Two Approachesto Handling Proactivity in Pervasive
Systems

Elizabeth Papadopoulgurussuf Abu ShaabdnSarah Gallaché&rNick Taylof
and M. Howard William$

1 School of Maths and Computer Sciences, Heriot-Waiversity, Riccarton, Edinburgh,
EH14 4AS, UK
{E.Papadopoulou, ya37, S.Gallacher, N.K.TayMrH.Williams}@hw.ac.uk

Abstract. A key objective of a pervasive system is to redtite user’s
administrative overheads and assist the user bggaproactively on his/her
behalf. The aim of this paper is to present sonpees of how proactivity is
handled in the approaches used in two differenivgsive systems. The
Daidalos system provides proactive behaviour basetthe assumption that the
user is responsible for requesting services antd gtaactivity is restricted to
selecting and personalising these based on thé yseferences. The Persist
system uses an extension of this approach combiitbdan analysis of user
intent. The idea behind the latter is that, if fystem knows what the user will
do next, it can act on the user’s behalf, initigtihe actions that the user would
normally perform. User intent predictions and thgseduced by the user
preferences are used to determine the final atbide taken.

Keywords: Pervasive computing, Proactivity, User Preferendasy Intent.

1 Introduction

Pervasive computing [1, 2] is concerned with theadion where the environment
around a user is filled with devices, networks amplications, all seamlessly
integrated. As developments in communications amdsensor technologies are
accompanied by a large expansion in services dkajléhe result will soon become
unmanageable and it is this problem that pervasoraputing seeks to address by
developing an intelligent environment to controlananage this situation [2].

To hide the complexity of the underlying systenmirthe user, the system needs to
take many decisions on behalf of the user. Thisardy be done if it knows what the
user would prefer, i.e. it maintains a knowledgeebthat captures user preferences
for each user and uses these to personalize th&aemaking processes within the
pervasive system. This may be further enhanced mitchanisms for determining
user intent and predicting user behaviour. Withig it is difficult for a pervasive
system to identify accurately what actions willhehther than hinder the user. This
is one of the major assumptions underpinning mestgsive system developments.

In tackling the problem of developing ubiquitouddgrervasive systems over the
past decade, different research projects have edogifferent assumptions and

explored different approaches. As a result onesadsystem to emerge is that of the
fixed smart space. This is generally focused oelligent buildings — systems geared
towards enhancing a fixed space to enable it teigecintelligent features that adapt
to the needs of the user. On the other hand threralso systems that are focused on
the mobile user, where the requirement is for actesdevices and services in the
user's environment wherever he/she may be. A numioér prototype
ubiquitous/pervasive systems have been emergingcient years. Examples include
[3 — 9]. Another example was the Daidalos projé6f[

A novel approach that is currently being investgain the research project,
Persist, is that of the Personal Smart Space (PB®).latter is defined by a set of
services that are located within a dynamic spaceoohectable devices, and owned,
controlled or administered by a single user or oiggtion. This concept has the
advantage that it provides the benefits of botredixsmart spaces and mobile
pervasive systems.

This paper is concerned with the problem of hamdfnoactivity in a pervasive
system and it describes the approach used in ti#aDa platform and compares it
with that being developed for the Persist systehe former is based purely on user
preferences whereas the latter uses a combinatiasen intent predictions and user
preferences to provide input to decisions on preigt By incorporating user intent
predictions, the system can identify situationst tkall require it to perform
operations well in advance, thereby further redyiciser involvement and enhancing
user experience.

The remainder of this paper is structured as faloWhe next section looks at
related work on proactivity in pervasive systengection 3 introduces the Daidalos
and Persist systems. Section 4 describes the agps used in these two systems.
Section 5 concludes and details future work.

2 Related Work

One of the major assumptions of pervasive systanbat they are adaptive to the
needs of the individual user and able to persaomdlfieir behaviour to meet the needs
of different users in different contexts. To dosttBuch a system must retain
knowledge about the user’s preferences and behapaiterns in an appropriate form
and apply this in some way. This may be done pieagtby identifying what actions
the user might wish to take and performing thesieag on the user’s behalf.

