
Schema Management for Document Stores

Lanjun Wang†, Oktie Hassanzadeh§, Shuo Zhang†, Juwei Shi†,
Limei Jiao†, Jia Zou, and Chen Wang‡

∗

{wangljbj, shuozh, jwshi, jiaolm}@cn.ibm.com, hassanzadeh@us.ibm.com,
Jia.Zou.US@ieee.org, wang chen@tsinghua.edu.cn

†IBM Research - China §IBM T.J. Watson Research Center ‡Tsinghua University

ABSTRACT
Document stores that provide the efficiency of a schema-less in-
terface are widely used by developers in mobile and cloud appli-
cations. However, the simplicity developers achieved controver-
sially leads to complexity for data management due to lack of a
schema. In this paper, we present a schema management frame-
work for document stores. This framework discovers and persists
schemas of JSON records in a repository, and also supports queries
and schema summarization. The major technical challenge comes
from varied structures of records caused by the schema-less data
model and schema evolution. In the discovery phase, we apply a
canonical form based method and propose an algorithm based on
equivalent sub-trees to group equivalent schemas efficiently. To-
gether with the algorithm, we propose a new data structure, eSiBu-
Tree, to store schemas and support queries. In order to present
a single summarized representation for heterogenous schemas in
records, we introduce the concept of “skeleton”, and propose to
use it as a relaxed form of the schema, which captures a small set
of core attributes. Finally, extensive experiments based on real data
sets demonstrate the efficiency of our proposed schema discovery
algorithms, and practical use cases in real-world data exploration
and integration scenarios are presented to illustrate the effective-
ness of using skeletons in these applications.

1. INTRODUCTION
In the era of cloud computing, application developers are deviat-

ing from data-centric application development paradigms relying
on relational data models and moving to agile and highly itera-
tive development approaches embracing numerous popular NoSQL
data stores [26]. Among various NoSQL data stores, document
stores (also referred to as document-oriented data store) such as
MongoDB [22] and Couchbase [7] are among the most popular
options. These data stores support scalable storage and retrieval
of data encoded in JSON (JavaScript Object Notation) or its vari-
ants [19], in a hierarchical data structure as illustrated in Fig. 1.

∗This work has been done when Jia Zou and Chen Wang were with
IBM Research-China.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 9
Copyright 2015 VLDB Endowment 2150-8097/15/05.

Using JSON is particularly attractive to developers as a natu-
ral representation of object structures defined in application codes
in object-oriented programming (OOP) languages. The flexibility
of its structure also allows users to work with data without hav-
ing to define a rigid schema in prior, as well as to manage ad hoc
and changing data with evolving schemas [3, 20]. These features
significantly simplify the interaction between the application and
document stores, resulting in less code as well as ease of debug-
ging and code maintenance [27]. JSON is also widely adopted as
a data exchange format, which is used by major Web APIs such as
Twitter [16], Facebook [17] and many Google services [18].

Conversely, the simplicity developers achieved from using JSON
and document stores leads to difficulties in certain data manage-
ment tasks, which are probably beyond their duties. Let’s consider
following scenarios: a data scientist wants to explore an applica-
tion’s data for analytic purposes; or an application is required to
share its data with another application; or a database administrator
wants to enable fine-grained access control; or data are required to
be integrated into a data warehouse. All of these tasks are usually
facilitated by schemas. However, since the design and specification
of data structures are tightly coupled with data in JSON, and unlike
other semi-structured data (e.g. XML) that are usually associated
with an explicit schema, these tasks have to request developers’ as-
sistance or study design documents or even read source codes to
understand the schema. Unfortunately, neither of these solutions
are practical in real world. As a result, there is a need for a schema
management function for document stores, like an RDBMS’s data
dictionary which extracts schema definitions from DDL, stores
them in a repository, and enables exploration and search through
query interfaces (e.g. “select * from user tables” in ORACLE) [2]
or commands/tools (e.g. “DESCRIBE table” function in DB2) [1].

Given that the schema-less nature and abandoning of schema-
related APIs are main reasons that developers use document stores,
it is not feasible to enable schema management through a change
of interfaces and APIs or enforcing a data model. Therefore, what
we need is a new schema management framework that can work
on top of any document store, along with new schema retrieval and
query mechanisms different from those implemented in RDBMSs.

The first challenge in designing a schema management frame-
work for document stores is in discovery of the schema from stored
data. Without an explicit definition of the schema, the need for
schema retrieval from a document store results in a complex dis-
covery process instead of a simple lookup. Due to lack of con-
straints to guarantee only one object type in a single collection1,

1Different document stores use different terms referring to the
equivalent of a “table” in RDBMSs. To simplify the presentation, in
this paper, we use MongoDB’s “collection” to refer to such “table”-
like units of data in document stores.

922

a collection may contain records corresponding to more than one
object type. Moreover, schemas of the same object type in a col-
lection might also vary because of attribute sparseness in NoSQL
as well as data model evolution caused by highly interactive adop-
tion and removal of features. For example, in a real-world scenario
using DBpedia [8] (a knowledge graph retrieved in JSON from its
Web API as described in Sec. 7), the 24,367 records describing ob-
jects of type “company” have 21,302 different schemas. Note that
a simple sampling of the records to examine their schemas would
fail to capture the full schema because almost every record may
have a distinct schema. Hence, the first problem we study is how
to efficiently discover all distinct schemas appearing in all records.
The importance for the efficiency of the schema discovery is more
evident for online inserts where schemas of records are to be iden-
tified incrementally and the schema repository is to be updated in
real time. To tackle this challenge, we propose a new data structure
for both schema discovery and storage, eSiBu-Tree, and an equiv-
alent sub-tree based algorithm to discover schemas from existing
data as well as an online method for new inserts.

The second challenge we face is implementation of a query inter-
face over the schema repository, similar to that of RDBMSs, which
is essential for understanding the schema of a given data source. In
this paper, we start with two basic queries on checking the existence
of a given schema and the existence of a specified sub-structure on
a finer granularity (e.g., an attribute “root → author → name” in
Fig. 1). In the example as shown in Fig. 1, suppose developer “A”
has created a collection named “article” for blog data. Despite of
the flexibility of the schema-less system, developer “B” is still ex-
pected to conduct a pre-checking on the given schema to determine
the right place to persist such type of data rather than creating a
new collection “blog”, and also persist data in a consistent way in
a single collection but not separate “article” and its nested body
“author”. As mentioned above, nowadays these checking tasks pri-
marily rely on developers’ familiarity with the structure of data,
or reading design documents or even codes, but this task could be
simplified with the enabling of query functions. In this paper, we
study how to support these two types of queries over eSiBu-Tree
efficiently.

Finally, because of the heterogeneity in schemas, the querying
functionality is not enough for more advanced data exploration
scenarios over document stores. Considering the above example
of “company” in DBpedia, if a data scientist wants to explore the
company data’s structure for feature selection, to display a single
schema is a more preferable solution than to show all the 21,302
schemas at the same time. Therefore, the challenge comes to how
to present varied schemas in a data model. Simple solutions such as
using the intersection or union of all schemas do not work well in
practice. In the “company” example, the intersection of all schemas
is only one attribute (root→ uri) whereas there are 1,648 attributes
in the union set, among which more than half appear only once in
records. What we need here is a balanced solution in the middle of
the intersection which may miss prominent attributes and the union
which may provide too many attributes that are less informative. In
this case, we introduce a new concept called “skeleton”, and pro-
pose to use it as a relaxed form of the schema. Moreover, we design
an upper bound algorithm for efficient skeleton construction.

In summary, this paper makes the following contributions:
• We propose a framework for schema management over docu-

ment stores. To the best of our knowledge, this is the first schema
management framework for document stores.
• We propose a new data structure, eSiBu-Tree, to retrieve and

store schemas and support queries, as well as an equivalent sub-
tree based algorithm to discover all distinct record schemas in

author

textarticle_id

_id

name

root

author

text
article_id

_id

name

first_name last_name

root

author

Did

name

root

text

{“article_id”: “D3”,

“author”:{

“_id”: 123,

“name”: “Jane”},

“text”: “great”}

{“Did”: “D4”,

“author”:{

“name”: “King”},

“text”: “not bad”}

{“article_id”: “D1”,

“author”:{“_id”: 453,

“name”: {

“first_name”: “Amy”,

“last_name”:”Ho”}},

“text”: “not bad”}

S1 S2 S3

{“text”: “nice”,

“author”:{

“name”: “June”,

“_id”: 352},

“article_id”: “D0”}

author

article_idtext

name

_id

root

S4

JSON Record

Record Schema

Figure 1: JSON Records from the collection “article” and their Record
Schemas

Schema

Presentation

Schema Extraction & Discovery

Schema Repository

Query

Schema Consuming

Figure 2: Schema Management Framework

both batch and incremental manners.
• A concept “skeleton” is introduced to summarize record

schemas. For efficient skeleton construction, an upper bound
algorithm is designed to reduce the scale of candidates.
• We evaluate the performance of eSiBu-Tree and algorithms for

discovery and query, which outperforms a baseline method based
on the notion of “canonical forms”. We also provide two real
case studies on data exploration and integration to evaluate the
effectiveness of using skeletons in these applications.
The rest of this paper is organized as follows. The schema man-

agement framework is described in Sec. 2, and related preliminaries
are presented in Sec. 3. Sec. 4, 5 and 6 present technical details of
our solution to address the above mentioned challenges. We present
experimental evaluations in Sec. 7. Sec. 8 discusses related work
and Sec. 9 concludes this paper.

