] to extract the package name
and main activity name and input them to Monkey. Monkey
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then launches the app, and continuously generates at least
500 random user events such as clicks, gestures, as well as
system-level events. Although a common problem to dynamic
testing is the difficulty to achieve exhaustive code coverage,
500 of events injection is confirmed in prior work [30] to
provide effective coverage in identifying sensitive behaviors.
Also, we use the same seed number [28] to generate random
events when testing the same app sample for different groups
of experiment.

3) Evaluation Plan: Since no existing benchmarks or auto-
mated tools, to the best of our knowledge, can be used to evalu-
ate runtime event path identification accuracy, we resort to both
manual code review and TaintDroid [3] (a runtime tainting tool
to detect sensitive data leakage) for evaluation of the accuracy
of path identification. Also, there is no existing work capable
of assigning fine-grained rules in the granularity of event path.
To serve as baselines for evaluation of the rule recommenda-
tion effectiveness, two methods are derived from the litera-
ture for comparison with our method: (i) Permission-based
method [23] utilizes permissions requested by apps to score
apps’ security risks. (ii) API call-based method [20], [25]
utilizes runtime behaviors for sample classification and risk
evaluation. Although none of these methods makes a step
to security rule assignment or enforcement, we implement
two recommendation methods based on (i) apps’ permission
requests and (ii) runtime API calls, respectively. To guarantee
fairness, analogical to what we do in our methods, we attach
different weights to permissions or API calls to reflect their
relative importance, we also utilize similar optimization as in
our method to find the optimal weight assignments for these
methods to minimize their errors.

Several feasible ways exist to obtain the DF labels includ-
ing reusing category information provided by app markets,
natural language processing tools such as AutoCog [17] and
WHYPER [19], and even user selections. In current evalu-
ations, for apps collected from Google Play, we reuse the
category information but map apps within several categories
such as Weather and News to the same DF label, which
is Info. (Information Retrieval), because their functionalities
are similar, i.e. to retrieve certain types of information from
the Internet. For other samples, we currently manually assign
one of the following 6 DF labels based on app descriptions:
(1) Games, (2) Info., (3) Social, (4) Communication (abbrevi-
ated as Comm), (5) Tools and (6) Tracking/Maps (abbreviated
as Maps). Extending to more DF labels can be easily achieved.

B. Accuracy of Path Identification

Using the testing methods discussed above, we test all the
1706 app samples, and analyze the results obtained from
Path Identifier. We first show the distribution of number of
paths and length of paths identified for a single sample. As
shown in Fig. 7, the length of paths identified for a single
app ranges from 2 to 7, while the number of paths range
from 1 to 6. Besides, more than 90% of event paths are
longer than 2 events. Investigation of the identified paths shows
that this is because besides of the sensitive data access and
transmission events, our event paths can also capture other

Fig. 7. Cumulative distribution of number of paths and length of paths
identified for a single app.

critical events such as system events that serve as triggers for
an event path. Also, some event paths involve more than one
types of sensitive data, this will happen when sensitive data is
sent in a batched manner such as the fifth example Faketimer
in Table III. For a single app, different event paths can be
associated with the same type of sensitive data, but triggered
by different events in different locations of the source code,
or triggered with different parameters. Such information is
captured by Event Monitor of SARRE and facilitates context-
aware rule enforcement.

Next, we evaluate the accuracy of identified event paths. We
conduct two set of experiments: (i) We manually review the
code of randomly selected 13 malware samples and 10 popular
apps from Google Play. We test the accuracy of Path Identifier
by comparing the identified paths with code review results.
We verify whether the paths identified by our system are true
paths existed in the apps, also whether all the critical paths in
the apps are correctly identified or not. (ii) We test the whole
corpus of 1706 samples, including 233 malware samples on
devices configured with TaintDroid [3], and verify the sensitive
information flows associated with our identified event paths
with the results obtained from TaintDroid.

In the first experiment, the code review and experiments
with our system are carried out by two different groups of
researchers independently. One group summarizes the results
outputted by our Path Identifier, while the other group searches
for critical event paths only by reviewing the packages’ source
code. No results are exchanged until the final phrase, when the
results from two groups are compared. We believe such isola-
tion ensures the evaluation’s objectiveness. The results show
that 43 information flow paths are identified by Path Identifier,
while code review of these samples gives 42 information flow
paths. Comparison of these two set of results shows that among
42 paths given by code review, 40 of them are covered by those
identified by Path Identifier. Among the 43 paths identified
by Path Identifier, only 3 of them cannot be verified by code
review. The summary of sample paths and the explanations
of accuracy evaluation based on code review are listed in the
second and third columns in Table III, respectively.

