
Adapting Bayes Network Structures to Non-stationary Domains

Søren Holbech Nielsen and Thomas D. Nielsen
Department of Computer Science

Aalborg University
Fredrik Bajers Vej 7E

9220 Aalborg Ø, Denmark

Abstract

When an incremental structural learning method gradually modifies a Bayesian network (BN)
structure to fit observations, as they are read from a database, we call the process structural adap-
tation. Structural adaptation is useful when the learner isset to work in an unknown environment,
where a BN is to be gradually constructed as observations of the environment are made. Existing
algorithms for incremental learning assume that the samples in the database have been drawn from
a single underlying distribution. In this paper we relax this assumption, so that the underlying dis-
tribution can change during the sampling of the database. The method that we present can thus be
used in unknown environments, where it is not even known whether the dynamics of the environ-
ment are stable. We briefly state formal correctness resultsfor our method, and demonstrate its
feasibility experimentally.

1 Introduction

Ever since Pearl (1988) published his seminal book
on Bayesian networks (BNs), the formalism has be-
come a widespread tool for representing, eliciting,
and discovering probabilistic relationships for prob-
lem domains defined over discrete variables. One
area of research that has seen much activity is the
area of learning the structure of BNs, where prob-
abilistic relationships for variables are discovered,
or inferred, from a database of observations of these
variables (main papers in learning include (Heck-
erman, 1998)). One part of this research area fo-
cuses on incremental structural learning, where ob-
servations are received sequentially, and a BN struc-
ture is gradually constructed along the way with-
out keeping all observations in memory. A special
case of incremental structural learning is structural
adaptation, where the incremental algorithm main-
tains one or more candidate structures and applies
changes to these structures as observations are re-
ceived. This particular area of research has received
very little attention, with the only results that we are
aware of being (Buntine, 1991; Lam and Bacchus,
1994; Lam, 1998; Friedman and Goldszmidt, 1997;
Roure, 2004).

These papers all assume that the database of
observations has been produced by a stationary
stochastic process. That is, the ordering of the ob-
servations in the database is inconsequential. How-
ever, many real life observable processes cannot re-
ally be said to be invariant with respect to time:
Mechanical mechanisms may suddenly fail, for
instance, and non-observable effects may change
abruptly. When human decision makers are some-
how involved in the data generating process, these
are almost surely not fully describable by the ob-
servables and may change their behaviour instanta-
neously. A simple example of a situation, where it is
unrealistic to expect a stationary generating process,
is an industrial system, where some component is
exchanged for one of another make. Similarly, if
the coach of a soccer team changes the strategy of
the team during a match, data on the play from af-
ter the chance would be distributed differently from
that representing the time before.

In this work we relax the assumption on sta-
tionary data, opting instead for learning from data
which is only “approximately” stationary. More
concretely, we assume that the data generating pro-
cess is piecewise stationary, as in the examples
given above, and thus do not try to deal with data

where the data generating process changes gradu-
ally, as can happen when machinery is slowly being
worn down.1 Furthermore, we focus on domains
where the shifts in distribution from one stationary
period to the next is of a local nature (i.e. only a
subset of the probabilistic relationships among vari-
ables change as the shifts take place).

2 Preliminaries

As a general notational rule we use bold font to de-
note sets and vectors (V , c, etc.) and calligraphic
font to denote mathematical structures and compo-
sitions (B, G, etc.). Moreover, we shall use upper
case letters to denote random variables or sets of
random variables (X, Y , V , etc.), and lower case
letters to denote specific states of these variables
(x4, y′, c, etc.).≡ is used to denote “defined as”.

