
UbiManager:
A Software Tool for Managing Ubichips

Yann Thoma, Andres Upegui
REDS - HEIG-VD

Yverdon-les-Bains, Switzerland
Email: yann.thoma@heig-vd.ch, andres.upegui@heig-vd.ch

Abstract— This paper introduces the UbiManager, a tool for
managing the ubichip reconfigurable circuit. The ubichip is a
custom reconfigurable electronic device for implementing circuits
featuring bio-inspired mechanisms like growth, learning, and
evolution. The ubichip has been developed in the framework
of Perplexus, a European project that aims to develop a scalable
hardware platform made of bio-inspired custom reconfigurable
devices for simulating large-scale complex systems. In this paper,
we present the software tool used for designing, simulating,
emulating, debugging, configuring, and monitoring the systems
to be implemented in the ubichip. This paper also presents the
dissemination plans of the UbiManager, that consist in a web
platform allowing researchers to access the hardware platform
from any remote base station.

I. INTRODUCTION

The Perplexus project [1] aims to develop a scalable
hardware platform made of custom reconfigurable devices
endowed with bio-inspired capabilities. This platform will
enable the simulation of large-scale complex systems and the
study of emergent complex behaviors in a virtually unbounded
wireless network of computing modules.

The Perplexus platform will consist thus in a scalable
network of ubidules (UBIquitous computing moDULES)
equipped with wireless communication capabilities and rich
sensory elements [2]. The platform is modular for allowing
the application developer to customize his platform set-up. In
this way the application developer can easily build his system
setup by selecting what to plug to the ubidule from a set of
peripherals. These peripherals can be different communication
interfaces (wifi, bluetooth), sensors, actuators, cameras, or
flash memories. This modularity is guaranteed by the use of
standard interfaces such as USB.

At the heart of these ubidules, we use a ubichip (Ubidule
Bio-Inspired CHIP)[3], a custom reconfigurable electronic
device capable of implementing bio-inspired mechanisms such
as growth, learning, and evolution. These bio-inspired mecha-
nisms will be possible thanks to reconfigurability mechanisms
like dynamic routing, distributed self-reconfiguration, and a
simplified connectivity. Such an infrastructure will provide
several advantages compared to classical software simulations:
speed-up, an inherent real-time interaction with the environ-
ment, self-organization capabilities, simulation in the presence
of uncertainty, and distributed multi-scale simulations.

One of the most critical problems faced by custom recon-
figurable devices is the absence of design tools. These devices

are typically developed under projects running for a few years
and the development of tools are rarely among the priorities
of the project, making the device very difficult to use. In the
Perplexus project, we began both - the design tool and the
ubichip architecture - almost in parallel from the beginning of
the project, what have allowed us to develop a synergy among
both.

In this paper we present the UbiManager, the tool currently
used for design, simulation, emulation, debugging, configu-
ration, and monitoring of circuits on the ubichip. For this,
in sections II and III we introduce the ubidule and the
ubichip respectively. Section IV describes the UbiManager
tool, its capabilities, and the design interface. Then, section
V describes the utilization of the UbiManager for simulation,
debugging, and monitoring purposes. Afterward, section VII
describes the web interface that allows to share the use of
these ubichips. Finally, section VIII concludes.

II. UBIDULE

The ubidule is an electronic board that mainly contains an
ARM processor and a ubichip. The ARM processor acts like
the ubichip manager, allowing the ubichip configuration and
a close interaction with it. Currently, we are using an Xscale
PXA270 running Linux, and it is accessible through Ethernet,
Wi-fi, or Bluetooth.

A ubidule should be able to closely interact with its en-
vironment. In order to keep the platform general enough, no
sensor or actuator has been directly added to the board, but
instead, five USB ports and a microSD card slot allow us to
connect such devices. These ports provide the possibility to
plug different communication interfaces like Wi-fi, Bluetooth,
or Zigbee. They allow also to dispose of a large choice of USB
sensors and actuators developed by different manufacturers,
ranging from simple analogue temperature or light sensors to
more sophisticated devices as accelerometers, RFID reader,
mice, and servomotors.

