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ABSTRACT
In this paper, we discuss an efficient and effective index mechanism

for the string matching with k differences, by which we will find

all the substrings of a target string 𝑦 of length 𝑛 that align with

a pattern string 𝑥 of length 𝑚 with not more than 𝑘 insertions,

deletions, and mismatches. A typical application is the searching

of a DNA database, where the size of a genome sequence in the

database is much larger than that of a pattern. For example, 𝑛 is

often on the order of millions or billions while𝑚 is just a hundred or

a thousand. Themain idea of our method is to transform y to a BWT-

array as an index, denoted as BWT (y), and search x against it. The

time complexity of our method is bounded by O(𝑘 · |𝑇 |), where𝑇 is

a tree structure dynamically generated during a search of BWT (y).
The average value of |𝑇 | is bounded by O(|Σ|2𝑘 ), where Σ is an

alphabet fromwhich we take symbols to make up target and pattern

strings. This time complexity is better than previous strategies

when 𝑘 ≤ O(log |Σ | 𝑛). The general working process consists of

two steps. In the first step, 𝑥 is decomposed into a series of 𝑙 small

subpatterns, and BWT (𝑦) is utilized to speed up the process to figure
out all the occurrences of such subpatterns with ⌊𝑘/𝑙⌋ differences.
In the second step, all the found occurrences in the first step will be

rechecked to see whether they really match 𝑥 , but with𝑘 differences.

Extensive experiments have been conducted, which show that our

method for this problem is promising.
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1 INTRODUCTION
By the string matching with 𝑘 differences, we mean a problem to

find all the occurrences of a pattern string 𝑥 = 𝑥1𝑥2... 𝑥𝑚 in a

target string 𝑦 = 𝑦1𝑦2...𝑦𝑛 with at most 𝑘 differences, where 𝑥𝑖 ,

𝑦 𝑗 ∈ Σ, a given alphabet. In general, we distinguish among three

kinds of differences:

(1) A character of the pattern corresponds to a different character of

the target. In this case we say that there is a mismatch between

the two characters;

(2) A character of the target corresponds to “no character” in the

pattern (an insertion); and
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(3) A character of the pattern corresponds to “no character” in the

target (a deletion).

The number of such differences between 𝑥 and a substring of 𝑦:

𝑦𝑖...𝑦 𝑗 is called the 𝐸𝑑𝑖𝑡 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 . Then, the problem is to find all

𝑖 , 𝑗 such that the 𝐸𝑑𝑖𝑡 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 between 𝑥 and 𝑦𝑖...𝑦 𝑗 is ≤ 𝑘 . As

an example, consider a target 𝑦 = 𝑎𝑏𝑐𝑑𝑒 𝑓 𝑔ℎ𝑖 , a pattern 𝑥 = 𝑏𝑝𝑑𝑞𝑒𝑔ℎ,

and 𝑘 = 3. There is an occurrence with three differences that starts

at the second location of the target (i.e., 𝑦2...𝑦7 = bcdefgh), as shown
below.

b p d q e   g h

a b c d    e f g h i

In the above alignment, we can see three differences: 𝑝 to 𝑐 , 𝑞 to

nothing, and nothing to 𝑓 , in positions 2, 4, and 6 of the pattern,

respectively.

This problem becomes of paramount importance with the ad-

vent of DNA databases, where to support the biological research,

we need to locate all the appearances of a read (a short DNA se-

quence obtained by sequencing [38]) in a genome (a massive DNA

sequence) for disease diagnosis or some other purposes. Due to

polymorphisms or mutations among individuals or even sequenc-

ing errors, the read may disagree in some positions at any of its

occurrences in the genome. In the past several decades, different

methods have been proposed, such as the algorithms discussed

in [5, 13, 14, 31, 45, 46, 50, 53, 58]. Most of them are based on the

computation of 𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 between x𝑖 = 𝑥1𝑥2...𝑥𝑖 and
y 𝑗 = 𝑦1𝑦2...𝑦 𝑗 for 𝑖 = 1, ...,𝑚, 𝑗 = 1, ..., 𝑛:

𝑑𝑖, 𝑗 =𝑚𝑖𝑛{𝑑𝑖−1, 𝑗 +𝑤 (𝑥𝑖 , 𝜙), 𝑑𝑖, 𝑗−1 +𝑤 (𝜙,𝑦 𝑗 ),
𝑑𝑖−1, 𝑗−1 +𝑤 (𝑥𝑖 , 𝑦 𝑗 )},

(1)

where 𝜙 represents an empty character, and 𝑤 (𝑥𝑖 , 𝑦 𝑗 ) the cost to

transform 𝑥𝑖 into 𝑦 𝑗 ; and use the dynamic programming paradigm

to calculate the above formula as scanning 𝑦 from left to right.

In this paper, we discuss a new method based on the so-called

Burrows-Wheeler transformation [8, 11, 36], by which 𝑦 is trans-

formed to an array, called a BWT-array, denoted as 𝐵𝑊𝑇 (𝑦), to

replace the scanning of 𝑦 by searching 𝐵𝑊𝑇 (𝑦) with the following

advantages:

• The positions with the same character in 𝑦 will be clustered

together and the scanning of 𝑦 character by character will be

changed to subset (of characters) by subset. In this sense, 𝑦

is folded and becomes shorter. Searching such a "folded" and

shorter string, we are able to save much time for doing the task.

• All the folded strings searched during the computation can be

represented as a tree structure 𝑇 and we speed up the working

process by cutting off a lot of branches in 𝑇 in two ways: (i)

establishing suffix trees over patterns and use them to recognize

useless branches when searching𝑇 ; (ii) identifying similar paths

to avoid repeated work.
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Theoretically, by using our method, the time complexity can

be reduced to O(𝑘 · |𝑇 |) with O(𝑛 + 𝑘𝑚) space requirements. On

average, |𝑇 | is bounded by O(|Σ|2𝑘 ). When 𝑘 ≤ O(log |Σ | 𝑛), this
running time is better than any existing strategy for this problem.

Together with pattern partition, our method can achieve more than

1000-fold improvements.

The organization of the rest of this paper is as follow. First,

in Section 2, we summarize all the symbols and notations used

throughout the paper. Then, we review the related work in Section

3. Next, in Section 4, we review the classic dynamic programming

solution and the BWT -transformation as a discussion background.

Section 5 is devoted to the description of our algorithm. In Section

6, we describe a pattern partitioning method, which is important

to solving problems with large 𝑘 values. In section 7, we report our

experiment results. Finally, a short conclusion is set forth in Section

8.

2 NOTATIONS
In this section, we summarize all the symbols and notations used

thoughout the paper, in the following table.

Table 1: Symbols and notations

x𝑖 x𝑖 = 𝑥1...𝑥𝑖 , a prefix of the pattern 𝑥

𝑥 reverse of 𝑥 , i.e., 𝑥 = 𝑧1...𝑧𝑚 = 𝑥𝑚...𝑥1

y𝑗 y𝑗 = 𝑦1...𝑦 𝑗 , a prefix of the target 𝑦

𝐵𝑊𝑇 (𝑦) BWT-array of 𝑦

<𝑒 , [𝛼 , 𝛽]> a range (segment) from rank 𝛼 to 𝛽 in 𝐹𝑒

𝐿𝑒, [𝛼,𝛽 ] a range in 𝐿 = BWT (𝑦), corresponding
to <𝑒 , [𝛼 , 𝛽]> in 𝐹𝑒

𝐷[*, 𝑗], 𝐷 𝑗 the 𝑗th column (𝐷-vector) of matrix 𝐷

𝐷𝑣 a 𝐷-vector associated with node 𝑣

𝑇 search tree, created during the computa-

tion

𝑇𝑃 suffix tree created over reversed pattern 𝑥

s𝑣 a string along the path from root to 𝑣 in 𝑇
𝐵𝑣 shortest suffix of s𝑣 such that there exists

a largest 𝑖 such that the distance between

z𝑖 = 𝑧1...𝑧𝑖 (a prefix of 𝑥 ) and s𝑣 equals
the distance between z𝑖 and 𝐵𝑣

𝐴𝑣[𝑖] vector used to store the distance between

z𝑖 and the shortest suffix of s𝑣

3 RELATEDWORK
By the inexact matching, we are required to determine all the sub-

strings in a target having a distance of at most 𝑘 from a pattern.

In terms of different distance functions, we generally differentiate

two kinds of inexact matches: string matching with k differences
(or say k errors) and string matching with k mismatches. A third

kind of inexact matching is with Don’t Care, or wild-card symbols

which match any single symbol, including another Don’t Care.
In the following, we will mainly review some of the noteworthy

methods for solving these problems.

k differences As mentioned in the previous section, when the

distance function is the Levenshtein distance, the problem is known

as the string matching with 𝑘 differences [13].

Beginning in the early 1980’s, genetics and DNA sequence analy-

sis research provided the impetus for advances in the string match-

ing with 𝑘 differences. The very first O(m·n)-time algorithm was

given by Sellers in 1980 [53]. In the same year, Masek and Paterson

[43] proposed another O(m·n)-time algorithm with O(𝑛 +𝑚) space

requirements. Later, this time complexity has been improved by

different researchers. In 1985, Ukkonen proposed a cut-off method

based on the diagonalwise monotonicity of dynamic programming

matrices with its average time complexity bounded by O(𝑘 ·𝑛) [58].
The algorithm presented by Landau and Vishkin was similar to the

Ukkonen’s, but changed the Ukkonen’s columnwise computation

of values to the diagonalwise [30, 31]. This is asymptotically faster,

but less practical since a suffix tree has to be constructed online

over a combined string of the pattern and the target. The time com-

plexity of their algorithm is bounded by O(𝑘 ·𝑛). In 1990 and 1993,

Chang and Lawler proposed two 𝑘-difference algorithms involving

the use of suffix trees over pattern strings to build up the so-called

matching statistics [14]. The running time of the first algorithm is

bounded by O(𝑘 ·𝑛) and the second has the same worst-case time

as the first, but with a sublinear expected time complexity. The

algorithm discussed in [28] is for an extended 𝑘-difference prob-

lem, by which the ‘swap’ of characters is used as one of the edit

operations. Its time complexity is also bounded by O(𝑘 ·𝑛). Lastly,
the algorithms discussed in [45, 46, 50, 59] are all index-based. In

[59], a suffix tree is constructed over target strings and used as an

index. Its time complexity is bounded by O(𝑚·min(𝑛,𝑚𝑘+1
|

∑︁
|
𝑘+1

) +

𝑛) with O(𝑚·min(𝑛,𝑚𝑘+1
|Σ|𝑘+1

)) space requirements. In [45], each

substring of length log 𝑛 in 𝑦 is viewed as a radix-|Σ| number, and

its first characer is kept in a list of length 𝑛, used as an index. It

requires O(𝑘 ·𝑛𝑓 (Y) ) time with O(𝑛 +𝑚) space requirements, where

Y = 𝑘/𝑚 and 𝑓 (Y) is a concave function. When Y is small enough,

𝑓 (Y) < 1. In [46], the index is in essence a set of inverted lists (or
say inverted files), by which each different substring 𝑠 of length

𝑞 (called a 𝑞-gram) in 𝑦 is associated with a list of the form {𝑝1,

..., 𝑝 𝑗 } with each 𝑝𝑖 (𝑖 = 1, ..., 𝑗 ) indicating a position where 𝑠

appears. When a pattern arrives, it will be divided into 𝑘 + 1 pieces

and for each piece all the matching 𝑞-grams will be found and all

the positions in their associated inverted lists will be checked to

find all the occurrences of 𝑥 with 𝑘 differences using an existing

online algorithm. In addition, for constructing inverted lists, the

hash technique is used [27]. In the worst case, the running time is

bounded by O(𝑘 ·𝑛) with O(𝑛 +𝑚) space requirements. The method

discussed in [50] is similar to [46]. The main difference consists in

that BWT (𝑦) is utilized to recognize all the same 𝑞-grams when cre-

ating inverted lists. So, it has the same computatinal complexities

as [46].

