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Abstract. A key objective of a pervasive system is to reduce the user’s 
administrative overheads and assist the user by acting proactively on his/her 
behalf. The aim of this paper is to present some aspects of how proactivity is 
handled in the approaches used in two different pervasive systems. The 
Daidalos system provides proactive behaviour based on the assumption that the 
user is responsible for requesting services and that proactivity is restricted to 
selecting and personalising these based on the user’s preferences. The Persist 
system uses an extension of this approach combined with an analysis of user 
intent. The idea behind the latter is that, if the system knows what the user will 
do next, it can act on the user’s behalf, initiating the actions that the user would 
normally perform. User intent predictions and those produced by the user 
preferences are used to determine the final action to be taken.  
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1   Introduction 

Pervasive computing [1, 2] is concerned with the situation where the environment 
around a user is filled with devices, networks and applications, all seamlessly 
integrated. As developments in communications and in sensor technologies are 
accompanied by a large expansion in services available, the result will soon become 
unmanageable and it is this problem that pervasive computing seeks to address by 
developing an intelligent environment to control and manage this situation [2]. 

To hide the complexity of the underlying system from the user, the system needs to 
take many decisions on behalf of the user. This can only be done if it knows what the 
user would prefer, i.e. it maintains a knowledge base that captures user preferences 
for each user and uses these to personalize the decision making processes within the 
pervasive system. This may be further enhanced with mechanisms for determining 
user intent and predicting user behaviour. Without this it is difficult for a pervasive 
system to identify accurately what actions will help rather than hinder the user.  This 
is one of the major assumptions underpinning most pervasive system developments. 

In tackling the problem of developing ubiquitous and pervasive systems over the 
past decade, different research projects have adopted different assumptions and 



explored different approaches. As a result one class of system to emerge is that of the 
fixed smart space. This is generally focused on intelligent buildings – systems geared 
towards enhancing a fixed space to enable it to provide intelligent features that adapt 
to the needs of the user. On the other hand there are also systems that are focused on 
the mobile user, where the requirement is for access to devices and services in the 
user’s environment wherever he/she may be. A number of prototype 
ubiquitous/pervasive systems have been emerging in recent years.  Examples include 
[3 – 9]. Another example was the Daidalos project [10]. 

A novel approach that is currently being investigated in the research project, 
Persist, is that of the Personal Smart Space (PSS). The latter is defined by a set of 
services that are located within a dynamic space of connectable devices, and owned, 
controlled or administered by a single user or organisation. This concept has the 
advantage that it provides the benefits of both fixed smart spaces and mobile 
pervasive systems. 

This paper is concerned with the problem of handling proactivity in a pervasive 
system and it describes the approach used in the Daidalos platform and compares it 
with that being developed for the Persist system. The former is based purely on user 
preferences whereas the latter uses a combination of user intent predictions and user 
preferences to provide input to decisions on proactivity.  By incorporating user intent 
predictions, the system can identify situations that will require it to perform 
operations well in advance, thereby further reducing user involvement and enhancing 
user experience. 

The remainder of this paper is structured as follows. The next section looks at 
related work on proactivity in pervasive systems.  Section 3 introduces the Daidalos 
and Persist systems.  Section 4 describes the approaches used in these two systems.  
Section 5 concludes and details future work.  

2   Related Work 

One of the major assumptions of pervasive systems is that they are adaptive to the 
needs of the individual user and able to personalise their behaviour to meet the needs 
of different users in different contexts. To do this such a system must retain 
knowledge about the user’s preferences and behaviour patterns in an appropriate form 
and apply this in some way. This may be done proactively by identifying what actions 
the user might wish to take and performing these actions on the user’s behalf.  

Research on the development of fixed smart spaces identified the need for some 
form of proactivity from the outset. This was true both for smart homes (e.g. 
Intelligent Home [3], MavHome [4]) and smart office applications (e.g. Gaia[5], i-
Room [6]). As interest extended to mobile users, nomadic applications such as 
Cooltown [7] used similar technologies. 