A BN B ≡ (G,Φ) over a set of discrete vari-
ablesV consists of an acyclic directed graph (tradi-
tionally abbreviated DAG)G, whose nodes are the
variables inV , and a set of conditional probabil-
ity distributionsΦ (which we abbreviate CPTs for
“conditional probability table”). A correspondence
betweenG andΦ is enforced by requiring thatΦ
consists of one CPTP (X|PAG(X)) for each vari-
ableX, specifying a conditional probability distri-
bution forX given each possible instantiation of the
parentsPAG(X) of X in G. A unique joint distri-
butionPB overV is obtained by taking the product
of all the CPTs inΦ. When it introduces no am-
biguity, we shall sometimes treatB as synonymous
with its graphG.

Due to the construction ofPB we are guaranteed
that all dependencies inherent inPB can be read di-
rectly from G by use of thed-separation criterion
(Pearl, 1988). The d-separation criterion states that,
if X andY are d-separated byZ, then it holds that
X is conditionally independent ofY givenZ in PB,
or equivalently, ifX is conditionally dependent of
Y givenZ in PB, thenX andY are not d-separated
by Z in G. In the remainder of the text, we use
X ⊥⊥ GY | Z to denote thatX is d-separated from
Y by Z in the DAGG, andX⊥⊥PY | Z to denote
that X is conditionally independent ofY given Z

1The changes in distribution of such data is of a continous
nature, and adaptation of networks would probably be better
accomplished by adjusting parameters in the net, rather than
the structure itself.

in the distributionP . The d-separation criterion is
thus

X⊥⊥GY | Z ⇒ X⊥⊥PB
Y | Z,

for any BNB ≡ (G,Φ). The set of all conditional
independence statements that may be read from a
graph in this manner, is referred to as that graph’s
d-separation properties.

We refer to any two graphs over the same vari-
ables as beingequivalent if they have the same
d-separation properties. Equivalence is obviously
an equivalence relation. Verma and Pearl (1990)
proved that equivalent graphs necessarily have the
same skeleton and the same v-structures.2 The
equivalence class of graphs containing a specific
graphG can then be uniquely represented by the
partially directed graphG∗ obtained from the skele-
ton of G by directing links that participate in a v-
structure inG in the direction dictated byG. G∗

is called thepatternof G. Any graphG′, which is
obtained fromG∗ by directing the remaining undi-
rected links, without creating a directed cycle or a
new v-structure, is then equivalent toG. We say
thatG′ is aconsistent extensionof G∗. The partially
directed graphG∗∗ obtained fromG∗, by directing
undirected links as they appear inG, whenever all
consistent extensions ofG∗ agree on this direction,
is called thecompletedpattern ofG. G∗∗ is ob-
viously a unique representation ofG’s equivalence
class as well.

Given any joint distributionP overV it is possi-
ble to construct a BNB such thatP = PB (Pearl,
1988). A distributionP for which there is a BN
BP ≡ (GP ,ΦP) such thatPBP

= P and also

X⊥⊥P Y | Z ⇒ X⊥⊥GP
Y | Z

holds, is calledDAG faithful, andBP (and some-
times justGP) is called aperfect map. DAG faithful
distributions are important since, if a data generat-
ing process is known to be DAG faithful, then a per-
fect map can, in principle, be inferred from the data
under the assumption that the data is representative
of the distribution.

For any probability distributionP over variables
V and variableX ∈ V , we define aMarkov bound-
ary (Pearl, 1988) ofX to be a setS ⊆ V \ {X}

2A triple of nodes(X, Y, Z) constitutes av-structureiff X

andZ are non-adjacent and both are parents ofY .

such thatX⊥⊥PV \ (S ∪ {X}) | S and this holds
for no proper subset ofS. It is easy to see that if
P is DAG faithful, the Markov boundary ofX is
uniquely defined, and consists ofX ’s parents, chil-
dren, and children’s parents in a perfect map ofP .
In the case ofP being DAG faithful, we denote the
Markov boundary byMBP (X).