The ubidule offers also the possibility of driving an LCD-
touchscreen that can be directly plugged onto the board. As it
will be explained later, this LCD-touchscreen is managed by
a graphical application running on the ARM processor, and it
can be used for configuring the ubichip, as well as to observe
its state.

At this time, we have a first ubidule prototype (figure 1) [2],
and includes a Spartan-3 5000 for prototyping the ubichip.

NASA/ESA Conference on Adaptive Hardware and Systems

978-0-7695-3166-3/08 $25.00 © 2008 IEEE
DOI 10.1109/AHS.2008.39

207

NASA/ESA Conference on Adaptive Hardware and Systems

978-0-7695-3166-3/08 $25.00 © 2008 IEEE
DOI 10.1109/AHS.2008.39

213

NASA/ESA Conference on Adaptive Hardware and Systems

978-0-7695-3166-3/08 $25.00 © 2008 IEEE
DOI 10.1109/AHS.2008.39

213

Fig. 1. Picture of a ubidule board

The Xilinx FPGA [4] allows for the emulation of a simplified
version of the ubichip, as well as for testing the entire system.

III. UBICHIP

The heart of the ubidule contains a ubichip. This recon-
figurable circuit is a new kind of FPGA that implements
special features like self-replication, dynamic routing, and a
SIMD architecture. In this section, we will briefly describe
the ubichip, but the interested reader can find more details in
[3].

A ubichip is mainly composed of three reconfigurable
layers. The first one is an array of ubicells, the reconfigurable
logic elements used for computation purposes. A ubicell is
composed of four 4-input look-up tables (LUT) and four flip-
flops (DFFs). These ubicells can be configured in different
modes like counter, FSM, shift-register, 64-bit LFSR, adder,
subtractor, etc. A ubicell can also be configured as a simple
4-bit processor, allowing the merging of n ubicells for cre-
ating 4n-bit processors. By using this configuration mode, a
processor array can be used as a SIMD array of processors,
with a hardwired on-chip sequencer being responsible for the
multi-processor management.

The second layer contains dynamic routing units that permit
the ubicells to dynamically connect to any part of the circuit.
Based on identifiers and a concept of sources and targets
trying to reach a correspondent with the same ID, it looks
quite similar to the system described in [5], while having
enhancements on different points (cf. [3]). This layer allow
thus to create and destroy connections in a dynamic way,
allowing the implemented system to change its topology on
run-time.

Finally, the third layer is made of self-reconfiguration units
that allow a part of the circuit to self-replicate somewhere else
on the chip, without any external intervention. This mechanism
allows also to destroy a section of the circuit. This truly new
feature can be very useful for cellular systems such as neural
networks with changing topologies. A neuron can, for instance,
decide to duplicate when it has a high level of activity, or it

can destroy itself after a long period of inactivity in order
to leave resourced for other neurons. More details about this
mechanism can be found in [6].

IV. UBIMANAGER

A new circuit with fancy reconfigurable features is nice,
but without design tools that allow the creation, simulation,
and debugging of the implemented circuits, it is nothing but a
toy for engineers, requiring a huge effort for implementing
the simplest circuit. Design tools constitute thus a critical
issue when using any type of programmable device, being it
a processor or an FPGA.

The typical design flow for an FPGA-based design consists
on an initial translation from an HDL description into a
netlist, and then from a netlist into a description of the
circuit configuration bits. However, the structure of the ubichip
is quite different from those of standard FPGAs that are
composed of LUTs and DFFs connected to switch matrices.
The 4-LUT cell of the ubichip, as well as its non-regular
routing organization did not allow us to exploit existing HDL
synthesizers. Therefore, we conceived a graphical tool in order
to allow the development of Perplexus applications.

UbiManager (cf. figure 2) is the main tool for using the
Perplexus platform. It allows to graphically configure each
one of the three reconfigurable layers of a ubichip, and then
displays the system state during a simulation or the execution
on a ubidule at run-time. It can run on a base-station or on an
embedded platform as the ubidule.

