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Abstract

We are interested in learning generative mod-
els of objects that can be used in wide
range of tasks such as video summariza-
tion, image segmentation and frame inter-
polation. Learning object-based appear-
ance/shape models and estimating motion
fields (deformation field) are highly interde-
pendent problems. At the extreme, all mo-
tions can be represented as an excessively
large set of appearance exemplars. However,
a more efficient representation of a video se-
quence would save on frame description if it
described the motion from the previous frame
instead. The extreme in this direction is also
problematic as there are usually causes of ap-
pearance variability other than motion. The
flexible sprite model (Jojic and Frey 2001)
illustrates the benefits of joint modelling of
motion, shape and appearance using very
simple models. The advantage of such a
model is that each part of the model tries
to capture some of the variability in the data
until all the variability is decomposed and ex-
plained through either appearance, shape or
transformation changes. Yet, the set of mo-
tions modelled is very limited, and the resid-
ual motion is simply captured in the variance
maps of the sprites. In this paper, we de-
velop a better balance between the transfor-
mation and appearance model by explicitly
modelling arbitrary large, non-uniform mo-
tion.

1 Introduction

Our objective is to learn generative models of objects
in a visual scene so that scene analysis (such as video
summarization) can be efficiently performed. An im-
portant component of scene analysis involves learn-

ing object based appearance/shape models and esti-
mate motion reliably. These two interesting problems
of learning object based appearances and estimating
motion are extensively studied separately even though
both appearance and motion provide independent cues
for estimating each other. In this work, we introduce a
probabilistic generative model that unifies appearance
modelling and motion estimation.

A step in this direction is reported in (Jojic and Frey
2001), as a layered extension of (Frey and Jojic 1999)
for multiple objects. Here, the goal is to learn a
layered density model for image formation. Given
an input video sequence, the approach iteratively up-
dates the appearances and masks of objects associated
with each layer and the estimates of global transforma-
tion(motion) of the objects while capturing the resid-
ual motion in the variance maps of the sprites. Despite
this appearance flexibility, the model requires an ex-
cessive number of appearance classes to capture many
types of nonuniform large motions for which the trans-
lational variable is not a sufficient descriptor. We de-
scribe a new generative model for layered image forma-
tion that simultaneously learns deformation-invariant
appearances and infer complex deformation fields. We
use variational inference and generalized EM for learn-
ing and present results on flow computation, image
segmentation and frame interpolation.

2 Related work

In a scene with multiple objects, approaches to mo-
tion estimation that operate on matching patches from
one image to another (Lucas and Kanade 1981) under
perform at the boundary regions due to occlusions and
disocclusions. A good appearance model enables effec-
tive handling of boundary regions. On the other hand,
objects can undergo complex deformations, and mo-
tion provides useful cues to learn appearances (Black
and Jepson 1996). Thus, the estimation of appear-
ances and motion should be done in tandem. A popu-
lar approach to this is to use a layered representation



in which we decompose a 3 dimensional scene into a
set of 2 dimensional layers.

One such layered formalism is based on mixture mod-
els (Ayer and Sawhney 1995), (Jepson and Black
1993), (Weiss and Adelson 1996) in which each pixel
is assigned probabilistically to one of several layers.
When multiple objects are moving in a scene, there
is a fair amount of occlusions and disocclusions, and
without proper appearance models for the objects in
the scene, it is extremely difficult to find the bound-
aries of the object.

In (Black and Fleet 2000), a framework for modelling
motion discontinuities is presented. In this work, the
foreground and background are separated by a straight
edge within a single, fixed window in the image se-
quences. The image sequence within the window is
modelled by a generative model that predicts the im-
age at time t from the image at time t − 1 using un-
known state variables that describe the location of the
edge and the motions of the foreground and back-
ground. An algorithm based on particle filtering is
used to infer the location of the edge, motion vec-
tors for the foreground and the background at each
time step. Again, this approach does not have explicit
model for appearances of the objects, but instead re-
lies on straight edge to differentiate foreground and
background pixels within a small window. Moreover,
for complex object shapes, a single edge may not be
sufficient to differentiate the two layers.