As noted in [3], TaintDroid does not support apps which
include native libraries and there is a growth in the number
of apps relying on native libraries. Although the ratio of apps
included a .so file is as low as 5% in 2010, we find it reaches
53.75% based on analysis of the 1706 samples we collected.
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TABLE III

SAMPLE PATHS IDENTIFIED (FIRST 13 SAMPLES ARE MALWARE AND OTHERS ARE FROM GOOGLE PLAY)

As a result, 789 of app samples are supported by TaintDroid
including 197 malware samples. The apps collected from
Google Play supported by TaintDroid include 131 Information
Retrieval apps, 40 Games, 57 Communication apps, 57 Social
apps, 265 Tools, 53 Tracking/Maps apps. Comparing the
results obtained by Event Identifier of SARRE and TaintDroid,
in most cases, the information flows identified by SARRE
match those leakage alerts given by TaintDroid. For each
category, we plot the number of matched event paths between
TaintDroid and SARRE and those identified by SARRE or
TaintDroid only in Fig. 8. We use the results of TaintDroid
as TP (True Positive), those information flows identified by
SARRE but not verified by TaintDroid’s results as FP (False
Positive), and those alerted by TaintDroid but not reported by
SARRE as FN (False Negative). Calculating the evaluation
metrics Precision = T P

T P+F P and Recall = T P
T P+F N , our

method overall achieves 93.8% Precision and 96.4% Recall.

C. Effectiveness of Rule Recommendation and Enforcement

From the app samples tested, we randomly choose
67 benign samples and 8 malware samples to build our testing
set, while the rest as training set. This size is chosen because
numbers of apps used by general users normally range from
10 to 90 [31]. Before evaluation, we assign one of the six DF

Fig. 8. Results comparisons of information flows by SARRE with leakage
alerts by TaintDroid.

labels to each sample, and pre-configure the rules (within
range [0, 1]) for all paths from a user’s perspective. We
use MAE (Mean Absolute Error), a widely used accuracy
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Fig. 9. Variations of our method’s MAE between recommended rules and
pre-configured rules, when K is increased from 1 to 20.

Fig. 10. Comparisons of our method’s MAE with two other methods for
each testing set.

evaluation metric [14], [32] for recommendation systems. The
MAE is calculated by averaging the accumulated absolute
difference between pre-configured and recommended rules
over all testing paths.

1) How Many Neighbors Are Enough?: With the number
of nearest neighbor K increases from 1 to 20, we evaluate
the MAE between recommended and pre-configured rules, as
depicted in Fig. 9. When K is smaller than 5, accuracy is
improved as increasing number of reference paths become
available, however, when K is larger than 8, more noise is
introduced by reference paths which are less similar to the
path that requires rule recommendation. Similar shape of error
has also been observed by former work of neighbor-based
prediction [14], [32]. In our work, we fix the K as 5.

2) How Accurate Is the Rule Recommendation?: To eval-
uate SARRE’s Rule Recommender against the two methods
we discussed in Section V-A, we plot the MAE comparison
for each testing set consisted of apps with the same DF
label, as seen in Fig. 10. The MAE measures how effective

Fig. 11. Tracks when different rules are enforced (left: ‘1’ is enforced, the
track is accurate, right: ‘0.4’ is enforced, the track is with noise).

the method is to make recommendations to meet the users’
expectations of security rule assignment. We can see in each
scenario, our recommendation method in SARRE outperforms
the methods based on static requested permissions or runtime
API call statistics. The evaluation result demonstrates the
necessity of event paths and semantics-awareness in security
rule recommendation.

