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Abstract. The sequential circuit state space diameter problem is an important prableequential
verification. Bounded model checking is complete if the state space dieofithe system is known. By
unrolling the transition relation, the sequential circuit state space diametglepr can be formulated
as an evaluation for satisfiability of a Quantified Boolean Formula (QBH} fids prompted research
in QBFs in the verification community. Most of existing QBF algorithms, sucthase based on the
DPLL SAT algorithm, are search based. We show that using searel ZBF algorithms to calculate
the state space diameter of sequential circuits with existing problem formdatiamo better than an
explicit state space enumeration method. This result holds indeperidieatrepresentation of the QBF
formula. This resultis important as it highlights the need to explore narekdased or hybrid of search
and non-search based QBF algorithms for the sequential circuit state diameter problem.

1 Introduction

A quantified Boolean formula (QBF) is a Boolean formula witdnariables quantified by either universal
or existentiaH quantifiers. The problem of deciding whether a quantifiediBmoformula evaluates to true
or false is also referred to as the QBF problem. Theoreyic@BF problems belong to the class of P-SPACE
complete problems, widely considered harder than NP-cetaproblems like Boolean Satisfiability (SAT)
Problems.

Many problems in Al planning [1] and sequential circuit figation [2] [3] can be formulated as QBF
instances. In recent years, there has been an increasargshtvithin the verification community in ex-
ploring QBF based sequential verification as an alternai&nary Decision Diagram (BDD) based tech-
nigues. Therefore, finding efficient QBF evaluation alduris is gaining interest in sequential verification.
Like SAT evaluation, QBF evaluation can be search based aed dot suffer from the potential space
explosion problem of BDDs. This makes it attractive to useF@®Ber BDD based algorithms since the
problem of QBF evaluation is known to have polynomial spamemexity. An obvious linear space al-
gorithm to decide QBF assigns Boolean values to the vasadobel recursively evaluates the truth of the
formula. The recursion depth is at most the number of vagmlbince we need to store only one value of
the variable at each level, the total space requiréd(is) wheren is the number of variables.

Many complete QBF evaluation algorithms have been devdlgmel several complete QBF solvers
have been implemented. In [4], a resolution based QBF etiatualgorithm is presented. But like most
resolution based decision methods, this algorithm has entiat memory blow up problem. In [5], the
authors propose a decision procedure that achieves tha effeesolving multiple variables at one time by
enumerating conflicts of cut variables. Besides the patemé&mory blow up problem, this method is likely
to be inefficient for problems without small cuts. In praetifor many QBF instances, during the execution
of this method, the variables will be so much interleaved ithia impossible to find a small cut. Partly due
to its success in SAT solvers, the Davis Logemann Lovelarfel(D) algorithm [6] has been adapted to
many QBF evaluation procedures [7][8][9] [10][11] [12][LB4]. Although DPLL based QBF solvers do
not blow up in space, they consume significant CPU time andraible to handle practical sized problems
as of now.

In sequential verification, symbolic model checking is a pdw technique and has been used widely.
Traditional symbolic model checking uses BDDs to represequential systems. With the development of
many efficient SAT solvers, bounded model checking (BMC)H&% emerged as an alternative approach
to perform model checking. Although BMC uses fast SAT savaand may be able to quickly find counter
examples, it is incomplete in the sense that it can not détermhen to stop the incremental unrolling of
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the transition relation. The maximum number of unrollingeded to complete BMC is the diameter of the
corresponding sequential circuit state space. Therefetermining sequential circuit state space diameters
is crucial for the completeness of BMC and its solution wdlk practical significance. Existing methods
for computing the sequential circuit state space diam¢i&is[16] search for new states at every step of
time frame expansion. The search can be done by multipletoethe SAT procedure or with a combination
of BDD methods.