3 The Adaptation Problem

Before presenting our method for structural adapta-
tion, we describe the problem more precisely:

We say that a sequence issamples from a piece-
wise DAG faithful distribution, if the sequence can
be partitioned into sets such that each set is a
database sampled from a single DAG faithful dis-
tribution, and therank of the sequence is the size
of the smallest such partition. Formally, letD =
(d1, . . . ,dl) be a sequence of observations over
variablesV . We say thatD is sampled from a piece-
wise DAG faithful distribution (or simply that it is
a piecewise DAG faithful sequence), if there are in-
dices1 = i1 < · · · < im = l + 1, such that each
of Dj = (dij , . . . ,dij+1−1), for 1 ≤ j ≤ m − 1,
is a sequence of samples from a DAG faithful dis-
tribution. The rank of the sequence is defined as
minj ij+1− ij , and we say thatm− 1 is itssizeand
l its length. A pair of consecutive samples,di and
di+1, constitute ashift in D, if there isj such that
di is inDj anddi+1 is inDj+1. Obviously, we can
have any sequence of observations being indistin-
guishable from a piecewise DAG faithful sequence,
by selecting the partitions small enough, so we re-
strict our attention to sequences that are piecewise
DAG faithful of at least rankr. However, we do not
assume that neither the actual rank nor size of the
sequences are known, and specifically we do not as-
sume that the indicesi1, . . . , im are known.

The learning task that we address in this paper
consists of incrementally learning a BN, while re-
ceiving a piecewise DAG faithful sequence of sam-
ples, and making sure that after each sample point
the BN structure is as close as possible to the dis-
tribution that generated this point. Throughout the
paper we assume that each sample is complete, so
that no observations in the sequence have missing
values. Formally, letD be a complete piecewise
DAG faithful sample sequence of lengthl, and let

Pt be the distribution generating sample pointt.
Furthermore, letB1, . . . ,Bl be the BNs found by a
structural adaptation methodM , when receivingD.
Given a distance measurediston BNs, we define the
devianceof M onD wrt. dist as

dev(M,D) ≡
1

l

l∑

i=1

dist(BPi
,Bi).

For a methodM to adaptto a DAG faithful sample
sequenceD wrt. dist then means thatM seeks to
minimize its deviance onD wrt. dist as possible.

4 A Structural Adaptation Method

The method proposed here continuously monitors
the data streamD and evaluates whether the last,
sayk, observations fit the current model. When this
turns out not to be the case, we conclude that a shift
in D took placek observations ago. To adapt to the
change, an immediate approach could be to learn a
new network from the lastk cases. By following
this approach, however, we will unfortunately loose
all the knowledge gained from cases before the last
k observations. This is a problem if some parts of
the perfect maps, of the two distributions on each
side of the shift, are the same, since in such situ-
ations we re-learn those parts from the new data,
even though they have not changed. Not only is this
a waste of computational effort, but it can also be the
case that the lastk observations, while not directly
contradicting these parts, do not enforce them ei-
ther, and consequently they are altered erroneously.
Instead, we try to detect where in the perfect maps
of the two distributions changes have taken place,
and only learn these parts of the new perfect map.
This presents challenges, not only in detection, but
also in learning the changed parts and having them
fit the non-changed parts seamlessly. Hence, the
method consists of two main mechanisms: One,
monitoring the current BN while receiving obser-
vations and detecting when and where the model
should be changed, and two, re-learning the parts of
the model that conflicts with the observations, and
integrating the re-learned parts with the remaining
parts of the model. These two mechanisms are de-
scribed below in Sections 4.1 and 4.2, respectively.

4.1 Detecting Changes

The detection part of our method, shown in Al-
gorithm 1, continuously processes the cases it re-
ceives. For each observationd and nodeX, the
method measures (using CONFLICTMEASURE(B,
X, d)) how well d fits with the local structure of
B aroundX. Based on the history of measurements
for nodeX, cX , the method tests (using SHIFTIN-
STREAM(cX , k)) whether a shift occurredk obser-
vations ago.k thus acts as the number of observa-
tions that are allowed to “pass” before the method
should realize that a shift has taken place. We there-
fore call the parameterk the allowed delayof the
method. When the actual detection has taken place,
as a last step, the detection algorithm invokes the
updating algorithm (UPDATENET(·)) with the set
of nodes, for which SHIFTINSTREAM(·) detected a
change, together with the lastk observations.