In (Jojic and Frey 2001), a generative model frame-
work is used to automatically learn layers of “flexible
sprites”, which are probabilistic 2-dimensional appear-
ance maps and masks of moving, occluding objects.
An important assumption of this model is that pixels
belonging to a sprite move with the same velocity (for
instance, uniform translation). For many interesting
video sequences, this assumption is too rigid.

In (Frey, Jojic and Kannan 2003), we suggest lineariz-
ing the transformation manifold locally. This approach
has two drawbacks - it requires an additional global
transformation for finding the position and often a lin-
ear manifold is not sufficient to capture large complex
deformation. The use of low-frequency wavelets for
smooth deformation fields (Jojic et al. 2001) suffers
from the same problem.

3 Flexible sprites with deformation
fields

Fig. 1 shows the hierarchical generative model that de-
scribes the process involved in two-layer image forma-
tion. The statistical generative process is as follows:
For each layer, an appearance and a mask are gen-
erated from appropriate prior distributions associated

with object classes. We sample deformation vectors
for each pixel. The deformation field is then applied
to both the appearance and the mask. The position
variables are randomly selected and the appropriate
latent images shifted in accordance. The final image
is composed from the layers according to the masks,
which can be either continuous or discrete.

At this juncture, we would like to point out that the
deformation field is fully expressive and nonlinear, and
the model without the position variable can still cap-
ture well the correct global motion. We have added
the shift variable only to serve the purposes of regu-
larization and speedup of computation. There are too
many relatively good solutions to arbitrary matching
patches in the mean image and the observation. The
existence of the shift variable limits the search space
for the deformation field estimation, and regularizes
the search.

This is also the main difference from our earlier work
(Frey, Jojic and Kannan 2003), where we used a lin-
earizing manifold locally. To make this linearization
work, an added nonlinearity is needed, and for that
purpose, we used discrete shifts.

4 A generative model for occluded
patches in motion

Although the following discussion applies to an arbi-
trary number of layers, we consider for simplicity a
two-layer model, consisting of a foreground and a back-
ground. We treat foreground appearance (denoted by
f) and background appearance (b) as parameters that
apply to an entire sequence. (In the full model, there
are several layers and several appearance classes that
can occupy them).

We associate with the foreground layer a binary mask
m of the same size as f such that mi=1 indicates that
the corresponding pixel is a foreground pixel. Let the
probability that mi = 1 be αi so that

P (m) =
∏

i

αmi

i (1− αi)
(1−mi).

Although the multiplicative alpha map we used in
some of our previous papers is attractive for model-
ing mixed pixels, the binary mask tends to allow for a
more robust inference (Frey and Jojic 2004)(Williams
and Titsias 2003).

Each pixel in the latent images undergoes a deforma-
tion. In this paper, we use a discrete coordinate system
for clarity, although techniques for sub-pixel inference
and multi-scale search can be used. A priori the fore-
ground and background motion vectors, U and V are
independent and follow uniform distribution denoted
by P (U) and P (V). We can favor smaller motions by
using, for instance, a Gaussian prior on displacement.
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Figure 1: Illustration of the generative model using two layers. The images used in this figure are obtained by
learning the model using a video sequence of a person walking towards the camera diagonally. The deformation
model is nonlinear and is fully expressive; the additional level of global transformation provides regularization
and offers significant computational advantage as discussed in sec. 3, but could be instead absorbed into the
deformation field.



Every M × N observed frame is decomposed into a
(M −K+1)× (N −K+1) grid of K×K overlapping
patches in the spirit similar to our epitomic represen-
tations (Jojic, Frey and Kannan 2003). We let P(z)
denote the set of coordinates that are in the patch cen-
tered at z so that P(z) = {w : |w − z| ≤ K} and the
corresponding pixel intensities to be I(P(z))

For pixel It(z) in the observed image at time t, the
foreground motion vector is represented by the random
variable Ut(z), and the background motion vector by
the random variable Vt(z).