The software can open multiple documents at the same time,
and copy-paste commands allow to easily reuse design parts.
Moreover, drag-and-drop is also implemented. Both copy-
paste and drag-and-drop permit to include an image of the
current selected units in any software that deals with images,
such as OpenOffice or Powerpoint. An auto-updater has also
been integrated to let the user always run the latest version.

A. Views of the configurable layers

Figure 2 shows the ubicell layer. One can select a ubicell
by clicking on it, in order to configure it using a set of

Fig. 2. UbiManager graphical interface showing ubicells

208214214

configuration options through a user-friendly menu. Then, one
can visualize some of the features of the configured circuit.
For instance, in the figure, one can differentiate the ubicells
configured as independent 4-LUTs in combinatorial mode, and
in registered mode, as well as those configured as 64-bit LFSR.
The same view can also be used to visualize the system state,
as will be described in the next section.

Figure 3 illustrates the dynamic routing layer. The dynamic
routing units are configurable as sources or targets, and then
the underlying system implemented on the ubicell layer can
trigger a path creation or destroy existing paths. The config-
uration and visualization of these dynamic routing units are
possible thanks to this second view.

Finally, figure 4 shows the self-replication layer configura-
tion. As described in [6], a self-replicating system requires a
morphological description describing a construction path. This
path allows the further construction of a daughter cell, just by
following the morphological description defined by a set of
building flags. The screenshot shown in figure 4 depicts the
construction path that allows a system to be replicated in the
platform. This view allows thus to edit such construction path
and to visualize the state of a system being self-replicated.

B. UbiAssembler

As presented in section III, a ubichip reconfigurable array
can implement a SIMD architecture, where a ubicell acts like
a 4-bit processor. In that case, a 4n-bit processor can be
obtained by merging n ubicells. The SIMD array is controlled
by a centralized sequencer that executes a program previously
loaded in the ubidule SRAM. A special assembler has been
developed for this sequencer, as well as a tool for translating it
to the binary format. Assembler files can be open within Ubi-
Manager, in a text editor with specific keywords highlighted.

Fig. 3. UbiManager graphical interface showing routing units

Fig. 4. UbiManager graphical interface showing self-replicating units

For running a simulation, or an experiment on a ubidule, if
the project requires the SIMD mode, then the assembler file
associated with the project is compiled, and sent to the SRAM.
In order to ease the debugging of an application, the internal
state of the sequencer can be observed during a run. The state
of every register is displayed in a windows like the one shown
in figure 5.

In conclusion, the UbiManager offers a set of interactive
menus that allows to select the different types of logic units,
to edit their configuration by selecting among the provided
configuration modes, and to visualize some of the configured
features in each unit as well as the connections created
on the static and dynamic routing. As previously explained,

Fig. 5. UbiManager graphical interface showing the sequencer state

209215215

there is, at this time, no automatic tools that can generate a
configuration file based on an HDL description, because of the
complexity of the ubicell. However, this complexity is due to
the coarse grained architecture, which let standard functions
such as 4-bit counters be very easy to implement, even only
with a graphical interface.

V. SIMULATION/EMULATION

After the design phase, the UbiManager allows to simulate
a system in order to test its functionality. As the ubichip has
been described in VHDL, the simulation is performed with
Modelsim. A standard Modelsim simulation allows to force
signals and to observe results in a waveform window or to
use a test bench that must be previously written. While very
useful for traditional designs, this interface is too restrictive
for our application. A third approach for managing Modelsim
simulations is from an external software description. For this,
Modelsim supplies a C library that permits to interface a
VHDL simulation with some C/C++ code, through the so
called Foreign Language Interface (FLI). In this way, it is
possible to let some C functions be called when certain user-
defined signals change their values. The C/C++ code can then
interact with the simulation by setting signals values and by
retrieving information about signals in the design.

For this purpose, we wrote a Dynamically Linked Library
(DLL) loaded at the starting point of a simulation, which sup-
plies a function called on every falling edge of the clock. This
DLL, called UbiFli, instantiates a TCP/IP server that waits for
connections. The UbiManager that started the simulation can
connect to this server, and then interact with the simulation.
The main advantage of using TCP/IP communication relies
in the fact that the same protocol is used to access both, the
simulated circuit on Modelsim and a real ubichip on a ubidule.