The sequential circuit state space diameter problem canbalgackled by formulating it as instances
of QBFs and using QBF solvers to solve them. But currently #iiproach lags behind other methods. The
immaturity of QBF evaluation techniques is often consideas the major reason for this. In this paper, we
show that for the existing QBF formulations of the circuitutieter problem, search based QBF algorithms
(this includes all DPLL based solvers) have no hope to ofgpmralgorithms based on explicit reachable
state space enumeration. This result is important as itrsndees the need to explore non-search based or
possibly hybrids of search and non-search based techniques

2 The Sequential Circuit State Space Diameter Problem and ItQBF
Formulations

A QBF is of the formQiz1 - - - Qnz, ¢, Where@;(i = 1---n) is either an existential quantifier or

a universal quantifie¥. ¢ is a propositional formula with, - - - z,, as its variables. Adjacent variables
quantified by the same quantifier in the prefix can be groupegelther to form a quantification set. The
order of the variables in the same quantification set can tieagged without changing the QBF evaluation
result (true or false). Variables in the outermost quardifon set are said to have quantification leiednd

so on.

The propositional parp in a QBF is usually expressed in the Conjunctive Normal FA@NE). If ¢ of
a QBF is in CNF, the innermost quantifier of this QBF is exititdribecause the innermost universal quan-
tifier can always be dropped by removing all the occurren¢gkeovariables quantified by this universal
guantifier in the CNF. The innermost quantifier can be a usalequantifier ify is not in CNF. Converting
o to CNF needs to introduce new variables and quantify these/agables with existential quantifiers put
inside the originally innermost quantifier. The number o&ufification levels of a QBF may change if the
representation op of this QBF changes. Whep is in CNF, the QBF having: levels of quantification is
calledkQBF. Most practical QBF instances &@BF or3QBF. In the rest of the paper, when we talk about
kQBF, k is the number of quantification levels wheris in CNF.

Many problems in hardware verification concern verifyingaim properties of logic circuits. For com-
binational circuits, we can formulate such problems as QBEinces by introducing one variable for each
circuit node. A circuit node is either a primary input or aeyautput. The propositional part is usually
written asp = S - P, whereS represents the consistency condition of combinationaldic' and P is the
conjunction of the properties @f that need to be verified. Each logic gatelrcan be represented as either
a Boolean formula directly translated from the gate openatir a set of clauses that capture the consistent
logic conditions associated with that gafeis the conjunction of the Boolean representation for eagltlo
gate.

The behavior of a sequential circuit over a number of timmfra can be modeled using the conventional
time frame expansion approach, which creates a combiratiircuit by unrolling the next state function
of the sequential circuit. The sequential circuit statecsgiameter problem can be formulated as a QBF by
unrolling the next state function. The shortest path frora states; of a sequential circuit to another state
s; is defined as the minimum number of steps to go fego s; in the corresponding state transition graph.
Clearly, every state on a shortest path appears at mostwhag) means that a shortest path has no loop.
The state space diameter of a sequential circuit is the kirg@rtest path from one of the original states
of this sequential circuit to any other reachable stateureig. shows the combinational circuit constructed
at each step of the circuit state space diameter calculatlerhave two expansions of the combinational
logic, one forn + 1 time frames and the other for time frames.I; andI/(i = 1,2,---) are sets of
primary inputs,0; andO}(i = 1,2,---) are sets of primary outputs arf} and S/(i = 0,1,---) are
sets of state variables. Lét; denote then + 1 time frame expansion part and, denote then time
frame expansion part. Lét(C,) and F'(C>) be the Boolean functions representing the logic consigsnc
of C, and C, respectively. IfI(S) is the characteristic function of the initial stat&3(7,.S,S’) is the
characteristic function of the state transition relatitien F(Cy) = I(Sy) A Ao T'(;, Si, Si+1) and
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Fig. 1.time frame expansions for state space diameter calculation

F(Cy) = I(S)) A /\?: T(1;,5;,S;,,). If E1is the set of variables of'(C;) and E2 is the set of
variables ofF/(Cs), E1 and E2 are also sets of circuit node variables@f andC, respectively. If for all
possible input sequences@f, the state reached at tle + 1)th time frame can be reached at one or more
of the firstn time frames for some input sequencesf, thenn + 1 is greater than the state space diameter
of the sequential circuit. A straightforward translatiditee above sentence gives us the 2QBF formulation
of the circuit state space diameter problem:

VLIy-- Ina3(B1\ () L)UE2)F(C)AFC)A( N\ Sy = 1)
i=1--n+1 1=0--n

Let the state space diameter of the circuitdbdf n < d, (1) evaluates to false; # > d, (1) evaluates to
true. A very similar formulation is:

VE13E2 ~F(C1) V (F(C2) A ( \/ Sni1=15;)) (2)

1=0---n

(2) is correct according to the previous statement of thautistate space diameter problem.