2. SCHEMA MANAGEMENT
FRAMEWORK

Our framework of schema management is designed for docu-
ment stores, which includes three components as shown in Fig. 2,
schema extraction and discovery component, repository compo-
nent, and schema consuming component with two functions of
query and presentation.

Schema Extraction and Discovery This component provides
a transparent way to discover all schemas in records. The first
function this component provides is extraction of the schema of
each record from input JSON records. Fig. 1 shows four JSON
records and their corresponding schemas which we call record
schemas. For existing data, this component discovers all distinct
record schemas by grouping the equivalent ones into categories.
For a new record, its record schema is compared with the current
existed record schemas, and persisted immediately if it is a new
structure. In this study, we apply a method based on the notion of
canonical forms [6], and propose a novel hierarchical algorithm for
schema discovery.

923

Table 1: Notations
r record R record set
S, Si record schema S record schema set
v node V node set
e edge E edge set
V (l) set of nodes in l-th level Lmax maximum level of S
x, y attribute X,Y attribute set
M attribute universal set
K skeleton Kc candidate skeleton

Schema Repository This component is responsible for schema
persistence of document stores, and also supports the efficient ex-
traction process and schema consuming. A new data structure,
eSiBu-Tree, is proposed for the repository in this study.

Query The schema consumption component provides the func-
tionality to find exact answer to certain types of queries on
schemas. Our implementation includes two types of existence
queries, namely schema existence and attribute existence.

Schema Presentation Given the variety of record schemas in
a collection, this functionality aims to provide a summarized rep-
resentation of schemas. Our implementation is based a concept
“skeleton” for JSON records, which is a parameter-free method to
display core attributes in a concise format.

3. PRELIMINARIES
We first list notations used in this paper as shown in Table 1.
According to the JSON grammar [19], a JSON object is built on

a collection of name/value pairs. A value can be an atomic value
(e.g., string or number), another object, or an array (ordered list) of
values. Following previous work on semi-structured schemas [12,
13, 23], we represent the structure of a JSON document as a tree
with its root node labelled as root.

In this study, a record schema S = (V,E) consists a node set
of V and an edge set of E. A node v ∈ V is labelled with a name
that appears in a name/value pair somewhere in the document. An
edge e = root → v ∈ E is from name/value pair in the root of
document. Together with it, an edge e = v1 → v2 ∈ E if and only
if v2 appears as a name in an object associated with v1 directly or
inside an array. For an edge e = v1 → v2, v1 is the parent node of
v2, and v2 is a child node of v1. Fig. 1 shows four example record
schemas. All of them are extracted from a data set describing the
object type of “article” for a blog.

Two record schemas S = (V,E) and S′ = (V ′, E′) are called
equivalent if and only if V = V ′ and E = E′. For example, S1

and S4 in Fig. 1 are equivalent record schemas.
We set the level of the root node in a record schema as Level

1, and for the other nodes, its level is one more than its parent’s
level. The set of nodes in the l-th level is denoted as V (l). The
maximum level of a record schema is the largest level among leaf
nodes, denoted as Lmax. For example, the maximum level of S1

in Fig. 1 is 3.
In a record schema, each path from the root node to a leaf node

is called an attribute. For example, S1 in Fig. 1 contains the
following four attributes: {root→article id, root→author→ id,
root→author→name, root→text}.

As stated earlier, record schemas in a collection can vary despite
describing the same object type. Besides attribute sparsity (such as
S2 in Fig. 1 does not contain root→author→ id), another major
reason for record schema variations is attribute evolution, which
refers to semantically equivalent but different formats in describ-
ing a property of the object type. In this study, we use a matching
relation, denoted as X ∼= Y , to represent such semantic equiva-

lence of two sets of attributes. In particular, there are two kinds of
attribute evolution. The first kind is the naming convention (i.e.,
semantic equivalence but different labels), such as {root→Did} ∼=
{root→article id}, and the second kind is the structural variation
(i.e., semantic equivalence but different granularity), such as {root
→ author→ name} ∼= {root→ author→ name→ first name, root
→ author→name→ last name}.

Some applications (e.g., data exploration for analytic purposes)
require a single view of the data model of a collection, but record
schema variations make it a non-trivial task. In order to present the
data model, one can return the union of all attributes, or a ranked
list of the attributes based on their occurrence frequencies, or the
intersection of record schema sets across all records (i.e., those
with 100% occurrence). However, as described in Sec. 1, these ap-
proaches have drawbacks (e.g., missing prominent attributes, less
informative, etc.) in practice because extensive heterogeneity of-
ten presents in record schemas. We therefore define the concept of
“skeleton” to approximate the essential attributes of an object type,
which is loosely related to the schema definition. SkeletonK is the
smallest attribute set to capture core attributes of the record schema
set for a specific object type.

DEFINITION 1. (CANDIDATE SKELETON) A candidate
skeleton Kc of a record schema set S = {S1, . . . , SN} whose at-
tributes compose M = ∪Ni=1Si meets the following three criteria:

• (Existence) Kc ⊆M ;
• (Uniqueness) ∀x, y ∈ Kc, then for all X ⊆M with x ∈ X and

for all Y ⊆M with y ∈ Y , there is X � Y ;
• (Denseness) ∀X ∼= Y and freq(X) > freq(Y) (where
freq(X) is the number of records containing X), then for all
y ∈ Y , there is y /∈ Kc.

The aim of setting these criteria for candidates is to meet the re-
quirement of “smallest” in the skeleton by avoiding noises from at-
tribute evolution. Furthermore, in order to select the skeleton from
candidates to meet the “core” requirement, we propose a quality
measure based on the trade-off between significance and redun-
dance of attributes in record schemas.

DEFINITION 2. (QUALITY) For a record schema set S =
{S1, . . . , SN}, the quality of an attribute set Kc is defined as:

q(Kc) =

N∑
i=1

αiG(Si,Kc)−
N∑
i=1

βiC(Si,Kc) (1)

where G(Si,Kc) is the gain of Kc in retrieving Si defined as:

G(Si,Kc) =
|Si ∩Kc|
|Si|

(2)

and C(Si,Kc) is the cost of Kc in retrieving Si defined as:

C(Si,Kc) = 1−
|Si ∩Kc|
|Kc|

(3)

Two weights αi and βi reflect the importance of each Si in gain
and cost respectively, which have

∑
i αi =

∑
i βi = 1.

Eq.(2) describes the percentage of Si’s attributes existed in Kc,
and Eq.(3) describes the percentage ofKc’s attributes which is use-
less in retrieving Si. The total quality is the weighted average on
all record schemas in S. Finally, the skeleton is defined as:

DEFINITION 3. (SKELETON) For a record schema set S =
{S1, . . . , SN} whose attributes compose M = ∪Ni=1Si, the skele-
ton K ⊆ M is the candidate skeleton that has the highest quality
among all candidate skeletons.

924

4. SCHEMA DISCOVERY
This section focuses on the schema discovery function in the

framework. Our goal is to discover all distinct record schemas.
The output is a specific data structure to persist record schemas in
the repository.

This section offers two methods to group equivalent record
schemas. The canonical form (CF-)based method (Sec. 4.1) is to
group record schemas based on the same canonical form, and the
method for Depth-First Canonical Form generation [6] is applied.
Since the number of sorts depends on the number of non-leaf nodes,
this algorithm is not efficient for grouping records constituted by
multiple embedded objects. In order to speed it up, we propose a
hierarchical method to assign record schemas into a category with
equivalent sub-trees level by level top to down, so we call this
method as equivalent sub-tree (EST-)based method. In Sec. 4.2,
together with the algorithm, a hierarchical data structure called
eSiBu-Tree, is proposed as the data structure for record schema
persistence and query. Furthermore, Sec. 4.3 introduces how to
apply above algorithms in online schema identification for new in-
serts. In addition, we analyze time and space complexities of them
respectively in Sec. 4.4.

4.1 CF-Based Record Schema Grouping
In this study, we apply the method for generating Depth-First

Canonical Form [6] to group equivalent record schemas. Since
the canonical form specifies a unique representation of a labelled
rooted unordered tree, equivalent record schemas can be grouped
together based on the same canonical form.

Input: Record set: R
Output: Array of code maps: [CM1, CM2, . . .]