To generate a pixel It(z) in the observed image at time
t, a foreground motion vector , Ut(z) = u from P (U)
and a background motion vectorVt(z) = v from P (V)
are drawn. The intensity of the pixel in the patch P(z)
at time t is generated using :

It(w ∈ P(z)) =

f(w+u)m(w+u) ∗b(w+v)(1−m(w+u)) + noise

Thus, when m(w+u) = 1, foreground pixel intensity
is observed, and whenm(w+u) = 0, background pixel
intensity is observed at pixel location w ∈ P(z). We
assume that the (sensor) noise is Gaussian with vari-
ance σ2 so that the observation likelihood of the patch
is a Gaussian given by,

P (It(P(z))|Ut(z)=u,Vt(z)=v) ∝ exp
[

−
∑

w∈P(z)

(f(w+u)m(w+u)b(w+v)1−m(w+u)−It(w))2

2σ2

]

As in the epitome representation, we assume that the
patch appearances are independent.

Let the motion fields in all nearby frames be U and V
and the observed patches in all nearby frames be I so
that joint distribution is proportional to

P (U ,V, I,m) ∝
∏

t

∏

z

P (m)P (It(P(z))|Ut(z)=u,Vt(z)=v,m) (1)

5 Inference & Learning

For learning, the natural choice is the Expectation
Maximization algorithm (Dempster, Laird and Rubin
1977) that maximizes the likelihood of observation.
However, as exact inference is intractable, we resort
to variational approximation (Jordan et al. 1999) for
the posterior and use generalized EM (Neal and Hin-
ton 1998) for learning.

For each observed image, we approximate posterior as:

P (U,V,m|It) =
∏

z

qt(U(z),V(z))qt(m)

Letting βt
i be the probability that mi=1 given the i

th

pixel in the tth frame, and βt
i = 1-β

t
i ,

qt(m) =
∏

i

(βt
i )

miβt
i

(1−mi)

Generalized EM maximizes the bound on the (log)
probability of the data:

logP (I) ≥
∑

t

∑

z

∑

m

∑

u,v

qt(U(z),V(z))qt(m)

log
P (U(z), V (z), It(P(z)),m)

qt(U(z),V(z))qt(m)

Before, we derive the update equations, we define two
quantities: We allow every patch to shift by at most
D pixels. This reduces the search space and therefore
the computational cost. When there is large motion,
we can further reduce this search space D by incorpo-
rating global transformation, as described in sec. 3.

The set of all coordinates in the observed image whose
K × K patches can “reach” coordinate x in f or b

when moved by at most D is R(x) = {z : |x − z| ≤
(K − 1)/2 +D} The set of all motion vectors for the
patch at z in observed image that cause a pixel in the
patch to be mapped to x in f or b is

M(x, z) = {u : |(x− z)− u| ≤ (K − 1)/2; |u| ≤ D}.

The posterior distribution over the motion vectors is

qt(U(z)=u,V(z)=v) = ρ exp
[

−
1

2σ2

∑

w∈P(z)
{

βt
w(I

t(w)− f(w+u))2 + βt
w(I

t(w)− b(w+v))2
}]

(2)

where ρ ensures that
∑

u

∑

v P (U
t(z) = u,Vt(z) =

v|It) = 1. Due to the use of binary mask, the com-
putation inside the exponential splits into sum of two
distance measures. When the posterior over the mask
is peaked, pixels in the observed patch that are at-
tributed to foreground are compared with patch from
the shifted foreground, and observed pixels that be-
long to background are matched with the correspond-
ing shifted patch in the background. This distance
computation need not be done on a patch by patch
basis, but instead by observing that each pixel partic-
ipates in a large number of patches, we can employ
simple trick using cumulative sums and calculate the
distances for all patches in tandem.

The posterior distribution over the mask is

βt
w = 1/

[

1 + exp
(

∑

u,v

q(Ut(z)=u,Vt(z)=v)

((It(w)− b(w + v))2 − (It(w)− f(w + u))2)
)]

(3)



Figure 2: Top row: entire sequence of 6 frames used to train the model. Notice that one person is moving
towards the camera, inducing a zooming in effect, and another person moving in the background. Bottom
row: interpolated frame between adjacent frames in the top row. Interpolation is performed using the learned
parameters and the inferred deformation fields.

We use < . >=
∑

t

∑

z∈R(y)

∑

u∈M(y,z)

∑

v∈M(y,z)

to represent the sufficient statistic collected from all
pixels, z in all frames, t, that map pixel y and the
motion vectors for z that cause the pixel to be mapped.