Algorithm 1 Algorithm for BN adaption. Takes as
input an initial networkB, defined over variables
V , a series of casesD, and an allowed delayk for
detecting shifts inD.
1: procedure ADAPT(B, V ,D, k)
2: D′ ← []
3: cX ← [] (∀X ∈ V)
4: loop
5: d←NEXTCASE(D)
6: APPEND(D′, (d))
7: S ← ∅

8: for X ∈ V do
9: c←CONFLICTMEASURE(B, X, d)

10: APPEND(cX, c)
11: if SHIFTINSTREAM(cX, k) then
12: S ← S ∪ {X}

13: D′ ←LASTKENTRIES(D′, k)
14: if S 6= ∅ then
15: UPDATENET(B, S,D′)

To monitor how well each observationd ≡
(d1, . . . , dm) “fit” the current modelB, and espe-
cially the connections between a nodeXi and the re-
maining nodes inB, we have followed the approach
of Jensen et al. (1991): If the current model is cor-
rect, then we would in general expect that the prob-
ability for observingd dictated byB is higher than
or equal to that yielded by most other models. This
should especially be the case for the empty modelE ,
where all nodes are unconnected. That is, inB, we
expect the individual attributes ofd to be positively
correlated (unlessd is a rare case, in which case all

bets are off):

log
PE(Xi = di)

PB(Xi = di|Xj = dj (∀j 6= i))
> 0 . (1)

Therefore, we let CONFLICTMEASURE(B, Xi, d)
return the value given on the left-hand side of (1).
We note that this is where the assumption of com-
plete data comes into play: Ifd is not completely
observed, then (1) cannot be evaluated for all nodes
Xi.

Since a high value returned by CONFLICTMEA-
SURE(·) for a nodeX could be caused by a rare
case, we cannot use that value directly for deter-
mining whether a shift has occurred. Rather, we
look at the block of values for the lastk cases,
and compare these with those from before that. If
there is a tendency towards higher values in the for-
mer, then we conclude that this cannot be caused
only by rare cases, and that a shift must have oc-
curred. Specifically, for each variableX, SHIFTIN-
STREAM(cX , k) checks whether there is a signif-
icant increase in the values of the lastk entries in
cX relative to those before that. In our implementa-
tion SHIFTINSTREAM(cX , k) calculates the nega-
tive of the second discrete cosine transform compo-
nent (see e.g. (Press et al., 2002)) of the last2k mea-
sures incX , and returns true if this statistic exceeds
a pre-specified threshold value. We are unaware of
any previous work using this technique for change
point detection, but we chose to use this as it out-
performed the more traditional methods of log-odds
ratios andt-tests in our setting.

4.2 Learning and Incorporating Changes

When a shift involving nodesS has been detected,
UPDATENET(B, S, D′) in Algorithm 2 adapts the
BN B around the nodes inS to fit the empirical dis-
tribution defined by the lastk casesD′ read from
D. Throughout the text, both the cases and the em-
pirical distribution will be denotedD′. Since we
want to reuse the knowledge encoded inB that has
not been deemed outdated by the detection part of
the method, we will updateB to fit D′ based on the
assumption that only nodes inS need updating of
their probabilistic bindings (i.e. the structure asso-
ciated with their Markov boundaries inBD′). Ig-
noring most details for the moment, the updating
method in Algorithm 2 first runs through the nodes

Algorithm 2 Update Algorithm for BN. Takes as
input the network to be updatedB, a set of vari-
ables whose structural bindings may be wrongS,
and data to learn fromD′.
1: procedure UPDATENET(B, S,D′)
2: for X ∈ S do
3: dMBD′(X)←MARKOVBOUNDARY(X,D′)
4: GX ←ADJACENCIES(X, dMBD′(X),D′)
5: PARTIALLY DIRECT(X,GX , dMBD′(X),D′)
6: G′ ←MERGEFRAGMENTS({GX}X∈S)
7: G′′ ←MERGECONNECTIONS(B,G′, S)
8: (G′′, C)←DIRECT(G′′, B, S)
9: Φ