Another way to state the state space diameter problemiisxifd, then there exists,,, that cannot
be reached frony, in less tham + 1 steps; ifn > d, suchS,,; does not exist. A direct translation of the
above statement gives us the following QBF:

JEWVE2 F(C1) A~(F(C2) A ( \/ Spt1=57)) 3)

1=0--n

(3) is actually the dual of (2). Whenm < d, (3) is true; whem > d, (3) is false. If the sequence of states
SoS1 -+ - Sp+1 has one or more loops in the state transition graph, thenwesegq of states starting from
Sp and ending inS,, 11 with less tham + 1 state transitions must exist because we can always takethe p
without looping. Therefore, (3) is equivalent to:

JEIVE2 F(C) A ()\ Si # S)) (V Sut1= 4)

i#j i=0---n

The constrain(/\#j S; # S;) in the propositional part of (4) is actually the conditiondetermine the
recurrence diameter [3], adding this constraint does nahgh the QBF evaluation since the recurrence
diameter is an upper bound of the state space diameter. |ntfd circuit netlist is modified to get a
simpler QBF formulation than (4). They add a new auxiliarymary input to the sequential circuit netlist
and the logic gates that have the following effect: when thndli@ry input is0, the circuit operation is not
changed; when it i$, the present state makes a transition to the initial staitih #s circuit modification,
the formulation becomes:

AEIVE2 F(Cy) A (/\ Si # Sj) A =(F(C2) A (Sni1 = S},)) (5)
i#j
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The propositional part of (1)-(5) can be transformed to CMHnroducing new variables. This makes (3),
(4) and (5) becom8QBFs while (1) and (2) ar2QBFs. In all cases; is incrementally tested frorh until

n = d. d is the minimum number fon that makes (1), (2) true and (3), (4), (5) false. The drawhzfck
the last four formulations is that when represented in CNdy thave a large set of universal variables and
introduce too many new variables.

3 QBF Algorithms

3.1 Overview

Just as in SAT, the propositional pastof a QBF is often in CNF. Most existing QBF algorithms are
complete and can be roughly divided into two categoriesiloti®n based and search based.

QBF algorithms based on resolution use Q-resolution toieéite variables until there is no more vari-
able to eliminate or an empty clause is generated [4]. Onlgxéstential variable can be resolved out in a
Q-resolution. A universal variable in a Q-resolution gered clause can be eliminated when there are no
existential variable having higher quantification levedrtthis universal variable. Resolution based QBF
algorithms have the potential memory blow up problem. Tieeecthey are seldom used in practice.

The majority of recent QBF solvers are search based. A seadd algorithm tries to evaluate QBF by
branching on variables to determine the value @it certain branches in the search tree. Note that we may
not need to go all the way to the leaves of the search tree éordite the value op. A partial assignment
to the variables may be enough forto be0 or 1. Also we do not limit the search based algorithms to any
particular search method like depth-first search or brefidthsearch. Nor do we have any limitation on
the ordering of the nodes in the search tree. The well-kno®hlDalgorithm, which is a depth-first search
procedure, is just one example of the search algorithms.

Plaistedet al. proposed an algorithm for QBF that belongs to neither of thwva categories [5]. This
algorithm iteratively eliminates a subset of variableshia innermost quantification level. This is done by
partitioning the propositional formula using a set of cutakles and substituting one partition with a CNF
of only the cut variables. The conflicting assignments ofdievariables are enumerated and the negations
of the conflicting assignments are conjuncted to form the@Bl¥ part. Unlike Q-resolution which can only
eliminate one variable at a time, this algorithm can elirgmaultiple variables simultaneously. However,
enumerating conflicts may take exponential time in the nurobeut variables therefore is very expensive
for formulas without a small cut. In fact, variables of mamgigtical QBF instances are so much interleaved
that it is impossible to find a small cut. From another pointiefv, the process of searching for conflicts is
similar to the search in search based algorithms. Partlgufar a 2QBF instance, if the cut set is chosen
to be the universal variables, then this algorithm is essignt DPLL search algorithm.