From the above description, we can see that no strategy up to

now is able to break the bottleneck of O(𝑘 ·𝑛) running time. But our

method runs in O(𝑘 ·|Σ|2𝑘 ) time and is the first one to bring down

O(𝑘 ·𝑛) by orders of magnitude.

Besides the algorithms described above, where the entire target

string is available from the very beginning, there are many stream-

ing algorithms for the same problem [1, 2, 10, 12, 19, 54], but for a

different situation that it is the pattern available at the beginning

while the target comes in a stream, one character at a time, such as
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telecommunication and Internet traffic, as well as establishing fire-

wall to block virus and malware. Since no index over target strings

can be constructed, the technique developed is quite different.

k mismatches When the distance function is the Hamming
distance, the problem is known as the string matching with 𝑘 mis-

matches [4, 33]. By the Hamming distance, we count the number

of differences between 𝑥 and the corresponding substring 𝑠 in 𝑦.

In comparison with 𝑘 differences, the string matching with 𝑘 mis-

matchings is less error tolerant. Also, many algorithms have been

proposed for this problem, such as those online strategies reported

in [4–6, 24, 32, 33, 47, 56, 57]. Among them, all the methods dis-

cussed in [5, 32, 56, 57] need O(m·n) time, while in all the other

methods, either mismatching information or periocity in patterns is

utilized in different ways to speed up computation. In [6], a method

called the shift-add is discussed, by which the mismatching infor-

mation is represented as bit strings. When patterns are so small

that𝑚·log𝑚 is smaller than the system word-size, the method is

efficient. For large patterns, however, the multiple-precision arith-

metic operations are required for preprocessing 𝑥 , and the running

time then becomes quadratic. In the methods discussed in [24] and

[33], the mismatching information is also precomputed, but stored

in a table. The time complexity of their algorithms are bounded by

O(k·n +𝑚·log𝑚). The methods discussed in [4, 47] work differently.

Instead of mismatching information, they use the periodicity within

a pattern, and achieve a better running time O(𝑛·log 𝑘). The method

proposed in [48] is for a spacial case, where only the mismatching

at borders is considered. Finally, the algorithms discussed in [36]

and [16, 17] are both index-based, by which 𝑦 is transformed to

BWT (𝑦), used as an index. In [16, 17], the mismatch information

for 𝑥 is employed while in [36] not. The time complexity of [16, 17]

is reduced to O(𝑘 ·𝑛′ + 𝑛 +𝑚·log𝑚), where 𝑛′ is the number of leaf

nodes of a mismatching tree, produced during a search of BWT (𝑦).
In the case of𝑚 ≥ 2(𝑘 + 1), the average value of 𝑛′ is bounded by

O((1 + 1/|Σ|)𝑘+1
). The running time of [36] is bounded by O(𝑚·𝑛′′

+ 𝑛), where 𝑛′′ is also the number of leaf nodes of a tree produced

during the search of BWT (𝑦), but bounded by O(𝑛) in the worst

case. If𝑚 is large, it can be worse than all those online methods

discussed in [4, 24, 33, 47]. A third index-based method is based

on a Brute Force searching of the suffix tree over 𝑦 [20]. Its time

complexity is bounded by O(𝑚 + 𝑛 + (𝑐 log 𝑛)𝑘/𝑘!), where 𝑐 is a

very large constant. When 𝑛 is large and 𝑘 is larger than a certain

constant, this method can also be worse than an online strategy.

Finally, in [37], the mismatching algorithms are used to evaluate

the mapping qualities of reads to a genome sequence.

don’t care As a different kind of inexact matching, the string

matching with don’t cares (𝑤𝑖𝑙𝑑 𝑐𝑎𝑟𝑑𝑠) has been a third active re-

search topic for decades. A wild card matches any character and

we may have wild-cards in 𝑥 , in 𝑦, or in both of them. Due to

don’t cares, the ‘match’ relation is no longer transitive, which pre-

cludes straightforward adaption of the shift information used by

Knuth-Morris-Pratt [29] and Boyer-Moore [9]. In general, we need

quadratic time to solve the problem [51]. According to [41], how-

ever, using the suffix array for 𝑦 as an index the searching time

can be reduced to O(log 𝑛) for some patterns, which contain only a

sequence of consecutive don’t cares.

Finally, we point out that since Knuth-Morris-Pratt [29], many

efficient algorithms for the exact string matching have been pro-

posed such as those described in [3, 9, 21–23, 26, 34, 39, 42, 44, 52,

55, 59, 61]. However, none of them can be extended or modified for

the string matching with 𝑘 differences since the most important

mechanism for the exact string matching, the so-called failure links
built up for patterns to avoid repeated access of characters in targets

cannot be established for the inexact matching.

4 BACKGROUND
In this section, we briefly describe two techniques, based on which

our method is established. One is dynamic programming, which
is a basic paradigm used for solving the string matching with 𝑘

differences [53]. The other is the so-called Burrows-Wheeler (BWT)

transformation originally proposed for text compression [11, 49, 63],

but can also be employed for solving the classical string matching

problem [15, 18, 36].

4.1 Dynamic programming
The string matching with 𝑘 differences can be easily solved by using

dynamic programming with no preprocessing. Let 𝑥 = 𝑥1...𝑥𝑚
and 𝑦 = 𝑦1...𝑦𝑛 . Denote by x𝑖 = 𝑥1𝑥2...𝑥𝑖 a prefix of 𝑥 and by y 𝑗
=𝑦1𝑦2...𝑦 𝑗 a prefix of𝑦. We represent the Levenshtein distance be-

tween x𝑖 and y 𝑗 by 𝐷(𝑖 , 𝑗 ), which can be computed by constructing

a (𝑚 + 1) × (𝑛 + 1) matrix 𝐷 according to the following formulae:

𝐷(0, 𝑗 ) = 𝑗 (0 ≤ 𝑗 ≤ 𝑛); 𝐷(𝑖 , 0) = 0 (0 ≤ 𝑖 ≤𝑚);

𝐷 (𝑖, 𝑗) =𝑚𝑖𝑛

⎧⎪⎪⎨⎪⎪⎩
𝐷 (𝑖 − 1, 𝑗) +𝑤 (𝑥𝑖 , 𝜙)
𝐷 (𝑖 − 1, 𝑗 − 1) + 𝛿 (𝑥𝑖 , 𝑦 𝑗 )
𝐷 (𝑖, 𝑗 − 1) +𝑤 (𝜙,𝑦 𝑗 )

(2)

where 𝛿(𝑥𝑖 , 𝑦 𝑗 ) = 0 if 𝑥𝑖 = 𝑦 𝑗 ; otherwise, 𝛿(𝑥𝑖 , 𝑦 𝑗 ) =𝑤 (𝑥𝑖 , 𝑦 𝑗 ), repre-

senting the cost to change 𝑥𝑖 to 𝑦 𝑗 [58].

We can design a simple process to compute the entries in 𝐷

column by column when scanning 𝑦 from left to right, which in-

volves comparisons between the current target character and every

pattern character. For example, for 𝑥 = 𝑔𝑐𝑎𝑐𝑎 and 𝑦 = 𝑎𝑐𝑎𝑡𝑎𝑡𝑔, we

will generate a matrix as illustrated in Table 2. By the computation,

we set 𝑤 (𝑥𝑖 , 𝑦 𝑗 ) = 0 if 𝑥𝑖 = 𝑦 𝑗 ; otherwise, 𝑤 (𝑥𝑖 , 𝑦 𝑗 ) = 1. Once the

final value in a column 𝑗 (i.e., 𝐷[𝑚, 𝑗]) has been evaluated, it is

compared with 𝑘 . If, and only if, it does not exceed 𝑘 , then at the

current target position 𝑗 at least one approximate occurrence of the

pattern with no more than 𝑘 differences is found. For instance, if

𝑘 is set to be 2, checking the last row of Table 2, we will find two

occurrences of 𝑥 in 𝑦, ending at positions 3, and 5, respectively.

In the subsequent discussion, we will refer to the columns of 𝐷

as the 𝐷-vectors , and use 𝐷 𝑗 to refer to the 𝑗th vector in 𝐷 . That

is, 𝐷 𝑗 = 𝐷[*, 𝑗].

4.2 BWT and string matching
The Burrows-Wheeler (BWT) array is closely related to the suffix

array [42]. To know what it is, let us consider a string 𝑦 = 𝑔𝑡𝑎𝑡𝑎𝑐𝑎.

We show all its suffixes in column 1 of Table 3, sorted suffixes

in column 2, and the corresponding suffix array 𝑆𝐴𝑦 in column 3,

which contains the positions of all the sorted suffixes’ first character

in 𝑦.
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Table 2: Matrix 𝐷

𝑗 0 1 2 3 4 5 6 7

𝑖 𝑎 𝑐 𝑎 𝑡 𝑎 𝑡 𝑔

0 0 0 0 0 0 0 0 0

1 𝑔 1 1 1 1 1 1 1 0

2 𝑐 2 2 1 2 2 2 2 1

3 𝑎 3 2 2 1 2 2 3 2

4 𝑐 4 2 2 2 2 3 3 3

5 𝑎 5 4 3 2 3 2 3 4

Table 3: Suffixes, suffix array, BWT array, and ranks

suffix sorted suffix 𝑆𝐴𝑦 𝑟𝐹 𝐹 sorted rotations 𝐿 𝑟𝐿

𝑔𝑡𝑎𝑡𝑎𝑐𝑎$ $ 7 - $ $𝑔1𝑡1𝑎1𝑡2𝑎2𝑐1𝑎3 𝑎 1

𝑡𝑎𝑡𝑎𝑐𝑎$ 𝑎$ 6 1 𝑎 𝑎3$𝑔1𝑡1𝑎1𝑡2𝑎2𝑐1 𝑐 1

𝑎𝑡𝑎𝑐𝑎$ 𝑎𝑐𝑎$ 4 2 𝑎 𝑎2𝑐1𝑎3$𝑔1𝑡1𝑎1𝑡2 𝑡 1

𝑡𝑎𝑐𝑎$ 𝑎𝑡𝑎𝑐𝑎$ 2 3 𝑎 𝑎1𝑡2𝑎2𝑐1𝑎3$𝑔1𝑡1 𝑡 2

𝑎𝑐𝑎$ 𝑐𝑎$ 5 1 𝑐 𝑐1𝑎3$𝑔1𝑡1𝑎1𝑡2𝑎2 𝑎 2

𝑐𝑎$ 𝑔𝑡𝑎𝑡𝑎𝑐𝑎$ 0 1 𝑔 𝑔1𝑡1𝑎1𝑡2𝑎2𝑐1𝑎3$ $ -

𝑎$ 𝑡𝑎𝑐𝑎$ 3 1 𝑡 𝑡2𝑎2𝑐1𝑎3$𝑔1𝑡1𝑎1 𝑎 3

$ 𝑡𝑎𝑡𝑎𝑐𝑎$ 1 2 𝑡 𝑡1𝑎1𝑡2𝑎2𝑐1𝑎3$𝑔1 𝑔 1

Here, we assume that 𝑦 terminates with a special character $,

which does not appear elsewhere in 𝑦 and is alphabetically prior to

all other characters. In the case of DNA sequences, we have $ < 𝑎

< 𝑐 < 𝑔 < 𝑡 .

