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Abstract

In appearance-based image processing, high-dimeaisstatistical models are
estimated from low numbers of training samples. @anscatter matrices are
unreliable estimators of class covariances, yetymmaathods rely on them for
dimensionality reduction and often for classifioatitoo. This paper argues for
regularized covariance estimation and introducesew method suitable for

appearance-based image processing. The method isndeaied for face

detection, where a maximum likelihood classifieairted with regularized

covariances achieves discrimination and detectsnlts comparable to those of
complicated multimodal and non-linear classifiers.

1 I ntroduction

Appearance-based approaches to object detectioreaagdnition treat alh pixels of an image
equally, stacking them into a measurement vectoiclwis analysed according to models
derived from the statistics of training samples. yTlagoid assumptions about geometric or
structural image features, depending instead orsaned dependencies in the training set.

Since the earliest work in appearance-based amalgsig. [1]), it has been
acknowledged that the high dimensionality of imagace is a problem. Often the number of
training images availabl is less than the dimensionalityand therefore much less thih
the number required to estimate a distribution'apeeters directlyM’s value depends on the
model assumed for the multivariate distributiont lituis certainly much more than.
Dimensionality reduction is sometimes offered asoktion to this problem, but must itself
rely on statistics. Almost always the total saattetrix is used as an estimate for a global
covariance matrix and a process then selects catits of measurements that are supposed
to characterize the class. Usually the transforrithvimaps into the subspace also scales along
the new feature axes. Principal Components Analgdien used for dimensionality reduction
even when more sophisticated classifiers are ustinwhe subspace) derives the transform
and the scalings simultaneously as the eigenvedcos eigenvalues of the estimated
covariance matrix. The problem for PCA df< n is soluble by a simple algebraic trick [2].
But this does nothing for the real problem, whighhatN << M and that the scatter matrix is
therefore certainly not a reliable estimate fordheariance matrix.

Dimensionality reduction is so common as a firsagst that appearance-based
classification is almost synonymous with subspaethods. For face processing, for example,
Shakhnarovich and Moghaddam begin their review wEhg8] (titted “Face Recognition in
Subspaces”) with the statement that faces are rwithi submanifold of low intrinsic
dimensionality, while Penev and Sirovich [4] seeldiscover this intrinsic dimensionality by
experiment. Yet the only sustainable reason fouectdn to a subspace is to allow more
efficient computation. The suggestion that a paldictace's non-zero component outside face
space is “due to sensor noise” [3] mistakes anaqimation (allowing all face variability in a
low-variance dimension to be approximated by zdéoo)an essential property. Singular or
almost-singular scatter matrices certainly do motjue reasons to suppose that face space has
anything less than full dimensionality: there itldi chance that they adequately approximate
the class covariance.



The estimation of covariance matrices is not just domensionality reduction. In
subsequent class modelling, the sample to protatygtances may be adjusted according to
class covariances, or, if a multimodal model isuasd, the subclass covariances. Again an
eigenspace representation may be used, thoughrewest developments in appearance-based
processing have tended to use non-linear classifiermultiple kernels [5,6]. Even so, the
reliability of statistical estimates of probabiliystributions remains a central question.

Section 2 of this paper reviews options for impngvestimates from scatter matrices to
get more reliable covariances. Section 3 then dlites a new method of covariance matrix
estimation particularly suited to appearance-b@sedessing. Section 4 reports experiments on
model selection — that is, the training of mixiraygmeters in the new method.

To the author’s knowledge, no previous paper hasrteg performance for one of the
most fundamental of statistical classifiers — thaxmum likelihood classifier for unimodal
normal distributions — for tasks like face detecti®erhaps the reason for this is that ML
classification simply does not work at all when tlewvariance matrices for the class densities
are incorrectly estimated. With good estimationg, dfassification provides a viable baseline
for face detection (for example), as section 5 show

2 Covariance matrix estimation

2.1  Notation and assumptions

Suppose that each Kfclasses is characterized, on the basisdimensional training samples,
by a multivariate normal distribution:
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where p; is the class’s mean vectol;; is its covariance matrix, anfl denotes transpose.

While not all that follows depends on the normaligsumption, the final classification tasks
and therefore the optimization criterion use thexiaum Likelihood classifier which assumes
normality, namely, classify a samplas belonging to classif

d (x) = mind, (x) @
with
d () =(x—p) Z(x—p) +In|2i| ®)
which, if the prior probabilitie®; of the classes are known, is related to the Balgssifier

di(x):(X_ui)TEil(X_ui)+In|2i|_2|nR (4)
by a scalar offset.

