
Asynchronous Learning for Service Composition

Casandra Holotescu

Department of Computer and Software Engineering
Politehnica University of Timişoara

WESOA 2011

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 1 / 24



Motivation Why learn models?

To correctly compose a system out of several services

we need behavioural models
but are they always provided?

...no, they’re not.

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 2 / 24



Motivation Why learn models?

To correctly compose a system out of several services

we need behavioural models

but are they always provided?

...no, they’re not.

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 2 / 24



Motivation Why learn models?

To correctly compose a system out of several services

we need behavioural models
but are they always provided?

...no, they’re not.

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 2 / 24



Motivation Why learn models?

...no, they’re not

So, what if we have at least one black-box service?

Then, we should:

learn the behavioural model/s for black-box service/s
compose the system
enjoy

However... things are not that simple:
Learning is hard. NP-hard.
⇒ learned models only approximate real behaviour
⇒ can we safely build a system using imprecise models?

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 3 / 24



Motivation Why learn models?

...no, they’re not

So, what if we have at least one black-box service?

Then, we should:

learn the behavioural model/s for black-box service/s
compose the system
enjoy

However... things are not that simple:
Learning is hard. NP-hard.
⇒ learned models only approximate real behaviour
⇒ can we safely build a system using imprecise models?

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 3 / 24



Motivation Why learn models?

...no, they’re not

So, what if we have at least one black-box service?

Then, we should:

learn the behavioural model/s for black-box service/s
compose the system
enjoy

However... things are not that simple:
Learning is hard. NP-hard.
⇒ learned models only approximate real behaviour
⇒ can we safely build a system using imprecise models?

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 3 / 24



Motivation Why Asynchronous Inference?

Input-enabled inference

The star: L* (Angluin) algorithm.

positive and negative sample traces
can query for trace membership
hypothesis automaton
if counterexample⇒ refine hypothesis

Most active learning techniques use a variant of L* for black-box model
inference.

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 4 / 24



Motivation Why Asynchronous Inference?

Controllability issues

Trace membership query⇒ all events in the trace are controllable.

synchronous communication
√

asynchronous ...??

black-box receives message – controllable
√

black-box sends message – uncontrollable !!

Cannot query an asynchronous black-box for trace membership!!

Cannot use L* for asynchronous black-boxes!!

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 5 / 24



Motivation Why Asynchronous Inference?

Controllability issues

Trace membership query⇒ all events in the trace are controllable.

synchronous communication
√

asynchronous ...??

black-box receives message – controllable
√

black-box sends message – uncontrollable !!

Cannot query an asynchronous black-box for trace membership!!

Cannot use L* for asynchronous black-boxes!!

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 5 / 24



Motivation Why Asynchronous Inference?

Controllability issues

Trace membership query⇒ all events in the trace are controllable.

synchronous communication
√

asynchronous ...??

black-box receives message – controllable
√

black-box sends message – uncontrollable !!

Cannot query an asynchronous black-box for trace membership!!

Cannot use L* for asynchronous black-boxes!!

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 5 / 24



Our Approach Assumptions

Problem Statement

a setW = {W0,W1, ...Wn−1}
of n black-box services
which interact asynchronously

want to compose system S

S must comply to safety property Φ

goal: a property-enforcing adaptor (a service in the middle to control
interactions in the system, s.t. the property is never violated)

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 6 / 24



Our Approach Assumptions

Problem Statement

a setW = {W0,W1, ...Wn−1}
of n black-box services
which interact asynchronously

want to compose system S

S must comply to safety property Φ

goal: a property-enforcing adaptor (a service in the middle to control
interactions in the system, s.t. the property is never violated)

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 6 / 24



Our Approach Assumptions

Problem Statement

a setW = {W0,W1, ...Wn−1}
of n black-box services
which interact asynchronously

want to compose system S

S must comply to safety property Φ

goal: a property-enforcing adaptor (a service in the middle to control
interactions in the system, s.t. the property is never violated)

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 6 / 24



Our Approach Assumptions

Assumptions

A service Wi is associated to a Büchi automaton

Ui = 〈Qi ,qi
0,Q

i
f ,Σ

i , δi〉

Qi is the state set, qi
0 ∈ Qi the initial state

Qi
f = Qi the set of accepting states

Σi the event set (send/receive events)
δi : Qi × Σi → P(Qi) is the transition function

Each Wi is fair by a bound θ: if a state q is reached at least θ times,
every uncontrollable event σ ∈ Σi(q) is observed at least once.

Property Φ is also expressed as a Büchi automaton.