Research on the development of fixed smart spatatified the need for some
form of proactivity from the outset. This was trbeth for smart homes (e.g.
Intelligent Home [3], MavHome [4]) and smart offie@plications (e.g. Gaia[5], i-
Room [6]). As interest extended to mobile usersmadic applications such as
Cooltown [7] used similar technologies.

Initial systems were based on the use of user mmedes that were entered
manually by the user. However, building up prefee=n manually is an arduous
undertaking and experience has shown that the smen loses interest and the
resulting preference sets are incomplete and ngt weeful. In the case of the Aura
project [8] manual input from the user was takestegp further when user intent was

incorporated into the process of determining wrepdrform a proactive action and
what action to carry out, as the user was requgatovide not only user preferences
but also information such as the user’s currerit tas

As a result systems sought alternative approachesetiting and maintaining user
preferences automatically. This inevitably involveaime form of monitoring of the
user’s behaviour followed by some form of learnapplied to the accumulated data.
This approach was adopted in both fixed smart spelopments (such as the
MavHome [4] project) as well as mobile applicatiomsg. Specter [9]. Another
approach using Bayesian networks or Hidden Markad#fls rather than rule based
preferences to capture user behaviour and representneeds was adopted by the
Synapse project [10], which matches the context @dent user task against past
learnt patterns to select the most appropriateécefor the user. Another system that
uses context history for progressively learninggyas of user behaviour in an office
environment is described by Byun et al [11],

3 Architectures of Daidalos and Persist Pervasive Systems

Composite Service
l g Composable Services »

Value-added Services)

‘L [= 5
2]
Ma%ggfn:tent Personalisation .g
@
User Experience Layer t‘g,
4L £
- e
ng:‘/i:;e Rules and Security and ug;

Events Privacy
Management
Management Layer

0SGi framework

Fig. 1. Architecture of Daidalos Pervasive Services Ptatfo

The Daidalos project [12] developed a pervasivdesgsbased on the mobile user.
The Pervasive System Platform (illustrated in Higincludes a personalisation and
preference management subsystem (including legrmihgch implicitly gathers and
manages a set of preferences for the user by mimgjtaser behaviour and extracting
preferences from the monitored user behaviour histdhis pervasive system was
successfully demonstrated in December 2008. Tha foaus of the personalisation
subsystem was to help in the selection and perisatiah of services. By so doing
the system was able to personalise the user's @maignt in an unobtrusive and
beneficial way (based on previous user behaviour).

The Persist project is another European researsfegbrwhich started in April
2008. It aims to create a rather different fornpefvasive system based on the notion
of a Personal Smart Space (PSS) [13]. A PSS iselbfoy a set of services that are
running or available within a dynamic space of @mtable devices where the set of
services and devices are owned, controlled, or ridtered by a single user or
organisation. In particular, a PSS has a numbanpértant characteristics.

» The set of devices and services that make up ti&HaSe a single owner,
whether this is a person or an organisation.

A PSS may be mobile or fixed.

e A PSS must be able to interact with other PSSedfiar mobile). To do this
a PSS must support an ad-hoc network environment.

e It must be able to adapt to different situationpedaling on the context and
user preferences.

» It must also be self-improving and able to leaonfrmonitoring the user to
identify trends, and infer conditions when user @&abur or preferences
change.

» Finally it must be capable of anticipating futueseds and acting proactively
to support the user.

The architecture of a PSS in Persist is showngn Ei

User Interface Third Party Applications
PSS Framewor k :
| Context Mgmt | | Learning |
| Personalisation | | Proactivity |

ﬁk A ¢

Service Run-Time Environment

A 4 ¢

Overlay Network Management

A 4 ¢

System Run-Time Environment

*
Devices

Fig. 2. The high level architecture of a Personal Smart8pa

4 Approachesto Proactivity

This section describes two slightly different amaroes used to handle proactivity in
the Daidalos and Persist projects.

4.1 Proactivity in Daidalos

Proactivity in Daidalos is based on the assumptitat the user will always initiate
services and, where necessary, terminate them. iffausiser wanted some service
type, he/she would request this via a high-levell.Gdowever, because of the
potentially wide range of services that may be et to satisfy the user’s request
(which may, in turn, depend on a choice of deviaed/or networks available), user
preferences are used to help make this selection.