3) How Effective Is the Rule Enforcement?: We illustrate
the effectiveness of the rule enforcement by two examples we
introduced as motivational examples in Section II.

a) My tracks [15]: Since malware normally doesn’t
present harvested data when stealthily eavesdropping on users’
location, we use a tracking app My Tracks to emulate malware
by intentionally replacing its actual DF label ‘Tracking/Maps’
by ‘Games’. We choose a tracking app because it has a UI
showing GPS coordinates update and makes it convenient to
compare the data when different rules are enforced. An event
path identified for My Tracks involving location data is written
in an abbreviated manner, as follows:

GPS updated→ getLocation→ Socket.getOutputStream
→ Socket.connect

The recommended rule for this path, after rounding up to dis-
crete level is 0.4, which means a security action corresponding
to 0.4 needs to be applied when it shows up in a game app.
When we replace the true DF label ‘Tracking/Maps’ back
to this app, the rule recommended and enforced is 1, which
means such an event path in a ‘Tracking/Maps’ app should be
left intact. The tracks with rules 1 and 0.4 enforced are shown
in Fig. 11. Malware such as Nickispy [16] and Faketimer
eavesdropping users’ location exhibit similar event paths as
the event path above, and after rule enforcement the location
data sent should be similar to the right one in Fig. 11.

b) Love chat [18]: This malware with package name
com.yxx.jiejie doesn’t show an UI. It has an event path
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Fig. 12. Contacts data on the phone (left) and data sent by malware Love
Chat when rule ‘1’ (upper right) or ‘0.2’ (lower right) is enforced.

identified as follows, in which data is accessed, stored locally
and sent out by network socket.

getLine1Number→ getDeviceId → query(contacts)→
io.FileOutputStream→ Socket.getOutputStream

Based on this sample’s declared functionality, we attach
‘Communication’ as its DF label. The recommended rule by
our Rule Recommender for this path is 0.2. With examination
of the Reference Rule DB, we see that although this malware
is disguised as a ‘Communication’ app, it doesn’t get a rule
with large number, because paths similar to the above path are
popular among privacy-stealing malware, but not ‘Communi-
cation’ apps. This makes sense and shows the necessity to use
event path as reference for rule recommendation. Since this
app sends harvested information on the background, to see the
enforcement effect, we redirect its sent packets to a server we
deployed. We input some made-up contacts data on the phone
as shown in Fig. 12 (left). The contents in the files it sent to
the emulated server before and after rule enforcement are also
shown in the figure (right). We can see the effectiveness of the
rule enforcement by hiding contacts’ first names, scrabbling
some digits in the phone numbers.

D. System Performance Evaluation

To measure SARRE’s overhead on real devices, similar
to the approach used in prior works [6], [33], we use a
popular Android system benchmark softweg [34]. We ran
softweg 20 times on devices installed with AOSP (Android
Open Source Project), and AOSP with SARRE implemented.
The performance differences are listed in Table IV. ‘SD’ and
‘RSD’ refer to scores’ standard deviation and relative standard
deviation.

The ‘mean’ for micro-benchmarks of creating and delet-
ing empty files represents time consumed (the lower, the
better), while all other metrics represent scores (the higher, the
better). SARRE implementation has no direct effects on graph-
ics performance, and the total graphics overhead measured
with transparent and opaque image overlays is only 0.02%.

TABLE IV

SARRE PERFORMANCE EVALUATION

For CPU performance, in total only 0.92% overheads are intro-
duced by SARRE. The CPU overhead are evaluated in terms of
various operations, such as mwips dp and mwips sp (Millions
of Whetstone Instructions Per Second Double Precision and
Single Precision). Note that for micro-benchmarks opacity
graphics, mwips sp and vax mips sp, the overheads measured
are negative, but their absolute values are much smaller
compared with the RSD of the 20 times of experiments.
They are considered as not significant, and originates from
experiment variance, rather than performance improvements
introduced by SARRE. Such variances are observed in related
work [6] using the same set of benchmarks. For memory, the
overhead is 9.42%, which is also acceptable. For file system
I/Os, SARRE seems to introduce 13.50% overhead, which is
mostly due to the ‘creating 1000 empty files’ and ‘creating
250 empty files’ benchmarks, where overheads are 184.41%
and 79.26%. However, continuously creating such a large
number of files without other operations is rare in real usage
scenarios, the latency will be amortized over time and should
exhibit smaller impact on users’ phones. Also note that in our
current evaluation, file encryption and transmission happens in
every 10 minutes. In real cases, users normally interact with
the apps and generate log files in much lower density [31].
We foresee simple optimization works such as transmission
scheduling can further reduce the overhead.