3.2 The DPLL Algorithm

The DPLL algorithm is the most widely used search based ihgofor QBF as well as SAT evaluation. It
only requires polynomial space during execution. The ndgDPLL algorithm is a recursive procedure for
SAT and is not very efficient. Modern SAT solvers enhance tiigiral DPLL algorithm with techniques
like non-chronological backtracking and conflict-driveratning[17][18], which greatly accelerate the SAT
solvers. Some of the most efficient SAT solvers today [19][P0] are based on the DPLL framework.
Because SAT is a restricted form of QBF in the sense that it bat existential quantifiers, most existing
QBF solvers incorporate variations of the DPLL procedurd arany of the techniques that work well
on SAT can also be used in QBF evaluation with some modifioatifr] is probably the first paper that
extends the DPLL algorithm for SAT to QBF evaluation. It givde basic rules for formula simplification
like rules for monotone literals and unit propagation foistential variables. Conflict driven learning and
non-chronological backtracking are adapted to later DPaselol QBF solvers [21] [14][13]. Also, the idea
of satisfiability directed learning, which is a dual form oidlict driven learning and is specifically for QBF,
is introduced and incorporated in these solvers. Dedutgiohniques such as inverting quantifiers [8] and
partial implicit unfolding [9] were proposed and implemeditby Rintanen. These deduction rules deduce
forced assignments to existential variables by assigminity values to universal variables having higher
guantification levels.

Note that DPLL based QBF evaluation requires the branchidgrabey the quantification order, which
corresponds to the semantics of the formula. Other decwmiderings may require exponential memory to
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store the already searched space. They also make seardb bandrol and result in many fruitless searches.
One exception is in 2QBF evaluation where no useless entioreH the existential variables occurs since
all existential variables do not precede universal vaeigi the prefix. Decision strategies with and without
restriction to quantification order for 2QBF are described eompared in [22].

4 Previous Algorithms for the Circuit Diameter Problem

Most of existing algorithms calculate the sequential digemas a byproduct of the sequential reachability
analysis [15]. In these works, image computation is repkfaten the set of initial states until the least fixed
point is reached. The state sets are enumerated implicithstored in the form of either BDDs or Boolean
formulas. Images are calculated using either BDD operatiorSAT evaluations or a combination of these
two methods.

Circuit diameter computation in [16] is purely SAT basedddies not calculate reachable states. Like
in BMC, it unrolls the transition relation. The circuit udiing is the same as the QBF formulations of
the diameter problem as illustrated in figure 1. For eachvery end staté,, ; that is different fromS;

(i = 1---n) of the first expansion is enumerated using SAT solvers. Egrtynerated,,; ; is tested by
satisfiability evaluation to see if it is reachable in lessth + 1 steps from the initial state.

In [23], search based SAT procedure is used in model cheekgayithms. However, that work mainly
concerns the method for preimage computation. It is notrdiesv to use preimage computation in the
calculation of the circuit state space diameter.

5 Analysis of Search Based QBF Algorithms for the Circuit Diameer Problem

5.1 Handling Conflicts and Satisfying Assignments

Search based algorithms evaluate QBF by assigning Bookdars/to variables. The propositional part

of a QBF has three possible evaluations under a partial rassigt: false, true and undetermined. If the
value ofp is false, the partial assignment is called a conflict; if thkie ofy is true, the partial assignment

is called a satisfying partial assignment. In these two sabe search procedure will backtrack and may
do some learning. The search procedure will continue asgjgmassigned variables if the value pfis
undetermined. Search based QBF algorithms often learntiiermesult ofp being true or false to prevent
getting into the same conflicting or satisfying space agathegain. Learning can be considered as choosing
a subset of the current partial assignment such that thiesighn still result ip being true or false. These
subsets of partial assignments are usually cached forefseairch space pruning.