1: for all r ∈ R do
2: Construct the record schema S of r, and obtain Lmax of S
3: l← Lmax
4: while l > 0 do
5: Encode each v ∈ V (l) with a code and persist label-code pair in CMl

6: Update label of each v′ ∈ V (l− 1) by appending ordered codes from
children of v′

7: l−−
8: end while
9: end for

Algorithm 1: CF-Based Record Schema Grouping

Alg. 1 processes nodes from the record schema level by level
bottom up. For each node from V (l), we encode it with a code
based on its label (Line 5). Such label is a sequence constituted by
its original label and ordered codes from its children (Line 6).

These label-code pairs compose the code map of Level l (de-
noted as CMl) as shown in Fig. 3. The detailed logic of encoding
nodes is as: if the label of a node exists in the CMl, we use the cor-
responding code to replace the label; otherwise, we assign a new
code to the label and update the CMl by adding this new label-
code pair. The purpose of mapping a label to a code is to save the
space for appending children’s information to their parent. In the
implementation, we use the natural number in sequence as codes,
and so the code map is a hash map with a sequence as key and an
integer as value.

In order to ensure that nodes with the same label and the same
descendants are assigned with the same code in Line 5, this algo-
rithm updates the label of each node by combining its ordered child
codes in Line 6. In our implementation, since a code is an integer,
we append the ascending order of codes from children on the orig-
inal parent’s label. For example, for S1 in Fig. 1, id and name
in Level 3 are encoded as 1 and 2 respectively, and then the node
labelled author in Level 2 is updated to author,1,2 by combining or-
dered codes of its children id and name (our implementation uses

_id : 1

name : 2

Level 3

article_id : 1 text : 3

author,1,2 : 2

Level 2

root,1,2,3 : 1

Level 1

_id : 1

name : 2

Level 3

root,1,2,3 : 1

root,3,4,5 : 2

Level 1

_id : 1 name,1,2 : 3

name : 2

Level 3

Level 2

root,1,2,3 : 1

root,3,4,5 : 2

root,1,3,6 : 3

Level 1

first_name : 1 last_name : 2

Level 4

(a) (b) (c)

article_id : 1 Did : 4

author,1,2: 2 author,2: 5

text : 3

Level 2

article_id : 1 Did : 4

author,1,2: 2 author,2: 5

text : 3 author,1,3: 6

Figure 3: Examples of Generating Canonical Form

the comma as the divider). In addition, we leverage radix sort to
ensure scan once on each node for sorting.

As a result, equivalent record schemas are assigned with the
same code which is persisted in the code map of the root level
(Level 1). Take S1 in Fig. 1 as an example, its root node is updated
as root,1,2,3 and the whole record schema is encoded as 1. When
a record with S4 comes, the same procedure will be executed, and
S4 is also encoded as 1 because it is equivalent to S1.

In this algorithm, with encoding nodes level by level, there is
a byproduct which we call code map array, denoted as ~CM =
[CM1, CM2, . . .]. From this code map array, all categories of
record schemas in the collection can be retrieved. As a result, we
keep it as the data structure to persist schemas of the collection.

Fig. 3 presents how the code map array is generated/updated by
processing records from Fig. 1 one by one. All of these four records
contain a node with a label author in Level 2. In S1, it has two chil-
dren id and name, but in S2, the attribute id is absent. Thus, the
code map of Level 2 is updated by adding a new label-code pair as
shown in Fig. 3(b). Moreover, in S3, the child node name has been
evolved to name→first name and name→last name, so the code
map of Level 2 is updated by adding another new label-code pair
as shown in Fig. 3(c), together with a code map created in Level
4. For the S4, since it is equivalent to S1, there is no expansion on
any code map. Finally, there are three codes in the root level, which
implies these four records have three distinct record schemas.

In addition, the most time-consuming part of Alg. 1 is sorting
children codes for updating the label of parent (Line 6). The num-
ber of sorts depends on the number of non-leaf nodes. Thus, the
performance decreases when a record is constituted by a lot of
embedded objects. Moreover, in our implementation, we leverage
radix sort whose time complexity isO(|CMl|), where |CMl| is the
size of the code map (i.e., radix size). When |CMl| ≈ |v| (where
|v| is the number of child nodes to sort), the radix sort is faster than
quick sort. When the |CMl| � |v|, the radix sort becomes useless.
In the schema discovery, with consuming more and more differ-
ent record schemas, the size of a code map is increasing, so the
radix sort is limited to be used to improve the sorting performance.
Therefore, we have to consider a method to reduce the number of
sorts as well as the size of code maps in order to make the grouping
more efficiently.

4.2 eSiBu-Tree & EST-Based Record Schema
Grouping

In this study, we propose an algorithm following a divide-and-
conquer idea, which reduces the number of sorts from the number
of non-leaf nodes to the maximal level, and generates a local code
map instead of the global code map for reducing the radix size in
the sorting.

The detailed procedure of this method is shown in Alg. 2.

925

Input: Record set: R
Output: eSiBu-Tree, each bucket contains: id,

a code map CMb,
a category flag flag (defaulted as false), and
a sub-bucket list

1: for all r ∈ R do
2: Construct the record schema S
3: l← 2, bucket← root bucket
4: while l <= Lmax do
5: Encode each v ∈ V (l) with a code and persist label-code pair in CMb

6: Update label of each v′ ∈ V (l + 1) by appending its parent’s code
7: codes← Sort(V (l))
8: Assign S to a sub bucket in the sub-bucket list with id = codes
9: l + +, bucket← sub bucket,

10: end while
11: flag ← true
12: end for

Algorithm 2: EST-Based Equivalent Record Schema Grouping

ID: 1,2 T

2,first_name : 1

2,last_name : 2

ID: 1,2 T

3,_id : 1

3,name : 2

ID: 1 TID: 1,2 T

ID: 1,2,3 F

3,_id : 1

3,name : 2

article_id : 1 text : 2

author : 3

ID: 1,2 T

ID: 1,2,3 F

(a) (b) (c)

article_id : 1 text : 2

author : 3 Did : 4

article_id : 1 text : 2

author : 3 Did : 4

3,name : 1

ID: 2,3,4 F

3,_id : 1

3,name : 2

ID: 1,2,3 F

3,name : 1

ID: 2,3,4 F

ID: 1 T

Figure 4: Examples of Generating eSiBu-Tree

The output is a hierarchical data structure, eSiBu-Tree (encoded
Schema in Bucket Tree), whose paths persist equivalent record
schema categories. Fig. 4 provides an example of eSiBu-Tree based
on records in Fig. 1. Each bucket has four variables. The first one
is id, the identifier of a class, which is an ordered sequence. The
second one is a code map CMb, the same as Alg. 1, which is con-
stituted by label-code pairs. But it only works for record schemas
assigned to this bucket, so this code map is a subset of CMl in
the corresponding level from Alg. 1. The third one is a flag to
show whether the path from this bucket to the root represents a cat-
egory of equivalent record schemas. The last one is a sub-bucket
list, where sub buckets of a bucket must have different ids.

In this algorithm, we begin the dividing task from the second
level of record schemas (Line 3) because all of record schemas be-
long to the same category by nature of the same root node. The
procedure is as follows. In Line 5, nodes in V (l) are encoded based
on the CMb of the corresponding bucket. In this step, we assign
each node in V (l) with a code according to its label. Details for
node encoding and code map updating are the same as Alg. 1.

The coding of a node in V (l) has two purposes. One is to up-
date its children’s codes in Line 6. Different from Alg. 1, the label
for encoding is constructed by appending parent’s code on its orig-
inal label. Since a node has one and only one parent in a record
schema, there is no sorting effort in the node encoding step. The
other purpose of these codes is to generate the id of corresponding
sub bucket by sorting(Lines 7-8). In Line 8, the record schema
is assigned into to a sub bucket based on the id. If there is no
such sub bucket existed, we append a new one with the id on the
sub-bucket list of bucket. After Line 8, a bucket in the l-th level
of eSiBu-Tree represents a category of record schemas whose top-l
level subtrees are equivalent.

Besides above steps, Line 11 is executed after processed the
maximum level. In this step, we mark the bucket to indicate the
path from this bucket to the root representing a category of equiva-
lent record schemas. The necessary of this step is to handle the im-

pact of structural variations. As shown in Fig. 1, S3 is similar as S1

except {root→ author→ name} is evolved as {root→ author→
name→ first name, root→ author→name→ last name}. Thus,
two buckets’ flags are set as true in the left branch of the bucket
tree shown in Fig. 4(c), which means that the path from the leaf
bucket to the root represents a category whose representative is S3,
and the path from the bucket next to the leaf to the root represents
another category whose representative is S1.

To sum up, the EST-based method assigns a record schema to the
corresponding bucket by equivalence identification level by level
top down. The output of this algorithm is a bucket tree which com-
presses a category of equivalent record schemas into a path.

Fig. 4 shows how an eSiBu-Tree is generated/updated by pro-
cessing records from Fig. 1. Comparing with code maps in Fig. 3,
the code map in the bucket for encoding the nodes from Level 2 is
not expanding with the attribute sparsity and evolution on the node
author, which is benefit for the performance of the radix sort.