VI. RELATED WORK

A. Information Flow Analysis

Prior work detects information leakage based on flow track-
ing [3], statistical analysis on source and sink data similar-
ity [35], static code analysis [11], combination of code analysis
and runtime event tracking [36]. Apart from identifying data
source and sink pairs as these methods do, our method
also builds the full scenarios of the event paths including
triggering events, and gives a runtime solution to take finer-
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grained security actions taming information leakage. Another
direction of work related to our recommendation system is
the detection of unjustified information transmission based on
user inputs [37], user intents [38], system state changes [39],
or peer voting [40]. However, these works serve different
goals such as malware detection [37], assistive or automatic
analysis [38]–[40]. Our work makes a step to runtime rule
assignment to each extracted path.

B. Runtime Testing and Monitoring

Runtime app testing techniques are proposed to analyze
permission leaks [41], [42]. AppsPlayground [43] uses both
fuzzing and tainting methods. DroidScope [33] utilizes binary
instrumentation for runtime testing. While these works provide
efficient ways for app analysis, they normally pay limited
attentions to automatic analysis and utilization of testing
results. They complements SARRE in that these works enable
us to fully test more apps. On the other hand, SARRE
extends runtime monitoring to automatic rule assignment and
enforcement after testing results become available.

C. Malware Detection

Malware detection has been extensively studied employing
features like permissions [23], API calls [20], [25], API
dependency graph [44], behavioral graph [45] or combination
of several features [46]. Because of space limitation, we are not
able to list all prior works. SARRE serves a goal orthogonal
to malware detection and it applies to not only malware, but
all apps in Android system.

D. Security Enhancement

Static code analysis methods [10], [11] for automated
security specification inference are not applicable to Android
apps, which are developed with extensive code encryp-
tion, obfuscation and dynamically loaded code. Our work is
complementary with prior work on contextual access con-
trol such as Pegasus [47], SE Android [6], SEACAT [5],
MobileIFC [48] and ConUCON [49], data obfuscation tech-
niques in MockDroid [8], TISSA [9], security profiles enforce-
ment and switching in MOSES [50], context-related policy
enforcement in CRêPE [51], and fine-grained sensor manage-
ment in SemaDroid [52]. Most of these works heavily rely on
developers or users for convoluted rule configurations, which
can be mitigated by our rule recommendation system. On the
other hand, these works can help to conveniently broaden
mediated resource list in our work with their policy language
support or resource management techniques.

We have presented some preliminary ideas of rule recom-
mendation and enforcement as well as two proof-of-concept
case studies in a previous poster [53]. However, this journal
submission includes substantial new contents: details about
system design, algorithms on event path identification and
rule recommendation based on path similarity measurement,
complete system implementation, and new experiment results
including evaluation of path identification accuracy and rule
recommendation effectiveness, quantitative comparisons with
other approaches and evaluation of system performance over-
head.

VII. CONCLUSION AND FUTURE WORK

We propose SARRE, a novel solution to provide fine-
grained, semantics-aware protection over users’ private data.
SARRE leverages statistical analysis and a novel application
of minimum path cover algorithm to identify system run-
time event paths. Then it automatically generates security
rules for information flows on different paths based on both
known rules of similar paths and semantic information. The
SARRE system is prototyped on Android devices and eval-
uated with 1473 popular apps from Google Play spanning
multiple categories, and 233 real-world malware samples. The
results show that SARRE overall achieves 93.8% precision
and 96.4% recall in identifying the event paths, and also
the average relative error between rule recommendation and
manual configuration is less than 5%, validating the effective-
ness of automatic rule recommendation. A camouflage engine
implemented to enforce the recommended rules demonstrates
SARRE is effective to provide the fine-grained protection over
private data with low performance overhead.

Future Work: Although SARRE is transparent to the
installed apps in the system, it is possible for a determined
attacker to detect the existence of SARRE and launch specially
designed attack procedures to evade SARRE. New hardware-
based techniques such as TrustZone adopted by existing
work [54] can be used to protect critical system services from
determined attackers. It is possible to implement SARRE in
this way to further protect SARRE itself.

To evade detection, malware may store the harvested data in
memory or file system, and later send the data using network
sockets. Although in all the samples we tested, such behaviors
are captured by SARRE, it is possible that if the malware
intentionally prolong the delay to very long time, there is
a chance for SARRE to miss such a link. This problem
is solvable by adopting a lightweight version of file opera-
tion correlation technique [55] to further link the disjointed
two paths to become one event path. For our purpose, it is
effective enough to only analyze those files involved in the
event paths identified by SARRE, hence, the extra overhead
is expected to be much lower than 9%, as reported in [55].
We leave such extension as future work.
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