By using the suffix array 𝑆𝐴𝑦 of 𝑦, its BWT-array, denoted as

𝐵𝑊𝑇 (𝑦) = 𝐿, is defined as follows⎧⎪⎪⎨⎪⎪⎩
𝐿[𝑖] = $, if 𝑆𝐴𝑦 [𝑖] = 0;

𝐿[𝑖] = 𝑦𝑆𝐴𝑦 [𝑖 ]−1
, otherwise.

(3)

By applying ( 3) to 𝑦 = 𝑔𝑡𝑎𝑡𝑎𝑐𝑎 and the corresponding suffix

array, we immediately get 𝐵𝑊𝑇 (𝑦) as shown in the 7th column

of Table 3. This transformation process is referred to as the BWT
transformation.

The generation of 𝐵𝑊𝑇 (𝑦) can also be described in a different

way, which is a little tedious, but enables us to observe why it can

be used to speed up the string matching.

To produce BWT (𝑦), we first rotate 𝑦 consecutively to create

|𝑦| different strings, sort them lexicographically. Then, write them

stacked vertically as shown in the 6th column of Table 3, where each

character is subscripted to represent its position in the original 𝑦.

(That is, we rewrite𝑦 as𝑔1𝑡1𝑎1𝑡2𝑎2𝑐1𝑎3.) For example, 𝑎2 represents

the second appearance of 𝑎 in 𝑦; and 𝑡1 the first appearance of 𝑡

in 𝑦. In the same way, we can check all the other appearances of

different characters.

By a close check of these sorted strings, we can remark the

following, which is important to the string matching:

• 𝐿 is identical to the array made up of the last characters of

those sorted strings. (To see this, compare column 7 and the last

characters of the sorted strings in column 6.)

• Denote by 𝐹 the array made up of the first characters of the

sorted strings (which is identical to the 5th column of Table 3.)

When ranking the elements 𝑒 in both 𝐹 and 𝐿 in such a way

that if 𝑒 is the 𝑖th appearance of a certain character it will be

assigned 𝑖 , the same element will get the same number in both

arrays. For example, in 𝐹 the rank of 𝑎3, denoted as 𝑟𝐹 (𝑎3), is 1

(showing that 𝑎3 is the first appearance of 𝑎 in 𝐹 ). Its rank in 𝐿,

𝑟𝐿(𝑎3) is also 1. (To see this, compare column 4 and column 8.)

This property: 𝑟𝐹 (𝑒) = 𝑟𝐿(𝑒) holds for all the elements 𝑒 in 𝑦.

• The whole 𝐹 can be divided into 5 segments with each contain-

ing only the same characters, denoted as 𝐹
$
, 𝐹𝑎 , 𝐹𝑐 , 𝐹𝑔 , and 𝐹𝑡 ,

respectively.

In addition, to describe how the string matching can be con-

ducted based on the above facts, we need yet another two notations:

– <𝑒 , [𝛼 , 𝛽]> (𝑒 ∈ {𝑎, 𝑐 , 𝑔, 𝑡 }, 𝛼 ≤ 𝛽 are two ranks), representing

a range (or say, a subsegment) in 𝐹𝑒 . For example, <𝑡 , [1, 2]>

represents 𝐹 [6 .. 7].

– 𝐿<𝑒, [𝛼,𝛽 ]> , representing a range in 𝐿 corresponding to <𝑒 , [𝛼 ,

𝛽]>. For example, in the 𝐹 and 𝐿 shown in Table 3, we have

𝐿<𝑎, [1,3]> = 𝐿[1 .. 3], 𝐿<𝑡, [1,2]> = 𝐿[6 .. 7], 𝐿<𝑎, [2,3]> = 𝐿[2 .. 3],

and so on. (Note that 𝐹 and 𝐿 are the arrays respectively made

up of the first and last characters of the sorted strings shown in

column 6.)

During the search of 𝐿 = 𝐵𝑊𝑇 (𝑦), in each step, two operations

will be performed: (i) searching within a certain 𝐿<𝑒, [𝛼,𝛽 ]> to find

the first and the last appearance of some character 𝑒 ′ (represented
by their ranks 𝛼 ′

and 𝛽 ′, respectively); (ii) in terms of <𝑒 ′, (𝛼 ′
, 𝛽 ′)>,

figure out 𝐿<𝑒′, [𝛼′,𝛽′ ]> . Since the second operation corresponds to a
step of scanning in 𝑦, but in the reverse direction, we need to work

on the pattern 𝑥 in the reverse order (referred to as a 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑

𝑠𝑒𝑎𝑟𝑐ℎ). That is, we will search 𝑥 (reverse of 𝑥 ) against 𝐵𝑊𝑇 (𝑦). We

denote such a searching step by 𝑆(𝑒 ′, <𝑒 , [𝛼 , 𝛽]> ) defined below:

𝑆 (𝑒 ′, < 𝑒, [𝛼, 𝛽] >) =
⎧⎪⎪⎨⎪⎪⎩

< 𝑒 ′, [𝛼 ′, 𝛽 ′] >, if 𝑒 ′ ∈ 𝐿<𝑒, [𝛼,𝛽 ]> ;

𝜙, otherwise.

(4)

The following example helps for illustration.

Example 4.1. Let 𝑥 = 𝑡𝑎𝑡𝑎 and 𝑦 = 𝑔𝑡𝑎𝑡𝑎𝑐𝑎. To find all the occur-

rences of 𝑥 in 𝑦, we will search 𝑥 against 𝐿 and 𝐹 generated for 𝑦

(shown in Table 3) as below.
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Figure 1: Illustration of backward search.

Step 1: Check 𝑥4 = 𝑎 in 𝑥 , and then figure out 𝐹𝑎 = 𝐹 [1 .. 3] = <𝑎, [1,

3]>. Corresponding to <𝑎, [1, 3]>, we can find 𝐿<𝑎, [1,3]> = 𝐿[1 .. 3].

Step 2: Check 𝑥3 = 𝑡 . Call 𝑆(𝑡 , <𝑎, [1, 3]>), by which 𝐿<𝑎, [1,3]> =

𝐿[1 .. 3] will be searched to find the first and last appearances of 𝑡
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within 𝐿[1 .. 3] (see Fig. 1(a) for illustration). We will get <𝑡 , [1, 2]>,

corresponding to which we can then find 𝐿<𝑡, [1,2]> = 𝐿[6 .. 7].

Step 3: Check 𝑥2 = 𝑎. Call 𝑆(𝑎, <𝑡 , [1, 2]>), by which 𝐿<𝑡, [1,2]> =

𝐿[6 .. 7] will be searched to find the first and last appearance of 𝑎

(see Fig. 1(b)). This time, we will get <𝑎, [3, 3]>, and 𝐿<𝑎, [3,3]> =

𝐿[3 .. 3].

Step 4: Check 𝑥1 = 𝑡 . Call 𝑆(𝑡 , <𝑎, [3, 3]>), by which 𝐿<𝑎, [3,3]> =

𝐿[3 .. 3] will be searched to find the first and last appearances of 𝑡

(see Fig. 1(c)). So, we will get <𝑡 , [2, 2]> = 𝐹 [7 .. 7]. Since now we

have exhausted all the characters in 𝑥 and 𝐹 [7 .. 7] contains only

one element, one occurrence of 𝑥 in 𝑦 is found. It is the substring

beginning at 𝑡1 in 𝑦 (note that 𝑟𝐹 (𝑡1) = 2. See column 6 in Table 3.)

Let𝑥 = 𝑧1...𝑧𝑚 . The general working process can be represented

as a sequence of the following form:

<𝑧1, [𝛼1, 𝛽1]>, <𝑧2, [𝛼2, 𝛽2]>, ..., <𝑧𝑚 , [𝛼𝑚 , 𝛽𝑚]>,

where <𝑧1, [𝛼1, 𝛽1]> = 𝐹𝑧1
, and <𝑧𝑖 , [𝛼𝑖 , 𝛽𝑖 ]> = 𝑆(𝑧𝑖 , <𝑧𝑖−1, [𝛼𝑖−1,

𝛽𝑖−1]>) for 𝑖 ∈ {2, ...,𝑚}.

We call such a sequence a 𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 . For example, the

working process described in Example 1 can be represented as a

searching sequence shown below:

<𝑎, [1, 3]>, <𝑡 , [1, 2]>, <𝑎, [3, 3]>, <𝑡 , [2, 2]>.

Denote by 𝑐𝑖 the cost of 𝑆(𝑧𝑖 , <𝑧𝑖−1, [𝛼𝑖−1, 𝛽𝑖−1]>). Then, the

time complexity of this process is obviously bounded by O(

𝑚∑︂
𝑖=1

𝑐𝑖 ).

However, by using a technique 𝑟𝑎𝑛𝑘𝐴𝑙𝑙 discussed in [11, 17, 25], we

can reduce O(𝑐𝑖 ) to O(1) for 𝑖 = 1, ...,𝑚, at cost of more space usage.

(Concretely, |Σ| times the space will be used.) This time complexity

even beats the quantum string matching [40].

5 ALGORITHM DESCRIPTION
In this section, we discuss our algorithm based on the BWT trans-

formation. First, we give a basic algorithm for the string matching

with 𝑘 differences in Section 5.1. Then, we describe how to improve

this algorithm in Section 5.2. Finally, we analyze the computational

complexities in Section 5.3.

