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Abstract

When an incremental structural learning method gradualbdifies a Bayesian network (BN)
structure to fit observations, as they are read from a databascall the process structural adap-
tation. Structural adaptation is useful when the learnsetdo work in an unknown environment,
where a BN is to be gradually constructed as observationseotvironment are made. Existing
algorithms for incremental learning assume that the sagriplthe database have been drawn from
a single underlying distribution. In this paper we relaxstagsumption, so that the underlying dis-
tribution can change during the sampling of the database.néthod that we present can thus be
used in unknown environments, where it is not even known kdrehe dynamics of the environ-
ment are stable. We briefly state formal correctness refultsur method, and demonstrate its
feasibility experimentally.

1 Introduction These papers all assume that the database of
observations has been produced by a stationary
Ever since Pearl (1988) published his seminal boolkstochastic process. That is, the ordering of the ob-
on Bayesian networks (BNs), the formalism has be-servations in the database is inconsequential. How-
come a widespread tool for representing, eliciting,ever, many real life observable processes cannot re-
and discovering probabilistic relationships for prob-ally be said to be invariant with respect to time:
lem domains defined over discrete variables. Onélechanical mechanisms may suddenly fail, for
area of research that has seen much activity is th#stance, and non-observable effects may change
area of learning the structure of BNs, where prob-abruptly. When human decision makers are some-
abilistic relationships for variables are discovered,how involved in the data generating process, these
or inferred, from a database of observations of thes@re almost surely not fully describable by the ob-
variables (main papers in learning include (Heck-servables and may change their behaviour instanta-
erman, 1998)). One part of this research area foneously. A simple example of a situation, where it is
cuses on incremental structural learning, where obunrealistic to expect a stationary generating process,
servations are received sequentially, and a BN struds an industrial system, where some component is
ture is gradually constructed along the way with-exchanged for one of another make. Similarly, if
out keeping all observations in memory. A specialthe coach of a soccer team changes the strategy of
case of incremental structural learning is structuratthe team during a match, data on the play from af-
adaptation, where the incremental algorithm mainter the chance would be distributed differently from
tains one or more candidate structures and applie#hat representing the time before.
changes to these structures as observations are re-In this work we relax the assumption on sta-
ceived. This particular area of research has receivetionary data, opting instead for learning from data
very little attention, with the only results that we are which is only “approximately” stationary. More
aware of being (Buntine, 1991; Lam and Bacchusconcretely, we assume that the data generating pro-
1994; Lam, 1998; Friedman and Goldszmidt, 1997;cess is piecewise stationary, as in the examples
Roure, 2004). given above, and thus do not try to deal with data



where the data generating process changes gradir the distributionP. The d-separation criterion is
ally, as can happen when machinery is slowly beinghus
worn down! Furthermore, we focus on domains XUgY | Z=X1UpY|Z,

where the shifts in distribution from one stationary for any BNB = (G, ®). The set of all conditional

peSOdt ti tt::e ne>t<)t EI.O];.a lolc?l na:]l_Jre (e only gindependence statements that may be read from a
subset of the probabiistic relationships among Varl'graph in this manner, is referred to as that graph'’s
ables change as the shifts take place).