The update for background appearance is:

b(y)←

〈

βt
y−vq(U

t(z)=u,Vt(z)=v)It(y−v)

〉

〈

βt
y−vq(U

t(z)=u,Vt(z)=v)

〉 (4)

The above update involves aligning the observed pixel
with respect to the background using the posterior dis-
tribution over the motion vectors and then multiplying
this with the posterior probability of the pixel belong-
ing to the background. Since multiple patches from all
the frames contribute to updating the same pixel in the
background, the denominator normalizes for multiple
counts.

The foreground appearance is updated similarly:

f(y)←

〈

βt
y−uq(U

t(z)=u,Vt(z)=v)It(y−u)

〉

〈

βt
y−uq(U

t(z)=u,Vt(z)=v)

〉 (5)

The prior probability of a pixel to be from the fore-
ground is given by:

αy ←

〈

βt
y−uq(U

t(z)=u,Vt(z)=v)

〉

〈

q(Ut(z)=u,Vt(z)=v)

〉 (6)

We initialize the appearance variables to a reference
frame (usually the middle frame in the sequence) and
let the prior distribution over the mask to be uniform.
We iterate between finding the posterior over motion
vectors and the posterior over the mask in the Estep,
and updating the appearances and the prior distribu-
tion for the mask in the Mstep. This procedure enables

inferring the layered optical flow in images. However,
in the full flexible sprites model, the chosen variational
factorization, when combined with the variational fac-
torization of the shifts in the original flexible sprites
paper leads to efficient inference and learning whose
results are shown in Fig. 1. We omit the mathemati-
cal details for brevity.

6 Experimental results

6.1 Modelling complex deformation and

appearances in two layers

For this experiment, we used 6 frames of 88× 133 RGB
sequence shown in fig. 2. The sequence has a person
moving towards the camera in front of a moving back-
ground inducing a complex deformation field. There
is also another person walking behind in the opposite
direction. The translational motion of the background
is due to camera shake.

We trained our foreground-background model on this
sequence using 5×5 overlapping patches. For compu-
tational reasons, we restricted the search space for the
foreground motion to be 4 pixels in both directions
(81 possible directions). The background motion was
restricted to 2 pixels in the horizontal direction. The
state space of the posterior distribution over the mo-
tion field has a cardinality of 405 (9×9×5×1). Upon
investigation, we found that the posterior distribution
is peaked at a few values. This fact can be used to
address the storage issue during inference. In fact, in
our experiments we store the distribution of only the
top 20 motion directions.

In Fig. 3b, we show the learned appearances of the
foreground and background, and the probability dis-
tribution of the binary mask. It is interesting to notice
that the learned mask distribution has captured the
person walking behind as part of the foreground. Also,
some of the occluded background pixels are filled in. In
fig. 3a, results of learning flexible sprites model with-
out deformation is shown. Since, the flexible sprites



a)

b)

Figure 3: Top row: Flexible sprites model Background, foreground (masked) and transparency mask learned
using the two layer sprites model on the data in Fig. 2. The complex deformation of the foreground object can’t
be modelled using this model.
Bottom row:Proposed model Learned background, foreground and probability values of binary mask learned. The
foreground appearance is invariant to deformation, and the background has lesser number of occluded pixels,
and the mask captures the person moving away from the camera as part of the foreground.

model assumes that the pixels belonging to a layer
move with the same velocity it can not handle non-
uniform motion. In fact, some of the foreground pixels
are misclassified to be background pixels as the corre-
sponding background pixels are always occluded.

Inference in this model also gives us the distribution
over the motion vectors for each pixel and for each
layer. Using this we can compute the expected motion
for each pixel by averaging the foreground and back-
ground motion weighted by their posterior probabili-
ties. The middle frame is considered as the reference
frame for which the motion is set to be 0. Fig. 4 shows
the inferred deformation field for each frame with re-
spect to the reference frame. Note, however, that our
motion field is defined with respect to the derived fore-
ground and background appearances in b and f which
have more disoccluded pixels than any frame.

The learned appearances and the inferred flow vec-
tors can be used to perform video interpolation. In
Fig. 2 we present 1 frame interpolation between adja-
cent frames. See the accompanying website for more
interpolation results.