5.1 Basic algorithm
Different from the evaluation of an exact string matching, to find all

the occurrences of 𝑥 = 𝑥1...𝑥𝑚 in 𝑦 = 𝑦1...𝑦𝑛 with 𝑘 differences,

a tree, instead of a single sequence, will be dynamically created. In

such a tree, each path

𝑣0 → 𝑣1, ...→ 𝑣𝑙 ,

corresponds to a searching sequence with each 𝑣 𝑗 (0 ≤ 𝑗 ≤ 𝑙) be-

ing labeled with a pair of the form <𝑒 𝑗 , [𝛼 𝑗 , 𝛽 𝑗 ]> as described in

Section 4.2. In addition, for each 𝑣 𝑗 (0 ≤ 𝑗 ≤ 𝑙), a 𝐷-vector will be

generated by checking 𝑒 𝑗 against every character 𝑧𝑖 in 𝑥 = 𝑧1...𝑧𝑚
(= 𝑥𝑚...𝑥1) in the same way as dynamic programming. First, we

will set 𝐷𝑣0
= <0, 1, ..., 𝑚>

⊤
for 𝑣0. Then, for each node 𝑣 𝑗 (1 ≤

𝑗 ≤ 𝑙) along the path, 𝐷𝑣𝑗 will be calculated from 𝐷𝑣𝑗−1
by using

formulae (5), which are almost the same as formulae (2). Only the

inital values are set differently. It is because by formulae (5), we

compute the distance between 𝑧1...𝑧𝑖 (𝑖 = 1, ...,𝑚) and a sub-

string of �̄� along a root-to-leaf path in the tree (instead of a prefix

of �̄�). More importantly, we have multiple choices at each step to

match characters in a pattern. That is why the working process has

to be represented by a tree, rather than a single path.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐷𝑣𝑗 [0] = 𝐷𝑣𝑗−1

[0] + 1;

𝐷𝑣𝑗 [𝑖] =𝑚𝑖𝑛{𝐷𝑣𝑗 [𝑖 − 1] +𝑤 (𝑧𝑖 , 𝜙), 𝐷𝑣𝑗−1
[𝑖] +𝑤 (𝜙, 𝑒 𝑗 ),

𝐷𝑣𝑗−1
[𝑖 − 1] + 𝛿 (𝑧𝑖 , 𝑒 𝑗 )}, for 𝑖 > 0.

(5)

So, we have the concept of search trees defined below.

Definition 5.1. (Search trees) A search tree (𝑆-tree for short) 𝑇

with respect to 𝑥 and 𝑦 is a tree structure to represent the search

of 𝑥 against 𝐵𝑊𝑇 (𝑦). In 𝑇 , each node is labeled with a pair <𝑒 , [𝛼 ,

𝛽]> and there is an edge from 𝑣 (= <𝑒 , [𝛼 , 𝛽]>) to 𝑢 (= <𝑒 ′, [𝛼 ′
, 𝛽 ′]>)

if 𝑆(𝑒 ′, 𝑣) = 𝑢. In addition, a special node is designated as the 𝑟𝑜𝑜𝑡 ,

labeled with <-, [1, |𝐿|]>, representing the whole BWT-array 𝐿 =

𝐵𝑊𝑇 (𝑦 ).

As an example, consider 𝑥 = 𝑎𝑐𝑎𝑐𝑔, 𝑦 = 𝑔𝑡𝑎𝑡𝑎𝑐𝑎. Assume that 𝑘

= 2. To find all the occurrences of 𝑥 in 𝑦 with up to 2 differences, a

search tree 𝑇 as shown in Fig. 2 will be created when checking 𝑥 =

𝑔𝑐𝑎𝑐𝑎 against 𝐵𝑊𝑇 (𝑦) = 𝐿 and 𝐹 (remember that they are shown in

column 7 and 5 of Table 3, respectively.)
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v1 <a, [1, 3]>

<c, [1, 1]>

<a, [2, 2]> <a, [3, 3]>
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<c, [1, 1]> v12 <t, [1, 2]>
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Figure 2: A search tree.

In Fig. 2, 𝑣0 is the root, representing the whole 𝐿. Then, to create

all its children, we will search 𝐿 to find the first and last appearance

of 𝑒 for each 𝑒 ∈ Σ. As with dynamic programming, each time a

node 𝑣 is created, its 𝐷-vector will be computed. Recall that the

𝐷-vector for 𝑣0 is <0, 1, ...,𝑚>
⊤
. Subsequently, for any node 𝑢

different of the root, its 𝐷-vector 𝐷𝑢 is calculated from 𝐷𝑣 , the

𝐷-vector of its parent 𝑣 , in terms of formulas ( 5). For example, by

exploring path 𝑃1 = 𝑣0 → 𝑣1 → 𝑣2 → 𝑣3 in Fig. 2, we will generate

a searching sequence as below:

<-, [1, 8]>, <𝑎, [1, 3]>, <𝑐 , [1, 1]>, <𝑎, [2, 2]>.

All their 𝐷-vectors (and also all the other nodes’ vectors in the

tree) are shown in Fig. 3, in which we use 𝐷𝑖 to represent 𝐷𝑣𝑖 for

simplicity.
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Figure 3: 𝐷-vectors.

In essence, 𝑇 is generated in the depth-first fashion, but the

expansion of a path stops at a node 𝑣 (= <𝑒 , [𝛼 , 𝛽]>) when one of

four conditions is satisfied:
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(1) The last entry in 𝑣 ’s 𝐷-vector, i.e., 𝐷𝑣[𝑚], is ≤ 𝑘 . It shows that

some occurrences of the pattern with 𝑘 or less than 𝑘 diffrences

have been found. We will then backtrack to explore another

path;

(2) 𝐿𝑣 = 𝐿<𝑒, [𝛼,𝛽 ]> contains only one element ‘$’, showing that the

path can not be further explored;

(3) All the entries in 𝐷𝑣 are > 𝑘 , showing that no answer can be

found in the subtree rooted at 𝑣 ;

(4) The length of the path from root to 𝑣 is equal to𝑚 + 𝑘 since the

edit distance between 𝑥 and any string of length >𝑚 + 𝑘 must

be > 𝑘 .

For example, for 𝑣3 (on 𝑃1 shown in Fig. 2) we have 𝐷3[5] = 2 (see

Fig. 3), which shows that some occurrences of the pattern with 2

diffrences have been found. In fact, only one occurrence is found

since the interval [2, 2] (in the pair <𝑎, [2, 2]>) associated with

𝑣3 contains only one value. So, the search along 𝑃1 stops and we

backtrack to generate another child 𝑣4 of 𝑣1 and proceed continually.

The same analysis applies to 𝑣11 (on 𝑃4). In addition, we can observe

that three paths 𝑃3, 𝑃6 and 𝑃7 stop at a node 𝑣 such that 𝐿𝑣 contains

only ‘$’, and two paths 𝑃2 and 𝑃5 terminate at a node with all the

entries in its 𝐷-vector > 𝑘 = 2.

In terms of the above discussion, we give the following formal

description of our basic algorithm, in which two extra notations

are used:

s𝑣 - a string made up of the characters along the path from

root to node 𝑣 ;

𝑠𝑡𝑎𝑐𝑘 - a stack used to control the generation of 𝑇 in the

depth-first fashion, in which each entry is a pair of the

form (𝑣 , 𝑢) with 𝑣 being the parent of 𝑢. For 𝑟𝑜𝑜𝑡 , its

parent is set 𝑒𝑚𝑝𝑡𝑦, represented as𝛷 .

Algorithm 1: 𝑠𝑡𝑟𝑖𝑛𝑔𝑀(𝑥 , 𝐵𝑊𝑇 (𝑦), 𝑘)

Input :𝑥 - reverse of 𝑥 , 𝐵𝑊𝑇 (𝑦) - BWT-array of 𝑦, 𝑘 -

number of errors

Output :marking all occurrences of 𝑥 in 𝑦

1 create 𝑟𝑜𝑜𝑡 of 𝑇 ; push(𝑠𝑡𝑎𝑐𝑘 , (𝛷 , 𝑟𝑜𝑜𝑡 ));

2 while stack is not empty do
3 (𝑣 , 𝑢) := pop(𝑠𝑡𝑎𝑐𝑘);

4 if |s𝑢 | ≤ |𝑥 | + 𝑘 then
5 let 𝑢 = <𝑒 , [𝛼 , 𝛽]>;

6 compute 𝐷𝑢 from 𝐷𝑣 by using formulas ( 5);

7 if not all entries in 𝐷𝑢 > 𝑘 then
8 if 𝐷𝑢[|𝑥 |] ≤ 𝑘 then
9 mark the corresponding occurrences;

10 end
11 else
12 for each 𝑒 ′ ∈ Σ do
13 𝑤 := 𝑆(𝑒 ′, <𝑒 , [𝛼 , 𝛽]>);
14 push(𝑠𝑡𝑎𝑐𝑘 , (𝑢,𝑤 ));

15 end
16 end
17 end
18 end
19 end

In the above algorithm, we first create the 𝑟𝑜𝑜𝑡 of 𝑇 , and put

it into 𝑠𝑡𝑎𝑐𝑘 (see line 1). Next, we go into a while-loop. At each

iteration of the while-loop, we will pop the top element 𝑢 = <𝑒 ,

[𝛼 , 𝛽]> out of stack. If |s𝑢 | ≤ |𝑥 | + 𝑘 , compute 𝐷𝑢 from its parent’s

vector𝐷𝑣 (see line 6. But for 𝑟𝑜𝑜𝑡 , its𝐷-vector𝐷𝑟𝑜𝑜𝑡 is simply set to

<0, 1, ...,𝑚>
⊤
.) If in 𝐷𝑢 there are some entries ≤ 𝑘 , we will check

whether𝐷𝑢 [|𝑥 |] ≤ 𝑘 . If it is the case, we will mark the corresponding

occurrences (see line 9). Otherwise, we will search 𝐿<𝑒, [𝛼,𝛽 ]> to

find𝑤 = <𝑒 ′, [𝛼 ′
, 𝛽 ′]> for each 𝑒 ′ ∈ Σ by calling 𝑆( ), where 𝛼 ′

and

𝛽 ′ are respectively the ranks of the first and last appearnances of 𝑒 ′

(see lines 11 - 12). Then, push it into 𝑠𝑡𝑎𝑐𝑘 (see line 13). Otherwise,

nothing will be done. This process continues until 𝑠𝑡𝑎𝑐𝑘 becomes

empty.

Example 5.2. In this example, we run the above algorithm on 𝑥 =

𝑔𝑐𝑎𝑐𝑎 against BWT(y) = 𝐿 and 𝐹 shown in Table 3 with 𝑘 = 2, where

𝑦 = 𝑔𝑡𝑎𝑡𝑎𝑐𝑎$; and demonstrate its first seven steps. The complete

tree generated is shown in Fig. 2.

Step 1: create root 𝑣0 =<-, [1, 8]>, push (𝛷 , 𝑣0) into 𝑠𝑡𝑎𝑐𝑘 . (See

Fig. 4(a).)