d-separation properties
2 Prdiminaries We refer tg any _two grgphs over the same vari-
ables as beingquivalentif they have the same
As a general notational rule we use bold font to de-d-separation properties. Equivalence is obviously
note sets and vectord/(, c, etc.) and calligraphic an equivalence relation. Verma and Pearl (1990)
font to denote mathematical structures and compoproved that equivalent graphs necessarily have the
sitions @, G, etc.). Moreover, we shall use upper same skeleton and the same v-structdresThe
case letters to denote random variables or sets afquivalence class of graphs containing a specific
random variables X, Y, V, etc.), and lower case graphG can then be uniquely represented by the
letters to denote specific states of these variablepartially directed graplg* obtained from the skele-
(z4,9, c, etc.).= is used to denote “defined as”.  ton of G by directing links that participate in a v-
A BN B = (G, ®) over a set of discrete vari- structure ing in the direction dictated by. G*
ablesV consists of an acyclic directed graph (tradi- is called thepatternof G. Any graphg’, which is
tionally abbreviated DAGY, whose nodes are the obtained fromG* by directing the remaining undi-
variables inV', and a set of conditional probabil- rected links, without creating a directed cycle or a
ity distributions ® (which we abbreviate CPTs for new v-structure, is then equivalent ¢h We say
“conditional probability table”). A correspondence thatG’ is aconsistent extensionf G*. The partially
betweeng and @ is enforced by requiring tha®  directed graphg** obtained fromG*, by directing
consists of one CPP(X|PAg(X)) for each vari- undirected links as they appear h whenever all
able X, specifying a conditional probability distri- consistent extensions ¢f agree on this direction,
bution for X given each possible instantiation of the is called thecompletedpattern ofG. G** is ob-
parentsPA¢(X) of X in G. A unique joint distri-  viously a unique representation Gfs equivalence
bution Pz overV is obtained by taking the product class as well.
of all the CPTs in®. When it introduces no am-  Given any joint distributionP overV it is possi-
biguity, we shall sometimes tre&tas synonymous ble to construct a BN such thatP = Pg (Pearl,
with its graphg. 1988). A distributionP for which there is a BN
Due to the construction aPs we are guaranteed Bp = (Gp, ®p) such thatPz, = P and also
that all dependencies inherentiiz can be read di-
rectly from G by use of thed-separation criterion XUpY|Z=X1UgY|Z
(Pearl, 1988). The d-separation criterion states thah
if X andY are d-separated b¥, then it holds that
X is conditionally independent &f givenZ in Pg,
or equivalently, if X is conditionally dependent of
Y givenZ in P, thenX andY are not d-separated
by Z in G. In the remainder of the text, we use
X 1L gY | Z to denote thafX is d-separated from
Y by Z in the DAGG, andX 1l pY | Z to denote
that X is conditionally independent df given Z

olds, is calledDAG faithful andBp (and some-
times justGp) is called gperfect map DAG faithful
distributions are important since, if a data generat-
ing process is known to be DAG faithful, then a per-
fect map can, in principle, be inferred from the data
under the assumption that the data is representative
of the distribution.

For any probability distribution” over variables
V and variableX ¢ V', we define alarkov bound-

'The changes in distribution of such data is of a continousary (Pearl, 1988) ofX to be a setS C V \ {X}
nature, and adaptation of networks would probably be better

accomplished by adjusting parameters in the net, rather tha  2A triple of nodes(X, Y, Z) constitutes a-structureiff X
the structure itself. andZ are non-adjacent and both are parent¥ of



such thatX Ll pV'\ (SU{X}) | S and this holds P, be the distribution generating sample point
for no proper subset of. It is easy to see that if Furthermore, lef3,, ..., 5; be the BNs found by a
P is DAG faithful, the Markov boundary o is  structural adaptation methdd, when receivingD.
uniquely defined, and consists &fs parents, chil- Given a distance measutéston BNs, we define the
dren, and children’s parents in a perfect mapof  devianceof M onD wrt. distas
In the case ofP being DAG faithful, we denote the
Markov boundary byMB p(X). 1