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 7 / 24



Our Approach Assumptions

Assumptions

A service Wi is associated to a Büchi automaton

Ui = 〈Qi ,qi
0,Q

i
f ,Σ

i , δi〉

Qi is the state set, qi
0 ∈ Qi the initial state

Qi
f = Qi the set of accepting states

Σi the event set (send/receive events)
δi : Qi × Σi → P(Qi) is the transition function

Each Wi is fair by a bound θ: if a state q is reached at least θ times,
every uncontrollable event σ ∈ Σi(q) is observed at least once.

Property Φ is also expressed as a Büchi automaton.

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 7 / 24



Our Approach Assumptions

Each black-box Wi is associated to a tentative Büchi automaton Ui
which is most general if we have no prior knowledge on its behaviour:

Qi = Qi
f = {qi

0}
δi (qi

0, σ
)

= {qi
0} ∀σ ∈ Σi .

Also assume:
all events are observable (special event ack !).
each service can be reset anytime to its initial state (rst?).
the number of states of Ui has an upper bound m

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 8 / 24



Our Approach Assumptions

Each black-box Wi is associated to a tentative Büchi automaton Ui
which is most general if we have no prior knowledge on its behaviour:

Qi = Qi
f = {qi

0}
δi (qi

0, σ
)

= {qi
0} ∀σ ∈ Σi .

Also assume:
all events are observable (special event ack !).
each service can be reset anytime to its initial state (rst?).
the number of states of Ui has an upper bound m

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 8 / 24



Our Approach Method

BASYL: Black-box Asynchronous Learning

Place an intelligent, proactive monitor in the middle.

Repeat:
explore possible execution scenarios
observe black-box reactions
refine tentative model

until a satisfying refinement is found.

Synthesize property-enforcing controller.

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 9 / 24



Our Approach Method

Behaviour exploration at runtime

Let U× be the asynchronous product of all models in the system:
U× = U0 × U1 × ...× Un−1.

The property automaton Φ is executed synchronously with U×.

messages sent are intercepted
and forwarded to enable controllable transitions conforming to Φ

Thus, only behaviour that conforms to Φ is explored.

Exploration stops when no model Ui still contains unobserved and
correct controllable transitions (fixpoint condition).

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 10 / 24



Our Approach Method

Model refinement

after trace t , expected event msg? cannot be enabled in Wi ⇒
trace t .msg? is removed from Ui .
trace tbad that violates property Φ is observed at runtime⇒ Ui is
refined by unrolling tbad .
state q in Ui has been reached for more than θ times⇒
unobserved uncontrollable transitions from q are pruned.

Model Ui overapproximates the real uncontrollable behaviour of Wi
and underapproximates its controllable behaviour.

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 11 / 24



Our Approach Method

Model refinement

after trace t , expected event msg? cannot be enabled in Wi ⇒
trace t .msg? is removed from Ui .
trace tbad that violates property Φ is observed at runtime⇒ Ui is
refined by unrolling tbad .
state q in Ui has been reached for more than θ times⇒
unobserved uncontrollable transitions from q are pruned.

Model Ui overapproximates the real uncontrollable behaviour of Wi
and underapproximates its controllable behaviour.

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 11 / 24



Our Approach Method

Model refinement

a?
√
.a?
√
.b?×

a?
√
.c!
√
.a?×

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 12 / 24



Our Approach Method

Model refinement

a?
√
.a?
√
.b?×

a?
√
.c!
√
.a?×

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 12 / 24



Our Approach Method

Model refinement

a?
√
.a?
√
.b?×

a?
√
.c!
√
.a?×

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 12 / 24



Our Approach Method

Adaptor synthesis

First compute controller Ctrl , that enforces property Φ over the system
plant U×: Ctrl = supcon(U×,Φ). [Ramadge and Wonham, 1989]

Adaptor A is obtained from controller Ctrl by mirroring its event set
(send→ receive, receive→ send).

Each Ui safely approximates Wi :
overapproximates uncontrollable behaviour
underapproximates controllable behaviour

⇒ A will work for the real system.

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 13 / 24



Our Approach Method

Adaptor synthesis

First compute controller Ctrl , that enforces property Φ over the system
plant U×: Ctrl = supcon(U×,Φ). [Ramadge and Wonham, 1989]

Adaptor A is obtained from controller Ctrl by mirroring its event set
(send→ receive, receive→ send).

Each Ui safely approximates Wi :
overapproximates uncontrollable behaviour
underapproximates controllable behaviour

⇒ A will work for the real system.