Initial systems were based on the use of user preferences that were entered 
manually by the user. However, building up preferences manually is an arduous 
undertaking and experience has shown that the user soon loses interest and the 
resulting preference sets are incomplete and not very useful. In the case of the Aura 
project [8] manual input from the user was taken a step further when user intent was 



incorporated into the process of determining when to perform a proactive action and 
what action to carry out, as the user was required to provide not only user preferences 
but also information such as the user’s current task. 

As a result systems sought alternative approaches to creating and maintaining user 
preferences automatically. This inevitably involved some form of monitoring of the 
user’s behaviour followed by some form of learning applied to the accumulated data. 
This approach was adopted in both fixed smart space developments (such as the 
MavHome [4] project) as well as mobile applications, e.g. Specter [9]. Another 
approach using Bayesian networks or Hidden Markov Models rather than rule based 
preferences to capture user behaviour and represent user needs was adopted by the 
Synapse project [10], which matches the context and current user task against past 
learnt patterns to select the most appropriate service for the user. Another system that 
uses context history for progressively learning patterns of user behaviour in an office 
environment is described by Byun et al [11],  

3   Architectures of Daidalos and Persist Pervasive Systems 

 

Fig. 1. Architecture of Daidalos Pervasive Services Platform. 

The Daidalos project [12] developed a pervasive system based on the mobile user. 
The Pervasive System Platform (illustrated in Fig. 1) includes a personalisation and 
preference management subsystem (including learning) which implicitly gathers and 
manages a set of preferences for the user by monitoring user behaviour and extracting 
preferences from the monitored user behaviour history.  This pervasive system was 
successfully demonstrated in December 2008. The main focus of the personalisation 
subsystem was to help in the selection and personalisation of services. By so doing 
the system was able to personalise the user’s environment in an unobtrusive and 
beneficial way (based on previous user behaviour).  



The Persist project is another European research project which started in April 
2008.  It aims to create a rather different form of pervasive system based on the notion 
of a Personal Smart Space (PSS) [13]. A PSS is defined by a set of services that are 
running or available within a dynamic space of connectable devices where the set of 
services and devices are owned, controlled, or administered by a single user or 
organisation. In particular, a PSS has a number of important characteristics. 

• The set of devices and services that make up the PSS have a single owner, 
whether this is a person or an organisation.  

• A PSS may be mobile or fixed.  
• A PSS must be able to interact with other PSSs (fixed or mobile). To do this 

a PSS must support an ad-hoc network environment.  
• It must be able to adapt to different situations depending on the context and 

user preferences.  
• It must also be self-improving and able to learn from monitoring the user to 

identify trends, and infer conditions when user behaviour or preferences 
change.  

• Finally it must be capable of anticipating future needs and acting proactively 
to support the user. 

The architecture of a PSS in Persist is shown in Fig. 2. 

Fig. 2. The high level architecture of a Personal Smart Space 
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4   Approaches to Proactivity 

This section describes two slightly different approaches used to handle proactivity in 
the Daidalos and Persist projects. 

4.1   Proactivity in Daidalos 

Proactivity in Daidalos is based on the assumption that the user will always initiate 
services and, where necessary, terminate them. Thus if a user wanted some service 
type, he/she would request this via a high-level GUI. However, because of the 
potentially wide range of services that may be selected to satisfy the user’s request 
(which may, in turn, depend on a choice of devices and/or networks available), user 
preferences are used to help make this selection. 

For example, if the user requests a news service, this request could be satisfied in a 
variety of ways. If the user is in his/her living room at home, the most obvious way to 
provide this might be by selecting an appropriate channel on the television set. If the 
user is at work, the best option might be to connect to a Web-based news service 
through the user’s work PC. If the user is walking around town at the time of the 
request, the best option might be to connect to a phone-based service through his/her 
mobile phone. In all cases context-aware user preferences are used to select the most 
appropriate service to satisfy the high-level request. 