Step 2: Pop out the top element (𝛷 , 𝑣0). Generate 𝐷0 = <0, 1, 2, 3,

4, 5>
⊤
for 𝑣0. For each 𝑒 ′ ∈ Σ 𝑆(𝑒 ′, <-, [1, 8]>) will be executed, by

which 𝑣1 = <𝑎, [1, 3]>, 𝑣8 = <𝑐 , [1, 1]>, 𝑣12 = <𝑡 , [1, 2]>, and 𝑣16 =

<𝑔, [1, 1]> will be generated. Then, all (𝑣0, 𝑣𝑖 ) (𝑖 = 1, 8, 12, 16) will

be pushed into 𝑠𝑡𝑎𝑐𝑘 . (See Fig. 4(b).)

Step 3: Pop out the top element (𝑣0, 𝑣1). 𝑣1 = <𝑎, [1, 3]>. Generate

𝐷1 = <1, 1, 2, 2, 3, 4>
⊤
(see Fig. 3.) For each 𝑒 ′ ∈ Σ 𝑆(𝑒 ′, <𝑎, [1, 3]>)

will be executed, by which 𝑣2 = <𝑐 , [1, 1]> and 𝑣4 = <𝑡 , [1, 2]> will

be generated and pushed into 𝑠𝑡𝑎𝑐𝑘 . (See Fig. 4(c).)

Step 4: Pop out the top element (𝑣1, 𝑣2). 𝑣2 = <𝑐 , [1, 1]>. Generate

𝐷2 = <2, 2, 1, 2, 2, 3>
⊤
. For each 𝑒 ′ ∈ Σ 𝑆(𝑒 ′, <𝑐 , [1, 1]>) will be

executed, by which 𝑣3 = <𝑎, [2, 2]> will be created and pushed into

𝑠𝑡𝑎𝑐𝑘 . (See Fig. 4(d).)

Step 5: Pop out the top element (𝑣2, 𝑣3). 𝑣3 = <𝑎, [2, 2]>. Generate

𝐷3 = <3, 3, 2, 1, 2, 2>
⊤
. Since 𝐷𝑣3

[5] = 2, an occurrence of the

pattern has been found. Nothing will be pushed into stack and we

backstrack. (See Fig. 4(e).)

Step 6: Pop out the top element (𝑣1, 𝑣4). 𝑣4 = <𝑡 , [1, 2]>. Generate 𝐷4

= <2, 2, 2, 3, 3, 4>
⊤
. For each 𝑒 ′ ∈ Σ 𝑆(𝑒 ′, <𝑡 , [1, 2]>) will be executed,

by which 𝑣5 = <𝑎, [3, 3]> and 𝑣7 = <𝑔, [1, 1]> will be created and

pushed into 𝑠𝑡𝑎𝑐𝑘 . (See Fig. 4(f).)
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Figure 4: Illustration for execution of stringM( ).
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Step 7: Pop out the top element (𝑣4, 𝑣5). 𝑣5 = <𝑎, [3, 3]>. Generate

𝐷5 = <3, 3, 3, 2, 3, 3>
⊤
. For each 𝑒 ′ ∈ Σ 𝑆(𝑒 ′, <𝑎, [3, 3]>) will be

executed, by which 𝑣6 = <𝑡 , [2, 2]> will be created and pushed into

𝑠𝑡𝑎𝑐𝑘 . (See Fig. 4(g).)

5.2 Improvements
The basic algorithm described above can be greatly improved by

cutting off tree branches in two different ways: one is to estab-

lish a suffix tree 𝑇𝑃 over 𝑥 and replace searching some parts of 𝑇

with searching few paths in 𝑇𝑃 , but with no need to calculating 𝐷-

vectors; the other is to recognize similar paths, besides the stopping

conditions listed in 5.1, to cut off branches to avoid some repeated

work.

5.2.1 Searching suffix trees over patterns to replace searching part
of 𝑇 . Let 𝑣 be the node currently created. Assume that there exists

some 0 < 𝑗 <𝑚 such that 𝐷𝑣[ 𝑗] = 𝑘 while all the other entries in 𝐷𝑣
> 𝑘 . Then, adding a suffix of 𝑥 : z 𝑗 = 𝑧 𝑗+1...𝑧𝑚 gives a string s𝑣◦z 𝑗
whose distance from 𝑥 is 𝑘 , where ‘◦’ represents the concatenation
operation over substrings. If such a substring can be found in 𝑦,

it is exactly an occurrence of 𝑥 in 𝑦. Thus, we need only to check

whether it is possible to explore a single path (in𝑇 ) labeled with z 𝑗 .
For example, in the tree shown in Fig. 2, the 𝐷-vector of 𝑣4 is <2,

2, 2, 3, 3, 4>
⊤
(see Fig. 3), and then the possible extentions are the

suffixes 𝑐𝑎𝑐𝑎 and 𝑎𝑐𝑎 of 𝑥 = 𝑔𝑐𝑎𝑐𝑎. Therefore, the subtree rooted at

𝑣7 (labeled with <𝑔, [1, 1]>) should not be explored since 𝑔 ∉ {𝑎, 𝑐}

(note that 𝑐 is the first character of caca while 𝑎 is the first character
of aca.) In fact, we will only explore the subpath starting with

‘𝑎’ (path 𝑃2) ‘since ‘𝑐’ cannot be found when searching 𝐿<𝑡, [1,2]> .
Even this path (𝑃2) will break off when we meet ‘𝑡 ’ which does not

appear in 𝑎𝑐𝑎. Assume that 𝑗1, ..., 𝑗ℎ (ℎ > 0) are all the entries in

the 𝐷-vector 𝐷𝑣 for the current node 𝑣 such that 𝐷𝑣[ 𝑗𝑖 ] = 𝑘 (1 ≤ 𝑖

≤ ℎ) while all the other entries > 𝑘 . Then, we can organize all the

suffixes of 𝑥 : z 𝑗1 , ..., z 𝑗ℎ into a tree (forest) and use it to control

the exploration of 𝑇 [𝑣] in such a way that each searched path is

exactly along a certain z 𝑗𝑖 (1 ≤ 𝑖 ≤ ℎ) if any. More importantly,

in this process, no 𝐷-vectors need to be calculated. For efficiency,

however, it is better to construct a suffix tree 𝑇𝑃 for the whole 𝑥

when 𝑥 arrives. Then, we can associate 𝑇𝑃 with an extra array 𝐶

of length𝑚, in which each entry 𝐶[𝑖] is a pointer to a leaf node of

𝑇𝑃 , locating the suffix starting at position 𝑖 of 𝑥 , (as illustrated in

Fig. 5, where we show the suffix tree for 𝑥 = 𝑔𝑐𝑎𝑐𝑎 and its associated

array.)

gcaca$

aca$

c a $

a$
$

1 2 3 4           5

ca$suffix tree

associated array

6

Figure 5: Illustration for the suffix tree over a pattern.

Therefore, each time we encounter a node 𝑣 with some entries

in 𝐷𝑣 eqaul to 𝑘 and all the other entries > 𝑘 , we will explore 𝑇𝑃 as

follows.

• Let 𝐷𝑣[ 𝑗1], ..., 𝐷𝑣[ 𝑗ℎ] be all those entries equal to 𝑘 . We will

search 𝑇𝑃 bottom-up, starting from all those leaf nodes pointed

to by 𝐶[ 𝑗1], ..., 𝐶[ 𝑗ℎ], respectively. In this process, each en-

countered edge will be marked.

• Search𝑇𝑃 once again, but top-down and access only the marked

edges. Assume that 𝑣 is labeled with a pair <𝑧 𝑗 , [𝛼 𝑗 , 𝛽 𝑗 ]> for

some 𝑗 . Then, corresponding to the suffix of 𝑥 : 𝑧 𝑗+1...𝑧𝑚 along

a path in 𝑇𝑃 , a search sequence will be generated, as shown

below:

<𝑧 𝑗+1, [𝛼 𝑗+1, 𝛽 𝑗+1]>, ..., <𝑧𝑚′ , [𝛼𝑚′ , 𝛽𝑚′]>,

where𝑚′ ≤𝑚, and <𝑧𝑖 , [𝛼𝑖 , 𝛽𝑖 ]> = 𝑆(𝑧𝑖 , <𝑧𝑖−1, [𝛼𝑖−1, 𝛽𝑖−1]>) for

𝑖 ∈ { 𝑗 + 1, ...,𝑚′
}.

Such a path stops when we have exhausted the whole suffix, or

at a node <𝑧𝑖 , [𝛼𝑖 , 𝛽𝑖 ]> such that 𝑆(𝑧𝑖+1, <𝑧𝑖 , [𝛼𝑖 , 𝛽𝑖 ]>) returns 𝜙 .

5.2.2 Recognizing similar paths. The second improvement utilizes

in a crucial way a technique originally used by Ukkonen in [59] for

handling suffix links. But we have changed it for our own purpose.

Let 𝑣 be a node in𝑇 . Let s𝑣 = 𝑒1...𝑒 𝑗 . Denote by 𝐵𝑣 the shortest
suffix of s𝑣 satisfying a condition that there exists a largest 𝑖 such

that the distance between z𝑖 = 𝑧1...𝑧𝑖 (a prefix of 𝑥) and 𝐵𝑣 is

≤ 𝑘 and equals the distance between z𝑖 and s𝑣 . Then we check

whether |𝐵𝑣 | = |s𝑣 |. If it is the case, continue. Otherwise, we stop the
current path and backtrack. Two questions need to be answered.

First, how to figure out 𝐵𝑣? Second, why can we use this condition

to terminate a path expansion? To compute 𝐵𝑣 , we need to trace

the generation of each entry in 𝐷𝑣 . In terms of formula (5), each

entry 𝐷𝑣[𝑖] (1 ≤ 𝑖 ≤𝑚) is produced possibly in one of three ways:

(I) 𝐷𝑣[𝑖] = 𝐷𝑣[𝑖 - 1] + 1, (II) 𝐷𝑣[𝑖] = 𝐷𝑢[𝑖 - 1] + 𝛿(𝑧𝑖 , 𝑒 𝑗 ), and (III)

𝐷𝑣[𝑖] = 𝐷𝑢[𝑖] + 1, where 𝑢 stands for the parent of 𝑣 . But 7 cases

should be recognized. In case (1), 𝐷𝑣[𝑖] is produced either in (I), in

(II) or in (III). That is, all the three expressions 𝐷𝑣[𝑖 - 1] + 1, 𝐷𝑢[𝑖

- 1] + 𝛿(𝑧𝑖 , 𝑒 𝑗 ), and 𝐷𝑢[𝑖] + 1 evaluate to the same value. In case

(2), only the first two evaluate to the same value while the third is

larger than them. In case (3), the first and the third are the same

while the second is larger. In the same way, we can recognize all

the remaining four cases. We summarize the 7 cases in Table 4.

