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Abstract. 2QBF is the problem of evaluating a Quantified Boolean Formula (QBF) with two levels
of quantification. Many practical problems in sequential verification can be formulated as instances of
2QBF. Techniques that are not applicable to general QBF evaluation may be useful for 2QBF evalu-
ation. In particular, decision order in search based algorithms may not obey quantification order for
2QBF evaluation algorithms. Different branching strategies in search based algorithms together with a
resolution based method are described and compared. Experimental results on both random benchmarks
and 2QBFs formulated from sequential circuit state space diameter problems are analyzed. Experiments
show solvers specially tuned for 2QBF can be more efficient than similar general QBF solvers.

1 Introduction

The class of 2QBF problems is a subset of the class of Quantified Boolean Formulas (QBF), a generaliza-
tion of Boolean satisfiability (SAT) problem. While SAT is known to be NP-complete, QBF is PSPACE-
complete, and 2QBF isNPNP-complete, so both 2QBF and QBF are likely to be much more difficult than
SAT. Still, QBF attracts much research due to theoretical interest and practical applications such as artificial
intelligence [8] and sequential circuit verification [9], [1].

The subclass 2QBF is worthy of study in its own right, away from the more general context of QBF. In
particular, it may be useful to consider algorithms and techniques specific to 2QBF that may not generalize
easily to QBF, as is done in this paper. Moreover, since 2QBF is a gentler generalization of SAT than general
QBF, techniques that are useful in SAT algorithms sometimes adapt more easily and more usefully to 2QBF
than they do to QBF. In fact, all three of the algorithms we discuss are strongly related to algorithms for
propositional satisfiability. This is an advantage, since the study and development of SAT algorithms is
more mature than the study of QBF algorithms. In this paper, we study three 2QBF algorithms. Two of
them are based on the DPLL procedure [4] and are engineered toward solving 2QBF instances. The third is
a resolution algorithm that is not specially designed for 2QBF; it is presented here because it has not been
studied separately for 2QBF and because it is useful as a point of comparison.

2 Preliminaries

2.1 Definitions

Let φ be a Boolean formula. In this paper, we will assume thatφ is a formula in conjunctive normal form
(CNF) (other formulas may be converted to CNF by first writing a circuit for the formula and then expressing
the circuit in CNF). Ifx1, x2, . . . , xn are free variables ofφ, thenQ1x1Q2x2 . . . Qnxnφ is a quantified
Boolean formula, where eachQi is a quantifier∀ or ∃. By the semantics of quantification, we can regard
quantifiers as quantifying sets of variables rather than variables themselves, and then it suffices to require
that quantifiers alternate between∀ and∃ in the prefix.

In general, as defined in [3],kQBF is the subclass of QBF consisting of such formulas withk quan-
tifiers, so in particular, a 2QBF formula has two quantifiers. Ifφ is in CNF, then it is easy to see that a
formula∃Y ∀Xφ simplifies to the SAT problem∃Y φ′, whereφ′ is the CNF obtained fromφ by removing
all occurrences of universal literals, so such formulas need not concern us in our study of 2QBF; we will
only deal with 2QBF formulas of form∀X∃Y φ.

2.2 Practical 2QBF from Sequential Verification

The algorithms described in this paper were tested on both randomly generated 2QBF problems and struc-
tured circuit 2QBF instances arising from the state space diameter problem for sequential circuits, which
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asks for the maximum over all ordered pairs of states(R, T ) of the minimum length of a path fromR to T
(i.e., thediameterof the state machine). [10] illustrates how this problem may be formulated as a 2QBF. In
[10], it is also argued that search methods, like some of the methods presented in this paper, ultimately can-
not be effective in solving diameter problems. However, circuit 2QBF’s arising from the diameter problem
still provide a testing ground for the algorithms.

3 2QBF Algorithms

The remainder of this paper will be in the context of the 2QBF formulaF = ∀X∃Y φ, whereφ is in CNF.