For example, if the user requests a news senlhicerequest could be satisfied in a
variety of ways. If the user is in his/her livingom at home, the most obvious way to
provide this might be by selecting an appropridtennel on the television set. If the
user is at work, the best option might be to cohteca Web-based news service
through the user’'s work PC. If the user is walkamgund town at the time of the
request, the best option might be to connect tbang-based service through his/her
mobile phone. In all cases context-aware user mrées are used to select the most
appropriate service to satisfy the high-level resjue

Once a service has been selected, user preferareesed to customize it to meet
the user’s needs. For example, different levelsariice may be available (Gold,
silver, bronze) and depending on whether the wsesing the service from work or
from home, a different level may be chosen. Theli@uaf Service (QoS) acceptable
in a communications service (e.g. VolP) may depamdhe user’s context. Even the
Digital Personal Identifier (DPI) that the user sige identify him/herself to the
service may be different in different contexts.

However, the role of user preferences does nothenel. Once a service has been
selected and customized, it will continue to exeaurtil terminated. But while it is
executing, conditions may change which cause thlggnat selection to be no longer
optimal in terms of user preferences. In Daidalbemnva set of preferences is used to
make a selection (service, device, network, etcgustomize a service, the context
conditions are stored. The Personalisation subsysten registers with the Context
Manager to be notified of any context changes thigit affect these decisions. As
long as the service continues to run, the systemitors the context of the user, and
reacts to changes accordingly. Where this involvebange of service, the service is
dynamically re-composed to change the preferredcger

By way of illustration, consider a university lewt, Maria, going to give a
lecture. She has with her a mobile phone and hek. RiZhen she enters the lecture
room, the system automatically switches the ringetof her phone to mute. Before
entering the lecture room, she requests her slidseptation for the class. The
appropriate service is selected, composed ancedtam her PDA. However, once
inside the lecture room, as she approaches th¢, ftom system discovers the large
screen at the front of the lecture room and recampdhe service to use the large
screen display. The first action is an example lodnging the customisation in

accordance with the preferences as the contexteofiser changes. The second is an
example of reselection and re-composition of aiserdue to a change in context.

This form of proactivity is restricted in that ihly applies to services initiated by
the user. On the other hand it is sufficiently pduleto adapt the services either
through parameters passed to the service affedtisgway in which they are
customised or through selection of an alternatemvise and re-composition to use
this preferred service.

To assist the user in building up and maintainingjrt user preferences, several
techniques are employed. These include:

(1) A user-friendly GUI is used to set up prefenmanually.

(2) A set of stereotypes enables one to seleatitialiset of preferences.

(3) The user’s actions are monitored and increnhelgarning employed to
discover new preferences or refine existing ones.

(4) An offline data mining approach is used to gsallarger quantities of history
data on user’s actions and context.

Context Management
Context Context Event
Broker Management
Preference Management —> Context DB
Preference Preference
Evaluation Merging Learning Management
. User
Eriorence Preference Learning Biaksraraa
storage/ capha Manager :
retrieval Learning
4+—>>
) User Action &
Context Service context
Monitoring Monitoring storing
Preference Service Management
Monitoring
i Service Service Event
Discovery Management
Service
Composition

Fig. 3. Components of the Daidalos Pervasive ServicesdPhatfequired for proactivity

As shown in Fig. 3, the Preference Management coewo includes the
functionality that allows a preference to be crdatgored, retrieved, merged with
existing preferences, monitored and evaluated againrrent values of certain

context attributes and current status of servit¥ben a service is executed, any
preference that affects the status of the servica personalisable parameter of that
service is anactive preference. For each such active preference the Context
Monitoring component registers for changes in djgecontext attributes affecting it.
When a context event is fired from the Context Evéfanagement, Context
Monitoring is triggered to request the evaluatidriteese preferences by Preference
Monitoring which cross-references the context ctodi with the preferences to
locate all the active preferences affected by thange. The same process is
performed by Service Monitoring which receives dsgerfrom the Service
Management component. If the status of a serviengbs, two tasks have to be
performed. The first is to check whether this clmaftfects any of the currently active
preferences and order a re-evaluation of them. sewend is to load or unload the
conditions and preferences from the monitoring conemts if a service starts or stops
accordingly and register or unregister for evehtt affect the service that started or
stopped.