The use of a unimodal multivariate normal model hbayinappropriate for appearance-
based image processing because it assumes a coropaeex distribution with ellipsoidal
symmetry. (The particular shape of the normal distion relative to other compact, convex,
symmetric distributions, has little effect for d#gation [7].) For example, if the images
shown in figure 1(a) and 1(b) are to be included jmarticular class, then either 1(c) is also in
the class or the class is not convex.
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Figure 1. Non-convexity of a possible face class



The question of identifying multi-modality and cowmitg is not addressed here, so the
problem illustrated by figure 1 remains. Howevegction 5 will show that in practice a
unimodal normal model is effective for a real cifasation task.

With the normal model, the characterization of glaamounts to estimating the mean

vector p, and covariance matr; . The estimated values are denofgdand X, . For j1; the

mean of the classtraining samples is the maximum likelihood estimated there is no reason
to modify this on the basis of any out-of-class gkes. The class training samples also
provide a scatter matrix

N
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whereN; is the number of training samples for clgssf whichx;; is thejth.
The average scatter matrix is

K
Saverage = %ZS] (6)
j=1
which weights all classes equally, whereas theqibstatter matrix is
K
Spooled = ﬁz N;S, (7)

i=1
which weights all training samples equally. Finglily some contexts, there may be a total
scatter matrix, constructed from all the trainimgmgles including some which are unlabelled

but belong to a superclass of whichkaltlasses are part:
N
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with N the total number of samples aﬁd the mean vector of all samples.

2.2 Prior work

Important cases of prior art are FriedmaRegularized Discriminant Analysis [8] and the
series ofLeave-One-Out-Covariance Matrix estimators proposed by Landgredieal [9-12].
Although both drew on significant earlier work (fexample as reviewed in [13,14]), they are
now the most-used methods for small-sample highedsional covariance matrix estimation.

In developingRegularized Discriminant Analysis (RDA) [8], Friedman noted that the
estimate of a class covariance matrix by its trajrsample scatter matrix is incorrect for any
reasonable Bayesian classification rule [15]. Inssmuence, linear discriminant classification,
where all classes are assumed have the same cmeagatimated from the pooled scatter, is
often superior to quadratic classification by uséhe individual scatter matrices. Moreover, if
there are too few samples overall to form a godinese of the pooled covariance, it can be
even better to use Euclidean distance (nearest )mgassification. Friedman therefore
proposed a regularization scheme to mix each dassitter matrix with the pooled matrix and
with the identity matrix as follows.

£,y = M- )L, () + {M]I ®
where
§ 1y = AN DS HAN-K)S 0 o
L= )N + N

(This is actually a simplification of Friedman’s ginial definition which allowed each training
sample to be differently weighted.)



The regularization parameterd, )y range from 0 to 1. They are estimated by
minimizing the leave-one-out cross-validation esrover a grid of values, typically (0, .125,
.354, .650, 1) ford and (0, .25, .5, .75, 1) fop . That is, the parameters are set at one of the

25 combinations of/\,yvalues, then for each class, one training sampternsved in turn,

the scatter matrix is estimated from the remainttes, class covariance matrix is estimated
according to (8) and (9) and the missing samplhés classified. This is repeated over all

samples and all classes, yielding a total numbetasssification errors. The, y that give the

lowest such total are those chosen.

Friedman reported that RDA outperformed quadratit Massification using the
individual class scatter matrices and linear ML sifésation using the pooled scatter matrix for
a range of distributions. Effectively it adaptedvibmen quadratic and linear classification on
the basis of the data. Only in the case of equghl ellipsoidal covariance matrices with
mean differences in low-dimensional subspace weslti classification with the pooled scatter
matrix able to beat RDA'’s performance marginallyd ahen only in relatively low dimensions.

Landgrebe and coauthors developed a series of éstsrhat sometimes outperform
RDA in their tests. The main difference from RDAti®sat instead of using leave-one-out
classification to find the optimal parameter vajubégsy measure the log likelihoods of the left-
out training samples for the class to which thelpig They can therefore optimize each class
in isolation. This allows them to use different gnaeters for each class, and also saves
significantly in computation time over RDA.