Table 4: 7 cases

I II III

1 ✓ ✓ ✓
2 ✓ ✓
3 ✓ ✓
4 ✓
5 ✓ ✓
6 ✓
7 ✓

Table 5: Matrix A

𝑗 0 1 2 3 4

𝑖 𝑎 𝑐 𝑎 𝑡

1 𝑔 0 0 0 0 0

2 𝑐 0 0 1 0 0

3 𝑎 0 1 1 2 3

4 𝑐 0 1 2 2 3

5 𝑎 0 1 2 3 3

In terms of these 7 possibilities, we present the following rec-

currence to calculate the length of the shortest suffix of 𝑠𝑣 whose

distance from z𝑖 = 𝑧1...𝑧𝑖 is 𝐷𝑣[𝑖]. Let 𝑃 = 𝑣0 → 𝑣1 → ...→ 𝑣𝑙 =

𝑣 be the path from 𝑟𝑜𝑜𝑡 (= 𝑣0) to 𝑣 (= 𝑣𝑙 ). We have

𝐴𝑣0
[𝑖] = 0 (1 ≤ 𝑖 ≤𝑚);

𝐴𝑣𝑗 [1] = 1 if 𝑒 𝑗 = 𝑧1; otherwise, 𝐴𝑣𝑗 [1] = 0 ( 𝑗 > 0);

𝐴𝑣𝑗 [𝑖] =
⎧⎪⎪⎨⎪⎪⎩

𝐴𝑣𝑗 [𝑖 − 1], if case (1), (2), (3), or (4);

𝐴𝑣𝑗−1
[𝑖 − 1] + 1, if case (5) or (6); (for 𝑖 > 1, 𝑗 > 0)

𝐴𝑣𝑗−1
[𝑖] + 1, if case (7).

(6)
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Special attention should be paid to case (1), (2), (3) and (4) in

Table 4. In these cases, 𝐴𝑣𝑗 [𝑖] is set to be 𝐴𝑣𝑗 [𝑖 - 1] although 𝐷𝑣𝑗 [𝑖]

is also possibly equal to 𝐷𝑣𝑗−1
[𝑖 - 1] + 𝛿(𝑧𝑖 , 𝑒𝑙 ), and/or 𝐷𝑣𝑗−1

[𝑖] +

1. This shows why the equation correctly computes the value. It

is because if 𝐴𝑣𝑗 [𝑖 - 1] correctly records the length of the shortest

suffix of s𝑣𝑗 such that its distance from z𝑖−1 is equal to 𝐷𝑣𝑗 [𝑖 - 1],

then 𝐴𝑣𝑗 [𝑖] = 𝐴𝑣𝑗 [𝑖 - 1] if 𝐷𝑣𝑗 [𝑖] = 𝐷𝑣𝑗 [𝑖 - 1] + 1. The correctness

of case (5) and (6), as well as case (7) can be easily checked.

Using 𝐴𝑣[𝑖], 𝐵𝑣 can be computed as follows.

Let 𝑠𝑣 = 𝑒1...𝑒𝑙 . We have

𝐵𝑣 = 𝑒𝑙−𝛼 (𝑣)+1
...𝑒𝑙 , (7)

where 𝛼(𝑣) equals 𝐴𝑣[𝑖] for the largest position 𝑖 in 𝑥 such that

𝐷𝑣[𝑖] ≤ 𝑘 . For instance, for 𝑥 = gcaca, and s𝑣 = acat (along a tree

path 𝑣0 → 𝑣1 → ...→ 𝑣4 = 𝑣), we have 𝛼(𝑣4) = 𝐴𝑣4
[4] = 3 (see𝐴(4,

4) in Table 5) since 𝐷𝑣4
[4] = 2 (by formulae (5), 𝐷𝑣4

= <4, 4, 3, 2, 2,

3>
⊤
) and 𝑖 = 4 is the largest position in 𝑥 = gcaca such that 𝐷𝑣4

[4]

≤ 2. Thus, 𝐵𝑣 = 𝑐𝑎𝑡 ≠ s𝑣 = 𝑎𝑐𝑎𝑡 .

If 𝛼(𝑣) = 0, 𝐵𝑣 = 𝑒𝑙−𝛼 (𝑣)+1
...𝑒𝑙 = 𝑒𝑙+1

...𝑒𝑙 , which is defined to

be an empty string, represented as 𝜙 .

We now discuss why we can terminate a path at a node 𝑣 if |𝐵𝑣 | ≠

|s𝑣 |, even if none of the stopping conditions given in 5.1 is satisfied.

The reason for this is that a path 𝑃 starting from a child of the

root, but labeled with a substring identical to 𝐵𝑣 , has aleady been

explored, or will be explored. To see this property, consider an

ancestor 𝑢 of 𝑣 such that the string on the path 𝑃 from 𝑢 to 𝑣 equals

𝐵𝑣 . Let <𝑒0, [𝛼0, 𝛽0]> be the pair labeling 𝑢. There must be a child

𝑤 of the root, whose label is <𝑒0, [𝛼
′
0
, 𝛽 ′

0
]> such that [𝛼 ′

0
, 𝛽 ′

0
] ⊇ [𝛼0,

𝛽0]. Next, we check the child 𝑢1 of 𝑢 on 𝑃 . Since [𝛼 ′
0
, 𝛽 ′

0
] ⊇ [𝛼0,

𝛽0], there must be a child 𝑤1 of 𝑤 , whose interval contains 𝑢1’s

interval. In this way, we can check all the other descendants till 𝑣

on 𝑃 , and prove the above claim by a simple induction. See Fig. 6

for illustration. It remains to expain that cutting off such a path at

<e0, [�0, 0]>
w <e0, [ 0', 0']>

u 1<e1, [ 1, 1]>
w1<e1, [ 1', 1']>

v

u

root

β

β

β

β

α

α
α

Figure 6: Illustration for 𝐵𝑣 and path similarity.
𝑣 in the case of |𝐵𝑣 | ≠ |s𝑣 | will not lead to loss of answers. For this,

we show another important property of 𝐵𝑣 .

Lemma 5.3. Let 𝑢, 𝑣 be two nodes in 𝑇 , not related by the ances-
tor/descendant relationship. If 𝑠𝑢 = 𝐵𝑣 , then 𝐷𝑣 [𝑖] = 𝐷𝑢 [𝑖] (1 ≤ 𝑖 ≤
𝑚) if 𝐷𝑣 [𝑖] ≤ 𝑘 .

Proof. The proof is similar to Theorem 1 in [59]. □

See Fig. 7 for a better understanding of Lemma 5.3.

In Fig. 7(a), we show the𝐷-matrix𝐷 for s𝑣 = acat checked against
𝑥 = 𝑔𝑐𝑎𝑐𝑎 with 𝑘 = 2. For s𝑣 , 𝐵𝑣 = 𝑐𝑎𝑡 ≠ acat = s𝑣 as discussed above.
In Fig. 7(b), we show the 𝐷-matrix 𝐷 ′

for 𝑠𝑢 = cat checked against

𝑥 . In these matrices, the arrows are used to intuitively indicate how

a value is computed. From them, we can not only observe all the

equal entries ≤ 2 in both 𝐷 and 𝐷 ′
, but also trace their generation.

In Fig. 7(c), we show only those paths starting from an entry ≤ 2 in

𝐷4 (the last column in 𝐷). For each of them we have a same path

in 𝐷 ′
shown in Fig. 7(b).

(a) (b)

0 1j 2 3

i c a t

0 0 1 2 3

1 1 1g 2 3

2 2 1c 2 3

3 3 2a 1 2

4 4 3c 2 2

5 a 5 4 3 3

(c)

j 1 20 3 4

i a c a t

0 1 20 3 4

1 g 1 21 3 4

2 c 2 12 2 3

3 a 2 23 1 2

4 c 3 24 2 2

5 a 4 35 2 3

j 1 20 3 4

i a c a t

0 1 20 3 4

1 g 1 21 3 4

2 c 2 12 2 3

3 a 2 23 1 2

4 c 3 24 2 2

5 a 4 35 2 3

Figure 7: Illustration for trace of 𝐷-values’ generation.

From Lemma 5.3, we can see that by extending s𝑢 we can regain

the answers which get lost due to cutting off s𝑣 . So, we have the
following proposition.

Proposition 5.4. During the execution of stringM(𝑥 , BWT (y), k),
cutting off s𝑣 if |s𝑣 | ≠ |𝐵𝑣 | will not cause loss of answers.

Proof. The proof can be derived from Lemma 5.3 and the simi-

larity between the path from 𝑟𝑜𝑜𝑡 to 𝑣 and the path from 𝑟𝑜𝑜𝑡 to 𝑢

for 𝑣 and 𝑢 referred to in Lemma 5.3. □

5.3 Computational complexities
Now we analyze the time complexity. By using the technique

𝑟𝑎𝑛𝑘𝐴𝑙𝑙 [11], the cost of 𝑆(𝑒 ′, <𝑒 , [𝛼 , 𝛽]>) is O(1). Thus, the time

complexity of stringM(𝑥 , BWT (𝑦), 𝑘) is bounded by O(𝑚 ·|𝑇 |). It is
because for each node 𝑣 in 𝑇 , we need O(𝑚) time to compute 𝐷𝑣 .

However, as observed by several earlier papers [14, 45, 58], this

running time can be reduced to O(𝑘 ·|𝑇 |) by using the diagonalwise

monotonicity (i.e., in a dynamic programming matrix, the values

along a diagonal never decrease.)

To estimate |𝑇 |, we need to count the number of the root-to-leaf
paths generated during the execution of 𝑠𝑡𝑟𝑖𝑛𝑔𝑀(𝑥 , 𝐵𝑊𝑇 (𝑦), 𝑘). We

notice the following facts:

• The probability of a character ∈ Σ appearing at a certain position

in 𝑦 is

1

|Σ| . Thus, the probability of a substring of length 𝑗 of 𝑥

appearing in 𝑦 is ( 1

|Σ| )
𝑗
.

• At a given position 𝑝 in 𝑥 , the following operations can be carried

out to change it to another string.

(1) Delete the character at position 𝑝 . There is only one way to

do it.

(2) Insert 𝑗 characters around position 𝑝 . That is, insert 0 ≤ 𝑖

≤ 𝑗 characters before position 𝑝 while the remaining 𝑗 - 𝑖

characters after it. In this way, we can possibly change 𝑥 to

|Σ| 𝑗 different strings each corresponding to the insertion of

𝑗 characters.

(3) Substitute a nonindentical character for the 𝑝th character in

𝑥 and then insert 𝑗 - 1 new characters around the 𝑝th position,

by which we can possibly change 𝑥 to (|Σ| - 1)|Σ| 𝑗−1
different

strings.