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 13 / 24



Experimental Results Case Study

Case Study: CAD and Think Team [Tivoli, 2008]

Property

CAD
TT

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 14 / 24



Experimental Results Case Study

Case Study

Property

CAD initial TT

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 15 / 24



Experimental Results Case Study

learned TT model

real TT model

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 16 / 24



Experimental Results Case Study

Model inference results for maximum 13 states

nr. size obs. msg? feasible msg! synthesis? ctrl size ctrl tr.
0 1 0 4 false 0 0
2 2 0 8 false 0 0
5 7 3 28 false 0 0
10 7 3 28 false 0 0
83 7 3 24 false 0 0
89 11 7 40 false 0 0
90 11 9 40 true 56 380
93 11 10 40 true 56 394

113 11 12 40 true 56 401
125 11 13 40 true 77 547
200 12 13 46 true 77 561
250 12 13 43 true 77 540
400 12 14 40 true 77 519
450 12 15 40 true 84 577
1000 12 15 40 true 84 577

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 17 / 24



Experimental Results Discussion

BASYL can obtain more/less precise models upon how permissive we
want the system controller to be:

first possible controller⇒ shorter learning process
most permissive controller

max size min ex. nr. 1st ctrl size 1st ctrl tr. last ctrl size last ctrl tr.
5 2 7 58 28 204
13 90 56 380 84 577
20 290 126 841 133 913

real = 13 real 56 247 56 247

Table: Controller variation by max. model size and permissiveness

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 18 / 24



Experimental Results Discussion

BASYL can obtain more/less precise models upon how permissive we
want the system controller to be:

first possible controller⇒ shorter learning process
most permissive controller

max size min ex. nr. 1st ctrl size 1st ctrl tr. last ctrl size last ctrl tr.
5 2 7 58 28 204
13 90 56 380 84 577
20 290 126 841 133 913

real = 13 real 56 247 56 247

Table: Controller variation by max. model size and permissiveness

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 18 / 24



Experimental Results Discussion

Limitations

does not lead to minimal models

the model is never guaranteed to be complete

high complexity:
paths are explored at runtime, individually
uncontrollable events can steer the execution away
⇒ need to reduce the number of explored paths

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 19 / 24



Summary

Summary

We presented a method to automatically compose an
asynchronous system with black-box services.

It learns only behaviour useful to the composition goal, enabling a
safe composition.

BASYL can obtain models precise enough for controller synthesis.

Future Work
Learn models locally.
Learn when only observing send events.
Reduce complexity.

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 20 / 24



Summary

Summary

We presented a method to automatically compose an
asynchronous system with black-box services.

It learns only behaviour useful to the composition goal, enabling a
safe composition.

BASYL can obtain models precise enough for controller synthesis.

Future Work
Learn models locally.
Learn when only observing send events.
Reduce complexity.

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 20 / 24



Related Work

Related Work

black-box checking: model checking technique for systems with
no given model [Peled, 2003]
StrawBerry: learning behaviour for stateless black-box services
[Bertolino et al, 2009]
specification mining: extracting state models for black-boxes
[Suman et al, 2010]
GK-tail: positive traces and invariants to extract EFSMs [Lorenzoli
et al, 2008]
regular inference, Angluin-based [Berg et al, 2008]
RALT: parametrized Mealy machines [Shabhaz, 2008]
LearnLib, Libalf (L* extensions and optimizations)

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 21 / 24



Related Work

Related Work

SPY - extracting models for data abstractions [Ghezzi et al, 2009]
testing for specification mining: extending a test suite by
adding/removing method calls [Dallmeier et al, 2009]
CrystalBall: execution steering and error prediction in distributed
systems [Yabandeh et al, 2008]
assumptions generation: environments for which a component
satisfies a property [Păsăreanu and Giannakopoulou, 2008]
smart play-out: lookahead technique for specification execution
[Harel et al, 2007]
CTL model-checking of systems with an unspecified component
[Xie and Dang, 2005]

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 22 / 24



Related Work

Model inference results for maximum 20 states

nr. size obs. msg? feasible msg! synthesis? ctrl size ctrl tr.
0 1 0 4 false 0 0
1 1 1 4 false 0 0
2 4 2 16 false 0 0

100 4 2 13 false 0 0
150 4 2 10 false 0 0
290 18 13 66 true 126 841
299 18 14 66 true 126 848
300 18 16 66 true 126 862
322 19 16 70 true 126 862
400 19 17 70 true 133 913
1000 19 17 70 true 133 913

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 23 / 24



Related Work

Model inference results for maximum 5 states

nr. size obs. msg? feasible msg! synthesis? ctrl size ctrl tr.
0 1 0 4 false 0 0
1 1 1 4 false 0 0
2 1 2 4 true 7 58
3 2 2 8 true 14 102
5 4 3 16 true 28 197
41 4 3 13 true 28 176

125 4 3 10 true 28 155
452 4 5 10 true 35 220
456 4 7 10 true 28 183
462 4 9 10 true 28 197
467 4 10 10 true 28 204
1000 4 10 10 true 28 204

C. Holotescu (UPT) Asynchronous Learning WESOA 2011 24 / 24


	Motivation
	Why learn models?
	Why Asynchronous Inference?

	Our Approach
	Assumptions
	Method

	Experimental Results
	Case Study
	Discussion

	Summary
	Related Work

