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Abstract. The sequential circuit state space diameter problem is an important problem in sequential
verification. Bounded model checking is complete if the state space diameter of the system is known. By
unrolling the transition relation, the sequential circuit state space diameter problem can be formulated
as an evaluation for satisfiability of a Quantified Boolean Formula (QBF). This has prompted research
in QBFs in the verification community. Most of existing QBF algorithms, such as those based on the
DPLL SAT algorithm, are search based. We show that using search based QBF algorithms to calculate
the state space diameter of sequential circuits with existing problem formulations is no better than an
explicit state space enumeration method. This result holds independent of the representation of the QBF
formula. This result is important as it highlights the need to explore non-search based or hybrid of search
and non-search based QBF algorithms for the sequential circuit state space diameter problem.

1 Introduction

A quantified Boolean formula (QBF) is a Boolean formula with its variables quantified by either universal∀
or existential∃ quantifiers. The problem of deciding whether a quantified Boolean formula evaluates to true
or false is also referred to as the QBF problem. Theoretically, QBF problems belong to the class of P-SPACE
complete problems, widely considered harder than NP-complete problems like Boolean Satisfiability (SAT)
Problems.

Many problems in AI planning [1] and sequential circuit verification [2] [3] can be formulated as QBF
instances. In recent years, there has been an increasing interest within the verification community in ex-
ploring QBF based sequential verification as an alternativeto Binary Decision Diagram (BDD) based tech-
niques. Therefore, finding efficient QBF evaluation algorithms is gaining interest in sequential verification.
Like SAT evaluation, QBF evaluation can be search based and does not suffer from the potential space
explosion problem of BDDs. This makes it attractive to use QBF over BDD based algorithms since the
problem of QBF evaluation is known to have polynomial space complexity. An obvious linear space al-
gorithm to decide QBF assigns Boolean values to the variables and recursively evaluates the truth of the
formula. The recursion depth is at most the number of variables. Since we need to store only one value of
the variable at each level, the total space required isO(n) wheren is the number of variables.

Many complete QBF evaluation algorithms have been developed and several complete QBF solvers
have been implemented. In [4], a resolution based QBF evaluation algorithm is presented. But like most
resolution based decision methods, this algorithm has a potential memory blow up problem. In [5], the
authors propose a decision procedure that achieves the effect of resolving multiple variables at one time by
enumerating conflicts of cut variables. Besides the potential memory blow up problem, this method is likely
to be inefficient for problems without small cuts. In practice, for many QBF instances, during the execution
of this method, the variables will be so much interleaved that it is impossible to find a small cut. Partly due
to its success in SAT solvers, the Davis Logemann Loveland (DPLL) algorithm [6] has been adapted to
many QBF evaluation procedures [7][8][9] [10][11] [12][13][14]. Although DPLL based QBF solvers do
not blow up in space, they consume significant CPU time and areunable to handle practical sized problems
as of now.

In sequential verification, symbolic model checking is a powerful technique and has been used widely.
Traditional symbolic model checking uses BDDs to representsequential systems. With the development of
many efficient SAT solvers, bounded model checking (BMC) [3]has emerged as an alternative approach
to perform model checking. Although BMC uses fast SAT solvers and may be able to quickly find counter
examples, it is incomplete in the sense that it can not determine when to stop the incremental unrolling of
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the transition relation. The maximum number of unrollings needed to complete BMC is the diameter of the
corresponding sequential circuit state space. Therefore,determining sequential circuit state space diameters
is crucial for the completeness of BMC and its solution will have practical significance. Existing methods
for computing the sequential circuit state space diameters[15] [16] search for new states at every step of
time frame expansion. The search can be done by multiple calls to the SAT procedure or with a combination
of BDD methods.

The sequential circuit state space diameter problem can also be tackled by formulating it as instances
of QBFs and using QBF solvers to solve them. But currently this approach lags behind other methods. The
immaturity of QBF evaluation techniques is often considered as the major reason for this. In this paper, we
show that for the existing QBF formulations of the circuit diameter problem, search based QBF algorithms
(this includes all DPLL based solvers) have no hope to outperform algorithms based on explicit reachable
state space enumeration. This result is important as it underscores the need to explore non-search based or
possibly hybrids of search and non-search based techniques.