The most general estimator proposed by Landgrabehandollaborators is Mixed-
LOOCL1 given hy:

. tr(S) ) tr(Spooled)
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wherea +b +c, +d +€ + f =1landi=12,.K

Mixed-LOOC1 subsumes Landgrebe’s earlier models bludting terms that weight
the individual and pooled scatter matrices, thégdnals, and the identity matrix. For each
class it is required to optimize over the six paters a,b,c;,d,€, f. , and this is done by
exhaustive calculation over a coarse grid, as irARNoting from earlier work that the
multidimensional optima usually only include a pafmon-zero parameter values, Landgrebe
et al also propose a simplified version, Mixed-LaD&hat mixes terms of equation (10) in a
limited set of unequal pairs then selects the pedbrming combination. For example, Mixed-
LOOC?2 might yield an estimator that combines theslscatter matrix and the diagonal of the
pooled scatter matrix.

3 A new regularized covariance estimator (RCE)

3.1 Components of the estimator and their weight parameters

In this section a new covariance matrix estimattesl to appearance-based image processing
is introduced. In order to motivate the design, axglain why it differs from previous
approaches, it is useful to consider how the cdasster matrices may justifiably be modified
by samples from outside the class.

To begin, suppose that the class scatter matricesvel-conditioned and therefore
invertible with non-zero eigenvalues. In practiteeyt will be singular because there are
insufficient training samples, but one can imagiakling the smallest amount necessary for
numerically-stable inversion to the eigenvalues.aA®sult each class has a highly ellipsoidal
distribution. The important question is, what softoperations on the hyperellipsoids make
sense for regularizing the covariance matrix?



An n-dimensional hyperellipsoid has three fundamemaperties — its volume (a scalar),
its shape (the lengths of its axes;n-1 free if the volume is known) and its orientation
(specified byn-1 angles). In principle these can be manipulategpeddently. Changing the
volume of the scatter distribution correspondshtanging the matrix determinant or scaling all
the eigenvalues equally. Changing the shape camelspto a transformation of the eigenvalues
that is not a pure multiplication. Changing thesaotation corresponds to multiplication by an
orthogonal matrix. The manipulations actually ddoethe scatter matrix hyperellipsoid by
RDA and Mixed-LOOC alter the three properties imbinations as follows:

1. Adding a multiple of the identity matrix (as domekioth RDA and Mixed-LOOC) causes a
shape change — long axes get shorter, short otdengger — and also a volume change,
despite the weights-sum-to-1 constraint.

a. The shape change is favourable for regularizatiah diminishes the importance of
distances in the low-variance subspace whose efjggs are most dramatically
affected by the scarcity of training data. The w&ig sum with the identity matrix has
two other valuable properties: it is the simplegtichmanism for adjusting shape and it
has a direct interpretation in the pixel domairhesaddition of uncorrelated noise.

b. However, the volume change is less well motivated the use of the average of the
diagonal of a scatter matrix in both RDA and MiXedOC to “normalize” the identity
matrix term is questionable, first because it tattes volume of the non-regularized
scatter as a reliable estimator of covariance veluamd second because it corresponds
in the pixel domain to adding different amountsin€orrelated noise to each class.

2. Forming a weighted sum of the class scatter andaded or average scatter changes all
three of volume, shape and orientation. Howevas, ihe only justifiable way of effecting
an orientation change: there are no other traidatg that could rotate the scatter matrix’s
axes. In principle, the pooled matrix could be deposed into an re-orientation and a
scaling and these applied independently, but timplsi addition of matrices has the virtue
of simplicity and two obvious endpoints — the clasatter and the common scatter.

3. Forming a weighted sum with the diagonal eithethef class scatter or the pooled scatter
(as done in Mixed-LOOC but not RDA) lacks theoratipistification. If the scales of the
different dimensions are different, then theregshaps a rationale, but it is notable that the
only reported experiments in which the original LO8i@nificantly outperformed RDA [9]
were those where the covariance eigenvectors vigreed with the measurement axes and
where, therefore, the diagonal entries (the vaaanevould accidentally estimate the full
covariance.

In the light of points 1a and 2, the new estimatses the identity matrix and the common

sample scatter as components for weighted correctio the class sample scatter. Following

point 3, it does not include matrix diagonals. Thguanent of 1b relates to the weighting of the
components. A broader issue is whether globalasselvise weight parameters should be used.

Friedman’s RDA has two global parameters whichumed in the estimation of every class’s
covariance. In contrast, Mixed-LOOC1 has six patansger class, though there is also a
simplified approximation with just two per class.eThew estimator adopts global parameters
for combining a class’s scatter matrix with the coom sample scatter and the identity matrix,
but recognizing that this produces different voluamanges for each class, compensates by
classification threshold shift parameters betweshgair of classes. Section 3.3 gives details.