4.3 Online Record Schema Identification
Sec. 4.1 and 4.2 present how to group equivalent record schemas

from existing data sets, which is suitable to discover distinct
schemas in the batch manner. Furthermore, according to Alg. 1
and 2, both of them just scan a record once in the grouping. This
property indicates that both of these algorithms are capable to sup-
port online equivalent record schema identification when records
are coming incrementally.

Take the EST-based method as an example, for a newly inserted
record, operations on each record in the batch manner (i.e., Alg. 2
Lines 2-11) are executed. If the schema of this record has not been
persisted, a new path on the eSiBu-Tree will be nominated to repre-
sent this new category of record schemas (either the flag of a bucket
is turned to true or a new path is added); otherwise, eSiBu-Tree
will not change and some statistics (e.g., the frequency of the hit
record schema category) will be updated if needed.

4.4 Complexity Analysis

4.4.1 Time Complexity
As introduced in Sec. 4.3, for Alg. 1 and 2, their time complexi-

ties are both linear with the number of records |R|. However, they
are different in the step for sort. In Alg. 1, since every non-leaf
node needs to be updated by combining its ordered children, the
number of sorts depends on the number of non-leaf nodes. Mean-
while, Alg. 2 needs one sort in each level to generate id of each
bucket, so the number of sorts depends on the maximum level of a
record schema.

Furthermore, the EST-based method also reduces the size of
the code map. The code map of a bucket is generated by record
schemas assigned into it, meanwhile, the code map array consid-
ers the whole data set. As a result, the code map of eSiBu-Tree is
part of the code map in the corresponding level from the code map
array, which is of benefit to radix sort.

To summarize, the complexity for processing a record in Alg. 1
is O(|v0| × |CMl|), where v0 is the number of non-leaf nodes,
and |CMl| is the size of the global code map. For Alg. 2, the
time complexity is O(Lmax × |CMb|), where |CMb| is the aver-
age size of the code map in a bucket. For data sets in document
stores where attributes are diversity and have multiple levels (i.e.,
JSON records with embedded objects), Alg. 2 is much faster than
Alg. 1, because the number of nodes is larger than the maximum
level (|v0| > Lmax) and the size of the global code map is greater
than the (local) bucket code map’s size (|CMl| > |CMb|).

4.4.2 Space Complexity

926

Since the EST-based method splits the global code map into
bucket code maps, it leads to duplications. For example, in
Fig. 4(c), the label 3,author appears twice. At the same time, for the
code map array, the sizes of code maps expand, because each code
map includes labels with common parts, such as author,1,2 and au-
thor,2 in the Level 2 of Fig. 3. Therefore, the worst cases of space
complexities in these algorithms are roughly the same, which are
linear with four factors: the number of equivalent record schema
categories N , the average attribute size in a record schema m̄, the
maximum level Lmax, and the average length of each LABEL len.

In details, they are the same in boundary cases. One of them is
all record schemas in the collection are equivalent, so there is only
one path in the eSiBu-Tree which is the same as the code map array.
Another case is there is no common attribute for any two distinct
record schemas. In this case, the sum of code maps in a level of
the eSiBu-Tree is the code map in the same level of the code map
array, as a result, their space consumptions are the same.

5. QUERY
This section presents the Query function of the schema manage-

ment framework. In this section, we present two kinds of existence
queries, which are schema existence query and attribute existence
query. In each query, we first introduce its motivation, then pro-
pose a SQL-like API, and at last present algorithms to implement
it based on the code map array and the eSiBu-Tree.

5.1 Query 1: Schema Existence
Schema Existence Query aims to check whether a specified

record schema has been persisted. Similar to RDBMSs that have a
function to allow users to check the existing table list and table defi-
nitions, this query mechanism could be broadly used by developers
to find the right collection to persist a defined object. For example,
suppose the developer is a newer in a project, to execute this query
as a pre-checking helps him to decide whether to insert a record to
the collection which persists records with the same schema, or to
create a new collection to insert. The SQL-like API is as:

SELECT S∗ from METADATA where S∗ = S(r)
where S(r) is the record schema of the given record r, and META-
DATA represents the repository persists all record schemas. As no
duplicate record schema is persisted, the return of this query is a
boolean, where true represents the existence.

Alg. 3 shows the detailed procedure of executing Query 1 on
the code map array. Besides filtering record schemas higher than
all persisted ones in Lines 2-4, the major task is to check whether
labels updated by combining their ordered children’s codes have
been contained by the corresponding code map (Lines 5-16).

The implementation of Query 1 on the eSiBu-Tree is shown as
Alg. 4. In the eSiBu-Tree, there are three conditions to determine
the existence. The first one is the label has to be contained by
the code map of corresponding bucket (Lines 4-9). The second
one is the bucket has a sub-bucket with an id the same as ordered
code sequence, which indicates such combination of nodes has ap-
peared (Lines 11-17). The last one is the flag of the final bucket
is true, which means the equivalent record schema category pre-
sented by the bucket path from this bucket to the root has been
persisted (Lines 19-23).

Both of these algorithms are similar as procedure on each record
in grouping equivalent record schemas respectively, except from
generating the code map or creating a new sub-bucket to checking
existences. As shown in Sec. 4.4.1, these two algorithms are com-
parable in the performance. The difference is also triggered by the
sorting step. When schemas are from a data set where records are

Input: A record r, and code map array [CM1, CM2, . . . , CMD]
Output: true/false (true is by default)

1: Construct the record schema S of r
2: if Lmax > D then
3: return false
4: end if
5: l← Lmax
6: while l > 0 do
7: for all v ∈ V (l) do
8: if v is not in CMl then
9: return false

10: else
11: code← Encode(v, CMl)
12: end if
13: end for
14: Update(V (l− 1)) with ordered codes from children
15: l−−
16: end while

Algorithm 3: Query 1 based on Code Map Array

constituted by a lot of embedded objects, Query 1 implemented on
the eSiBu-Tree runs faster than on the code map array.

Input: A record r, and an eSiBu-Tree
Output: true/false (true is by default)

1: Construct the record schema S of r
2: l← 2
3: while l <= Lmax do
4: for all v ∈ V (l) do
5: if v is in CM then
6: code← Encode(v, CM)
7: else
8: return false
9: end if

10: end for
11: codes← Sort(codes)
12: if existed a sub bucket with id = codes then
13: Update(V (l + 1))
14: l + +, bucket← sub bucket,
15: else
16: return false
17: end if
18: end while
19: if flag 6= true then
20: return false
21: end if

Algorithm 4: Query 1 based on eSiBu-Tree

5.2 Query 2: Attribute Existence
Attribute Existence Query aims to determine record schemas

containing a specified attribute, which provides a finer granularity
pre-checking by locating the attribute. Moreover, this query could
be used to identify different object types due to lack of schema
names (multiple objects in one collection), or the version of an
object schema for the sake of the evolving data model caused by
highly iterative developments, with a specific attribute they con-
tain. The SQL-like API is as:

SELECT S from METADATA where attr ∈ S
where attr is the given attribute. Because of the record schema
variation, a given attribute may exist in more than one record
schema, therefore the result of Query 2 is a record schema set. If
the given attribute does not appear, the set is empty.

We implement this attribute existence query on the code map ar-
ray and the eSiBu-Tree in Alg. 5 and Alg. 7 respectively. In the
code map array, a record schema is represented by a code in the
code map of root level, so Alg. 5 returns a set of codes. Similarly,
Alg. 7 returns a set of bucket paths. A record schema can be re-
trieved based on the code and the bucket path respectively.

Alg. 5 shows procedure of checking the attribute existence in the
code map array. Beside determining the existence by the maximal
level (Line 1), the core operations are to check the existence of

927

Input: An attribute attr = v1 → . . .→ vD′ ,
and code map array [CM1, CM2, . . . , CMD]

Output: A set of codes: C
1: ifD′ <= D and vD′ is in CMD′ then
2: codeD′ ← Encode(vD′ , CMD′)
3: C← FindCodebyDepth(C, CMD′−1, vD′−1, codeD′)
4: end if

Algorithm 5: Query 2 based on Code Map Array

each label level by level bottom up iteratively in Alg. 6. Take root
→ author→ name as an example, and the corresponding code map
array is as Fig. 3(c). The label name is in the code map of Level
3, whose code is 2. Next, we implement Alg. 6, the label author
and the code 2 appear simultaneously in two labels in code map of
Level 2, which are author,1,2 encoded as 2 and author,2 encoded
as 5. Then, continuing on Alg. 6, the label root with the code 2 is
in root,1,2,3, and root with the code 5 is in root,3,4,5. As a result,
the final canonical code set has two items.