Sometimes a conflict of a Boolean formutais also a conflict of a subformul&,,,; of F. In this case,
we say this conflict is local td,;. For example, consider the Boolean forma+ b) (b’ + ¢). Partial
assignmentt = 0,b = 0 is a conflict. This conflict is actually local ta: + b). If a QBF evaluates to
false, we need to show that conflicts at certain branches teeentire Boolean space of some existential
variables. Conflict driven learning performs selected lrggm, including long distance resolution in QBF
[13], to get the actual reason for a conflict.

Unlike in SAT, a satisfying assignment in QBF does not meanethd of the search. The search algo-
rithms need to see if for all combinations of universal valéa is satisfiable. The pruning of the satisfying
space is usually done by constructing a partial assignnhanig sufficient forp to be true. Wherp is in
CNF, this partial assignment is constructed by choosing fegery clause at least one of the valuderals.

We call this partial assignmentcaver set of the satisfying assignment [12]. The idea of using covefae
satisfying space pruning is incorporated in many QBF selvitris also called good learning in [21] and
model caching in [14]. For a QBF instancero¥ariables, a cover set with literals implies2™~" satisfy-

ing assignments. In fact, when a cover set is stored in trabdae for future pruning, existential variables
belonging to the highest quantification level can be elinaddrom the cover set due to the semantics of
QBF. Thus the cover sets for a 2QBF instance consist only iwEtsal variables. The conjunction of a set
of literals is called a cube. A cover set is a cube.

When a QBF is derived from a circuit netlist and the value of tPBF denotes whether or not certain
property of this circuit holds, a conflict in the QBF is eithen inconsistent assignment to gate inputs
and outputs or a consistent assignment to the circuit nddggibes not satisfy the property. A satisfying
assignment to the propositional patof the QBF is a consistent assignment to the circuit nodeés#tasfy
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Fig. 2. example for critical and non-critical signals

the property. For some circuit node variables, their vatigesot affect the satisfiability of the property. This
is because some logic gate output does not depend on the adlaiéthe gate inputs. Therefore, some input
is unobservable at the gate output. Any signal which fanalyt to the transitive fanin cone of this input
also becomes unobservable at this output. Suppose a giropierty is represented as a varighléhenp is
the primary output of the property testing circ@it Consistent assignments to other circuit nodes can either
satisfyp or violatep, but some circuit nodes might become unobservabje &br example, in figure 2,

d represents the circuit property. df= 1, thend = 1 which makes signala and ¢ unobservable ad.
Such unobservable signals are caltexh-critical signals. The set aofritical signalssS. is both sufficient
and necessary as the reason of the satisfiability of the ggofgemoving any signal frony. results in

p being undetermined. So caching the satisfiability resufi siould include all the variables .. If F’

is in CNF and is satisfiedS. may not satisfy every clause of the CNF. Critical signalsdaronsistent
assignment to circuit signals that unsatisfies the promegtypoth sufficient and necessary for the resuit of
being violated. The selection 6f. does not require the knowledge Bf the information of circuit structure
is enough.S. is generally much smaller than cover sets for CNF clauses.ablove idea is very similar to
the dynamic removal of inactive clauses in SAT proposed4j.[2

5.2 Explicit State Enumeration vs. QBF Evaluation with Satgfiability Driven Learning

We now demonstrate that using the search based QBF algsrithsolve the circuit diameter problem with
existing QBF formulations is no better than the previoudieitstate enumeration methods.
We first analyze the 2QBF formulation of the diameter probiemich is shown in (1). The property
in this case is:
(Snt1 =50V Spy1=51V--VS,11=25)) (6)