3.1 DPLL-related algorithms

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm was originally described by Davis, Logeman,
and Loveland in [4] as a decision procedure for SAT, but since [3] it has also been adapted widely for
solving QBF instances. In this section, we present two algorithms based on DPLL—in fact, that are built on
DPLL SAT solvers—for solving 2QBF. In both cases, the ZChaff SAT solver was used as the basis of the
2QBF solver, and the efficient incremental SAT capabilities of ZChaff were used.

Algorithm I. Algorithm A uses two DPLL SAT solvers, solver A and solver B, that communicate infor-
mation to each other. Solver A maintains a CNFφA which begins as the original CNFφ, and solver B
maintains a CNFφB which begins empty and is incremented during the solving process to contain clauses
that depend only on the universal variables.

1. Solver A begins by finding a satisfying assignmentα for φ.
(a) If none exists, then the algorithm halts and returnsfalse.
(b) Otherwise, the solver then finds a cover setα′ of α, a partial assignment ofα that also satisfies all

the clauses ofφ. The complement of the conjunction of universal literals inα′ is added as a clause
b1 to φB.

2. Solver B then finds a satisfying assignmentβ of the variables inX for φB, provided one exists.
(a) If it does not exist, then the algorithm halts and returnstrue.
(b) If β exists, on the other hand, thenβ is taken as an initial assignment for solver A, and we return to

step 1, where solver A tries to find a satisfying assignment ofφA givenβ as an initial assignment,
and the process repeats.

Given any initial assignment toX, solver A will find an extension of it that satisfiesφ if one exists, so if
given some initial assignment, solver A fails to find a satisfying assignment, thenF itself must befalse.
On the other hand, by induction, at every point in the solving process,φB will have the property that any
universal assignment failing to satisfy it is known to have corresponding satisfying existential assignments,
so that if solver B ever fails to find a satisfying assignment, then the space of all universal assignments
has been covered, andF must betrue. Finally, note that after every iteration on which both solvers find
satisfying assignments, at least one satisfying assignment is removed fromφB, so the behavior of both
solvers successfully and repeatedly finding satisfying assignments cannot continue forever. At some point
either A or B will fail to find a satisfying assignment, at which pointF will be evaluated. This shows that
Algorithm I is a sound and complete 2QBF algorithm.

Remark 1.Conceptually, this algorithm is very similar to the Quaffle algorithm (described in [11]) restricted
to 2QBF. The primary difference is that focusing our attention to 2QBF allows us to rely on SAT solvers
with efficient data structures like 2-literal watching, unlike Quaffle.

The implementation of algorithm I also includes a preprocessing stage in which the trivial truth and falsity
of the formula is checked. The trivial truth rule is that if the CNF is satisfiable if all the universal literals
are ignored, then the formula itself istrue. The trivial falsity rule is that if the set of clauses containing only
existential variables is unsatisfiable, then the formula itself iffalse. These are discussed in more detail in
[3].
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Algorithm II. Algorithm II is a variation of algorithm I. As before, there are two SAT solvers, A and B,
that have the same tasks as in algorithm I. The difference is that in algorithm II, when solver B finds a
satisfying assignment toX, solver A does not use that assignment itself as an initial assignment; solver A
finds its own satisfying assignment independently of solver B’s assignment, i.e., in algorithm II, step 1(b)
is replaced by the following two steps:

1. (b) i. Solver A finds a cover setα′ of α, a partial assignment ofα that also satisfies all the clauses of
φ. The complement of the conjunction of universal literals inα′ is added as a clauseb1 to φB.

ii. Solver A then finds a clauseb′
1 that has the property thatφA ∧ b1 is logically equivalent to

φA ∧ b′
1 (this is done by taking a cutset of the implication graph of the complements of all of

the literals inb1; implication graphs are explained in [12]).φA is then augmented byb′
1.