2 The Sequential Circuit State Space Diameter Problem and ItsQBF
Formulations

A QBF is of the formQ1x1 · · ·Qnxn ϕ, whereQi(i = 1 · · ·n) is either an existential quantifier∃ or
a universal quantifier∀. ϕ is a propositional formula withx1 · · ·xn as its variables. Adjacent variables
quantified by the same quantifier in the prefix can be grouped together to form a quantification set. The
order of the variables in the same quantification set can be exchanged without changing the QBF evaluation
result (true or false). Variables in the outermost quantification set are said to have quantification level1, and
so on.

The propositional partϕ in a QBF is usually expressed in the Conjunctive Normal Form (CNF). If ϕ of
a QBF is in CNF, the innermost quantifier of this QBF is existential because the innermost universal quan-
tifier can always be dropped by removing all the occurrences of the variables quantified by this universal
quantifier in the CNF. The innermost quantifier can be a universal quantifier ifϕ is not in CNF. Converting
ϕ to CNF needs to introduce new variables and quantify these new variables with existential quantifiers put
inside the originally innermost quantifier. The number of quantification levels of a QBF may change if the
representation ofϕ of this QBF changes. Whenϕ is in CNF, the QBF havingk levels of quantification is
calledkQBF. Most practical QBF instances are2QBF or3QBF. In the rest of the paper, when we talk about
kQBF,k is the number of quantification levels whenϕ is in CNF.

Many problems in hardware verification concern verifying certain properties of logic circuits. For com-
binational circuits, we can formulate such problems as QBF instances by introducing one variable for each
circuit node. A circuit node is either a primary input or a gate output. The propositional part is usually
written asϕ = S ·P , whereS represents the consistency condition of combinational circuit C andP is the
conjunction of the properties ofC that need to be verified. Each logic gate inC can be represented as either
a Boolean formula directly translated from the gate operation or a set of clauses that capture the consistent
logic conditions associated with that gate.S is the conjunction of the Boolean representation for each logic
gate.

The behavior of a sequential circuit over a number of time frames can be modeled using the conventional
time frame expansion approach, which creates a combinational circuit by unrolling the next state function
of the sequential circuit. The sequential circuit state space diameter problem can be formulated as a QBF by
unrolling the next state function. The shortest path from one statesi of a sequential circuit to another state
sj is defined as the minimum number of steps to go fromsi to sj in the corresponding state transition graph.
Clearly, every state on a shortest path appears at most once,which means that a shortest path has no loop.
The state space diameter of a sequential circuit is the longest shortest path from one of the original states
of this sequential circuit to any other reachable state. Figure 1 shows the combinational circuit constructed
at each step of the circuit state space diameter calculation. We have two expansions of the combinational
logic, one forn + 1 time frames and the other forn time frames.Ii and I ′i(i = 1, 2, · · ·) are sets of
primary inputs,Oi and O′

i(i = 1, 2, · · ·) are sets of primary outputs andSi and S′
i(i = 0, 1, · · ·) are

sets of state variables. LetC1 denote then + 1 time frame expansion part andC2 denote then time
frame expansion part. LetF (C1) andF (C2) be the Boolean functions representing the logic consistencies
of C1 and C2 respectively. IfI(S) is the characteristic function of the initial states,T (I, S, S′) is the
characteristic function of the state transition relation,thenF (C1) = I(S0) ∧

∧n

i=0
T (Ii, Si, Si+1) and
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Fig. 1. time frame expansions for state space diameter calculation

F (C2) = I(S′
0) ∧

∧n−1

i=0
T (I ′i, S

′
i, S

′
i+1). If E1 is the set of variables ofF (C1) and E2 is the set of

variables ofF (C2), E1 andE2 are also sets of circuit node variables ofC1 andC2 respectively. If for all
possible input sequences ofC1, the state reached at the(n + 1)th time frame can be reached at one or more
of the firstn time frames for some input sequence ofC2, thenn + 1 is greater than the state space diameter
of the sequential circuit. A straightforward translation of the above sentence gives us the 2QBF formulation
of the circuit state space diameter problem:

∀I1I2 · · · In+1∃((E1 \
⋃

i=1···n+1

Ii) ∪ E2) F (C1) ∧ F (C2) ∧ (
∨

i=0···n

Sn+1 = S′
i) (1)

Let the state space diameter of the circuit bed. If n < d, (1) evaluates to false; ifn ≥ d, (1) evaluates to
true. A very similar formulation is:

∀E1∃E2 ¬F (C1) ∨ (F (C2) ∧ (
∨

i=0···n

Sn+1 = S′
i)) (2)

(2) is correct according to the previous statement of the circuit state space diameter problem.
Another way to state the state space diameter problem is: ifn < d, then there existsSn+1 that cannot

be reached fromS0 in less thann + 1 steps; ifn ≥ d, suchSn+1 does not exist. A direct translation of the
above statement gives us the following QBF:

∃E1∀E2 F (C1) ∧ ¬(F (C2) ∧ (
∨

i=0···n

Sn+1 = S′
i)) (3)

(3) is actually the dual of (2). Whenn < d, (3) is true; whenn ≥ d, (3) is false. If the sequence of states
S0S1 · · ·Sn+1 has one or more loops in the state transition graph, then a sequence of states starting from
S0 and ending inSn+1 with less thann+1 state transitions must exist because we can always take the path
without looping. Therefore, (3) is equivalent to:

∃E1∀E2 F (C1) ∧ (
∧

i6=j

Si 6= Sj) ∧ ¬(F (C2) ∧ (
∨

i=0···n

Sn+1 = S′
i)) (4)

The constraint(
∧

i6=j Si 6= Sj) in the propositional part of (4) is actually the condition todetermine the
recurrence diameter [3], adding this constraint does not change the QBF evaluation since the recurrence
diameter is an upper bound of the state space diameter. In [16], the circuit netlist is modified to get a
simpler QBF formulation than (4). They add a new auxiliary primary input to the sequential circuit netlist
and the logic gates that have the following effect: when the auxiliary input is0, the circuit operation is not
changed; when it is1, the present state makes a transition to the initial state. With this circuit modification,
the formulation becomes:

∃E1∀E2 F (C1) ∧ (
∧

i6=j

Si 6= Sj) ∧ ¬(F (C2) ∧ (Sn+1 = S′
n)) (5)
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The propositional part of (1)-(5) can be transformed to CNF by introducing new variables. This makes (3),
(4) and (5) become3QBFs while (1) and (2) are2QBFs. In all cases,n is incrementally tested from1 until
n = d. d is the minimum number forn that makes (1), (2) true and (3), (4), (5) false. The drawbackof
the last four formulations is that when represented in CNF they have a large set of universal variables and
introduce too many new variables.

3 QBF Algorithms

3.1 Overview

Just as in SAT, the propositional partϕ of a QBF is often in CNF. Most existing QBF algorithms are
complete and can be roughly divided into two categories: resolution based and search based.

QBF algorithms based on resolution use Q-resolution to eliminate variables until there is no more vari-
able to eliminate or an empty clause is generated [4]. Only anexistential variable can be resolved out in a
Q-resolution. A universal variable in a Q-resolution generated clause can be eliminated when there are no
existential variable having higher quantification level than this universal variable. Resolution based QBF
algorithms have the potential memory blow up problem. Therefore they are seldom used in practice.

The majority of recent QBF solvers are search based. A searchbased algorithm tries to evaluate QBF by
branching on variables to determine the value ofϕ at certain branches in the search tree. Note that we may
not need to go all the way to the leaves of the search tree to determine the value ofϕ. A partial assignment
to the variables may be enough forϕ to be0 or 1. Also we do not limit the search based algorithms to any
particular search method like depth-first search or breadth-first search. Nor do we have any limitation on
the ordering of the nodes in the search tree. The well-known DPLL algorithm, which is a depth-first search
procedure, is just one example of the search algorithms.