Once a service has been selected, user preferences are used to customize it to meet 
the user’s needs. For example, different levels of service may be available (Gold, 
silver, bronze) and depending on whether the user is using the service from work or 
from home, a different level may be chosen. The Quality of Service (QoS) acceptable 
in a communications service (e.g. VoIP) may depend on the user’s context. Even the 
Digital Personal Identifier (DPI) that the user uses to identify him/herself to the 
service may be different in different contexts. 

However, the role of user preferences does not end here. Once a service has been 
selected and customized, it will continue to execute until terminated. But while it is 
executing, conditions may change which cause the original selection to be no longer 
optimal in terms of user preferences. In Daidalos when a set of preferences is used to 
make a selection (service, device, network, etc.) or customize a service, the context 
conditions are stored. The Personalisation subsystem then registers with the Context 
Manager to be notified of any context changes that might affect these decisions. As 
long as the service continues to run, the system monitors the context of the user, and 
reacts to changes accordingly. Where this involves a change of service, the service is 
dynamically re-composed to change the preferred service. 

By way of illustration, consider a university lecturer, Maria, going to give a 
lecture. She has with her a mobile phone and her PDA. When she enters the lecture 
room, the system automatically switches the ring tone of her phone to mute. Before 
entering the lecture room, she requests her slide presentation for the class. The 
appropriate service is selected, composed and started on her PDA. However, once 
inside the lecture room, as she approaches the front, the system discovers the large 
screen at the front of the lecture room and recomposes the service to use the large 
screen display. The first action is an example of changing the customisation in 



accordance with the preferences as the context of the user changes. The second is an 
example of reselection and re-composition of a service due to a change in context. 

This form of proactivity is restricted in that it only applies to services initiated by 
the user. On the other hand it is sufficiently powerful to adapt the services either 
through parameters passed to the service affecting the way in which they are 
customised or through selection of an alternative service and re-composition to use 
this preferred service. 

To assist the user in building up and maintaining their user preferences, several 
techniques are employed. These include: 

(1) A user-friendly GUI is used to set up preferences manually. 
(2) A set of stereotypes enables one to select an initial set of preferences. 
(3) The user’s actions are monitored and incremental learning employed to 

discover new preferences or refine existing ones. 
(4) An offline data mining approach is used to analyse larger quantities of history 

data on user’s actions and context. 
 
 

 

Fig. 3. Components of the Daidalos Pervasive Services Platform required for proactivity 

As shown in Fig. 3, the Preference Management component includes the 
functionality that allows a preference to be created, stored, retrieved, merged with 
existing preferences, monitored and evaluated against current values of certain 



context attributes and current status of services. When a service is executed, any 
preference that affects the status of the service or a personalisable parameter of that 
service is an active preference. For each such active preference the Context 
Monitoring component registers for changes in specific context attributes affecting it. 
When a context event is fired from the Context Event Management, Context 
Monitoring is triggered to request the evaluation of these preferences by Preference 
Monitoring which cross-references the context condition with the preferences to 
locate all the active preferences affected by the change. The same process is 
performed by Service Monitoring which receives events from the Service 
Management component. If the status of a service changes, two tasks have to be 
performed. The first is to check whether this change affects any of the currently active 
preferences and order a re-evaluation of them. The second is to load or unload the 
conditions and preferences from the monitoring components if a service starts or stops 
accordingly and register or unregister for events that affect the service that started or 
stopped. 

 

4.2   Proactivity in Persist 

The Persist system is following a more general approach to proactivity, which extends 
that used in Daidalos. The most important aspect of this involves supplementing the 
Preference subsystem with a User Intent subsystem. These two separate subsystems 
drive the proactivity mechanism. 