Since every equality in the disjunction of (6) h&s,;, P can not be evaluated if the value of any state
variable inS, 1 is unknown. This means any state variabl&jn ; is critical. In another words, any partial
assignment that is satisfying for the propositional partldfmust be a complete assignment for the state
variables ofS,, . ;. Consider the Boolean space of the universal variables)@ind the reachable state space
at the(n+1)th time frameS,, ;1 as shown in figure 3. When using search based QBF algorithmslioete
(1), we want to derive satisfying cubes to cover as much oBbelean space of; x I X -+ X I, 11

as possible for every satisfying assignment. Among thetiegisnethods for deriving satisfying cubes
for Boolean formulas arising from circuits, satisfying egbconsisting of all critical signals are the most
effective in pruning the satisfying space of the search B@ee the universal variables in (1) are all primary
inputs, any set of critical sighals must contain at leastworieersal variable. For one satisfying assignment,
since there are one or multiple sets of critical signals,@meultiple cubes in the Boolean space of universal
variablesl; x I x --- x I, are pruned away. However, in the state space reachable (@t the)th time
frame, only one minterm is pruned away for every satisfyiggignment because all the state variables of
Sn1 are critical. Due to the circuit structure, once the set tiioadl primary inputs are determined, all other
critical signals can be computed as well. This means culieginniversal space derived from one satisfying
assignment corresponds to a single stat8,of;. Thus minterms in the reachable state spac§,of; are
covered by non-overlapping sets of cubes in the universalddm space as illustrated in figure 3. If (1) is
true, the entire Boolean space of universal variables nields covered by satisfying cubes. In this case,
search procedures also need to cover the entire reachatdesptice of,,.; because every reachable state
results from at least one assignment to the universal pyiinguts. The number of satisfying assignments
that needs to be searched is at least the number of reachatgle at thén + 1)th time frame. Therefore,
when applying search based algorithms to the evaluatioh)palthough we might get some pruning of the
satisfying space of the search tree, we can not prune anypfidue reachable state space. An explicit state
enumeration algorithm can enumerate the states reachzbie(@ + 1)th time frame by calling the SAT
procedure. The number of times to call SAT is exactly the nemal states reachable at the + 1)th time
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frame when (1) evaluates to true. In addition, for searclethatgorithms applied to (1), not every minterm
in the Boolean space of the universal variables correspgnidi a new reachable state gets pruned away
for a new satisfying assignment. The minterms in the redehsthite space might get enumerated again
and again. For example, the two cukesandc, map to the same statein figure 3, but two satisfying
assignments are needed to deriy@ndc, respectively.

Boolean space of*l,x - - -x| reachable state space Qf S

n+l

Fig. 3. space mapping for formula (1)

Boolean space of E1 reachable state spacg,pf S

Fig. 4. space mapping for formula (2)

The set of universal variables in (1) is strictly containadhe set of universal variables in (2). The
Boolean space of the universal variables in (2) can be dividi® two parts: those that are consistent with
the logic conditions of the expanded circalf and those that are inconsistent. Inconsistent assignrteents
E1 makes—F(C4) true thus the propositional part of (2) true. Cubes of cdasisassignments t&'1 map
to the reachable states at the+ 1)th time frame as shown in figure 3. The mapping between thegamol
space ofE'1 and the reachable state space at(the- 1)th time frame is shown in figure 4.

The analysis for the 3QBF formulations of the circuit stgpace diameter problem is a little more
complicated but similar. The outermost quantification sethe 3QBF formulations are all existentially
quantifiedE'1. If these 3QBFs are false, we need to prove that no subtrdeecddmantic tree below the
branches off'1 is true. In these cases, we need to prune the search spadethetnflicts. Let us first
analyze the 3QBF of equation (5). The propositional parbptén be divided into two parts:

CNF(C1)A (N Si #5)) @)
i#£]
and
~(CNF(C2) A (S}, = Sn+1)) (8)

(7) has only variables ifv1. Therefore, some assignmentsHa cause conflicts in (7). These conflicts are
local to (7) and do not involve any variable #2. They either represent inconsistent signal values in the fir
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expansion of the circuit or consistent signal values thaefloop in the path frons, to S,,11. Conflict
driven learning for conflicts local to (7) can only prune tlomflicting spaces that are local to (7). If (5) is
false, assignments tB1 that cause conflicts not local to (7) should also get prunedfli€ts non-local to
(7) may or may not exist. If for a certaim, every path of lengtl + 1 has a loop in it, then all the local
conflicts of (7) cover the entire Boolean spaceif In this case, getting the local conflicts of (7) is enough
to prove that (5) is false. When there exist non-looping pafiengthn + 1, conflicts involving (8) must
be enumerated. Consider a conflict not local to (7). Sincedbnflict is not local to (7), it must make (8)
false. Since (8) is the negation of