4.2 Proactivity in Persist

The Persist system is following a more general @gg to proactivity, which extends
that used in Daidalos. The most important aspethisfinvolves supplementing the
Preference subsystem with a User Intent subsystéese two separate subsystems
drive the proactivity mechanism.

As far as the Preference subsystem is concerned Bmidalos the system is
responsible for creating and maintaining the setseir preferences for a user. It does
so by monitoring the actions taken by the user thedcontext in which they occur,
and building up a history of (context, action) &gl The snapshot of context selected
consists of a number of context attributes, suckthasuser’s location, the type and
name of the service the user is currently intengctivith, other services currently
running in the PSS, etc. The final choice of atttds is critical to the success of both
this and the User Intent subsystem. By applyingnieg algorithms to this the system
can identify recurring situations and from this raxt user preferences. These
essentially have the form:

if <condition> do <action>
Thus if the system identifies through monitoringtbé user’s actions that the user
always starts a particular service in a particatartext, then it can set up a preference
that will start the service for the user when ttattext arises. A preference might be
reactive in that it responds to a user action athéncase of the previous example
where whenever the user requests a news servitlee ifiser is at home the system
selects the television set. Alternatively it maypyeactive, and initiate an action on
the user’'s behalf when a particular context aridést example, suppose that
whenever the user arrives home after work in thetewj he/she switches up the
temperature on the central heating. If the learsygfem identifies this, a preference
rule could be set up to initiate this automaticédlythe user.

Unfortunately things are not quite as simple as.tWhen a recurring situation is
identified, the action associated with the conteghdition may not always be

performed. Equally, a preference may not have hesed for a while and may have
become out of date, eventually to be replaced yenenes. To take account of these
situations, the system maintains a set of attribatgsociated with each preference.
These include a certainty factor representing thebability that this action is
performed when the condition is satisfied, andaemey factor representing the date
when this preference was last applied.

The second component responsible for driving theagtivity mechanism is the
User Intent subsystem. This is similar to usergmezices but in this case the aim is to
look ahead and predict future actions based onpadtdrns of actions. The distinction
between the two subsystems lies in the immediadlefictions. User preferences are
an immediate mechanism in that when a particularteod condition arises, a
corresponding action is taken. User intent is come@d with sequences of actions
leading to a consequence at some later time ifutiuee. Fig. 4 illustrates the main
components of the PSS Framework for dealing witagptivity in a PSS.

Proactivity
Decision Decision
Maker Implementer
Conflict Feedback
Resolution Manager
A
Y
Personalisation
Context
User ¢ ’ Management
Preference User Intent
Management
Learning
Learning
Algorithms

Fig. 4. Components of the PSS Framework for dealing wittagtivity

To illustrate the idea behind user intent, consittez previous example of
switching up the heating when the user arrives hafter work in the winter.
Suppose that the system recognises a pattern inséres behaviour that starts with

the user switching off his/her office computer atirae after 17.00. This may be
followed by switching off the lights, exiting thauitding, starting the car, etc. If the
system identifies that this pattern of actions gsvdeads to the heating being
switched on, it could store this as a user inteattepn. Thereafter whenever the
system recognizes that the user is performinggguence of actions, the resulting
action can be carried out — in this case, it cagdd a message to trigger the user’s
heating system so that the house is at the reqtéragerature for the user’s arrival.

Hence the User Intent subsystem is responsibléh®discovery and management
of models of the user’s behaviour. This is basedhenactions performed by the user
(in terms of interaction with services — startingeavice, stopping a service, changing
parameters that control the service, etc.), ankisfashere a task is a sequence of
actions. In contrast to a user preference whigtifps a single action to perform
when a context situation is met, user intent magcgp a sequence of actions to
perform based on past and current user behaviodihis complements user
preferences by predicting proactive actions inftiere.

The User Intent subsystem consists of three maimpooents:

(1) The User Intent Manager is responsible for ralecontrol within the
subsystem.