As far as the Preference subsystem is concerned, as in Daidalos the system is 
responsible for creating and maintaining the set of user preferences for a user. It does 
so by monitoring the actions taken by the user and the context in which they occur, 
and building up a history of (context, action) tuples. The snapshot of context selected 
consists of a number of context attributes, such as the user’s location, the type and 
name of the service the user is currently interacting with, other services currently 
running in the PSS, etc. The final choice of attributes is critical to the success of both 
this and the User Intent subsystem. By applying learning algorithms to this the system 
can identify recurring situations and from this extract user preferences. These 
essentially have the form: 

if <condition> do <action> 
Thus if the system identifies through monitoring of the user’s actions that the user 
always starts a particular service in a particular context, then it can set up a preference 
that will start the service for the user when that context arises. A preference might be 
reactive in that it responds to a user action as in the case of the previous example 
where whenever the user requests a news service, if the user is at home the system 
selects the television set. Alternatively it may be proactive, and initiate an action on 
the user’s behalf when a particular context arises. For example, suppose that 
whenever the user arrives home after work in the winter, he/she switches up the 
temperature on the central heating. If the learning system identifies this, a preference 
rule could be set up to initiate this automatically for the user.  

Unfortunately things are not quite as simple as this. When a recurring situation is 
identified, the action associated with the context condition may not always be 



performed. Equally, a preference may not have been used for a while and may have 
become out of date, eventually to be replaced by newer ones. To take account of these 
situations, the system maintains a set of attributes associated with each preference. 
These include a certainty factor representing the probability that this action is 
performed when the condition is satisfied, and a recency factor representing the date 
when this preference was last applied. 

The second component responsible for driving the proactivity mechanism is the 
User Intent subsystem. This is similar to user preferences but in this case the aim is to 
look ahead and predict future actions based on past patterns of actions. The distinction 
between the two subsystems lies in the immediacy of the actions. User preferences are 
an immediate mechanism in that when a particular context condition arises, a 
corresponding action is taken. User intent is concerned with sequences of actions 
leading to a consequence at some later time in the future. Fig. 4 illustrates the main 
components of the PSS Framework for dealing with proactivity in a PSS. 

 
 

 

Fig. 4. Components of the PSS Framework for dealing with proactivity 

To illustrate the idea behind user intent, consider the previous example of 
switching up the heating when the user arrives home after work in the winter. 
Suppose that the system recognises a pattern in the user’s behaviour that starts with 



the user switching off his/her office computer at a time after 17.00. This may be 
followed by switching off the lights, exiting the building, starting the car, etc.  If the 
system identifies that this pattern of actions always leads to the heating being 
switched on, it could store this as a user intent pattern. Thereafter whenever the 
system recognizes that the user is performing this sequence of actions, the resulting 
action can be carried out – in this case, it could send a message to trigger the user’s 
heating system so that the house is at the required temperature for the user’s arrival. 

Hence the User Intent subsystem is responsible for the discovery and management 
of models of the user’s behaviour. This is based on the actions performed by the user 
(in terms of interaction with services – starting a service, stopping a service, changing 
parameters that control the service, etc.), and tasks, where  a task is a sequence of 
actions.  In contrast to a user preference which specifies a single action to perform 
when a context situation is met, user intent may specify a sequence of actions to 
perform based on past and current user behaviour.  This complements user 
preferences by predicting proactive actions in the future. 

The User Intent subsystem consists of three main components: 
(1)  The User Intent Manager is responsible for overall control within the 

subsystem. 
(2) The Discovery component is responsible for creating and maintaining the Task 

Model. This consists basically of the set of actions that make up each task and the 
probability of performing some particular action a after some other action b, or some 
particular task t after some other task u. Hence this captures the sequences of actions 
that a user might perform in the future based on past actions and contexts. To do so it 
needs to analyse the history of user actions and associated contexts and identify 
patterns in the sequences of actions that the user performs that can be classified as 
tasks. This history is the same set of (context, action) tuples used by the Preference 
subsystem. The tasks identified are represented in the Task Model. This construct is 
then passed to the Prediction component. 

The Discovery component is invoked by the User Intent Manager from time to 
time to perform a new discovery cycle. The frequency with which this occurs is under 
the control of the system administrator. Typical factors that can be used to control this 
are: 

• Time since last cycle. 
• Number of actions executed since last cycle. 
• Success rate judged by feedback mechanism. 