CNF(C2) A (Sy, = Spt1) 9)

conflicts not local to (7) must make (9) true. The only varghin (8) that are in the sét1 are variables

in S,,+1. Assignments to variables if},; alone cannot make (9) true. Thus critical signals of a naallo
conflict to (7) must include variables 2. On the other hand, every variable $) . ; is critical because
of the conjunction parb), = S,+1 in (9). This means every conflict not local to (7) maps to dyamte
minterm in the reachable state space. The set of sfjethat are the end states of non-looping paths of
lengthn + 1 is a subset of the reachable states atthe 1)th time frame. If (5) is false, every minterm in
S, corresponds to a conflict of (5) not local to (7) and searcbritlyms need to enumerate minterms in
Sni 0ne by one since conflict driven learning can only prune awsgyrointerm inS,,; at a time. The above
analysis is illustrated in figure 5.

other conflicts states reached throug

non-looping paths

conflicts local to (7

Boolean space of E1 reachable state spacg,pf S

Fig. 5. space mapping for formula (4) and (5)

Note that in [16], states i¥,,; are enumerated explicitly using the SAT procedure. Sedgurithms
for QBF evaluation can do no better than this since they taoremate the states ifi,; explicitly. The
results in [16] are in general not as good as the methods dexeon calculating the least fixpoint of the
reachable states from the set of initial states [15].

The mapping relation of (4) can be illustrated in figure 5 t6be illustration for formulation (3) is a
little different from figure 5. For (3), the cubes in the leiitate of figure 5 should map to a minterm in the
whole reachable state space at thet 1)th time frame, not just an end state of a non looping path with
lengthn + 1. The local conflicts should be IEN F(C1) instead of formula (7).

It is worth emphasizing that although all the existing QB#vers that we are aware of take CNF as
their inputs, the above analysis holds independent of thesentation of the formula. This is to say that if
there was a QBF solver that worked directly off the circiig tesult would still hold since it depends only
on the critical nature of the state variables in the formula.

6 Future Directions

From the analysis of last section, we can see that formugjdkia circuit diameter problem into QBF and
using search based algorithms to evaluate the QBF currisntly better than the explicit state enumera-
tion methods. However, there may be some room for optimisra.@ne possibility of making the QBF
approach more efficient is changing the formulation of trediter problem. The formulations described
in section 2 are mainly based on unrolling the transitiomtiehs. Other formulations may require less
universal variables thus greatly reduce the satisfyingcbespace.
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Another possible direction is devising more effective QBgoathms. A partial search or a non-search
based algorithm is definitely worth exploring. Current reearch based QBF algorithms include resolution
based algorithms arfelaisted’s algorithm proposed in [5]. Pure resolution blasgproach will likely blow
up in space, but we could do some simplification of the resbleemula to alleviate the space explosion. It
is also possible to combine the search based algorithmsegtiution to get around the drawbacks of both
approaches. Plaisted’s algorithm in [5] is in some sensdedhgf search and resolution. But this algorithm
works well for circuits that are long and thin. The circuithstructed for calculating the sequential state
space diameter in figure 1 is not long and thin. Thus Plaistalgiorithm is likely to be inefficient for the
QBFs arising from the circuit state space diameter probEmanding the class of problems that Plaisted’s
algorithm work well on is another possibility of future reseh.

Overall for an algorithm to be successful, the reachablie sjgace needs to be enumerated implicitly
rather than explicitly by a QBF algorithm. In addition, ax@eway of implicitly storing the already explored
state space is critical as well.

7 Conclusions

In this paper we describe the QBF formulations of the cirdiimeter problem. We prove that using search
based QBF algorithms to determine the circuit state spaameater is no more efficient than previous
explicit reachable state space enumeration algorithmis. rBisult will direct the future QBF approaches
for the circuit state space diameter problem away from peeech based algorithms. A non-search based
algorithm or a hybrid of search based and non-search basimdseare possible candidates for using QBF
evaluation to solve the circuit state space diameter pnoble
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