Plaistedet al. proposed an algorithm for QBF that belongs to neither of the above categories [5]. This
algorithm iteratively eliminates a subset of variables in the innermost quantification level. This is done by
partitioning the propositional formula using a set of cut variables and substituting one partition with a CNF
of only the cut variables. The conflicting assignments of thecut variables are enumerated and the negations
of the conflicting assignments are conjuncted to form the newCNF part. Unlike Q-resolution which can only
eliminate one variable at a time, this algorithm can eliminate multiple variables simultaneously. However,
enumerating conflicts may take exponential time in the number of cut variables therefore is very expensive
for formulas without a small cut. In fact, variables of many practical QBF instances are so much interleaved
that it is impossible to find a small cut. From another point ofview, the process of searching for conflicts is
similar to the search in search based algorithms. Particularly, for a 2QBF instance, if the cut set is chosen
to be the universal variables, then this algorithm is essentially a DPLL search algorithm.

3.2 The DPLL Algorithm

The DPLL algorithm is the most widely used search based algorithm for QBF as well as SAT evaluation. It
only requires polynomial space during execution. The original DPLL algorithm is a recursive procedure for
SAT and is not very efficient. Modern SAT solvers enhance the original DPLL algorithm with techniques
like non-chronological backtracking and conflict-driven learning[17][18], which greatly accelerate the SAT
solvers. Some of the most efficient SAT solvers today [19] [17][20] are based on the DPLL framework.
Because SAT is a restricted form of QBF in the sense that it only has existential quantifiers, most existing
QBF solvers incorporate variations of the DPLL procedure and many of the techniques that work well
on SAT can also be used in QBF evaluation with some modifications. [7] is probably the first paper that
extends the DPLL algorithm for SAT to QBF evaluation. It gives the basic rules for formula simplification
like rules for monotone literals and unit propagation for existential variables. Conflict driven learning and
non-chronological backtracking are adapted to later DPLL based QBF solvers [21] [14][13]. Also, the idea
of satisfiability directed learning, which is a dual form of conflict driven learning and is specifically for QBF,
is introduced and incorporated in these solvers. Deductiontechniques such as inverting quantifiers [8] and
partial implicit unfolding [9] were proposed and implemented by Rintanen. These deduction rules deduce
forced assignments to existential variables by assigning truth values to universal variables having higher
quantification levels.

Note that DPLL based QBF evaluation requires the branching order obey the quantification order, which
corresponds to the semantics of the formula. Other decisionorderings may require exponential memory to
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store the already searched space. They also make search hardto control and result in many fruitless searches.
One exception is in 2QBF evaluation where no useless enumeration of the existential variables occurs since
all existential variables do not precede universal variables in the prefix. Decision strategies with and without
restriction to quantification order for 2QBF are described and compared in [22].

4 Previous Algorithms for the Circuit Diameter Problem

Most of existing algorithms calculate the sequential diameter as a byproduct of the sequential reachability
analysis [15]. In these works, image computation is repeated from the set of initial states until the least fixed
point is reached. The state sets are enumerated implicitly and stored in the form of either BDDs or Boolean
formulas. Images are calculated using either BDD operations or SAT evaluations or a combination of these
two methods.

Circuit diameter computation in [16] is purely SAT based. Itdoes not calculate reachable states. Like
in BMC, it unrolls the transition relation. The circuit unrolling is the same as the QBF formulations of
the diameter problem as illustrated in figure 1. For eachn, every end stateSn+1 that is different fromSi

(i = 1 · · ·n) of the first expansion is enumerated using SAT solvers. EveryenumeratedSn+1 is tested by
satisfiability evaluation to see if it is reachable in less thann + 1 steps from the initial state.

In [23], search based SAT procedure is used in model checkingalgorithms. However, that work mainly
concerns the method for preimage computation. It is not clear how to use preimage computation in the
calculation of the circuit state space diameter.

5 Analysis of Search Based QBF Algorithms for the Circuit Diameter Problem

5.1 Handling Conflicts and Satisfying Assignments

Search based algorithms evaluate QBF by assigning Boolean values to variables. The propositional partϕ

of a QBF has three possible evaluations under a partial assignment: false, true and undetermined. If the
value ofϕ is false, the partial assignment is called a conflict; if the value ofϕ is true, the partial assignment
is called a satisfying partial assignment. In these two cases, the search procedure will backtrack and may
do some learning. The search procedure will continue assigning unassigned variables if the value ofϕ is
undetermined. Search based QBF algorithms often learn fromthe result ofϕ being true or false to prevent
getting into the same conflicting or satisfying space again and again. Learning can be considered as choosing
a subset of the current partial assignment such that this subset can still result inϕ being true or false. These
subsets of partial assignments are usually cached for future search space pruning.