dey(M, D) = - > dist(Bp,, B;).
3 TheAdaptation Problem i=1

Before presenting our method for structural adapta+or a methodV/ to adaptto a DAG faithful sample
tion, we describe the problem more precisely: sequenceD wrt. dist then means thadl/ seeks to
We say that a sequencesamples from a piece- minimize its deviance of® wrt. distas possible.
wise DAG faithful distributionif the sequence can
be partitioned into sets such that each set is @ A Structural Adaptation Method
database sampled from a single DAG faithful dis-
tribution, and therank of the sequence is the size The method proposed here continuously monitors
of the smallest such partition. Formally, Bt =  the data streanD and evaluates whether the last,
(di,...,d;) be a sequence of observations oversayk, observations fit the current model. When this
variablesV'. We say thaD is sampled from a piece- turns out not to be the case, we conclude that a shift
wise DAG faithful distribution (or simply that itis in D took placek observations ago. To adapt to the
a piecewise DAG faithful sequence), if there are in-change, an immediate approach could be to learn a
dicesl =iy < --- < 4y, = [+ 1, such that each new network from the lask cases. By following
of D; = (di;,...,di;,,—1), for1 < j < m —1, thisapproach, however, we will unfortunately loose
is a sequence of samples from a DAG faithful dis-all the knowledge gained from cases before the last
tribution. The rank of the sequence is defined as: observations. This is a problem if some parts of
min; i;11 — 4, and we say that — Lis itssizeand  the perfect maps, of the two distributions on each
[ its length A pair of consecutive sampled; and  side of the shift, are the same, since in such situ-
d;;1, constitute ashiftin D, if there isj such that ations we re-learn those parts from the new data,
d; isin D; andd, 1, is in D, ;. Obviously, we can even though they have not changed. Not only is this
have any sequence of observations being indistina waste of computational effort, but it can also be the
guishable from a piecewise DAG faithful sequence,case that the lagt observations, while not directly
by selecting the partitions small enough, so we recontradicting these parts, do not enforce them ei-
strict our attention to sequences that are piecewiseher, and consequently they are altered erroneously.
DAG faithful of at least rank:. However, we do not Instead, we try to detect where in the perfect maps
assume that neither the actual rank nor size of thef the two distributions changes have taken place,
sequences are known, and specifically we do not asand only learn these parts of the new perfect map.
sume that the indices, . . . , i, are known. This presents challenges, not only in detection, but
The learning task that we address in this papeglso in learning the changed parts and having them
consists of incrementally learning a BN, while re- fit the non-changed parts seamlessly. Hence, the
ceiving a piecewise DAG faithful sequence of sam-method consists of two main mechanisms: One,
ples, and making sure that after each sample pointnonitoring the current BN while receiving obser-
the BN structure is as close as possible to the disvations and detecting when and where the model
tribution that generated this point. Throughout theshould be changed, and two, re-learning the parts of
paper we assume that each sample is complete, sbe model that conflicts with the observations, and
that no observations in the sequence have missinmtegrating the re-learned parts with the remaining
values. Formally, letD be a complete piecewise parts of the model. These two mechanisms are de-
DAG faithful sample sequence of lengthand let scribed below in Sections 4.1 and 4.2, respectively.



4.1 Detecting Changes bets are off):

The detection part of our method, shown in Al- Pe(X; = d;)
go.rithm 1, continuously processes the cases it re- log Ps(X; = d;|Xj = d; (Vj # 1))
ceives. For each observatiahand nodeX, the

method measures (UsingoBFLICTMEASURE(, | herefore, we let ONFLICTMEASURED, X;, d)

X, d)) how well d fits with the local structure of retum the value given on the left-hand side of (1).
B aroundX . Based on the history of measurements'V€ note that this is where the assumption of com-
for node X, cx, the method tests (Using+&TIN- plete data comes into play: H is not completely
STREAM(cy, k)) whether a shift occurredl obser- observed, then (1) cannot be evaluated for all nodes

vations ago.k thus acts as the number of observa-Xi- _ _

tions that are allowed to “pass” before the method SiNce a high value returned bydBFLICTMEA-
should realize that a shift has taken place. We thereSURE() for a node X' could be caused by a rare
fore call the parametek the allowed delayof the ~ €aS€, we cannot use that value directly for deter-
method. When the actual detection has taken placénining whether a shift has occurred. Rather, we
as a last step, the detection algorithm invokes thd00K at the block of values for the last cases,
updating algorithm (WDATENET(-)) with the set and compare these with those from before that. If

of nodes, for which 8IFTINSTREAM(.) detected a there is a tendency towards higher values in the for-
change, together with the lasobservations. mer, then we conclude that this cannot be caused

only by rare cases, and that a shift must have oc-
Algorithm 1 Algorithm for BN adaption. Takes as curred. Specifically, for each variabé, SHIFTIN-
input an initial network, defined over variables STREAM(cx, k) checks whether there is a signif-
V, a series of case®, and an allowed delay for ~ icant increase in the values of the lasentries in

>0. (1

detecting shifts irD. cx relative to those before that. In our implementa-

1: procedure ADAPT(B, V, D, k) tion SHIFTINSTREAM(cx, k) calculates the nega-

2. D] tive of the second discrete cosine transform compo-

Z o [ (vXeV) nent (see e.g. (Press et al., 2002)) of thelashea-

5 d —NEXTCASE(D) sures incx, and returns true if this statistic exceeds

6: APPEND(D’, (d)) a pre-specified threshold value. We are unaware of

g %‘_X@e V do any previous work using this technique for change

9: ¢ —CONFLICTMEASURES, X, d) point detection, but we chose to use this as it out-

10: APPEND(cx;, ¢) performed the more traditional methods of log-odds

11: if SHIFTINSTREAM(cx, k) then . . .