Thus, any s𝑣 in 𝑇 that is 𝑘 (or less) different from 𝑥 can be

represented as an operation sequence: 𝑜1...𝑜𝑙 (for some 𝑙 ≤ 𝑘) with

each 𝑜𝑖 (1 ≤ 𝑖 ≤ 𝑙) being a pair [𝑝 , 𝑞], where 𝑝 ∈ {1, ...,𝑚}, and 𝑞

is a symbol ‘𝑑’, representing ‘deleting’ the 𝑝th character in 𝑥 ; or a

sequence of characters: 𝑐1...𝑐 𝑗 , inserted around position 𝑝 , or 𝑐1
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is used to substitue for the 𝑝th character while all the remaining

𝑗 - 1 characters inserted. Applying such a sequence to 𝑥 , we will

change 𝑥 to s𝑣 .
Denote by 𝛤 (𝑚, 𝑘) the number of all such sequences. Let 𝑛′ be

the estimated number of leaf nodes in 𝑇 . Then, we have

𝑛′ ≤
𝑘∑︁
𝑗=1

1

|Σ|𝑚−𝑗 𝛤 (𝑚, 𝑗) (8)

where

1

|Σ|𝑚−𝑗 is the probability that𝑚 - 𝑗 characters of 𝑥 appears

in 𝑦. To estimate 𝛤 (𝑚, 𝑘), we establish the following recursive

equation.

𝛤 (𝑚,𝑘) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if𝑚 = 0, 𝑘 > 0;

1, if 𝑘 = 0;

2|Σ|, if𝑚 = 1, 𝑘 = 1;

(2|Σ| − 1) |Σ|𝑘−1, if𝑚 = 1, 𝑘 > 1;

𝛤 (𝑚 − 1, 𝑘) + 𝛤 (𝑚 − 1, 𝑘 − 1) + Otherwise.

1

𝑘

𝑘∑︁
𝑗=1

|Σ| 𝑗𝛤 (𝑚 − 1, 𝑘 − 𝑗)+

1

𝑘
( |Σ| − 1)

𝑘∑︁
𝑗=1

|Σ| 𝑗−1𝛤 (𝑚 − 1, 𝑘 − 𝑗),

(9)

When𝑚 = 0, and 𝑘 > 0, there is no sequence corresponding to

this case and therefore 𝛤 (0, 𝑘) = 0. When𝑚 > 0, and 𝑘 = 0, there is

only one empty sequence. So 𝛤 (𝑚, 0) = 1. 𝛤 (1, 1) = 2|Σ| since in this

case, we may have 2|Σ| sequences of length 1: a sequence containing
one deletion; |Σ| - 1 sequences each containing one substitution;

and |Σ| sequences each containing one insertion. When𝑚 = 1, 𝑘 >

1, a deletion cannot be performed since if the unique character is

removed the other 𝑘 - 1 operations cannot be conducted. Therefore,

in this case, we can divide the sequences into two parts. One part

contains (Σ| - 1)|Σ|𝑘−1
sequences each containing one sustitution

followed by 𝑘 - 1 insertions. Another part contains |Σ|𝑘 sequences

each containing 𝑘 insertions.

Finally, for the general cases of𝑚 > 1 and 𝑘 > 1, we can categorize

all the operation sequences into 4 classes.

– Class 1 contains all those sequenceswith 𝑝 > 1 in the first element

[𝑝 , 𝑞]. The size of this class is 𝛤 (𝑚 - 1, 𝑘).

– Class 2 contains all those sequences whose first operation is to

delete the first character of 𝑥 . The size of this class is 𝛤 (𝑚 - 1, 𝑘

- 1).

– Class 3 contains all those sequences whose first operation is to

insert 𝑗 characters directly around the first position of 𝑥 . The

average size of this class is

1

𝑘

𝑘∑︁
𝑗=1

|Σ| 𝑗𝛤 (𝑚 − 1, 𝑘 − 𝑗).

– Class 4 contains all those sequences whose first operation is to

substitute the first character of 𝑥 followed by 𝑗 - 1 insertions.

The average size of this class is

1

𝑘
( |Σ| − 1)

𝑘∑︁
𝑗=1

|Σ| 𝑗−1𝛤 (𝑚 − 1, 𝑘 − 𝑗).

Adding all the above expressions together, we get equation (9). Con-

cerning the estimation of 𝛤 (𝑚, 𝑗 ), we have the following proposition.

It can be proven by a simple induction.

Proposition 5.5. For m ≥ 0, j ≥ 0, we have 𝛤 (m, j) ≤ O(|Σ|𝑚+𝑗
).

Based on this proposition, we immediately get the upper bound

on the time complexity of our algorithm.

Proposition 5.6. The average time complexity of stringM(𝑥 ,
BWT (y), k) is bounded by O(𝑘 ·|Σ|2𝑘 ).

Proof. Let 𝑛′ be the number of leaf nodes of a tree𝑇 generated

during the execution of stringM(𝑥 , BWT (𝑦), 𝑘). Then, we have

𝑛′ ≤
𝑘∑︁
𝑗=1

1

|Σ|𝑚−𝑗 𝛤 (𝑚, 𝑗) ≤
𝑘∑︁
𝑗=1

1

|Σ|𝑚−𝑗 |Σ|
𝑚+𝑗

≤ O( |Σ|2𝑘 ) .

(10)

If the average outdegree of nodes in 𝑇 is > 1, |𝑇 | is bounded

by O(|Σ|2𝑘 ). So, O(𝑘 · |𝑇 |) ≤ O(𝑘 ·|Σ|2𝑘 ). If the average outdegree

of nodes in 𝑇 is 1, |𝑇 | is then bounded by O(𝑚 + 𝑘) since we can

control the generation of 𝑇 so that the length of each path in 𝑇 is

bounded by O(𝑚 + 𝑘). It is because the edit distance between 𝑥 and

any string of length ≥𝑚 + 𝑘 + 1 must be > 𝑘 . Thus, we have O(𝑘 ·
|𝑇 |) ≤ O(𝑘 ·|Σ|2𝑘 ). □

To deduct the space overhead, we can keep the𝐷-vectors only for

the nodes along the current path. In addition, using the diagonalwise

monotonicity and a techniques described in [14], we only need

to calculate O(𝑘) entries in a 𝐷-vector. Thus, the overall space

requirement, in addition to the index, is bounded by O(𝑘 ·(𝑚 + 𝑘)).

6 PARTITION OF PATTERN STRINGS
From the above discussion, we have seen that the average running

time of Algorithm 𝑠𝑡𝑟𝑖𝑛𝑔𝑀( ) is bounded by O(𝑘 · |Σ|2𝑘 ). It must be

efficient for sufficiently small 𝑘 values. To extend this strategy for

larger distances, we adopt a two-step method as described below.

• In the first step, we partition the pattern 𝑥 = 𝑥1...𝑥𝑚 evenly

into 𝑙 segements, denoted as 𝑥 = 𝑃1𝑃2...𝑃𝑙 with each 𝑃𝑖 =

𝑥 (𝑖−1)𝑟+1
...𝑥𝑖𝑟 for 1 ≤ 𝑖 ≤ 𝑙 - 1, and 𝑃𝑙 = 𝑥 (𝑙−1)𝑟+1

...𝑥𝑚 , where

𝑟 = ⌈𝑚/𝑙⌉. Then, we run 𝑠𝑡𝑟𝑖𝑛𝑔𝑀 ( ) on each 𝑃𝑖 against 𝐵𝑊𝑇 (𝑦)

with 𝑘 ′ = ⌊𝑘/𝑙⌋ differences in turn to find all the occurrences

of 𝑃𝑖 (1 ≤ 𝑖 ≤ 𝑙) in 𝑦. Each occurrence is represented by (𝑖 , 𝑗 ),

indicating that 𝑃𝑖 matches a segment ending at position 𝑗 in 𝑦

with 𝑘 ′ differences.
• In the second step, for each occurrence (𝑖 , 𝑗 ) found in the first

step, the substring of the target: 𝑠𝑖, 𝑗 =𝑦 𝑗−𝑖𝑟+1−𝑘...𝑦 𝑗−𝑖𝑟+1+𝑚+𝑘
will be again closely checked against 𝑥 with 𝑘 differences by

using a classical algorithm [14]. The length of 𝑠𝑖, 𝑗 is𝑚 + 2𝑘 (see

Fig. 8 for illustration.)

target string y

pattern string x
r r

j-i x r+1-k j-i x r+1+m+k

m+2k

j

r = m/l

i x r

...

Pi

...

Figure 8: Illustration for occurrence of 𝑃𝑖 in 𝑠𝑖 . 𝑗 .

This method works based on an observation that if 𝑥 matches

a segment 𝑠 of 𝑦 with less than 𝑘 differences, then at least one of

the 𝑃𝑖 ’s matches 𝑠 with ⌊𝑘/𝑙⌋ differences. It is because if no 𝑃𝑖 is

present in 𝑠 with ⌊𝑘/𝑙⌋ or less than ⌊𝑘/𝑙⌋ differences, then when

we transform 𝑥 to 𝑠 , by which each 𝑃𝑖 will be transformed into a

subsegment 𝑠𝑖 of 𝑠 , the number of needed operations is larger than

𝑙 ·(⌊𝑘/𝑙⌋ + 1) > 𝑙 ·(𝑘/𝑙 ) = 𝑘 . It is a contradiction.
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Thus, the first step is just like a filter to discard all those sub-

segments where a match cannot possibly occur. This idea was first

suggested in [62] and has been used in several algorithms [7, 45].

It can somewhow improve the performance. But the worst-case

time complexities of these algorithms are almost unchanged since

the dominant cost for searching long target strings remains the

same, and the benefit gain by checking small patterns is overshad-

owed by the multiple checkings of divided subpatterns. It is only by

our method that this idea becomes significant. It is because by our

method the size of 𝑇 is almost independent of the length of target

strings; but heavily depends on 𝑘 and |Σ|. In terms of the above

discussion, the time complexity of the first step is bounded by

𝑙∑︂
𝑖=1

⌊𝑘
𝑙
⌋ · |𝑇𝑖 | ≤ 𝑙 ⌊𝑘

𝑙
⌋ |Σ|2

𝑘
𝑙 = O(𝑘 · |Σ|2

𝑘
𝑙 ),

where 𝑇𝑖 is the tree generated when running 𝑠𝑡𝑟𝑖𝑛𝑔𝑀( ) on 𝑃𝑖 and

𝐵𝑊𝑇 (𝑦) with ⌊𝑘/𝑙⌋ differences.
Let ℎ be the number of occurrences found in the first step. By us-

ing dynamic programming, the time for the second step is bounded

by O(m·h·(𝑚 + 2𝑘)) = O(h·m2
) since for each occurrence a checking

of 𝑥 against a segment of length𝑚 + 2𝑘 in 𝑦 will be conducted. As

mentioned in 5.3, this time complexity can be improved to O(ℎ·𝑘 ·𝑚)

by using a more sophiscated method [14].

7 EXPERIMENTS
In our experiments, we have tested altogether 7 strategies:

– Ukkonen’s onlline method (u-o for short, [58]),
– Chang-Lawer’s first method (ch-1 for short, [14]),
– Chang-Lawer’s second method (ch-2 for short, [14]),
– Ukkonen’s index-based method (u-i for short, [59]),
– Myers’s index-based method (m-i for short, [45]),
– Peri-Culpepper’s index-based method (pc-i for short, [50]), and
– ours, discussed in this paper.