Sometimes a conflict of a Boolean formulaF is also a conflict of a subformulaFsub of F . In this case,
we say this conflict is local toFsub. For example, consider the Boolean formula(a + b)(b′ + c). Partial
assignmenta = 0, b = 0 is a conflict. This conflict is actually local to(a + b). If a QBF evaluates to
false, we need to show that conflicts at certain branches cover the entire Boolean space of some existential
variables. Conflict driven learning performs selected resolution, including long distance resolution in QBF
[13], to get the actual reason for a conflict.

Unlike in SAT, a satisfying assignment in QBF does not mean the end of the search. The search algo-
rithms need to see if for all combinations of universal variablesϕ is satisfiable. The pruning of the satisfying
space is usually done by constructing a partial assignment that is sufficient forϕ to be true. Whenϕ is in
CNF, this partial assignment is constructed by choosing from every clause at least one of the value1 literals.
We call this partial assignment acover set of the satisfying assignment [12]. The idea of using cover set for
satisfying space pruning is incorporated in many QBF solvers. It is also called good learning in [21] and
model caching in [14]. For a QBF instance ofn variables, a cover set withm literals implies2n−m satisfy-
ing assignments. In fact, when a cover set is stored in the database for future pruning, existential variables
belonging to the highest quantification level can be eliminated from the cover set due to the semantics of
QBF. Thus the cover sets for a 2QBF instance consist only of universal variables. The conjunction of a set
of literals is called a cube. A cover set is a cube.

When a QBF is derived from a circuit netlist and the value of this QBF denotes whether or not certain
property of this circuit holds, a conflict in the QBF is eitheran inconsistent assignment to gate inputs
and outputs or a consistent assignment to the circuit nodes that does not satisfy the property. A satisfying
assignment to the propositional partF of the QBF is a consistent assignment to the circuit nodes that satisfy
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Fig. 2.example for critical and non-critical signals

the property. For some circuit node variables, their valuesdo not affect the satisfiability of the property. This
is because some logic gate output does not depend on the values of all the gate inputs. Therefore, some input
is unobservable at the gate output. Any signal which fans outonly to the transitive fanin cone of this input
also becomes unobservable at this output. Suppose a circuitproperty is represented as a variablep, thenp is
the primary output of the property testing circuitC. Consistent assignments to other circuit nodes can either
satisfyp or violatep, but some circuit nodes might become unobservable atp. For example, in figure 2,
d represents the circuit property. Ifb = 1, thend = 1 which makes signalsa andc unobservable atd.
Such unobservable signals are callednon-critical signals. The set ofcritical signalsSc is both sufficient
and necessary as the reason of the satisfiability of the property. Removing any signal fromSc results in
p being undetermined. So caching the satisfiability result ofp should include all the variables inSc. If F

is in CNF and is satisfied,Sc may not satisfy every clause of the CNF. Critical signals fora consistent
assignment to circuit signals that unsatisfies the propertyare both sufficient and necessary for the result ofp

being violated. The selection ofSc does not require the knowledge ofF , the information of circuit structure
is enough.Sc is generally much smaller than cover sets for CNF clauses. The above idea is very similar to
the dynamic removal of inactive clauses in SAT proposed in [24].

5.2 Explicit State Enumeration vs. QBF Evaluation with Satisfiability Driven Learning

We now demonstrate that using the search based QBF algorithms to solve the circuit diameter problem with
existing QBF formulations is no better than the previous explicit state enumeration methods.