12 S — SU{X} ratios and-tests in our setting.

ﬁ ES;LgstLEnENTR'ES(D k) 4.2 Learningand Incorporating Changes

15: UPDATENET(B, S, D) When a shift involving nodes$ has been detected,

UPDATENET(B, S, D’) in Algorithm 2 adapts the

To monitor how well each observatiod = BN B around the nodes if to fit the empirical dis-

(dy,...,dy) “fit" the current modelB, and espe- tribution defined by the last casesD’ read from

cially the connections between a naligand the re-  D. Throughout the text, both the cases and the em-
maining nodes i, we have followed the approach pirical distribution will be denoted>’. Since we

of Jensen et al. (1991): If the current model is cor-want to reuse the knowledge encodedsitthat has
rect, then we would in general expect that the probnot been deemed outdated by the detection part of
ability for observingd dictated byB is higher than the method, we will updat8 to fit D’ based on the

or equal to that yielded by most other models. Thisassumption that only nodes #i need updating of
should especially be the case for the empty médel their probabilistic bindings (i.e. the structure asso-
where all nodes are unconnected. That is3jrwe  ciated with their Markov boundaries iip/). 1g-
expect the individual attributes @fto be positively  noring most details for the moment, the updating
correlated (unlesd is a rare case, in which case all method in Algorithm 2 first runs through the nodes



Algorithm 2 Update Algorithm for BN. Takes as ables inl\//IT}D,(X)) to find variables adjacent t&.
input the network to be updatefi, a set of vari- The latter method uses a greedy search for itera-
ables whose structural bindings may be wrafig  tively growing and shrinking the estimated set of ad-

and data to learn fronD’. jacent variables until no further change takes place.
1: procedure UPDATENET(B, S, D') Both of these methods need an “independence ora-
2 for X € Sdo ” - ,
3 MB ., (X) — MARKOVBOUNDARY(X, D) cle” Ip. For this we have usedx test onD’.
4: Gx «+ADJACENCIESX, MBp, (X), D) _ _ _
5 PARTIALLY DIRECT(X, G, MBp/ (X), ') Algorlthm 3 Uncovers the direction of some arcs
6: G «MERGEFRAGMENTS({Gx}xes) adjacent to a variableX as they would be i87;.
70 G” «—MERGECONNECTIONYB, ', S) NEg, (X) consists of the nodes connected\idy
8 (g”70) <—D|RECT(g”, B, S) a”nk Ing
9. @ —0o X __
10: for X € V do 1: procedure PARTIALLY DIRECT(X, Gx, MByp/ (X), D)
11: if X € C then 2 DIRECTA/SI\NOTHERFRAGMENTS(QX)
12: g @ — @" U{Pp/(X|PAgn (X))} 3:  for Y € MBp/(X)\ (NEg, (X) UPAg, (X)) do
13: se VEE
4: for T € MBp/ (X X,Y}do
14: ®" — @' U{Ps(X|PAg/ (X))} 5. it I;/(X} |(T% }h{en }
15: B (¢",2") 6: for Z € NEg, (X)\ T do
7 if 2 I/ (X,Y | TU{Z}) then
8 LINKTOARC(Gx, X, Z)

in S and learns a partially directed graph fragment
Gx for each nodeX (Gx can roughly be thought of The method RRTIALLY DIRECT(X, Gy,
as a “local completed pattern” foX). When net- 1\7[?39,()(), D') directs a number of links in the
work fragments have been constructed for all nodegjraph fragmengx in accordance with the direction
in S, these fragments are merged into a single grapldf these in (the unknown)3s;. With DIREC-
G’, which is again merged with fragments from the TASINOTHERFRAGMENTS(Gx ), the procedure
original graph of3. The merged graph is then di- first exchanges links for arcs, when previously
rected using four direction rules, which try to pre- directed graph fragments unanimously dictate this.
serve as much of8’s structure as possible, with- The procedure then runs through each variabie
out violating the newly uncovered knowledge rep—1\7{T_3,D,(X) not adjacent taX, finds a set of nodes
resented by the learned graph fragments. Finallyn 1\//IT3D/(X) that separateX from Y, and then
new CPTs are constructed for those nodéshat  tries to re-establish connection 16 by repeatedly
have a new parent set B/ (nodes which, ideally, expanding the set of separating nodes by a single
should be a subset ). node adjacent t&X. If such a node can be found
The actual construction ofx is divided into it has to be a child ofX in the completed pattern
three steps: First, an estima®IBp/(X) of B and no arc in the patterfi, originating from
MByp/(X) is computed, using MRKOVBOUND- X s left as a link by the procedure (see (Nielsen
ARY(X, D'); second, nodes iMBp/ (X) that are  and Nielsen, 2006) for proofs). As before the