Input: A set of codes: C, a code map: CMl, a node: vl, and a code: codel+1

Output: A set of codes: C
1: for all label in CMl do
2: if label contains both vl and codel+1 then
3: codel ← Encode(label, CMl)
4: if l− 1 == 0 then
5: add codel to C
6: else
7: C← FindCodebyDepth(C, CMl−1, vl−1, codel)
8: end if
9: end if

10: end for

Algorithm 6: FindCodebyDepth(C, CMl, vl, codel+1)

Alg. 7 presents the attribute existence query on the eSiBu-Tree.
This algorithm has two major steps. The first one is to determine
the bucket (together with its ancestors) which contains the given at-
tribute level by level recursively, as Alg. 8. In this step, we focus on
two points: 1) whether the code of vl−1 is in an id of sub bucket;
and 2) whether a label combined by the label of vl and the code of
vl−1 is in the code map of corresponding sub bucket. Still take the
attribute root→author→name as an example, and the eSiBu-Tree
is in Fig. 4(c). Following Alg. 8 level by level top down iteratively,
we obtain that two buckets in the third depth of this eSiBu-Tree
contain the given attribute.

Input: An attribute attr = root→ v2 . . .→ vD′ ,
and the eSiBu-Tree

Output: A set of bucket path: P
1: if v2 is in CM of root bucket then
2: code2 ← Encode(v2, CM)
3: B← FindContainer(B, v3, code2, root bucket)
4: P← RetrieveBucketPath(B)
5: end if

Algorithm 7: Query 2 based on eSiBu-Tree

After obtained the bucket containing the last node of the at-
tribute, the second major step is to build up the bucket path rep-
resenting a record schema as the output. In this example, since the
flags of these two buckets we have found out are both true, the
final result set contains bucket paths from these buckets to the root.
Besides this, there are other two cases to generate the bucket path
which represents a category of record schemas.

One case is the flag of the bucket containing the last node of
attribute is false. For example, suppose the attribute is root→ text,
and the bucket containing its last node is in the 2-level with id =
1, 2, 3. In this case, all full paths from its descendants (whose flag
is true) constitute the output because each one of them contains

Input: A set of bucket: B, a node: vl, a code: codel−1, and a bucket: bucket
Output: A set of bucket: B

1: for all sub bucket of bucket do
2: if codel−1 exists in the id of sub bucket and

Update(vl) exists CM of sub bucket then
3: codel ← Encode(Update(vl), CM)
4: if l + 1 > D′ then
5: add sub bucket in B
6: else
7: B← FindContainer(B, vl+1, codel, sub bucket)
8: end if
9: end if

10: end for

Algorithm 8: FindContainer(B, vl, codel−1, bucket)

information of the given attribute. As a result, we can determine
the attribute root→ text is in three record schemas.

The other one appears in querying root → author → id. The
bucket on the eSiBu-Tree containing its last node is in the 3-depth
with id = 1, 2. The flag of this bucket is true, so the path from
it is included in the output. Besides, its sub bucket does not have
any attribute expansion from the given attribute. This is presented
as no label in sub bucket’s code map containing the code of the
last node in the given attribute. As a result, this sub bucket and its
descendants whose flag is true are all outputs. Thus, we can de-
termine two distinct record schemas containing root→author→ id.

Considering the performance of implementations on the code
map array and the eSiBu-Tree, it seems that procedure of searching
the final bucket paths on the eSiBu-Tree is more complicated, how-
ever it is just comparable with the recursive searching level by level
as Alg. 6. Sometimes, it is even faster since we only need to check
the flag. The most time consuming part of them are both related
to code existence checking. For the query on the code map array,
we have to scan all labels in CMl (as Alg. 6). For the query on the
eSiBu-Tree, the scan region is the sub-bucket list (as Alg. 8). Since
the number of sub-buckets is always fewer than the size of the code
map, the query implemented on the eSiBu-Tree runs faster than that
on the code map array.

6. SCHEMA PRESENTATION &
SKELETON CONSTRUCTION

This section presents the skeleton construction process per-
formed in the Schema Presentation function of the framework. In
Sec. 6.1, we describe how to process a collection of records con-
taining multiple object types. Then, Sec. 6.2 presents details of the
skeleton construction for a specific object type.

6.1 Skeleton Construction for a Collection
As discussed in Sec. 1, a collection of records in a document

store may persist more than one object type. Hence, the data model
of this collection can be presented as a set of skeletons, each of
which describing an object type. The workflow of skeleton con-
struction for a collection are shown in Fig. 5. The inputs are record
schemas parsed from the schema repository. The output includes
skeletons of all object types. The detailed steps are as follows.

Schema Parser This step is to parse the specific data structure
into distinct record schemas for the following study. In this study,
we have presented two data structures to persist record schemas of
document store, which are code map array and eSiBu-Tree. In the
code map array, a category of equivalent record schemas is rep-
resented by a code in the code map of the root level (Level 1) as
shown in Fig. 3. The retrieval process starts from the corresponding
label of this code, and leverages code maps in each level to append
subtrees on a record schema iteratively. In the eSiBu-Tree, the path

928

a b

a b’

a b c

g h

a b
a b’a b c

g h

a b

g h

Clustering Skeleton

Construction

Attribute Equivalence Identification Engine

Object type 1

Object type 2

Equivalent

Attribute

Combination

a b a b c

g h

Object type 1

Object type 2

b≈b’

Schema

Repository

b≈b’

Schema

Parser

Figure 5: Schema Presentation Workflow

from a bucket with flag as true to the root-bucket represents a
category of equivalent record schemas as Fig. 4. For such a path,
the retrieval process starts from the root bucket, and leverages id
and CM of each bucket to append nodes level by level iteratively.

Attribute Equivalence Identification Engine is the backend to
identify attribute equivalences as defined in Sec. 3. Clustering aims
to differentiate object types. As there are many methods and solid
studies related to these parts, we will not discuss them elaborately.
For readers interested, here are surveys on schema matching [25]
and clustering [30] respectively.

Equivalent Attribute Combination This step is to ensure unique-
ness and denseness of skeleton candidates, as listed in Def. 1. This
pre-processing step is based on the result from the backend engine,
which is to combine attributes which are equivalent semantically
but have different names and/or different granularity. The detailed
procedure is: for each X ∼= Y , when the frequency of X is higher
than Y , Y in record schemas is replaced by X .

Skeleton Construction This step constructs the skeleton of each
object type based on record schemas, details of which are described
in the following sub-section. As the above pre-processing step is
designed to guarantee uniqueness and denseness of skeleton can-
didates, the updated record schema set is used as the input of the
following skeleton construction.

6.2 Skeleton Construction for an Object Type
This section considers the problem of constructing the skeleton

describing a specific object type. Recall the definition in Sec. 3, we
formulate the skeleton construction as finding out the highest qual-
ified attribute set. The quality of an attribute set Kc is as follows:

q(Kc) =

N∑
i=1

αi
|Si ∩Kc|
|Si|

−
N∑
i=1

βi(1−
|Si ∩Kc|
|Kc|

) (4)

Eq. (4) shows the total quality is the weighted average on all record
schemas in S = {S1, S2, . . . , SN}. In this study, we set weights
for gain function and cost function respectively as:

αi =
ni∑N
i=1 ni

(5)

βi =

1
ni∑N
i=1

1
ni

(6)

where ni is the number of records whose record schemas are equiv-
alent to Si. Eq. (5) shows αi for the gain function is proportional
to its frequency, which means the skeleton tries to retrieve more
information of the record schema which appears in the data set fre-
quently. Eq. (6) shows βi for the cost function is inversely pro-
portional to its frequency, which implies the skeleton tolerates the

redundancy in the highly frequent record schemas. To sum up, this
heuristic idea for designing weights is to make the skeleton be in-
clined to frequent record schemas. The assumption here is that the
frequency of a record schema represents its importance and signif-
icance in the data set.

As we have no prior knowledge of the data set, any subset of
the universal attribute set M can be a candidate set, so there are
2|M| candidates . In order to calculate their qualities, we need a
computational complexity as O(N × 2|M|). Therefore, the most
critical task for us is to reduce the scale of candidates.

Let Km refer to the candidate attribute set with highest quality
among attribute sets with size m. It is clear that there exists an
m such that K = Km, i.e., if the skeleton has m attributes, it is
the highest quality candidate skeleton among attribute sets of size
m. Therefore, we need to find the highest quality candidate for
m = 1 · · · |M | first. The next strategy we use is obtaining an upper
bound for the quality of candidate skeletons with a given size.

THEOREM 1. The upper bound set Km is composed by the
top-m attributes in M with the feature feam(pk) defined as:

feam(pk) =
∑

i|pk∈Si

(
αi

|Si|
+
βi

m
) (7)

PROOF. Suppose Km is the upper bound set of size m, K̃m

is the attribute set with top-m feam(pk), and Km 6= K̃m, i.e.,
Km = K̂ ∪ {ps}, where K̂ = Km ∩ K̃m , and {ps} 6= ∅. Since
{ps} * K̃m, there is∑
ps∈{ps}

∑
i|ps∈Si

(
αi

|Si|
+
βi

m
) <

∑
pt∈K̃m\K̂

∑
i|pt∈Si

(
αi

|Si|
+
βi

m
) (8)

Thus, q(K̃m) > q(Km), so any attribute outside top-mfeam(pk)
is not the upper bound set Km.