We first analyze the 2QBF formulation of the diameter problemwhich is shown in (1). The propertyP
in this case is:

(Sn+1 = S0 ∨ Sn+1 = S′
1 ∨ · · · ∨ Sn+1 = S′

n) (6)

Since every equality in the disjunction of (6) hasSn+1, P can not be evaluated if the value of any state
variable inSn+1 is unknown. This means any state variable inSn+1 is critical. In another words, any partial
assignment that is satisfying for the propositional part of(1) must be a complete assignment for the state
variables ofSn+1. Consider the Boolean space of the universal variables of (1) and the reachable state space
at the(n+1)th time frameSn+1 as shown in figure 3. When using search based QBF algorithms to evaluate
(1), we want to derive satisfying cubes to cover as much of theBoolean space ofI1 × I2 × · · · × In+1

as possible for every satisfying assignment. Among the existing methods for deriving satisfying cubes
for Boolean formulas arising from circuits, satisfying cubes consisting of all critical signals are the most
effective in pruning the satisfying space of the search tree. Since the universal variables in (1) are all primary
inputs, any set of critical signals must contain at least oneuniversal variable. For one satisfying assignment,
since there are one or multiple sets of critical signals, oneor multiple cubes in the Boolean space of universal
variablesI1 × I2 × · · · × In+1 are pruned away. However, in the state space reachable at the(n + 1)th time
frame, only one minterm is pruned away for every satisfying assignment because all the state variables of
Sn+1 are critical. Due to the circuit structure, once the set of critical primary inputs are determined, all other
critical signals can be computed as well. This means cubes inthe universal space derived from one satisfying
assignment corresponds to a single state ofSn+1. Thus minterms in the reachable state space ofSn+1 are
covered by non-overlapping sets of cubes in the universal Boolean space as illustrated in figure 3. If (1) is
true, the entire Boolean space of universal variables needsto be covered by satisfying cubes. In this case,
search procedures also need to cover the entire reachable state space ofSn+1 because every reachable state
results from at least one assignment to the universal primary inputs. The number of satisfying assignments
that needs to be searched is at least the number of reachable states at the(n + 1)th time frame. Therefore,
when applying search based algorithms to the evaluation of (1), although we might get some pruning of the
satisfying space of the search tree, we can not prune any partof the reachable state space. An explicit state
enumeration algorithm can enumerate the states reachable at the(n + 1)th time frame by calling the SAT
procedure. The number of times to call SAT is exactly the number of states reachable at the(n + 1)th time
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frame when (1) evaluates to true. In addition, for search based algorithms applied to (1), not every minterm
in the Boolean space of the universal variables corresponding to a new reachable state gets pruned away
for a new satisfying assignment. The minterms in the reachable state space might get enumerated again
and again. For example, the two cubesc1 andc2 map to the same states in figure 3, but two satisfying
assignments are needed to derivec1 andc2 respectively.

minterm s
cube c1 cube c2

Boolean space of I1×I2 × · · ·× In+1 reachable state space of Sn+1

cube
cube cube

minterm

Fig. 3.space mapping for formula (1)

mintermcube

cube

Boolean space of E1 reachable state space of Sn+1

F(C1)

¬F(C1)

cube

minterm

mintermcube

cube

Boolean space of E1 reachable state space of Sn+1

F(C1)

¬F(C1)

cube

minterm

Fig. 4.space mapping for formula (2)

The set of universal variables in (1) is strictly contained in the set of universal variables in (2). The
Boolean space of the universal variables in (2) can be divided into two parts: those that are consistent with
the logic conditions of the expanded circuitC1 and those that are inconsistent. Inconsistent assignmentsto
E1 makes¬F (C1) true thus the propositional part of (2) true. Cubes of consistent assignments toE1 map
to the reachable states at the(n + 1)th time frame as shown in figure 3. The mapping between the Boolean
space ofE1 and the reachable state space at the(n + 1)th time frame is shown in figure 4.

The analysis for the 3QBF formulations of the circuit state space diameter problem is a little more
complicated but similar. The outermost quantification setsin the 3QBF formulations are all existentially
quantifiedE1. If these 3QBFs are false, we need to prove that no subtree of the semantic tree below the
branches ofE1 is true. In these cases, we need to prune the search space thathas conflicts. Let us first
analyze the 3QBF of equation (5). The propositional part of (5) can be divided into two parts:

CNF (C1) ∧ (
∧

i6=j

Si 6= Sj) (7)

and
¬(CNF (C2) ∧ (S′

n = Sn+1)) (8)