Also, in step 2(b),β is not taken as an initial assignment for solver A.
NOTE: unlike in algorithm I, the satisfying assignment found by solver B is not used by solver A in any

way. However, the clause added toφA in step 1(b).ii adds enough information toφA so that the satisfying
assignment (or lack of one) can be treated the same way, and the proof of correctness of algorithm I can be
applied with slight modification to algorithm II. Experimental results using different heuristics for obtaining
b′
1 from b1 have been obtained (the heuristics tested are described in more detail in section 4).

Another important aspect of algorithm II is that solver A can make use of the quantification level of its
variables in its decision heuristic. This is described in more detail in section 4.

The implementation of algorithm II includes the same trivial truth and falsity preprocessing checks as
algorithm I, but they were disabled in order to get more meaningful data from the randomly generated
benchmarks (see section 4 below).

In both algorithms I and II, solver B uses the standard ZChaff incremental SAT engine.

Noncritical signals in Circuit 2QBF. Both algorithms I and II rely heavily on the notion of a cover set
of a satisfying assignmentα of a CNF formula. As explained above, the cover setα′ is a subset ofα such
that each clause in the CNF is satisfied by an assignment inα′. The relevant fact about a cover formulated
this way, though, is that for any assignment of all of the universal variables that contains all the universal
assignments inα′, there is an assignment of the existential variables that makesφ true. We will refer to the
universal part of such a cover, which is what actually needs to be found in order to proceed, as auniversal
cover. In algorithms I and II, as long as the universal cover has this property, the algorithm will be correct,
even if some of the clauses are not explicitly satisfied. In the 2QBF’s studied arising from circuits, all
universal variables are primary inputs. It may be clear from the circuit representation, though, that some
subset of the primary inputs is itself sufficient to guarantee that the output will betrue; in this case, the
other primary inputs need not be considered. [10] explains this type of reasoning in more detail. Noncritical
signal reasoning with AND and OR gates can potentially lead to better universal covers, and algorithms I
and II were both tested on circuit problems with and without noncritical signal reasoning.

Remark 2.Although both the original SAT DPLL and the QBF extension [3] are polynomial space algo-
rithms, both algorithms I and II, though based on DPLL, are not polynomial space algorithms. The clauses
added toφB when solver A finds satisfying leaves ofφA must be kept, and there is nothing that keeps
φB from growing to exponential size. In some cases, it might even be necessary forφB to grow to order
exponential in the size of the input before the formula is solved.

3.2 2QBF Resolution

The SAT resolution algorithm generalizes easily to both general QBF and 2QBF. The general algorithm,
Q-resolution, is treated in [2]; only the 2QBF case, which is the restriction of Q-resolution to 2QBF, is
discussed here. The algorithm described here is not specially tuned to solving 2QBF in any way. However,
a variant of Q-resolution was implemented and tested along with vanilla Q-resolution. In this variant, before
resolving an existential variable out of the formula, a set of clauses containing this variable is chosen and fed
to the Espresso logic minimization tool, and the original formula is replaced by Espresso’s simplification.
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4 Experimental Results

4.1 Notes

These tests were done on an Intel Pentium III 933 MHz machine with 1 GB of RAM running Linux. Code
was written in C++ and compiled using g++ 2.96 with the -O3 option.