3.2 Objective functions and optimization method

The two global parameters of Friedman’s RDA arerojziéd by exhaustive testing over a grid
of possible values. The objective function is diesation error and so all combinations of
classes are tested and optimized together. Mixed@T®er-class parameters are also
optimized by exhaustive testing over grids of paigsvalues. The objective function is average
log likelihood of class membership which more dieeneasures change in ellipsoid shape



than RDA, although there is no clear reason whystraeild use average rather than a minimax
or some other biased measure.

Appearance-based image processing uses estima#bwutions for more than just
classification. Dimensionality reduction and reagvef missing data are two examples. An
objective function that matches the analysis tasle done may reasonably be expected to be
superior to one that describes a class in isolakonexample, for face recognition, it would be
appropriate to use separability of identities asrigerion in the estimation of face space (a
reverse of the process in [16]). Where conditicethsities are used for recovering missing
data, an appropriate objective function is the megumare error between recovered and actual
values in training data [17]. Similarly, the forratibn that follows, which is directed towards
classification, follows RDA in adopting a classiftion error criterion.

Testing parameters on a sparse grid is a global charse search for the best
combination of values. If the objective functiorstaasingle optimum, a more accurate estimate
for the same computation time would be to use adstal iterative multidimensional
optimization scheme. It is therefore an empiricaéstion which approach the new estimator
should use. Section 4 discusses this further itighe of experimental results.

3.3 Regularized Covariance Estimator (RCE) M ethod

RCE estimates the covariance matrix for cless:
Li(a,B)=aS +(1-a)Sgu + A (11)
a goes from 0 to 1 byff is allowed to vary freely so the estimate cleadg b non-normalized

effect on covariance volume (determinant). Thissdaet affect the relative values of the
eigenvalues nor the direction of the eigenvectaost is of no consequence in dimensionality
reduction or data recovery. However it mattersdiassification. RCE therefore modifies the
classification rule given by equation (2) to

d, (x) = min(d, (x), min(d, (x) + y;)) (12)

where the J, are “volume correction” scalars meant to undo tifeeréntial effects on the
volume of the different scatter matrices causethbyaddition of the samgl to each class in
equation (11). All of these are relative to clagerlwhich there is ng/; .

a and [ are tested either on a grid or at points chosenesgiglly by an optimizer. At

each sucha, [ a subset of the training samples is used to dewatatter matrices while the
remainder are classified according to the covadamestimated from (11) and the ordinary ML
decision rules (2), (3). A multivariate optimizatigs then done over th¢; s to choose the

values that when added to the ML distances as shiftsgive optimal classification. This

optimization isK-1-dimensional, so in the case of two classes, mged to finding one shift

which minimizes the classification error rate. Tiftsthen has a similar effect on the final
classification as the determinants a@atiori probability terms in (3) and (4) have.

4 Experiments on model selection

To examine the performance of the new covariandmatir and compare it with alternative
approaches, a series of experiments on two facgdrolassification problems were conducted.
Both of these used 19x19 greyscale pictures favta tlimensionality of 361. All training
images were normalized to the same luminance meénaiance and the face training images
were centred just above the nose tip. The appicativere discrimination of faces from non-
faces and discrimination between smiling and nédérees. The latter is an example of a
relatively small-sample-size problem. Table 1 sunimearthe experiments, with each major
row representing a series of related tests. Fdr ssgor row, the following were done:



1. two experiments wherer and [ were applied over a dense grid, the optimal valug/ o
calculated for each case (note that there is on& pfor two-class problems), the best

a,,B,y combination determined and then applied to a tsfThe table shows the sizes of

(a) the training subset used to estimate the saat&rices, (b) the training subset classified
by regularized estimates defined by equation (Ibmf which optimal values for

a, B,y were obtained, and (c) the test set classifiechbyfinal regularized classifier, for

one of those two experiments. In the second exgatnthe roles of the second training
subset and the test set were reversed. Table Liksr@se for the worse of those two cases.

2. unregularized quadratic ML classification and poededtter linear ML classification
experiments. The results are included in the tadledmparison.

3. a pair of 1D experiments, whose detailed resuksrat shown. In one of these, mixtures
were supplemented with weighted diagonals of tiatexcmatrices to provide a comparison
with Mixed-LOOC-type classification, and in the sad the equal weighting of the identity
matrix for all classes was replaced by an averagivce weighting as used in RDA. In
each case the form used in the new RCE outperfotheediternatives.