(7) has only variables inE1. Therefore, some assignments toE1 cause conflicts in (7). These conflicts are
local to (7) and do not involve any variable inE2. They either represent inconsistent signal values in the first
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expansion of the circuit or consistent signal values that have a loop in the path fromS0 to Sn+1. Conflict
driven learning for conflicts local to (7) can only prune the conflicting spaces that are local to (7). If (5) is
false, assignments toE1 that cause conflicts not local to (7) should also get pruned. Conflicts non-local to
(7) may or may not exist. If for a certainn, every path of lengthn + 1 has a loop in it, then all the local
conflicts of (7) cover the entire Boolean space ofE1. In this case, getting the local conflicts of (7) is enough
to prove that (5) is false. When there exist non-looping pathsof lengthn + 1, conflicts involving (8) must
be enumerated. Consider a conflict not local to (7). Since this conflict is not local to (7), it must make (8)
false. Since (8) is the negation of

CNF (C2) ∧ (S′
n = Sn+1) (9)

conflicts not local to (7) must make (9) true. The only variables in (8) that are in the setE1 are variables
in Sn+1. Assignments to variables inSn+1 alone cannot make (9) true. Thus critical signals of a non-local
conflict to (7) must include variables inE2. On the other hand, every variable inSn+1 is critical because
of the conjunction partS′

n = Sn+1 in (9). This means every conflict not local to (7) maps to exactly one
minterm in the reachable state space. The set of statesSnl that are the end states of non-looping paths of
lengthn + 1 is a subset of the reachable states at the(n + 1)th time frame. If (5) is false, every minterm in
Snl corresponds to a conflict of (5) not local to (7) and search algorithms need to enumerate minterms in
Snl one by one since conflict driven learning can only prune away one minterm inSnl at a time. The above
analysis is illustrated in figure 5.

minterm
cube

cube

Boolean space of E1 reachable state space of Sn+1

conflicts local to (7)

other conflicts states reached through 
non-looping paths

minterm
cube

minterm
cube

cube

Boolean space of E1 reachable state space of Sn+1

conflicts local to (7)

other conflicts states reached through 
non-looping paths

minterm
cube

Fig. 5.space mapping for formula (4) and (5)

Note that in [16], states inSnl are enumerated explicitly using the SAT procedure. Search algorithms
for QBF evaluation can do no better than this since they too enumerate the states inSnl explicitly. The
results in [16] are in general not as good as the methods depending on calculating the least fixpoint of the
reachable states from the set of initial states [15].

The mapping relation of (4) can be illustrated in figure 5 too.The illustration for formulation (3) is a
little different from figure 5. For (3), the cubes in the left circle of figure 5 should map to a minterm in the
whole reachable state space at the(n + 1)th time frame, not just an end state of a non looping path with
lengthn + 1. The local conflicts should be inCNF (C1) instead of formula (7).

It is worth emphasizing that although all the existing QBF solvers that we are aware of take CNF as
their inputs, the above analysis holds independent of the representation of the formula. This is to say that if
there was a QBF solver that worked directly off the circuit, the result would still hold since it depends only
on the critical nature of the state variables in the formula.

6 Future Directions

From the analysis of last section, we can see that formulating the circuit diameter problem into QBF and
using search based algorithms to evaluate the QBF currentlyis no better than the explicit state enumera-
tion methods. However, there may be some room for optimism here. One possibility of making the QBF
approach more efficient is changing the formulation of the diameter problem. The formulations described
in section 2 are mainly based on unrolling the transition relations. Other formulations may require less
universal variables thus greatly reduce the satisfying search space.
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Another possible direction is devising more effective QBF algorithms. A partial search or a non-search
based algorithm is definitely worth exploring. Current non-search based QBF algorithms include resolution
based algorithms andPlaisted’s algorithm proposed in [5]. Pure resolution based approach will likely blow
up in space, but we could do some simplification of the resolved formula to alleviate the space explosion. It
is also possible to combine the search based algorithms withresolution to get around the drawbacks of both
approaches. Plaisted’s algorithm in [5] is in some sense a hybrid of search and resolution. But this algorithm
works well for circuits that are long and thin. The circuit constructed for calculating the sequential state
space diameter in figure 1 is not long and thin. Thus Plaisted’s algorithm is likely to be inefficient for the
QBFs arising from the circuit state space diameter problem.Expanding the class of problems that Plaisted’s
algorithm work well on is another possibility of future research.