Different variants of the algorithms described above were tested. Algorithms I and II were tested on
circuit benchmarks both with and without the noncritical signal reasoning outlined above (In the tables, the
presence of a plus sign (+) indicates augmention by noncritical signal reasoning). Algorithm II was tested
using different branch variable selection strategies: variable state independent decaying sum (“VSIDS,”
or “V”) is the standard strategy of the ZChaff solver (see [7]); “existential preferred” (“EP”) is a similar
strategy that gives existential variables added weight, and “existential first” (E1) is a similar strategy that
always branches on free existential variables before branching on universal variables. Algorithm II was also
tested using different “conflict analysis” techniques for obtaining clauses to add to solver A from covering
clauses added to solver B (hereafter referred to as the “pruning strategy”): “decisions only” (“DO”) and
“first unit implication point” (“first UIP,” or “1U”) (see [12]). The resolution algorithm was tested on two
settings: in “S”, the formula is simplified between resolution steps, whereas in “NS”, it is not. In this section
we also compare these solvers with the general QBF solver Quaffle [11], since the DPLL-related algorithms
treated here are closely related to it. We also compare these solvers with the Semprop QBF solver of Letz
[5], which was judged the best overall QBF solver in the SAT 2003 QBF evaluation, for reference.

In all tests, each solver was limited to 400 seconds of CPU time.

4.2 Random Benchmarks

Table 1.Average runtime on random benchmarks

Number of
clauses

Alg. I Alg. II Res. Quaffle Semprop

E1,1U E1,DO EP,1U EP,DO V,1U V,DO NS S

100 (100
instances)

*0.01(100)12.57(99)5.85(100)16.21(98)2.06(100)16.22(98)2.06(100)0.01(100)0.25(100)400.00(0)0.01(100)

150 (10 in-
stances)

*0.01(10)400.00(0)400.00(0)400.00(0)400.00(0)400.00(0)400.00(0) 0.01(10) 0.31(10)400.00(0)*0.01(10)

200 (10 in-
stances)

160.00(6)400.00(0)400.00(0)400.00(0)400.00(0)400.00(0)400.00(0) 0.36(10)169.09(6)400.00(0)23.99(10)

The random benchmarks all have approximately 100 variables, with five variables per clause. When a
solver failed to solve an instance in 400 seconds, the runtime was taken to be 400 seconds. A number in
parentheses indicates the number of instances the solver was able to solve. “*0.01” in the tables means that
the time was beneath the granularity of the timing function, so the time is estimated at 0.01. (Most of the
instances were trivially true, which was immediately detected by the preprocessing stage of algorithm I. In
order to obtain useful data on these problems, the trivial truth preprocessing of algorithm II was disabled.)

4.3 Circuit Benchmarks

In these tables, the presence of a dash as the runtime for a particular instance means that the solver could
not solve it in 400 seconds.

Algorithm I (+) was also tested on s1423 unrolled to 34 frames (determined to be false in 298.86
seconds) and 35 frames (not solved in 400 seconds). This improves the known lower bound for the diameter
of s1423, a known hard instance, from 26 [6] to 34.
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Table 2.Runtime on diameter problem benchmarks (algorithms with no critical signal reasoning)

Circuit frames
un-
rolled

Alg. I Alg. II Res. QuaffleSemprop

E1,1UE1,DOEP,1UEP,DO V,1U V,DO NS S

s27 1 0.03 0.03 0.02 0.03 0.03 0.03 0.030.03 0.14 0.01 0.01
2 0.35 0.20 0.33 0.16 0.33 0.15 0.320.02 0.17 0.20 0.04
3 25.68 4.98 12.00 3.02 8.58 3.03 8.620.04 0.33 8.58 0.20
4 – 120.31 – 68.28 – 68.85 – 0.04 0.39 – 5.81
5 – – – – – – – 0.17 0.40 – 21.29

s1488 1 0.06 26.56 25.20 24.50 24.8524.3024.34 – 2.19 0.27 0.25
2 0.22 – – – – – – – 11.85 1.54 1.12
3 2.25 – – – – – – – 25.04 18.23 30.75
4 4.14 – – – – – – – 120.34 – –
5 65.49 – – – – – – – 208.60 – –

s1423 1 0.27 – – – – – – – 4.29 0.22 0.24
3 0.64 – – – – – – – – – –
6 1.20 – – – – – – – – – –
10 2.05 – – – – – – – – – –
15 3.91 – – – – – – – – – –
21 136.91 – – – – – – – – – –