(2) The Discovery component is responsible for tingaand maintaining the Task
Model. This consists basically of the set of adidhat make up each task and the
probability of performing some particular actiomfter some other action b, or some
particular task t after some other task u. Hentedaptures the sequences of actions
that a user might perform in the future based st getions and contexts. To do so it
needs to analyse the history of user actions asdciged contexts and identify
patterns in the sequences of actions that the peséorms that can be classified as
tasks. This history is the same set of (contexipaltuples used by the Preference
subsystem. The tasks identified are representéideiTask Model. This construct is
then passed to the Prediction component.

The Discovery component is invoked by the Usernntdanager from time to
time to perform a new discovery cycle. The freqyewih which this occurs is under
the control of the system administrator. Typicatdas that can be used to control this
are:

e Time since last cycle.
* Number of actions executed since last cycle.
e Success rate judged by feedback mechanism.

The process used to create this Task Model is itbestm more detail in [14]. An

illustration of the Task Model is given in Fig. 5

Action Task
Task Action Link

Fig. 5. Example of Task Model (from [14])

(3) The Prediction component is responsible for piragp the user’s actions and
associated context against the Task Model to iffeptitential tasks that the user
might be engaged in, and once this is establishi#d sufficient confidence, to infer
any future action or actions that the user mighinbending to perform. The result is
passed to the Proactivity subsystem.

The Proactivity subsystem receives input from bbthUser Preference subsystem
and the User Intent subsystem regarding the premetttions recommended to be
taken by the Proactivity subsystem. These inputspaissed to the Decision Maker
component. As long as there is no conflict betwdwse, the Decision Maker will
trigger the Decision Implementer to initiate theammended action. In doing so it
also notifies the user and provides a means foudee to intervene if necessary and
stop the action from proceeding. Whether the usgsdso or not, the Proactivity
component informs the appropriate subsystem (Rrefer or User Intent) as to the
user’'s acceptance or otherwise of the action cameckr This provides a useful
feedback mechanism for updating the attributescistsal with preferences and tasks.
In the User Intent subsystem this is dealt witlih®/Feedback Manager.

However, the presence of two separate componenser(lhtent and User
Preference Management) that can each provide pi@ticon future user behaviour,
can lead to conflicting actions or actions that cancel each other. Thus to assist the
Proactivity subsystem in deciding how to respondptoactive action predictions,

associated with each such prediction there is aedegf certainty. The Decision
Maker uses this to ensure that the confidence gfprdiction is high enough to
implement. Where more than one action has beeropea this can be used as a filter
to remove any action for which the confidence lés¢bo low.

The problem arises when there is a conflict betwibenactions requested by the
two (User Intent and the User Preference Manageo@nponents) which cannot be
resolved by this simple filtering. This is referrénl a separate component in the
Proactivity subsystem responsible for Conflict Reon. In such a case, the latter
component uses a conflict resolution algorithm &iedmine what, if any, action
should be taken. If the conflict resolution algamit is unable to resolve the conflict,
the user is prompted to provide an answer using-tetlback Manager. The user’s
input is then implemented and the User Intent dxedUser Preference Management
components are informed of the success or failtitkeair predictions.

5 Conclusion and Future Work

This paper is concerned with the way in which ptiwdg may be handled in a
pervasive system. It focuses on two separate pgge/agstems:

- Daidalos: developed a pervasive system for malskrs based on an infrastructure
that supports the provision of a wide range of @eatized context aware services in a
way that is easy for the end-user to manage and use

- Persist: is developing a pervasive system baseth® notion of a Personal Smart
Space (PSS), which does not depend on access tpleomnfrastructure and can
function independently wherever the user may be.

The Daidalos system uses a simple approach basedesnpreferences that can
react to changes in the user’s context to alter dhgtomisation of a service or
dynamically re-select and recompose a servicelfange in user context needs this.

The Persist system extends this idea by includiegability to perform any user
action. This includes the ability to start and ssapvices. This system also includes a
user intent subsystem, based on a task model tiogsidf sequences of user actions
and associated contexts. These two sources of tu@aknformation are fed into the
Proactivity subsystem, which determines when tdoper an action on behalf of the
user and what action is required.