From the point of view of a UbiManager, a simulation or
a ubidule supply the same functionality. Moreover, several
UbiManagers can be simultaneously connected to the same
simulation/ubidule, and interact with it. It is therefore possible
to have several users observing the same behavior from
anywhere at the same time.

When connections are established, UbiFli waits for com-
mands. These commands are:

• Run 1 clock step
• Run n clock steps
• Run n clock steps with state recovery at each clock cycle
• Run as long as no break command is sent
• Break a run
• Reset the system
• Reconfigure the system
At the end of a command execution, UbiFli sends the state

of the system back to all the connected UbiManagers. This
state contains the state of every ubicell, routing unit, and self-
reconfiguration unit. When a UbiManager gets the state of the
system, it updates its graphical display accordingly, letting the
user observe the simulation result.

Figure 6 illustrates a simulation scenario. The following
steps detail the starting tasks of a simulation.

scan state

quit

step

start
load

connect

end

step

UbiManager UbiFli Modelsim

send state

done
send state

step

done
send state

step

Fig. 6. Simulation scenario

1) (UbiManager) Starts simulation
2) (UbiManager) Generate configuration files
3) (UbiManager) Starts Modelsim
4) (Modelsim) Loads UbiFli
5) (UbiFli) starts the TCP/IP server
6) (UbiManager) Connects to the UbiFli server
7) (UbiManager) Do step by step (for instance)
8) (UbiManager) Sends command to UbiFli
9) (UbiFli) Sends back the system state

A simulation can be observed/managed by more than one
UbiManager, and so acts a ubidule. The ARM runs a TCP/IP
server, called UbiServer, that is responsible to access the
ubichip. This server responds to the same commands under-
stood by UbiFli. Figure 7 illustrates different communication
schemes between a simulation, a ubidule, and four UbiMan-
agers. The arrows represent a TCP/IP connection, and the
UbiManagers are run on 3 different PCs.

UbiManager

UbiFli

UbiColibriUbiServer

Client interface

Server interface

UbiManager

UbiManager

PC1

PC3

PC2

Ubidule

Fig. 7. Communication scheme between different components

210216216

A. Plugins

At first, the UbiManager was written for the design and sim-
ulation of a system implemented for a ubichip reconfigurable
array. It rapidly turned out that some applications needed
to interact with the circuit, without human intervention. For
instance, an intrinsic evolutive hardware system [7] requires a
genetic algorithm [8] to run, load configurations into the chip,
and retrieve information about the system execution. Therefore
a system of plugins has been designed, letting the user write a
C++ plugin in order to interact with the simulation. A plugin
contains a function called every time the state of the system
changes. This function can get the state of the system, and can
modify it on the fly.

For instance, a plugin can be responsible for monitoring the
routing array. By analyzing the state of the array every clock
cycle, it can generate logs or store intermediate configurations
in a file in order to allow, for instance, a post-simulation
analysis of the routing process.

A plugin can manage the simulation and act on the configu-
ration bits. For this purpose , a configuration access library has
been written, and provides a similar functionality as Jbits [9].
Jbits is a Java API that allows to access the configuration
bitstream of Xilinx FPGAs. In a similar manner as Jbits, our
configuration library offers the possibility of dynamically and
partially accessing the configuration bits of the device at a
higher abstraction level. In this way one can easily modify
the content of a set of registers containing a parameter, a seed
for a pseudo-random number generator, or any building block.

The installation of the UbiManager comes with some sam-
ple plugins that can be easily modified by developers to act
accordingly to their needs.

An important feature of plugins is that they can be loaded
by different parts of the application:

• UbiManager: If loaded by the UbiManager, the plugin
receives the state of the system only when the UbiMan-
ager retrieves this state from the simulation. It means
that the user has to exploit the ”run n clock cycles with
updates” in order to let the plugin interact at each clock
cycle.