adjacent toX in Bp are uncovered, using ®9A-  independence oraclE, was implemented as g’
CENCIESX, MBp/ (X), D’), andGyx is initialized  test in our experiments.
as a graph ovek and these nodes, whekis con- In most constraint based learning methods, only

nected with links to these adjacent nodes; and thirdkhe direction of arcs participating in v-structures
some links inGx that are arcs iy, are directed as  are uncovered using independence tests, and struc-
they would be in37;; using RRTIALLY DIRECT(X,  tural rules are relied on for directing the remaining
Gx, MBp/(X), D). See (Nielsen and Nielsen, arcs afterwards. For the proposed method, how-
2006) for more elaboration on this. ever, more arcs from the completed pattern, than
In our experimental implementation, we used thejust those of v-structures, are directed through in-
decision tree learning method of Frey et al. (2003)dependence tests. The reason is that traditional un-
to find MBp/(X), and the AGORITHMPCD()  covering of the direction of arcs in a v-structure
method in (Pefia et al., 2005) (restricted to the vari-X — Y < Z relies not only on knowledge thaf



andY are adjacent, and th&f and Z are not, but 4. If Rules 1 to 3 cannot be applied, chose a link

also on the knowledge thatandZ are adjacent. At X — Y atrandom, such thaX, Y € V' \ S,
the point, wher&x is learned, however, knowledge and direct it as ir3.

of the connections among nodes adjacent te not

tated byB), so this traditional approach is not pos- at random, and direct it randomly.

sible. Of course these unknown connections coul
be uncovered fror®’ using a constraint based algo-
rithm, but the entire point of the method is to avoid
learning of the complete new network.

When all graph fragments for nodes B have

cf:)ue to potentially flawed statistical tests, the resul-
tant graph may contain cycles each involving at least
one node inS. These are eliminated by reversing
only arcs connecting to at least one nodesinThe
___reversal process resembles the one used in (Margari-
been constructed, they are merged through a S'mplﬁs and Thrun, 2000): We remove all arcs connecting

graph union Itn twRGH:R/;‘]GMENTz('); ?Ot(r:lonﬂ'CtSt to nodes inS that appears in at least one cycle. We
among orientations can happen due 1o the ConstiuG o 1he removed arcs according to how many cy-
tion of PARTIALLY DIRECT(:). In MERGECON-

B. G S i des i cles they appear in, and then insert them back in the
NECTIONY(B, J', 5) CONNECLoNS among nodes in graph, starting with the arcs that appear in the least
V' \ S are added according to the following rule: If . . o

) . . number of cycles, breaking ties arbitrarily. When
X,Y € V' \ § are adjacent itB, then add the link at some point the insertion of an arc gives rise to a
X — Y toG'. The reason for this rule is that insepa-

: cle, we insert the arc as its reverse.
rable nodes, for which no change has been detectegy

. . . "We have obtained a proof of the “correctness”
are assumed to be inseparable still. However, the di- -
. .. of the proposed method, but space restrictions pre-
rection of some of the arcs may have changed@’in

wherefore we cannot directly transfer the directionsvemS us from bringing it here. Basically, we have
y shown that, given the set-up from Section 3, if the

H !
inB tICIJ g ; h " gi method is started with a network equivalent3g,,
Following the merge, IRECT(G", B, S) directs then ; will be equivalent toBp, , for all i > k.

LY : :
the remaining links irg;”” according to the following This is what we refer to as “correct” behaviour, and

five rules: it means that once on the right track, the method
will continue to adapt to the underlying distribu-
tion, with the delayk. The assumptions behind the
result, besides that eadh) is DAG faithful, are i)
the samples irD are representative of the distribu-
tions they are drawn from, ii) the rank @f is bigger
than 2k, and iii) SHIFTINSTREAM(-) returns true
for variable X and samplej iff P;_j is not simi-

lar to P;_;_; aroundX (see (Nielsen and Nielsen,
2006) for formal definitions and detailed proofs).