6.2 Modelling mixtures of complex

deformation and appearances in two

layers

Our model can easily be extended to incorporate mul-
tiple layers of moving objects with appearance of each
layer modelled as a mixture model.

In this experiment, we present results for learning a
two layer model where the foreground appearance is
modelled using a Gaussian mixture with 2 classes. We
also allow the latent variables (appearances and prob-
ability masks) to be bigger than the observed image
so as to learn a panoramic background.

We learn the model using 10 RGB frames (138×148×

3) sampled from a longer video sequence (Fig. 6a).
Each frame consists of one of the two persons (mod-
elled using different classes) moving towards the cam-
era in front of a non-stationary background. Notice
that the images include scale changes in appearance
due to zoom, complex motion of hands and legs, wrin-
kles in the clothing, and large shifts in the position.

We used larger appearances and masks (138 × 178)
than the observed frames. Referring to our model in
fig. 1, we first train the model without incorporation of
the deformation to obtain the global position variables
in each layer for each frame. Once the global shifts are
inferred, we fix them to learn the deformation field and
the parameters of the model in tandem as outlined in
Sec. 5

In fig. 5, the parameters of the learned model are
shown. Frames corresponding to the first appearance
class have pixels belonging to the background that
are always occluded. However, these pixels are visi-
ble in some frames where the other appearance class
is present. By jointly modelling all the frames, we are
able to fill in for almost all the occluded pixels belong-
ing to the background for any given frame. This is
further shown in fig. 5a. If we had chosen to learn two
separate models for the two classes, the background
will not have all its corresponding pixels observed.

For the pixels belonging to the texture less pathway,
the prior probability distribution over the mask is close
to uniform (fig. 5c & e). This suggests that for those
regions that do not have enough textural variations to
group them as belonging to one of the two layers, it is
at best to assign equal probability for either layer to
explain them.

In fig. 6, we present inference results for some repre-
sentative frames, shown in fig. 6a. Fig. 6b is the corre-
sponding inferred deformation field shifted according
to inferred global transformation. The flow vectors



Figure 4: Inferred deformation field corresponding to the image sequence shown in Fig. 2(the flow field is drawn
with reference to the fourth frame which is not shown here)

a b c d e

Figure 5: Parameters of two layered two class model learned using 10 frames from a video sequence (representative
frames in fig. 6 a)Learned background is larger than the size of input image b) Appearance of foreground object of
class 1 and c) the corresponding probability distribution of the binary mask (with white referring to probability
of 1 for the pixel belonging to foreground ) d) & e) appearance and probability mask of the second class of
foreground layer.

a b c d e f

Figure 6: Illustration of inference for some frames of the sequence explained in sec. 6.2 a) frames from a sequence.
b) Deformation field for the background. c) Deformed, globally transformed background. d) Deformation field
for the foreground (masked). e) Distribution for the mask after global transformation is applied. f) Mask applied
on the frame in a)



are drawn relative to the learned parameters. Each
vector in this field represents the most probable (that
vector that has the largest posterior probability) defor-
mation vector for that pixel. The inferred deformation
field for the foreground appearance is in fig. 6c. It is
interesting to note that the deformation vectors for
appearance are smoother and more consistent along
the boundaries than on the central regions of the fore-
ground object. As our approach learns a good ap-
pearance model, the boundaries of the objects are well
defined but the motion within the object is not very
coherent due to lack of enough texture variation be-
tween adjacent patches to reliably favor a particular
motion direction. We contrast this with inferred flow
vectors in the previous experiment (fig. 4) where we
had enough textural variation in the central region of
object of interest that we learned a much smoother
flow field.

7 Conclusions

We have enriched the flexible sprites model with
the deformable motion variables defined on over-
lapping patches. We assume that in each patch
there exist two motion vectors and that some pix-
els are following one and others the other motion.
The selection is defined by a patch of binary vari-
ables. These patches are also overlapping in the
model of the mask, aligned with one of the layers.
We were able to use this model of motion within
the flexible sprites model and obtain better appear-
ance, mask and motion estimates. See the web page
http://www.psi.utoronto.ca/∼anitha/flex.html for ad-
ditional results and videos.
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