• UbiFli: As the ”run n clock cycles with updates” forces
a lot of TCP/IP communication, and so a loss in perfor-
mance, the plugin can be directly loaded by UbiFli. In
that case, a command like ”run n clock cycle” will call
the plugin on every clock cycle, without the need of using
the TCP/IP connection. With this option, a real gain in
performance is observed. However, no graphical interface
can be used in this mode, and so a plugin that requires
some user interaction should not be loaded by UbiFli.

• UbiServer: The plugins are written using the Qt envi-
ronment, and can therefore be compiled under Linux.
UbiServer can then load the plugin, avoiding the sending
of the system state through Wireless. If the application
allows for the use of this mode, it can offer a huge gain in
term of performance, since the wireless communication
represents a real bottleneck in the system.

• UbiColibri: UbiManager can run directly on the Ubidule.
It can then load plugins if required, as soon as the plugins
are compiled under Linux.

Figure 8 shows the different uses of a plugin after being
compiled for the correct target system.

plugin.cpp

UbiManager UbiFli UbiServerUbiColibri

plugin.dll plugin.so

Compilation
Windows

Compilation
embedded Linux

Loaded
by

Fig. 8. Plugins usage

B. External application

Plugins, except if loaded by the simulation or by the
UbiServer, require the UbiManager to be run by the user.
For some applications, it would be more convenient to have
a stand-alone program taking care of the interaction with the
simulated/emulated system.

As the UbiManager can connect to a Modelsim simulation
or a UbiServer, an interface has been designed in order to
keep a single type of communication between the components.
This interface, in the form of a C++ class, can very easily be
integrated in any new software. An application such as one
using a genetic algorithm could then be implemented with an
executable instead of a plugin, if needed.

It is also interesting to note that, as every execution passes
through a server (UbiFli or UbiServer), and a server supporting
several connections, it is possible to launch an execution with
UbiManager, start an application that will connect to this
execution and then interact with it. The UbiManager will
receive the state updates, and let a user visually observe the
system state.

VI. APPLICATION EXAMPLES

Up to now, the UbiManager has been used as design tool on
different applications that have allowed to exploit the special
reconfigurability features of the ubichip. The dynamic routing
has been used in the implementation of two types of systems
featuring changing topologies: ontogenetic neural networks
and evolutionary graph models with dynamic topology. The
self-replication mechanism has been used in a particle swarm
optimizer with adaptable size. These three systems where
successfully implemented thanks to the UbiManager design
and simulation interface.

The first application example is presented in [10] and [11].
These papers present implementations of neural circuits able
to grow by physically creating and destroying synaptic con-
nections depending on neural activity. The described models
include a synaptogenetic mechanism that allows to create

211217217

connections, and a synaptic elimination mechanism that allows
to prune the network. Both, synaptic creation and pruning
are performed following an activity-driven approach: the more
active neurons have a higher probability of being highly con-
nected, and less active synapses may be destroyed. The created
network is compared with a randomly created network as the
one depicted in figure 3. These networks exploit the dynamic
routing mechanism in order to implement the dynamically
created and destroyed synapses.

A second application, also exploiting the dynamic routing,
is the implementation of evolutionary graph models with
dynamic topologies [12]. The models consider two graphs:
an interaction graph and an imitation graph. After interaction,
agents in our model revise their strategies by an imitation
rule taking into account the distribution of payoffs and the
proportion of behaviors in their imitation neighborhoods. The
model of [12] explores a particular instance of this general
model in which the interaction graph is a static cycle and the
imitation graph is a directed, dynamic small-world network
constructed over this cycle. With this setup, they try to model
the fact that individuals often compare and imitate others
with whom they do not interact, and that this imitation social
network is in general more dynamic than the interaction graph.

Finally, the third application is a particle swarm optimizer
with adaptable size [13] that exploits the self-replication
capabilities of the ubichip. This implementation considers a
PSO algorithm where the number of particles changes during
the swarm life-time. A particle can decide to self-replicate
or to self-destroy depending on the performance exhibited by
the swarm as depicted in figure 9. If the swarm performance
is not good enough the swarm should grow in size and if
it is good enough some particles may be removed in order
to leave reconfigurable resources for other applications. This
system results promising for optimizing functions that change
over time and where the size of the swarm may increase and
decrease in order to adapt the swarm to the computational
needs of a changing environment.