Overall for an algorithm to be successful, the reachable state space needs to be enumerated implicitly
rather than explicitly by a QBF algorithm. In addition, a clever way of implicitly storing the already explored
state space is critical as well.

7 Conclusions

In this paper we describe the QBF formulations of the circuitdiameter problem. We prove that using search
based QBF algorithms to determine the circuit state space diameter is no more efficient than previous
explicit reachable state space enumeration algorithms. This result will direct the future QBF approaches
for the circuit state space diameter problem away from pure search based algorithms. A non-search based
algorithm or a hybrid of search based and non-search based methods are possible candidates for using QBF
evaluation to solve the circuit state space diameter problem.
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4. Büning, H.K., Karpinski, M., Fl̈ogel, A.: Resolution for quantified Boolean formulas. Information and Computa-
tion 117(1995) 12–18

5. Plaisted, D.A., Biere, A., Zhu, Y.: A satisfiability procedure for quantified boolean formulae. Discrete Appl. Math.
130(2003) 291–328

6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM
5 (1962) 394–397

7. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate quantified Boolean formulae
and its experimental evaluation. Journal of Automated Reasoning28 (2002) 101–142

8. Rintanen, J.: Improvements to the evaluation of quantified Boolean formulae. In: Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI). (1999)

9. Rintanen, J.: Partial implicit unfolding in the Davis-Putnam procedure for quantified Boolean formulae. In:
International Conf. on Logic for Programming, Artificial Intelligence and Reasoning (LPAR). (2001)

10. Giunchiglia, E., Narizzano, M., Tacchella, A.: Qube: a system fordeciding quantified Boolean formulas satisfia-
bility. In: Proceedings of International Joint Conference on AutomatedReasoning (IJCAR). (2001)

11. Giunchiglia, E., Narizzano, M., Tacchella, A.: Backjumping for quantified Boolean logic satisfiability. In: Pro-
ceedings of International Joint Conference on Artificial Intelligence (IJCAI). (2001)

12. Zhang, L., Malik, S.: Towards a symmetric treatment of satisfactionand conflicts in quantified Boolean formula
evaluation. In: Proceedings of 8th International Conference on Principles and Practice of Constraint Programming
(CP2002). (2002)

13. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). (2002)

14. Letz, R.: Lemma, model caching in decision procedures for quantified Boolean formulas. In: International Con-
ference on Automated Reasoning with Analytic Tableaux and Related Methods (Tableaux2002). (2002)

15. Gupta, A., Yang, Z., Ashar, P., Gupta, A.: SAT-based image computation with application in reachability analysis.
In: Proceedings of Third International Conference Formal Methodsin Computer-Aided Design (FMCAD 2000).
(2000)



Search Algorithms on QBFs Arising from Circuit State Space Diameter Problems 223

16. Mneimneh, M., Sakallah, K.: Computing vertex eccentricity in exponentially large graphs: QBF formulation and
solution. In: Sixth Intermational Conference on Theory and Application of Satisfiability Testing. (2003)

17. Marques-Silva, J.P., Sakallah, K.A.: GRASP - a search algorithmfor propositional satisfiability. IEEE Transactions
in Computers48 (1999) 506–521

18. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in a Boolean satisfiability
solver. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD). (2001)

19. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In:
Proceedings of the Design Automation Conference (DAC). (2001)

20. Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: Proceedings of the IEEE/ACM Design,
Automation, and Test in Europe (DATE). (2002)

21. Giunchiglia, E., Narizzano, M., Tacchella, A.: Learning for quantified Boolean logic satisfiability. In: Proceedings
of the 18th National (US) Conference on Artificial Intelligence (AAAI). (2002)

22. Ranjan, D.P., Tang, D., Malik, S.: A comparative study of 2QBF algorithms. In: The Seventh International Con-
ference on Theory and Applications of Satisfiability Testing. (2004)

23. McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking. In: Proceedings of 14th Con-
ference on Computer-Aided Verification (CAV 2002), Springer Verlag(2002)

24. Gupta, A., Gupta, A., Yang, Z., Ashar, P.: Dynamic detection andremoval of inactive clauses in SAT with applica-
tion in image computation. In: Design Automation Conference. (2001) 536–541