Table 3.Runtime on diameter problem benchmarks (algorithms with critical signal reasoning)

Circuit frames
un-
rolled

Alg. I Alg. II

(+) E1,1U(+)E1,DO(+)EP,1U(+)EP,DO(+)V,1U(+) V,DO(+)

s27 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01
2 0.02 0.02 0.04 0.02 0.03 0.02 0.04
3 0.08 0.05 0.15 0.03 0.12 0.03 0.13
4 0.23 0.19 0.34 0.10 0.32 0.10 0.32
5 0.92 0.62 8.72 0.31 8.67 0.32 8.63

s1488 1 0.15 0.26 0.33 0.24 0.23 0.24 0.23
2 0.25 4.97 18.18 4.21 5.95 4.16 5.66
3 0.80 294.27 – 80.38 – 79.43 –
4 10.07 – – – – – –
5 2.50 – – – – – –

s1423 1 0.15 20.70 31.01 17.16 36.33 17.47 36.41
3 0.37 – – – – – –
6 0.70 – – – – – –
10 1.94 – – – – – –
15 2.11 – – – – – –
21 9.19 – – – – – –

5 Discussion

A glance at the tables shows that overall, algorithm I is the most robust on these classes of problems, being
able to solve the most instances (although resolution and Semprop were better for the random problems,
which were relatively small).

For the random problems, although most of the instances could be solved almost instantly by trivial truth
preprocessing (as algorithm I does), they seem still to be difficult to solve by other means. Incorporation of
dynamic trivial truth in DPLL-based solvers is an area of current research.

For the circuit problems, as one would expect, the exploitation of noncritical circuit signals (which are
not apparent in the CNF representation) in the DPLL-based solvers improved performance quite dramati-
cally, often by several orders of magnitude. These results show that at the very least, it can be fruitful to
hold on to some information from the original representation while working with the CNF counterpart.
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The resolution algorithms compare favorably against all of the other solvers on most of the smaller
problems. However, as one would expect, as the problems get larger (e.g., the s1488 and s1423 circuit
benchmarks), their performance drops. The simplification steps predictably seem to pay off more on large
problems, where the overhead is less significant compared to the overall solving time.

In algorithm II, the difference between the EP and plain VSIDS strategies may be attributed to noise.
The E1 strategy shows a clear overall performance loss on the circuit benchmarks while being comparable
to VSIDS on the random benchmarks. This can be explained by the fact that on the random benchmarks,
the satisfying existential assignments do not depend strongly on the universal variables, while the circuit
benchmarks do not have this property, so forcing existential decisions first is not fruitful.

This data does not clearly show either the DO or 1U pruning strategies to be superior to the other.
Research centering on pruning strategies may be worthwhile.

Although Quaffle outperforms algorithm I on some of the smaller circuit problems, the overall trend
is the opposite, showing that specialized 2QBF algorithms can be more efficient than their general QBF
counterparts. Algorithm II clearly outperforms Quaffle on the random problems (of which Quaffle could
not solve any), but on the circuit problems, Quaffle does better generally than the algorithm II variants. A
more careful look shows that Quaffle typically does not explore nearly as many satisfying assignments as
algorithm II, indicating that pruning the search tree more effectively, possibly by using a better pruning
heuristic, may be a good area for improving algorithm II.

We note that algorithm I (especially algorithm I (+)) generally outperformed Semprop on the circuit
problems, while Semprop was more effective in general on the random problems.

6 Conclusions and Future Work

In this paper, we have given strong evidence that focusing on 2QBF solvers as a class separate from general
QBF solvers can be worthwhile. Also, for real world circuit problems, we have shown that using information
from the circuit representation (outside the CNF representation) can improve performance.

There are many directions in which the algorithms described can be improved. The authors believe
that a dynamic “trivial truth” check will improve the DPLL-like algorithms, especially in a streamlined,
2QBF-specific form; this is currently being studied.
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