Fig. 9. Particle swarm optimizer with adaptable size

These three applications have used the self and dynamic
configuration capabilities of the ubichip, but they have also
used plugins for automatically modifying algorithm parame-
ters. For instance, the initialization of the agents’ state and
the payoff matrix in the evolutionary graph application is
performed by a plugin that partially reconfigures the device,
and then recovers the agents’ state after each agent’s update.
These applications are the firsts to be implemented on the
ubichip substrate, and their implementation would be just

unfeasible without the UbiManager.

VII. WORLDWIDE USAGE

One of the goals of the Perplexus project is to make the
platform available to anyone who would like to test/use its
new features. The plan is to build around 100 ubidules before
the end of the project. In order to fully exploit these ubidules,
a web platform is intended to let a user have a look at the
state of the ubidules population.

PHP scripts running on the server side are accessed both
by the ubidules and by the user’s web browsers 1. An active
ubidule runs a UbiServer, and accesses one of the scripts every
10 minutes to indicate it is ready for an application run. While
running an application, the ubidule connects also to the main
web server every 10 minutes, letting the server know whether
the ubidule is running. Both requests from UbiServer allows
the PHP page to update a status file in which information
about the ubidules state is stored. At the end of an application
run, the ubidule informs the server that it is ready and active,
waiting for a new application. Each ubidule is identified by its
IP address, and is marked as active, running, or disconnected.
In order to fully detect disconnected ubidules, the date of the
last access from UbiServer is also stored.

When a user asks for the list of available ubidules, the main
web page only has to check the status file to detect which
one is alive, under exploitation, or disconnected. If one is
available, then the user can request its use and directly connect
the UbiManager to the ubidule, by copying its IP address.
The UbiManager also provides the capability of asking the
ubidules list to the web server. In that case, there is no need
of copying an IP address from the web page, everything
being controlled by the UbiManager. In this way, a developer
that has designed a system and tested it through simulation,
can rapidly test it on the real hardware, without the need of
having a board on his desk. Figure 10 shows a standard usage
scenario, featuring a ubidule, an instance of UbiManager, and
a web server.

The basic functionality of the distributed platform, currently,
does not manage a potential abusive user keeping control on
one or several ubidules. The first implementation assumes fair
users, but a second version will include strategies to detect
such behaviors and block them.

VIII. CONCLUSIONS

The Perplexus ubidule is a reconfigurable hardware plat-
form for the simulation of complex systems. As such system
requires design and verification tools to deal with (from a
developer point of view), we have created a set of tools to
ease its use.

The UbiManager allows a developer to create a system
using a graphical user interface, and to simulate it. During
a simulation, every flip-flop of the system can be graphically
observed. C++ plugins can also be written in order to automat-
ically interact with the simulation by retrieving the flip-flops
state and by changing it if required.

1The website can be attained through: http://www.perplexus.org

212218218

update

read

update

update

update

alive

running

alive

running

ask status
status+IP

start

stop

commands

UbiManager Ubidule Web server Status file

commands

Fig. 10. Scenario of a system test on a ubidule, started from UbiManager

Real test on the platform can also be launched from the
UbiManager, a TCP interface allowing for a wireless commu-
nication with the hardware. As there will be around 100 boards
at the end of the project, a centralized web site permits a user
to monitor which ubidule is active, and which of those are
running an application. The UbiManager can then connect to
a free one in order to test a design.

The population of ubidules, being distributed, is therefore
accessible by anyone from all over the world. It makes Per-
plexus an excellent prototyping platform for complex systems.

ACKNOWLEDGMENT

This project is funded by the Future and Emerging Tech-
nologies programme IST-STREP of the European Commu-
nity, under grant IST-034632 (PERPLEXUS). The information
provided is the sole responsibility of the authors and does
not reflect the Community’s opinion. The Community is not
responsible for any use that might be made of data appearing
in this publication.