′′ ← ∅

10: for X ∈ V do
11: if X ∈ C then
12: Φ

′′ ← Φ
′′ ∪ {PD′(X|PAG′′(X))}

13: else
14: Φ

′′ ← Φ
′′ ∪ {PB(X|PAG′′(X))}

15: B ← (G′′,Φ′′)

in S and learns a partially directed graph fragment
GX for each nodeX (GX can roughly be thought of
as a “local completed pattern” forX). When net-
work fragments have been constructed for all nodes
in S, these fragments are merged into a single graph
G′, which is again merged with fragments from the
original graph ofB. The merged graph is then di-
rected using four direction rules, which try to pre-
serve as much ofB’s structure as possible, with-
out violating the newly uncovered knowledge rep-
resented by the learned graph fragments. Finally,
new CPTs are constructed for those nodesC that
have a new parent set inBD′ (nodes which, ideally,
should be a subset ofS).

The actual construction ofGX is divided into
three steps: First, an estimatêMBD′(X) of
MBD′(X) is computed, using MARKOVBOUND-
ARY(X, D′); second, nodes in̂MBD′(X) that are
adjacent toX in BD′ are uncovered, using ADJA-
CENCIES(X, M̂BD′(X), D′), andGX is initialized
as a graph overX and these nodes, whereX is con-
nected with links to these adjacent nodes; and third,
some links inGX that are arcs inB∗∗

D′ are directed as
they would be inB∗∗

D′ using PARTIALLY DIRECT(X,

GX , M̂BD′(X), D′). See (Nielsen and Nielsen,
2006) for more elaboration on this.

In our experimental implementation, we used the
decision tree learning method of Frey et al. (2003)
to find M̂BD′(X), and the ALGORITHMPCD(·)
method in (Peña et al., 2005) (restricted to the vari-

ables inM̂BD′(X)) to find variables adjacent toX.
The latter method uses a greedy search for itera-
tively growing and shrinking the estimated set of ad-
jacent variables until no further change takes place.
Both of these methods need an “independence ora-
cle” ID′ . For this we have used aχ2 test onD′.

Algorithm 3 Uncovers the direction of some arcs
adjacent to a variableX as they would be inB∗∗

D′.
NEGX

(X) consists of the nodes connected toX by
a link in GX .

1: procedure PARTIALLY DIRECT(X,GX , dMBD′(X),D′)
2: DIRECTASINOTHERFRAGMENTS(GX)
3: for Y ∈ dMBD′(X) \ (NEGX

(X) ∪PAGX
(X)) do

4: for T (dMBD′(X) \ {X, Y } do
5: if ID′(X, Y | T) then
6: for Z ∈ NEGX

(X) \ T do
7: if ¬ID′(X, Y | T ∪ {Z}) then
8: LINK TOARC(GX, X, Z)

The method PARTIALLY DIRECT(X, GX ,
M̂BD′(X), D′) directs a number of links in the
graph fragmentGX in accordance with the direction
of these in (the unknown)B∗∗

D′ . With DIREC-
TASINOTHERFRAGMENTS(GX), the procedure
first exchanges links for arcs, when previously
directed graph fragments unanimously dictate this.
The procedure then runs through each variableY in
M̂BD′(X) not adjacent toX, finds a set of nodes
in M̂BD′(X) that separateX from Y , and then
tries to re-establish connection toY by repeatedly
expanding the set of separating nodes by a single
node adjacent toX. If such a node can be found
it has to be a child ofX in the completed pattern
B∗∗
D′ , and no arc in the patternB∗