The process used to create this Task Model is described in more detail in [14]. An 
illustration of the Task Model is given in Fig. 5 



 
 

 

 

 

 

 

 

 

Fig. 5. Example of Task Model (from [14]) 

(3) The Prediction component is responsible for mapping the user’s actions and 
associated context against the Task Model to identify potential tasks that the user 
might be engaged in, and once this is established with sufficient confidence, to infer 
any future action or actions that the user might be intending to perform. The result is 
passed to the Proactivity subsystem.  

The Proactivity subsystem receives input from both the User Preference subsystem 
and the User Intent subsystem regarding the proactive actions recommended to be 
taken by the Proactivity subsystem. These inputs are passed to the Decision Maker 
component. As long as there is no conflict between these, the Decision Maker will 
trigger the Decision Implementer to initiate the recommended action. In doing so it 
also notifies the user and provides a means for the user to intervene if necessary and 
stop the action from proceeding. Whether the user does so or not, the Proactivity 
component informs the appropriate subsystem (Preference or User Intent) as to the 
user’s acceptance or otherwise of the action concerned. This provides a useful 
feedback mechanism for updating the attributes associated with preferences and tasks. 
In the User Intent subsystem this is dealt with by the Feedback Manager. 

However, the presence of two separate components (User Intent and User 
Preference Management) that can each provide predictions on future user behaviour, 
can lead to conflicting actions or actions that can cancel each other. Thus to assist the 
Proactivity subsystem in deciding how to respond to proactive action predictions, 
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Action 
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associated with each such prediction there is a degree of certainty. The Decision 
Maker uses this to ensure that the confidence of any prediction is high enough to 
implement. Where more than one action has been proposed, this can be used as a filter 
to remove any action for which the confidence level is too low. 

The problem arises when there is a conflict between the actions requested by the 
two (User Intent and the User Preference Management components) which cannot be 
resolved by this simple filtering. This is referred to a separate component in the 
Proactivity subsystem responsible for Conflict Resolution. In such a case, the latter 
component uses a conflict resolution algorithm to determine what, if any, action 
should be taken. If the conflict resolution algorithm is unable to resolve the conflict, 
the user is prompted to provide an answer using the Feedback Manager. The user’s 
input is then implemented and the User Intent and the User Preference Management 
components are informed of the success or failure of their predictions. 

5   Conclusion and Future Work 

This paper is concerned with the way in which proactivity may be handled in a 
pervasive system. It focuses on two separate pervasive systems: 
- Daidalos: developed a pervasive system for mobile users based on an infrastructure 
that supports the provision of a wide range of personalized context aware services in a 
way that is easy for the end-user to manage and use. 
- Persist: is developing a pervasive system based on the notion of a Personal Smart 
Space (PSS), which does not depend on access to complex infrastructure and can 
function independently wherever the user may be. 

The Daidalos system uses a simple approach based on user preferences that can 
react to changes in the user’s context to alter the customisation of a service or 
dynamically re-select and recompose a service if a change in user context needs this. 

The Persist system extends this idea by including the ability to perform any user 
action. This includes the ability to start and stop services. This system also includes a 
user intent subsystem, based on a task model consisting of sequences of user actions 
and associated contexts. These two sources of proactive information are fed into the 
Proactivity subsystem, which determines when to perform an action on behalf of the 
user and what action is required. 

A number of open issues still need to be tackled in this subsystem. These include 
the pattern discovery algorithm(s) to be used in task discovery. The issue of 
associating context with the actions and task discovered also needs further research. 
Work is also required on the format in which the discovered task model is stored as 
storing it as a graph with the associated context information rapidly becomes a 
problem for a mobile device with limited memory capabilities. Another possibility 
which could be of benefit is to use a priori knowledge of tasks, defined explicitly by 
the user or based on tasks performed by other users, to create or build up the Task 
Model. Such tasks could improve the accuracy of User Intent predictions at an early 
stage of system usage when there is insufficient history to create an accurate model. 
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