REFERENCES

[1] E. Sanchez, A. Perez-Uribe, A. Upegui, Y. Thoma, J. Moreno,
A. Villa, H. Volken, A. Napieralski, G. Sassatelli, and E. Lavarec,
“PERPLEXUS: Pervasive computing framework for modeling complex
virtually-unbounded systems,” in AHS 2007 - Proceedings of the 2nd
NASA/ESA Conference on Adaptive Hardware and Systems, T. Arslan,
A. Stoica, M. Suess, D. Keymeulen, T. Higuchi, R. Zebulum, and A. T.
Erdogan, Eds. Los Alamitos, CA, USA: IEEE Computer Society, aug
2007, pp. 600–605.

[2] A. Upegui, Y. Thoma, E. Sanchez, A. Perez-Uribe, J. Moreno, J. Ma-
drenas, and G. Sassatelli, “The perplexus bio-inspired hardware plat-
form: A flexible and modular approach,” Knowledge-Based & Intelligent
Engineering Systems Journal, 2008. To appear.

[3] A. Upegui, Y. Thoma, E. Sanchez, A. Perez-Uribe, J. Moreno, and
J. Madrenas, “The Perplexus bio-inspired reconfigurable circuit,” in
Proceedings of the 2nd NASA/ESA Conference on Adaptive Hardware
and Systems, T. Arslan, A. Stoica, M. Suess, D. Keymeulen, T. Higuchi,
R. Zebulum, and A. T. Erdogan, Eds. Los Alamitos, CA, USA: IEEE
Computer Society, aug 2007, pp. 600–605.

[4] S. Brown, R. Francis, J. Rose, and Z. Vranesic, Field Programmable
Gate Arrays. Kluwer Academic Publishers, 1992.

[5] Y. Thoma and E. Sanchez, “An adaptive FPGA and its distributed
routing,” in Proc. ReCoSoc ’05 Reconfigurable Communication-centric
SoC, Montpellier - France, Jun. 2005, pp. 43–51.

[6] Y. Thoma, A. Upegui, A. Perez-Uribe, and E. Sanchez, “Self-replication
mechanism by means of self-reconfiguration,” in 20th International
Conference on Architecture of Computing Systems 2007 (ARCS ’07),
Workshop proceedings, M. Platzner, K.-E. Grosspietsch, C. Hochberger,
and A. Koch, Eds. VDE Verlag, mar 2007, pp. 105–112.

[7] J. Torresen, “Possibilities and limitations of applying evolvable hardware
to real-world applications,” in FPL 2000, ser. Lecture Notes in Computer
Science, R. Hartenstein and H. Grünbacher, Eds., vol. 1896. Berlin
Heidelberg: Springer-Verlag, 2000, pp. 230–239.

[8] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,
MI: The University of Michigan Press, 1975.

[9] S. A. Guccione, D. Levi, and P. Sundararajan, “JBits: A java-based
interface for reconfigurable computing,” Proc. of the Second Annual
Military and Aerospace Applications of Programmable Devices and
Technologies Conference (MAPLD), 1999.

[10] A. Upegui, Y. Thoma, A. Perez-Uribe, and E. Sanchez, “Dynamic
routing on the ubichip: Toward synaptogenetic neural networks,” in
AHS 2008 - Proceedings of the 3rd NASA/ESA Conference on Adaptive
Hardware and Systems. Los Alamitos, CA, USA: IEEE Computer
Society, 2008.

[11] A. Upegui, A. Perez-Uribe, Y. Thoma, and E. Sanchez, “Neural develop-
ment on the ubichip by means of dynamic routing mechanisms,” in ICES
2008 - Proceedings of the 8th International Conference on Evolvable
Systems. LNCS, Springer Verlag, 2008. Submitted.

[12] J. Peña, J. Peña, and A. Upegui, “Evolutionary graph models with
dynamic topologies on the ubichip,” in ICES 2008 - Proceedings of the
8th International Conference on Evolvable Systems. LNCS, Springer
Verlag, 2008. Submitted.

[13] D. Bertizzolo, “Optimisation par essaim de particules auto-réplicatifs,”
Diploma project report, HEIG-VD, Switzerland, 2008.

213219219