Input: Record schema set: S = {S1, . . . , SN};
Attribute set: M = ∪Ni=1Si;
Weights: {αi} and {βi}

Output: SkeletonK
1: for all pk ∈M do
2: for all Si ∈ S do
3: if pk ∈ Si then
4: γ(pk)← γ(pk) +

αi
|Si|

5: φ(pk)← φ(pk) + βi
6: end if
7: end for
8: end for
9: for allm = 1 : |M | do

10: for all pk ∈M do
11: feam(pk) = γ(pk) +

φ(pk)

m
12: end for
13: pick top-m feam(pk) asKm
14: q(Km)←

∑
Km

feam(pk)

15: if q(Km) > qmax then
16: K ← Km; qmax ← q(Km)
17: end if
18: end for

Algorithm 9: Skeleton Construction
Alg. 9 shows details of constructing the skeleton K. Lines 1-8

generate two temporary variables γ(pk) and φ(pk) to avoid dupli-
cate computations in calculating the feature pointed by Theorem 1.
After Line 8, γ(pk) =

∑
i|pk∈Si

αi
|Si|

and φ(pk) =
∑
i|pk∈Si

βi

are ready, so the feature in Eq.(7) which equals to γ(pk) + φ(pk)
m

,
is easy to be calculated in Line 11. Lines 13-14 obtain the upper
bound set for a size m. Finally, Lines 15-17 are to find the highest
quality candidate which is returned as the skeleton.

929

Table 2: Data Set Statistic & Schema Discovery Results
Object Source DataSet Rec# Attr# |S|avg Lmax Sch#

Drug
Freebase fbDrug 3,888 42 13 4 147
DBpedia dbpDrug 3,662 340 33 2 2,818
DrugBank dbankDrug 4,774 144 103 3 13

Movie
Freebase fbMovie 84,530 48 14 2 13,914
DBpedia dbpMovie 30,332 1,513 42 2 25,137
IMDb imdbMovie 7,435 29 10 3 2,992

Company
Freebase fbComp 74,970 110 10 6 6,847
DBpedia dbpComp 24,367 1,738 39 2 21,302
SEC secComp 1,981 60 29 5 180

In addition, the overall computational complexity for the skele-
ton construction is O(N × |M | + |M |2 log |M |). Since attribute
numbers are always less than record schema numbers (as listed in
Table 2), to scan record schemas for feam(pk) with O(N × |M |)
is usually the dominant in constructing the skeleton in practice.
Besides, applications supported by the Schema Presentation (such
as data exploration) is without a real time requirement, i.e., such
workload is just for off-line executions.

7. EVALUATION
In this section, we present results of evaluating the schema dis-

covery from real-word data sets, as well as the performance of
query implementations. In addition, we also evaluate the effective-
ness of using skeletons in the schema presentation with two practi-
cal cases.

7.1 Data Sets
Table 2 shows the statistics of data sets used in our experiments.

These data sets consist of three object types, and each of them has
three data sources. Thus, there are nine data sets to evaluate. Simi-
lar to our motivating examples described in Sec. 1, record schemas
in these data sets have several variations.

The data sets are all in the JSON format and stored in a document
store. All of these data sets are publicly available and have been
used in the past for evaluating linkage discovery algorithms [13].
The Freebase data [10] is downloaded in JSON using a query
written in Metaweb Query Language (MQL). DBpedia data [8]
is fetched from the DBpedia’s SPARQL endpoint in the RDF/N-
Triples format and converted into JSON. Company scenario uses
data extracted from the U.S. Securities and Exchange Commission
(SEC) online form files using IBM’s SystemT [5] with outputs in
JSON. The drug scenario uses information about drugs extracted
from DrugBank [9], which is an online open repository of drug and
drug target data. Movie scenario uses movie data from the online
movie database, IMDb [15].

7.2 Performance of Schema Discovery
In this section, we first evaluate the performance of equivalent

record schema grouping algorithms for the schema extraction. The
experiments were run on a workstation (Intel Core i5 Processor
with 2.67GHz and 4GB of RAM). The category numbers shown in
the Table 2 with the column titled “Sch#” confirm our analysis in
Sec. 1. The records describing one object are in various schemas
because of variations as illustrated by motivating examples. This
phenomenon is most notable in data sets from DBpedia, where
equivalent record schema category numbers are very close to the
number of records. In another saying, there exist large portions of
record schemas only used in one of the records.

The experimental results in Fig. 6 show the performance of
canonical form based and EST-based methods. For the data sets
whose Lmax > 2 (i.e JSON records are constructed by multi-
ple embedded objects) as shown in Fig. 6a, the EST-based method
outperforms the CF-based method in all data sets. This advantage

fbDrug dbankDrug imdbMovie fbComp secComp
0

200

400

600

800

1000

1200

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

CF-Based
EST-Based

(a) Lmax > 2

dbpDrug fbMovie dbpMovie dbpComp
0

200

400

600

800

1000

1200

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

CF-Based
EST-Based

(b) Lmax = 2

Figure 6: Performance of Schema Discovery

comes from reductions on the number of sorts and the radix size as
the analysis in Sec. 4.4. Take the data set secComp as an example,
the average number of non-leaf nodes in a record schema is 9.25,
while it has at most 5 levels (among which the root level does not
need to sort in the EST-based algorithm), thus the number of sorts
in the CF-based is more than double of that in the EST-based algo-
rithm. In addition, the largest code map size in the code map array
is 53 which is also larger than the largest one in the eSiBu-Tree
with 33 label-code pairs. As a result, the EST-based method has an
advantage in grouping/identifying equivalent record schemas when
records are constituted by embedded objects.

In addition, when schemas of all records are flat, i.e., Lmax = 2,
both CF-based and EST-based methods only need to sort once for
each record, and the code map size from the array and the eSiBu-
Tree are also the same. As a result, executive times of two algo-
rithms on flat schemas are comparable as shown in Fig. 6b.

7.3 Performance of Queries

7.3.1 Performance of Schema Existence Query
This section focuses on the performance of the schema existence

query. In the experiment, we leverage 1000 records to generate
specific data structures for record schema persistence first, and then
check whether the schema of a given record has existed. Since the
execution time of processing one record is very short, we present
the cumulative execution time on 4000 records in Fig. 7a. Further-
more, in each experiment, 1000 records for data structure genera-
tion and 4000 records for checking are both randomly selected from
the data set, and Fig. 7a displays the average execution time of five
tests on each data set.

As analyzed in Sec. 5.1, the procedure on each record is simi-
lar to the method of grouping records with the equivalent record
schema. Thus, the trend of performance on the schema existence
query is the same as in the schema extraction (Fig. 6). When the
maximal level is large (such as fbComp and dbankDrug), imple-
mentations on the eSiBu-Tree runs faster than that on the code map
array. However, in the case that record schemas are flat (such as
dbpComp), these two methods are comparable.

7.3.2 Performance of Attribute Existence Query
This section focuses on the performance of the attribute exis-

tence query. In order to evaluate the performance of this query
under attributes with different lengths, we leverage fbComp as the
data set because its maximum level is large and its attributes have
various lengths. Table 3 lists attributes used in this experiment, and
the corresponding results are shown in Fig. 7b.

As the analysis shown in Sec. 5.2, the difference of them is re-
lated to checking regions. For the query implemented on the code
map array, we have to scan all labels in CMl, and there are 7020

930

fbComp dbankDrug dbpComp
0

50

100

150

200

250

300

350

400
E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

Schema Existence Query

Code Map Array
eSiBu-Tree

(a) Schema Existence

Attr1 Attr2 Attr3 Attr4 Attr5
0

100

200

300

400

500

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

Attribute Existence Query

Code Map Array
eSiBu-Tree

(b) Attribute Existence

Figure 7: Performance of Queries

Table 3: Attributes for Attribute Existence Query
NO. Attribute Sch#
Attr1 root→ type 3,731
Attr2 root→ advisors→ name 117
Attr3 root→ locations→ address→ street address 187
Attr4 root→ locations→ address→ citytown→ id 187
Attr5 root→locations→address→state region→country→id 144

label-code pairs in the code map array for fbComp. For the query
implemented on the eSiBu-Tree, the scan region is the sub-bucket
list of a bucket. In the eSiBu-Tree of fbComp, there are 2376
sub-buckets in total, but for a specific attribute (especially longer
ones), it does not need to check all these sub-buckets by filtering
out buckets without upper level nodes. Therefore, the attribute ex-
istence query on the eSiBu-Tree overall outperforms that on the
code map array. In addition, since both of them have to check all
nodes in the given attributes, the performance also depends on the
length of the attribute, as a result, execution times are increasing
with the attribute lengths increasing.

7.4 Effectiveness
In this section, we evaluate the effectiveness of using the skele-

ton in schema presentation with two practical cases. The first one is
designed for the scenario that data analyzers and scientists want to
explore data from document stores. The second one shows advan-
tages of the skeleton in reducing the linkage point searching space
when integrating a document store with other data sources.