A number of open issues still need to be tacklethis subsystem. These include
the pattern discovery algorithm(s) to be used isk taiscovery. The issue of
associating context with the actions and task e also needs further research.
Work is also required on the format in which thecdivered task model is stored as
storing it as a graph with the associated contafdrination rapidly becomes a
problem for a mobile device with limited memory aebpities. Another possibility
which could be of benefit is to use a priori knodge of tasks, defined explicitly by
the user or based on tasks performed by other ,userseate or build up the Task
Model. Such tasks could improve the accuracy ofr Uisent predictions at an early
stage of system usage when there is insufficiestoty to create an accurate model.

Acknowledgments. This work was supported in part by the Europeam@gssion
under the FP6 programme (Daidalos project) as a®lunder the FP7 programme
(PERSIST project) which the authors gratefully amkledge. The authors also wish
to thank colleagues in the two projects without whihis paper would not have been
possible. Apart from funding these two projectg® Huropean Commission has no
responsibility for the content of this paper.

References

1. Weiser, M.: The computer for the*2dentury, Scientific Americaf65(3), 94-104 (1991).

2. Satyanarayanan, M.: Pervasive computing: visiod challenges, IEEE PCM 8(4), 10-17
(2001).

3. Lesser, V., Atighetchi, M., Benyo, B., Horling, Raja, A., Vincent, R., Wagner, T., Xuan,
P., Zhang, S.X.Q.: The Intelligent Home Testbed Almatomy Control Software Workshop,
291-298 (1999).

4. Gopalratnam, K., Cook, D.J.: Online Sequenti@dition via Incremental Parsing: The
Active LeZi Algorithm, IEEE Intelligent Systems 29(52-58 (2007).

5. Roman, M., Hess, C.K., Cerqueira, R., RanganathanC@&mpbell, R.H., Nahrstedt, K.:
Gaia: A middleware infrastructure to enable ac8paces, IEEE Pervasive Computing 1,
74-83 (2002).

6. Johanson, B., Fox, A., Winograd, T.: The intévacworkspaces project: Experiences with
ubiquitous computing rooms. IEEE Pervasive Computing7—74 (2002).

7. Kindberg, T., Barton, J.: A web-based nomadic mating system. Computer Networks 35,
443-456 (2001).

8. Sousa, J.P., Poladian, V., Garlan, D., SchnierlShaw, M.: Task-based Adaptation for
Ubiquitous Computing, IEEE Transactions on SysteMan and Cybernetics, Part C:
Applications and Reviews, Special Issue on Engingefiutonomic Systems 36(3), 328 —
340 (2006).

9. Kroner, A., Heckmann, D., Wabhlster, W.: SPECTERIldng, Exploiting, and Sharing
Augmented Memories. In: Workshop on Knowledge Stwafor Everyday Life. (KSELO6),
(2006).

10. Si, H., Kawahara, Y., Morikawa, H., Aoyama, A:stochastic approach for creating
context aware services based on context historiesmart Home. In: 1st International
Workshop on Exploiting Context Histories in SmartviEonments, % Int Conf on
Pervasive Computing (Pervasive 2005), 37-41 (2005).

11. Byun, H.E., Cheverst, K.: Utilising Context History Rrovide Dynamic Adaptations.
Journal of Applied Al, 18(6), 533-548 (2004).

12. Williams, M.H., Taylor, N.K., Roussaki, |. Robswsh, P., Farshchian, B., Doolin, K.:
Developing a Pervasive System for a Mobile Envirentn In: eChallenges 2006 —
Exploiting the Knowledge Economy, I0S Press, 169562 (2006).

13. Crotty, M., Taylor, N., Williams, H., Frank, K., Raeki, I., Roddy, M.: A Pervasive
Environment Based on Personal Self-Improving Smpéc8s. Ambient Intelligence 2008,
Springer Verlag, (2009).

14. Abu-Shabaan, Y., McBurney, S.M., Taylor, N.K.ill\&ns, M.H., Kalatzis, N., Roussaki,
I.: User Intent to Support Proactivity in a PervasBystem. In; PERSIST Workshop on
Intelligent Pervasive Environments, AISB 09, EdirdghurUK, 3-8 (2009).