D′ originating from
X is left as a link by the procedure (see (Nielsen
and Nielsen, 2006) for proofs). As before the
independence oracleID′ was implemented as aχ2

test in our experiments.
In most constraint based learning methods, only

the direction of arcs participating in v-structures
are uncovered using independence tests, and struc-
tural rules are relied on for directing the remaining
arcs afterwards. For the proposed method, how-
ever, more arcs from the completed pattern, than
just those of v-structures, are directed through in-
dependence tests. The reason is that traditional un-
covering of the direction of arcs in a v-structure
X → Y ← Z relies not only on knowledge thatX

andY are adjacent, and thatX andZ are not, but
also on the knowledge thatY andZ are adjacent. At
the point, whereGX is learned, however, knowledge
of the connections among nodes adjacent toX is not
known (and may be dictated byD′ or may be dic-
tated byB), so this traditional approach is not pos-
sible. Of course these unknown connections could
be uncovered fromD′ using a constraint based algo-
rithm, but the entire point of the method is to avoid
learning of the complete new network.

When all graph fragments for nodes inS have
been constructed, they are merged through a simple
graph union in MERGEFRAGMENTS(·); no conflicts
among orientations can happen due to the construc-
tion of PARTIALLY DIRECT(·). In MERGECON-
NECTIONS(B, G′, S) connections among nodes in
V \ S are added according to the following rule: If
X,Y ∈ V \ S are adjacent inB, then add the link
X − Y to G′. The reason for this rule is that insepa-
rable nodes, for which no change has been detected,
are assumed to be inseparable still. However, the di-
rection of some of the arcs may have changed inG′,
wherefore we cannot directly transfer the directions
in B to G′.

Following the merge, DIRECT(G′′ , B, S) directs
the remaining links inG′′ according to the following
five rules:

1. If X ∈ V \ S, X − Y is a link,X → Y is an
arc inB, andY is a descendant of some node
Z in MBB(X) \ADB(X), whereADB(X)
are nodes adjacent toX in B, through a path
involving only children ofX, then direct the
link X − Y asX → Y .3

2. If Rule 1 cannot be applied, and ifX − Y is a
link, Z → X is an arc, andZ andY are non-
adjacent, then direct the linkX−Y asX → Y .

3. If Rule 1 cannot be applied, and ifX − Y is a
link and there is a directed path fromX to Y ,
then direct the linkX − Y asX → Y .

3That Rule 1 is sensible is proved in (Nielsen and Nielsen,
2006). Intuitively, we try to identify a graph fragment forX in
B, that can be merged with the graph fragments learned from
D′. It turns out that the arcs directed by Rule 1 are exactly
those that would have been learned by PARTIALLY DIRECT(X,
GX , MBB(X), PB).

4. If Rules 1 to 3 cannot be applied, chose a link
X − Y at random, such thatX,Y ∈ V \ S,
and direct it as inB.

5. If Rules 1 to 4 cannot be applied, chose a link
at random, and direct it randomly.

Due to potentially flawed statistical tests, the resul-
tant graph may contain cycles each involving at least
one node inS. These are eliminated by reversing
only arcs connecting to at least one node inS. The
reversal process resembles the one used in (Margari-
tis and Thrun, 2000): We remove all arcs connecting
to nodes inS that appears in at least one cycle. We
order the removed arcs according to how many cy-
cles they appear in, and then insert them back in the
graph, starting with the arcs that appear in the least
number of cycles, breaking ties arbitrarily. When
at some point the insertion of an arc gives rise to a
cycle, we insert the arc as its reverse.

We have obtained a proof of the “correctness”
of the proposed method, but space restrictions pre-
vents us from bringing it here. Basically, we have
shown that, given the set-up from Section 3, if the
method is started with a network equivalent toBP1

,
thenBi will be equivalent toBPi−k

for all i > k.
This is what we refer to as “correct” behaviour, and
it means that once on the right track, the method
will continue to adapt to the underlying distribu-
tion, with the delayk. The assumptions behind the
result, besides that eachPi is DAG faithful, are i)
the samples inD are representative of the distribu-
tions they are drawn from, ii) the rank ofD is bigger
than 2k, and iii) SHIFTINSTREAM(·) returns true
for variableX and samplej iff Pj−k is not simi-
lar to Pj−k−1 aroundX (see (Nielsen and Nielsen,
2006) for formal definitions and detailed proofs).