In the data extraction procedure, we persist data with the same
object type from a data source into a data set. In other words, we
will not consider the difference in record schemas caused by dif-
ferent object types, so the clustering step is not evaluated in this
study. Moreover, in this study, we leverage an existing highly effi-
cient schema matching engine to identify equivalent attributes [13].
After the equivalent attribute combination, the attribute size of data
sets are: 303 for the dbpDrug, 1,472 for the dbpMovie, 1,648
for the dbpComp, and 109 for fbComp. For other data sets, their
attribute sizes are the same as shown in Table 2.

7.4.1 Exploration Scenario
As introduced in Sec. 1, the schema-less nature makes document

stores hard to be explored. Furthermore, some intuitive approaches
such as the universal attribute set (union all distinct record schemas
∪Ni=1Si) and the common attribute set (intersect all distinct record
schemas ∩Ni=1Si), are not suitable in the data exploration.

Take the collection describing dbpComp as an example. This
data set has over twenty thousands record schemas, and in total
1,648 attributes. Fig. 8a shows the frequency distribution of the
attributes in the ranking order. We observe that the frequency dis-
tribution is with a long tail, which means there are large portions
of attributes with very low frequencies. In fact, according to our

Table 4: Five attributes in the Skeleton
root→ http://dbpedia.org/property/homepage
root→ http://dbpedia.org/property/companyName
root→ http://dbpedia.org/property/products
root→ http://dbpedia.org/property/location
root→ http://dbpedia.org/property/keyPeople

Table 5: Five attributes out of the Skeleton
root→ http://dbpedia.org/property/bankrupt
root→ http://dbpedia.org/property/suspension
root→ http://dbpedia.org/property/totalCarbohydrates
root→ http://dbpedia.org/property/topSpeed
root→ http://dbpedia.org/property/jurisdiction

statistics, 954 attributes appear just once in this data set, and 211
attributes appear twice. In the preview scenario, if we presented all
of these attributes to users, they are easy to mixed-up core attributes
and others. Meanwhile, records in this data set have just one com-
mon attribute, which is root→ uri. Obviously, if we only showed
this attribute as the preview, users would lost a lot of important
information.

The skeleton proposed in this study provides a single view of the
data set. Fig. 8b shows how qualities as Eq. (4) vary with the size
increasing of upper bound sets. The highest qualified, skeleton, is
the attribute set generating the peak value of this plot. For the data
set dbpComp, the attribute size of the skeleton is 28. Thus, it has a
concise formation in comparison with the whole attribute set. The
most of important is to capture the core attribute of the specific
object, such as company in this example. In order to demonstrate
the significance of the skeleton, we randomly select five attributes
from and out of the skeleton, which are shown in Table 4 and 5
respectively. Comparing attributes in these two tables, it is easy to
recognize attributes in the skeleton, such as name, products, loca-
tion, are general to every company. However, attributes out of the
skeleton are particular. For example, bankrupt is a possible prop-
erty of unhealthy companies, and carbohydrates might be a noise in
the data related to a set of food manufacturing companies’ products
instead of the company entity itself.

In order to evaluate the effectiveness of using the skeleton for
summarizing the schema set, we propose two metrics to measure
the summarization performance of the skeleton. The first index is
to show the gain of this skeleton, named as retrieval rate (RR). As
the definition in Sec. 3, the retrieval rate is defined as the object re-
trieved by the skeleton, denoted as: RR =

∑
Si
αi|Si ∩K|/|Si|.

The second index is to assess the size of the attribute set for achiev-
ing such gain. We use the relative size (RS) here, which is defined
as the percentage of the size of the skeleton over the universal at-
tribute set, denoted as: RS = |K|/|M |.

Table 6 shows the performance of the skeleton with retrieval rate
and relative size comparing with the maximal common set and the
universal set. For the universal set, both retrieval rate and rela-
tive size is 1. We also annotate differences between two baseline
methods with the skeleton. For example, for the dbpComp we
discussed, the skeleton leverage 2% of attributes to represent 76%
information of the data set. Comparing with the maximal common
set, it uses 0.14% extra attributes, but retrieves more than 70% in-
formation. Together with it, comparing with the universal set, the
skeleton saves 98% attributes with only a loss of 24% retrieval rate.

Table 6 also shows us the retrieval rates and relative sizes vary
in different data sets. For example, the skeleton for dBankDrug
retrieves almost all of record schemas. However, in fbComp, the
skeleton only covers 67%. These variances come from their at-
tribute frequency distributions. Fig. 9a and 9b show the rank or-
dered frequency distribution of attributes from dBankDrug and

931

0 200 400 600 800 1000 1200 1400 1600
Attribute

0.0

0.2

0.4

0.6

0.8

1.0
Fr

e
q
u
e
n
cy

Attribute Frequency Distribution (rank ordered)

(a) Attr. Freq. Distribution

0 200 400 600 800 1000 1200 1400 1600
Attribute

0.0

0.2

0.4

0.6

0.8

1.0

Q
u
a
lit

y

Skeleton Construction

(b) Quality

Figure 8: Company from DBpedia

0 20 40 60 80 100 120 140
Attribute

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

Attribute Frequency Distribution (rank ordered)

(a) Drug/DrugBank

0 20 40 60 80 100
Attribute

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

Attribute Frequency Distribution (rank ordered)

(b) Company/Freebase

Figure 9: Attribute Frequency Distribution

fbComp respectively. These two figures present us one of them
(dBankDrug) is with a short tail, while the other one is (fbComp)
has a long tail. The short tail means there are large portions of at-
tributes appearing frequently. If the skeleton excluded one of them,
that will bring a lot of losses in retrieving the object. Thus, because
of containing such large portions of high frequency attributes, the
retrieval rate of the corresponding skeleton is near to 1. Meanwhile,
for the distribution with a long tail, the proportion of infrequent at-
tributes is large. As the gain of adding an extra attribute to the
skeleton cannot offset the redundancy accompany with it, we use
a concise attribute set to summarize the data set. As a conclusion,
the number of attributes in the skeleton depends on the attribute
frequency distribution.

Besides the common set and the universal set, there are some
other intuitive schema presentation approaches, such as top-k most
frequent attributes, attributes’ frequency over a threshold, etc. In
these approaches, how to choose the parameter is the most critical
issue. For example, when we use top-50 most frequent attributes
to present the schema, for fbComp, one out of five of the selected
attributes appear less than 1% in records, while for dbankDrug,
since over 60 attributes appear in every record, the top-50 approach
cannot even cover the common set. To sum up, comparing with
these parameterized approaches, the skeleton is a novel parameter-
free schema presentation method, which is helpful in case users
have no prior knowledge on the data set.

7.4.2 Integration Scenario
To further investigate the effectiveness of using the skeleton in

schema presentation, we use an integration scenario from previous
work [13] where the goal is discovering linkage points between
data sources. Briefly, a linkage point is a pair of attributes from
two sources that can be used to effectively perform record linkage
(or entity resolution), i.e., to link records between the sources that
refer to the same real-world entity. The final goal is to integrate
all sources into one duplicate-free (clean) source that contains data

Table 6: Performance of Skeleton in Summarization

Data Set Skeleton Common Universal
RR RS RR RS RR=1 RS=1

fbDrug 0.91 0.29 0.81(-0.10) 0.24(-0.05) (+0.09) (+0.71)
dbpDrug 0.85 0.11 0.13(-0.72) 0.01(-0.10) (+0.15) (+0.89)
dbankDrug 0.9997 0.86 0.71(-0.29) 0.50(-0.36) (+0.0003) (+0.14)
fbMovie 0.88 0.29 0.53(-0.35) 0.15(-0.15) (+0.12) (+0.71)
dbpMovie 0.92 0.04 0.03(-0.89) 0.001(-0.04) (+0.08) (+0.96)
imdbMovie 0.88 0.45 0.35(-0.53) 0.10(-0.34) (+0.12) (+0.55)
fbComp 0.67 0.05 0.41(-0.26) 0.03(-0.02) (+0.33) (+0.95)
dbpComp 0.76 0.02 0.04(-0.72) 0.001(-0.02) (+0.24) (+0.98)
secComp 0.98 0.82 0.10(-0.88) 0.05(-0.77) (+0.02) (+0.18)

from all sources.
A challenge in linkage point discovery for schema-less data such

as those used in our experiments is the large search space in terms
of the number of attributes. For example, in the dBankDrug and
dbpComp case, investigating all the possible pairs of attributes
with the goal of finding linkage points means investigating 179,632
attribute pairs, each of which could contain a large number of val-
ues of different data types and characteristics. Previous work has
proposed efficient methods of investigating and pruning the search
space using extensive pre-processing and highly efficient indexes.
Here, we would like to examine how using the skeleton instead of
all search space can be effective in finding linkage points. In other
words, we would like to study the correlation between attributes
that appear in linkage points and those that appear in the skeleton.