L.IfXeV\S X—-Yisalink, X — Yisan
arc inB, andY is a descendant of some node
Z in MBg(X) \ ADg(X), whereADg(X)
are nodes adjacent t§ in 5, through a path
involving only children of X, then direct the
link X - Y asX - Y3

2. If Rule 1 cannot be applied, andXf — Y isa
link, 7 — X is an arc, andZ andY are non-
adjacent, then directthelink—Y asX — Y. 5 Experimentsand Results

3. If Rule 1 cannot be applied, andXf — Y isa  To investigate how our method behaves in practice,
link and there is a directed path froi to Y, We ran a series of experiments. We constructed
then direct the link¥ — Y asX — V. 100 experiments, where each consisted of five ran-

domly generated BNBy, . .., Bs over ten variables,
That Rule 1 is sensible is proved in (Nielsen and Nielsen,eaCh having between two an_d f""? states. We made
2006). Intuitively, we try to identify a graph fragment fafin ~ sure thatB; was structurally identical t@d;_; ex-
B, that can be merged with the graph fragments learned frontept for the connection between two randomly cho-
D’. It turns out that the arcs directed by Rule 1 are exactly .
sen nodes. All CPTs il; were kept the same as

those that would have been learned BRPIALLY DIRECT(X, X
Gx, MB5(X), Pg). in B;_1, except for the nodes with a new parent



set. For these we employed four different meth- oo
ods for generating new distributiong\ estimated
the probabilities from the previous network with
some added noise to ensure that no two distribu-
tions were the samd3, C, andD generated entirely
new CPTs, wittB drawing distributions from a uni- 300 |
form distribution over distributions.C drew dis-
tributions from the same distribution, but rejected 20|
those CPTs where there were no two parent con- ’
figurations, for which the listed distributions had a
KL-distance of more thah. D was identical taC, 0
except for having a threshold 6f The purpose of

the latter two methods is to ensure strong probabilis-_ ) )
tic dependencies for at least one parent configural'9uré 1: Deviance measures FG-SA (X-axis) vs.
tion. For generation of the initial BNs we used the NN (Y-axis).

method of Ide et al. (). For each series of five BNs,
we sampled cases from each network and concate-
nated them into a piecewise DAG faithful sample
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sequence of rank and length5r, for r being 500, 400
1000, 5000, and10000. 350 1

We fed our method (NN) with the generated 3% |
sequences, using different delays (100, 500, 250 1

and 1000), and measured the deciance wrt. the 2%
KL-distance on each. As mentioned we are un- **
aware of other work geared towards non-stationary 19|
distributions, but for base-line comparison pur-  *°
poses, we implemented the structural adaptation °
methods of Friedman and Goldszmidt (1997) (FG)
and Lam and Bacchus (1994) (LB). For the methodeigyre 2: Deviance measures FG-HC (X-axis) vs.
of Friedman and Goldszmidt (1997) we tried both N (Y-axis).
simulated annealing (FG-SA) and a more time con-
suming hill-climbing (FG-HC) for the unspecified
search step of the algorithm. As these methods haveG-HC are presented in Figures 1 and 2. NN out-
not been developed to deal with non-stationary disperformed FG-SA in 81 of the experiments, and
tributions, they have to be told the delay betweenFG-HC in 65 of the experiments. The deviance of
learning. For this we used the same valyethat the LB method was much worse than for either of
we use as delay for our own method, as this ensuréhese three. The one experiment, where both the
that all methods store only a maximum bffull FG methods outperformed the NN method substan-
cases at any one time. The chosewnalues, also tially, had r equal t010000 and % equal t01000,
correspond to those found for the experimental re-and was thus the experiment closest to the assump-
sults reported in Friedman and Goldszmidt (1997)tion on stationary distributions of the FG and LB
and Lam (1998). The only other pre-specified paJearners.
rameter required by our method, viz. a threshold for Studying the individual experiments more
the y2-tests we set at a conventionalD5. Each closely, it became apparent that NN is more “sta-
method was given the correct initial netwoli to  ble” than FG: It does not alter the network as often
start its exploration. as FG, and when doing so, NN does not alter it as
Space does not permit us to present the resultsiuch as FG. This is positive, as besides preventing
in full, but the deviance of both NN, FG-SA, and unnecessary computations, it frees the user of
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