The first three are all online strategies while the remaining four

are all index-based, All codes are written in C++ and compiled by

GNU g++ compiler version 5.4.0 with compiler option ‘-O2’. All tests

run on a 64-bit Ubuntu OS with a single core of Intel Xeon E5-2637

@3.50Ghz. The systemmemory is of 64 GB. For time measurements,

we used the Unix time commands. In addition, the suffix trees for

patterns (in the Chang-Lawler’s method and ours), as well as for

reference sequences (in the Ukkonen’s index-based method) are

constructed by using the algorithm described in [60]. To construct

the suffix arrays and the BWT-arrays, we used a code found in the

libdivsufsort library (https://github.com/y-256/libdivsufsort) with

the compact factor for the rankAll array 𝛽 = 4 and the compact

factor for the suffix array 𝛾 = 16.

7.1 Data sets
For the experiments, three genome and two protein sequences were

downloaded from ensemble.org (ftp://ftp.ense mbl.org/pub/release-

93/) and SMS (https://www.bioinfor matics.org/sms2/random_pro-

tein.html), respectively. The size of the alphabet for the protein

sequenses is 20, much larger than that of DNA sequences. The

patterns which were tested against different genome and protein

sequences were generated by using the wgsim tool which is part

of the SAMtools package [35]. In Table 6, we show all the tested

sequences, as well as the time spent for constructing their BWT-

arrays.

Table 6: Genome and protein sequences, as well as time for
constructing their BWT-arrays.

reference sequences* num. characters time (𝑠)

Gorilla 3,063,403,506 406.817

Danio Rerio (ZebraFish) 1,373,472,378 173.142

Gorilla Chr1 228,908,641 25.03

Protein-1 144,000,000 15.92

Protein-2 30,000,000 3.04

*The first three are genome sequences while the last two are protein

sequences.

7.2 Test 1: on string matching with small k
We first report the experiments on the string matching with small

number of differences. In this test, we run all the algorithms on

100 sequences of length 100 characters against all the 5 sequenses

listed in Table 6 with 𝑘 set from 1 to 7. In Fig. 9(a), we show the test

result on the Gorilla genome. From this, we can see that our method

uniformly outperforms all the other methods for small 𝑘 (≤ 6). The

smaller the value of𝑘 , the larger the discrepancies between ours and

all the tested online methods. For example, when 𝑘 = 6, our method

is 4 times better than the Chang-Lawer’s second method. When

𝑘 = 4, ours is almost 65 times faster than this method. Especially,

for 𝑘 = 1, ours can be up to 70,000 times better. The observation

on the index-based methods is just opposite. Specifically, as 𝑘 goes

up, the differences between ours and all the other three index-

based increases. The Ukkonen’s algorithm works not so well since

during its execution, almost the whole suffix tree over a genome

has to be searched and some parts will be repeatedly accessed.

Although the suffix links can be used to save time, the searching of

a whole suffix tree has veiled this advantage. Its theorectical time

complexity is bounded by O(𝑚·min{𝑛,𝑚𝑘+1
|

∑︁
|
𝑘+1

} +𝑛) [59]. During

the execution of the Myers’s, a big set called the neighbourhood
needs to be created, which contains a large number of sequences

whose distance is ≤ 𝑘 from the pattern. Theoretically, its size is

bounded by O(|Σ|𝑚+𝑘
). Although the set is somehow reduced by

imposing a constraint that any sequence in the set cannot be a

prefix of another, its theoretical bound remains unchanged [45].

The Peri-Culpepper’s method is slightly worse than Myers’s since

no constraints are used to reduce the size of such neighbourhoohds.

Obviously, all the three methods are much worse than ours. To have

a deeper insight into the behaviour of our algorithm, we give the

number of nodes generated during the execution of our algorithm in

Table 7. From this, we can see that the size of the trees generated is

much smaller than the number of characters in the original genome

due to the fact that by our method the sequence is ‘folded’ and

becomes much shorter, and the branch cut during the searching of

𝑇 .
Table 7: Nubmer of nodes in 𝑇

𝑘 1 2 3 4 5 6 7

|𝑇 | 1.4K 25K 278.5K 2M 10M 39.72M 92M

The Chang-Lawer’s second algorithm is a little bit better than

their first one. In addition, although the Ukkonen’s online algorithm

is much better than the Chang-Lawer’s for small 𝑘 , its performance
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Figure 9: Test results.

quickly deteriorates as𝑘 increases. In Fig. 9(b), and Fig. 9(c), we show

the test results on the Zebrafish and Gorilla Chr1, respectively. From

these figures, we can see that for 𝑘 ≤ 6, our method is consistantly

better than the others. But for 𝑘 = 7, the performance of our method

becomes comparable to or even worse than the others. It is because

for shorter genome sequences the number of nodes created by our

method can be larger than their lengths. However, our method

is still much better than the other three index-based algorithms.

In Fig. 9(d), and Fig. 9(e), we show the test results on the two

protein sequences, from which we can see that when 𝑘 ≥ 4, the

performance of our method degrades. This shortage of our method

can be effectively removed by splitting ptterns into small ones, as

demonstrated by the test reported in the next subsection.

7.3 Test 2: on string matching with large k
From the previous subsection, we can see that for small 𝑘 the per-

formance of our method is superior to all the others. However, as 𝑘

goes up, the performance of ours, just like the other three index-

based methods, degrades greatly. In the opposite, all the online

methods seem not so sensitive to the value of 𝑘 , but to the size of

genomes. So, for large 𝑘 , we have to do the pattern partition and

utilize the two-step method described in Section 6. It is what is

done in this test, in which the threshold is set to be 6 for genome

sequences. That is, if 𝑘 is ≥ 6, the pattern will be divided into 𝑙

parts such that ⌊𝑘
𝑙
⌋ < 6. We choose threshold 6 since when 𝑘 =

6 the performance of our method becomes worse. For the same

reason we choose the threshold 3 for protein sequences. Again, we

have tested 100 patterns against the 5 different sequences listed in

Table 6, but each of them is of length 300 characters.

For this test, we first notice that all the other three index-based

methods are not included. It is because for large 𝑘 , they have to

resort to the pattern partition just like ours. Otherwise, their perfor-

mance must be much worse than any online algorithm. Doing the

pattern partition, howevere, their performance is definitely worse

than ours, even with quickly inceased discrepancies. For the same

reason, if any online method works in two steps using the pattern

partition, it will also definitely be inferior to ours. Only one ques-

tion remains, will they have better performance than ours if the

pattern division is not conducted for them? The figures shown in

Fig. 9(f) - (h) and Fig. 10(a) - (b) give the answer. In these figures, we

demonstrate the test results of checking different patterns against

different target sequences listed in Table 6, respectively.

As expected, we can see a huge difference between ours and

all the online methods from these figures. The reason is twofold.

First, each subquery can be evaluated super fast in the first step

by our method. Second, the number of suviving segments is small

in comparison with the original sequences, as exhibited in Table 8

and Table 9.

Table 8: Two-step execution details on Gorilla genome
𝑘 20 25 30 35 40 45

step-1 23.1 23.1 173.2 172.9 1187.0 1187.5

step-2 97.41 122.1 263.4 311.7 493.22 565.58

num. 30.5K 30.5K 52.9K 52.7K 69.5K 69.3K

size 353 364 388 399 428 439

Table 9: Two-step execution details on ZebraFish genome

𝑘 20 25 30 35 40 45

step-1 58.73 58.57 187.5 187.6 953.0 952.4

step-2 18.41 21.48 34.24 38.85 60.33 60.70

num. 3638 3633 4709 4702 6376 6365

size 423 433 444 455 463 474

In Table 8, we show the details of our method’s execution on

the Gorilla genome with 𝑙 (the number of subpatterns) being set

to 10, including the time (in seconds) of Step 1 and Step 2 and the

numbers of segments rechecked in Step 2, as well as the average

length of such segments. In Table 9, we display the details on the
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ZebraFish genome, also with 𝑙 set to 10. From these two tables, we

can see that both Step 1 and Step 2 can be carried out very quickly

by our method.

7.4 Test 3: on numbers of subpatterns
In this test, we focus on the impact of the number of subpatterns

𝑙 to performance. The setup for this test is the same as Test 2,

but with varying values of 𝑙 = 10, 12 , 15. However, we report the

test results only for the Gorilla, Zebrafish, Gorilla Chr1 and show

them in Fig. 10(c), 10(d), 10(e), respectively. From these results, we

can observe that when 𝑘 is relatively small (𝑘 ≤ 30), whichever

𝑙 is chosen will not much impact the performance. However, for

large 𝑘 (≥ 40), choosing larger values of 𝑙 is obviously beneficial.

Concretely, we can achieve more than 2-3 times faster running time

by setting 𝑙 to 12 or 15 than by setting 𝑙 to 10. The reason for this is

that larger 𝑙 means smaller 𝑘 ′ = ⌊𝑘/𝑙⌋ and the first step can thus be

done very rapidly. On the other hand, from Table 10, we can see

that the number of surviving segments to be checked in Step 2 are

comparable to each other for different 𝑙 values. This implies that the

difference in performance mainly consists in the execution time of

Step 1. Anyway, for all the three tested genomes, the performance

goes down as 𝑘 goes up.

Table 10: Nubmer of segments checked in Step 2.

𝑘 20 25 30 35 40 45

𝑙=10 30.5K 30.5K 52.9K 52.7K 69.5K 69K

𝑙=12 28.7K 56.2K 56.0K 55.8K 60.5K 61.4K

𝑙=15 30.5K 30.5K 52.9K 52.7 69.5K 69.3K

7.5 Test 4: on varying length of patterns
In this test, we check the performance of our method and all the

online methods on the length of patterns. For this purpose, we set a

fixed value of 𝑘 = 10 and 𝑙 = 5 for our method, but varying pattern

lengths from 100 to 300 character. The test results are exhibited in

Fig. 10(f) - 10(h) and Fig. 11(a) - 11(b), respectively, for all the five

different sequences. From these figures, we can see that all their

performance is not much changed for different pattern lengths, but

consistantly demonstrates a big difference between ours and all

the tested online methods. All of them, including ours, are almost

pattern-length independent.
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8 CONCLUSIONS
In this paper, a new index-based method is discussed for solving

the string matching with 𝑘 differences. This is highly important to

searching genome and protein sequences inmodern DNA databases,

as well as genetics research, especially, for very long sequences. The

average time complexity of our method is bounded by O(𝑘 · |Σ|2𝑘 ).
Together with pattern partition, our method can achieve more

than 1000-fold improvement than the existing methods. In addition,

the index itself can be constructed very fast with only linear time

and space required. Therefore, it can also be considered as a com-

petetive on-line strategy, better than any existing one. Extensive

experiments are conducted, showing that our method is not only a

theoretically, but also a practically efficient method. We believe that

our algorithm as a tool will be very useful for the biological research.
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