Table 7 shows the search space for each of the nine integra-
tion scenarios in terms of the number of pairs of attributes that
need to be investigated, along with the number of linkage points
found in the search space comparing the use of the skeleton with
the use of maximal common set and the universal set. The re-
sults show that using the skeleton to prune the search space for
linkage point discovery is very effective overall. For example, for
the dbpDrug/dBankDrug scenario, using the skeleton reduces
the search space (Pair#) to only 8% of the universal set search
space whereas 19 out of the 21 linkage points can be found in
this space. Another example is dbpComp/secComp scenario, the
search space is reduced to 1% by using the skeletons whereas 7 out
of the 8 linkage points are found. Overall in these nine scenarios,
using skeletons reduce search spaces to 6% of the universal set on
average, and find out average 58% of linkage points. It is impor-
tant to note that based on the manual verification of linkage results,
those linkage points that include attributes from the skeleton are
also very effective linkage points. Recall that the ultimate goal
of discovering linkage points is at generating high quality record
linkages, so we assess the effectiveness of the discovered linkage
points by the quality of the record linkage generated by using these
linkage points. For example, in the dbpComp/fbComp scenario,
there are two linkage points among the 13 linkage points found in
the search space of skeletons that can achieve perfect accuracy in
record linkage (i.e., link all the records that can be linked, with
100% precision). This also shows that the use of the skeleton can
improve state-of-the-art in linkage point discovery and ranking.

8. RELATED WORK
The early studies on schema extraction over semi-structured data

are based on the Object Exchange Model (OEM) [23, 24, 28, 29].
The general approach in schema discovery based on OEM is relied
on a labelled graph formulated by the objects and their relationships
in the data set, and then finds the exact or approximate object typing
via clustering or a translated optimization problem. However, this
class of work does not consider efficiency of schema discovery, and
a summarized presentation for a single object type.

932

Table 7: Linkage Point Discovery Search Space & Effectiveness
Scenario Skeleton Common Universal

ds1 ds2 Pa
ir

#

L
.P

.#

Pa
ir

#

L
.P

.#

Pa
ir

#

L
.P

.#

fbDrug dbpDrug 396 5 40 3 12,768 26
fbDrug dbankDrug 1,488 12 720 3 6,048 17
dbpDrug dbankDrug 4,092 19 288 5 43,776 21
fbMovie dbpMovie 756 13 7 0 70,656 22
fbMovie imdbMovie 182 2 21 2 1,392 2
dbpMovie imdbMovie 702 5 3 0 42,688 8
fbComp dbpComp 140 13 3 0 179,632 76
fbComp secComp 245 6 9 4 6,540 30
dbpComp secComp 1,372 7 3 0 98,880 8

Another group of studies related to schema discovery out of
XML documents [11, 14, 21] address the issue of XML documents
on the Web not having an accompanying schema, or not adhering
to any given schema. Typically, a schema for XML data, e.g. DTD
and XML Schema, specifies for every element a regular expression
pattern that sub-element sequences of the element need to conform
to. In accordance with this definition, the main focus of previous
work [11, 14, 21] is to infer such regular expressions for a given
XML data set. In contrast, our proposed notion of skeleton attempts
to find core and representative attributions of a given collection in
an imprecise manner. Our focus is to generate such a structure to
represent heterogeneous schemas in the given collection.

There are also several studies on frequent substructures min-
ing [4, 32]. However, under the context of document stores, due
to the flexibility of developers ingesting data and the heterogene-
ity in data itself, it is hard for users to specify any parameters to
pre-define the frequency on the data they want to explore. The
skeleton construction method proposed in this paper aims to design
a parameter-free approach which automatically provides a balance
between the frequency of attributes and the size.

In addition, previous work has studied schema summarization
based on quality measures [31]. This work addresses the problem
of summarizing the schemas of multiple tables based on their link-
ages, but the goal in our schema presentation function is to find a
single data model for every object type in one collection. Further-
more, their quality measures for summarization are defined based
on connectivity of tables, whereas the skeleton focuses on finding
a balance between the significance and the size of the summary.

9. CONCLUSION
In this paper, we presented a framework for schema management

for document stores that deals with the schema-less data model and
fast-evolving nature of document stores. We proposed a new data
structure, eSiBu-Tree, to persist record schemas as well as support
queries, and an equivalent sub-tree (EST) based method with a lin-
ear computational complexity to group equivalent record schemas.
We compared the effectiveness of this data structure with a baseline
approach using canonical forms. Extensive experiments demon-
strated the efficiency of the overall framework, and also showed
that the EST-based method outperformed the CF-based method in
both discovery and query tasks. Furthermore, we proposed a new
concept “skeleton” to describe a schema summary structure suit-
able for document stores. Practical use cases were presented to
demonstrate the effectiveness of the skeleton in real data explo-
ration and integration scenarios.

In future, we are planning to devise algorithms to retrieve the
skeleton for other NoSQL applications, such as when some priori
but uncertain knowledge of the data set is available. Furthermore,
we plan to study the evolution of data models of a specific data set
persisted in data stores based on skeletons corresponding to differ-
ent versions of applications.

10. REFERENCES
[1] DB2 V10.5 Manual. http://www-01.ibm.com/support/

docview.wss?uid=swg27038855. [Accessed April 3, 2015]
[2] Oracle Database 12c. https://docs.oracle.com/en/

database/database.html. [Accessed April 3, 2015]
[3] Why NoSQL? Technical report, CouchBase, 2013.
[4] T. Asai, K. Abe, et al. Efficient substructure discovery from large

semi-structured data. In SDM, 158–174, 2002.
[5] D. Burdick, M. A. Hernández, et al. Extracting, linking and integrating

data from public sources: A financial case study. In IEEE Data Eng.
Bull., 34(3):60–67, 2011.

[6] Y. Chi, Y. Yang, and R. R. Muntz. Canonical forms for labelled trees
and their applications in frequent subtree mining. In Knowledge and
Information Systems, 8(2):203–234, 2005.

[7] Couchbase. http://www.couchbase.com. [Accessed April 3,
2015]

[8] DBpedia. http://dbpedia.org. [Accessed April 3, 2015]
[9] DrugBank. http://drugbank.ca. [Accessed April 3, 2015]
[10] Freebase. http://freebase.com. [Accessed April 3, 2015]
[11] M. Garofalakis, A. Gionis, et al. Xtract: a system for extracting

document type descriptors from XML documents. In ACM SIGMOD
Record, 29: 165–176, 2000.

[12] O. Hassanzadeh, S. Hassas Yeganeh, and R. J. Miller. Linking
semistructured data on the web. In WebDB, 2011.

[13] O. Hassanzadeh, K. Q. Pu, et al. Discovering linkage points over web
data. In VLDB, 6(6):444-456, 2013.

[14] J. Hegewald, F. Naumann, and M. Weis. Xstruct: efficient schema
extraction from multiple and large XML documents. In ICDE
Workshop, 81, 2006.

[15] IMDb. http://www.imdb.com/. [Accessed April 3, 2015]
[16] Twitter Inc. Twitter developers documentation.

https://dev.twitter.com/docs/api/1.1/overview.
[Accessed April 3, 2015]

[17] Facebook Inc. Facebook developers documentation.
https://developers.facebook.com/docs/. [Accessed
April 3, 2015]

[18] Google Inc. Using JSON in the google data protocol.
https://developers.google.com/gdata/docs/json.
[Accessed April 3, 2015]

[19] JSON. http://www.json.org/. [Accessed April 3, 2015]
[20] Z. H. Liu, B. Hammerschmidt, and D. McMahon. JSON data

management: supporting schema-less development in RDBMs. In
SIGMOD, 1247–1258, 2014.

[21] J. K. Min, J. Y. Ahn, and C. W. Chung. Efficient extraction of
schemas for XML documents. In Information Processing Letters,
85(1):7–12, 2003.

[22] MongoDB. http://www.mongodb.org/. [Accessed April 3,
2015]

[23] S. Nestorov, J. Ullman, et al. Representative objects: Concise
representations of semistructured, hierarchical data. In ICDE, 79–90,
1997.

[24] S. Nestorov, S. Abiteboul, and R. Motwani. Extracting schema from
semistructured data. In ACM SIGMOD Record,27: 295–306, 1998.

[25] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching. In VLDB , 10(4):334–350, 2001.

[26] List of NoSQL Databases. http://nosql-database.org/.
[Accessed April 3, 2015]

[27] F. Özcan, N. Tatbul, et al. Are we experiencing a big data bubble? In
SIGMOD, 1407–1408, 2014.

[28] K. Wang and H. Liu. Schema discovery for semistructured data. In
KDD, 97:271–274, 1997.

[29] Q. Y. Wang, J. X. Yu, and K. F. Wong. Approximate graph schema
extraction for semi-structured data. In EDBT , 302–316, 2000.

[30] R. Xu, D. Wunsch, et al. Survey of clustering algorithms. IEEE
Transactions on Neural Networks, 16(3):645–678, 2005.

[31] C. Yu and H. Jagadish. Schema summarization. In VLDB, 319–330,
2006.

[32] M. Zaki. Efficiently mining frequent trees in a forest. In SIGKDD,
71–80, 2002.

933