5 Experiments and Results

To investigate how our method behaves in practice,
we ran a series of experiments. We constructed
100 experiments, where each consisted of five ran-
domly generated BNsB1, . . . ,B5 over ten variables,
each having between two and five states. We made
sure thatBi was structurally identical toBi−1 ex-
cept for the connection between two randomly cho-
sen nodes. All CPTs inBi were kept the same as
in Bi−1, except for the nodes with a new parent

set. For these we employed four different meth-
ods for generating new distributions:A estimated
the probabilities from the previous network with
some added noise to ensure that no two distribu-
tions were the same.B, C, andD generated entirely
new CPTs, withB drawing distributions from a uni-
form distribution over distributions.C drew dis-
tributions from the same distribution, but rejected
those CPTs where there were no two parent con-
figurations, for which the listed distributions had a
KL-distance of more than1. D was identical toC,
except for having a threshold of5. The purpose of
the latter two methods is to ensure strong probabilis-
tic dependencies for at least one parent configura-
tion. For generation of the initial BNs we used the
method of Ide et al. (). For each series of five BNs,
we sampledr cases from each network and concate-
nated them into a piecewise DAG faithful sample
sequence of rankr and length5r, for r being500,
1000, 5000, and10000.

We fed our method (NN) with the generated
sequences, using different delaysk (100, 500,
and 1000), and measured the deciance wrt. the
KL-distance on each. As mentioned we are un-
aware of other work geared towards non-stationary
distributions, but for base-line comparison pur-
poses, we implemented the structural adaptation
methods of Friedman and Goldszmidt (1997) (FG)
and Lam and Bacchus (1994) (LB). For the method
of Friedman and Goldszmidt (1997) we tried both
simulated annealing (FG-SA) and a more time con-
suming hill-climbing (FG-HC) for the unspecified
search step of the algorithm. As these methods have
not been developed to deal with non-stationary dis-
tributions, they have to be told the delay between
learning. For this we used the same valuek, that
we use as delay for our own method, as this ensure
that all methods store only a maximum ofk full
cases at any one time. The chosenk values, also
correspond to those found for the experimental re-
sults reported in Friedman and Goldszmidt (1997)
and Lam (1998). The only other pre-specified pa-
rameter required by our method, viz. a threshold for
the χ2-tests we set at a conventional0.05. Each
method was given the correct initial networkB1 to
start its exploration.

Space does not permit us to present the results
in full, but the deviance of both NN, FG-SA, and

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

A
B
C
D

Figure 1: Deviance measures FG-SA (X-axis) vs.
NN (Y-axis).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400 450 500

A
B
C
D

Figure 2: Deviance measures FG-HC (X-axis) vs.
NN (Y-axis).

FG-HC are presented in Figures 1 and 2. NN out-
performed FG-SA in 81 of the experiments, and
FG-HC in 65 of the experiments. The deviance of
the LB method was much worse than for either of
these three. The one experiment, where both the
FG methods outperformed the NN method substan-
tially, had r equal to10000 and k equal to1000,
and was thus the experiment closest to the assump-
tion on stationary distributions of the FG and LB
learners.

Studying the individual experiments more
closely, it became apparent that NN is more “sta-
ble” than FG: It does not alter the network as often
as FG, and when doing so, NN does not alter it as
much as FG. This is positive, as besides preventing
unnecessary computations, it frees the user of

the learned nets from a range of false positives.
Furthermore, we observed that the distance between
the BN maintained by NN and the generating one
seems to stabilize after some time. This was not
always the case for FG.