Briefly, table 1 shows that RCE provides much beterformance than classification
without regularization, even where the per-classna size is over five times the
dimensionality (as in the face/non-face experimeR@gularization with both the identity
matrix and a pooled or common scatter matrix isefieial, and RCE mixes these according to
sample size and the nature of the data. Mixing wathl scatter over many unclassified images
rather than pooled scatter is only of benefit atdosample sizes. The mixtures resulting from
different sets of training samples are closely xtest.

Figure 2 shows a typical, [ optimization surface where at each point the ogtijnhas

been used to calculate the log error rate. In comwith other optimization surfaces measured
during the experiments, this has multiple minimat & large area over which the results are
close to the optimal. Rather than the iterativenoiger approach suggested in sections 3.2 and
3.3 therefore, it appears that global optimizatmrer a fairly coarse grid will be most
computationally efficient for approximate solutiofddotably, a good estimation is available by
regularizing with the identity matrix alone. Sinites scales but does not rotate the axes of the
distribution, it suggests that PCA using the scatiatrix is appropriate for selecting highest-
variance dimensions, but not for scaling within sibspace.
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Figure 2. An optimization surface correspondinghifirst major row in table 1.

5 Face Detection Application

The experiments in section 4 yield regularized face non-face covariance matrices, so it is
reasonable to apply these to face detection. Twbeobest known appearance-based face



Num Estimated parameter .
Sample | samp- values Classif Error
Experiment Classes -ication
sets les per errors rate
set “ p v
Train§ 2249
Faces ng ': 1369
Test 1370 RS
Face/non-face Train§ 3203 0.7 100 -46 _ 0.30%
S - (=1370
discrimination Non-faces Trainy 1276
. +1276)
with large pool Test 1276
Unclassified Train 13200
Sotal
No regularization 73 2.76%
Pooled covariance 288 10.88%
Train§ 2249
Faces Trainy 1369 4 out
Face/non-face Test 1370 of 2646 o
discrimination Traing | 3208 | L | 1000| 29} (21370 | O-15%
with no extra Non-faces Trainy 1276 +1276)
pool Test 1276
No regularization 73 2.76%
Pooled covariance 88 3.339
Train§ 120
Smiles Trainy 44
Test 69
. Train§ 200 16 out o
dS_mll_e/r)eut_ral Neutral Trainy 100 0.5 5000 1 of 205 7.80%
iscrimination Test 136
with large pool — es
Unclassified Train
2249
faces Sotal
No regularization 68 33.2%
Pooled covariance 31 15.19
Train§ 120
Smiles Trainy 44
Smile/neutral Test 69 14 out o
discrimination Train§ 200 0.5 5000 L of 205 6.83%
with no extra Neutral Trainy 100
pool Test 136
No regularization 68 33.2%
Pooled covariance 40 19.59

Table 1. Model Selection Experiments and Resultsgeetion 4)

detectors are due to Rowley al [18] and Sung and Poggio [19]. The former uses ipialt
neural networks that scan a 20x20 window over gceézsions of the image while the latter
uses elliptic k-means training of a multimodal stame of 6 face clusters and 6 non-face
clusters with a similar scanning mechanism on 19xit@lows. Figure 3 shows examples of a
face detection scanner equivalent to those of PI8dut using maximum likelihood
classification of each 19x19 window as face or fewe, according to regularized covariance
matrices. The misdetection rates are comparableotetof [18] and [19]. Errors are illustrated
on the bottom row of figure 3 — false positivesta left and a false negative on the right. The
latter was one of only three missed faces on a rfarger test set.

Having found faces as in figure 3 it is a simplatter to feed detected windows to the
smiling/neutral classifier also developed in setdo The result for Mona Lisa, for example, is
neutral, though that face is particularly closéhis classification boundary.

6 Conclusion

The new covariance estimat®CE introduced in this paper is especially suited tpespance-
based image analysis. The new estimator differs fremavious mechanisms by: (a)



regularizing all classes in the same way, then @msating for volume distortions via shift
parameters; (b) using an application-dependentfanstion.

Although just one demonstration of regularized c@rece estimation, figure 3 is
remarkable, not because it represents a new simaitéxt classifier, but because it shows how
one of the most fundamental of statistical claseifican achieve competitive performance
when the class covariance matrices are properiynatsd. This suggests that maximum
likelihood classification between unimodal, compainvex, normal distributions should be
the baseline against which more complicated appesmare compared, and that appearance-
based image processing in general might benefit fiegularized covariance estimation.
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Figure 3. Example outputs of the Maximum Likelihoat€ Detector