6 Discussion

The plotted experiments seem to indicate that our
method is superior to existing techniques for do-
mains, where the underlying distribution is not sta-
tionary. This is especially underscored by our ex-
periments actually favouring the existing methods
through using only sequences whose rank is a multi-
plum of the learnersk value, which means that both
FG and LB always learn from data from only one
partition of the sequence, unlike NN, which rarely
identifies the point of change completely accurately.
Moreover, score based approaches are geared to-
wards getting small KL-scores, and thus the metric
we have reported should favour FG and LB too.

Of immediate interest to us, is investigation of
how our method fares when the BN given to it at
the beginning is not representative of the distribu-
tion generating the first partition of the sample se-
quence. Also, it would be interesting to investigate
the extreme cases of sequences of size1 and those
with very low ranks (r ≪ 500). Obviously, the task
of testing other parameter choices and other imple-
mentation options for the helper functions need to
be carried out too.

Currently, we have some ideas for optimizing
the precision of our method, including performing
parameter adaptation of the CPTs associated with
the maintained structure, and letting changes “cas-
cade”, by marking nodes adjacent to changed nodes
as changed themselves.

In the future it would be interesting to see how
a score based approach to the local learning part of
our method would perform. The problem with tak-
ing this road is that it does not seem to have any
formal underpinnings, as the measures score based
approaches optimize are all defined in terms of a
single underlying distribution. A difficulty which
Friedman and Goldszmidt (1997) also allude to in
their efforts to justify learning from data collections
of varying size for local parts of the network.

References
W. Buntine. 1991. Theory refinement on Bayesian net-

works. InUAI 91, pages 52–60. Morgan Kaufmann.

L. Frey, D. Fisher, I. Tsamardinos, C. F. Aliferis, and
A. Statnikov. 2003. Identifying Markov blankets with
decision tree induction. InICDM 03, pages 59–66.
IEEE Computer Society Press.

N. Friedman and M. Goldszmidt. 1997. Sequential up-
date of Bayesian network structure. InUAI 97, pages
165–174. Morgan Kaufmann.

D. Heckerman. 1998. A tutorial on learning with
Bayesian networks. In M. Jordan, editor,Learning
in Graphical Models, pages 301–354. Kluwer.

J. S. Ide, F. G. Cozman, and F. T. Ramos. Generat-
ing random Bayesian networks with constraints on in-
duced width. InECAI 04, pages 323–327. IOS Press.

F. V. Jensen, B. Chamberlain, T. Nordahl, and F. Jensen.
1991. Analysis in HUGIN of data conflict. InUAI 91.
Elsevier.

W. Lam and F. Bacchus. 1994. Using new data to re-
fine a Bayesian network. InUAI 94, pages 383–390.
Morgan Kaufmann.

W. Lam. 1998. Bayesian network refinement via ma-
chine learning approach.IEEE Trans. Pattern Anal.
Mach. Intell., 20(3):240–251.

D. Margaritis and S. Thrun. 2000. Bayesian network in-
duction via local neighborhoods. InAdvances in Neu-
ral Information Processing Systems 12, pages 505–
511. MIT Press.

S. H. Nielsen and T. D. Nielsen. 2006. Adapt-
ing bayes nets to non-stationary probability dis-
tributions. Technical report, Aalborg University.
www.cs.aau.dk/˜holbech/nielsennielsennote.ps.

J. Pearl. 1988.Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann.

J. M. Peña, J. Björkegren, and J. Tegnér. 2005. Scalable,
efficient and correct learning of Markov boundaries
under the faithfulness assumption. InECSQARU 05,
volume 3571 ofLNCS, pages 136–147. Springer.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, editors. 2002.Numerical Recipes in C++:
The Art of Scientific Computing. Cambridge Univer-
sity Press, 2nd edition.

J. Roure. 2004. Incremental hill-climbing search applied
to Bayesian network structure learning. InProceed-
ings of the 15th European Conference on Machine
Learning. Springer.

T. Verma and J. Pearl. 1990. Equivalence and synthesis
of causal models. InUAI 91, pages 220–227. Elsevier.

