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Abstract

To encourage open source/libre software development,
it is desirable to have tools that can help to identify open
source license violations. This paper describes the imple-
mentation of a tool that matches open source programs
embedded inside pirate programs. The problem of binary
program matching can be approximated by analyzing the
similarity of program fragments generated from low-level
instructions. These fragments are syntax trees that can
be compared by using a tree distance function. Tree dis-
tance functions are generally very costly. Sequentially cal-
culating the similarities of fragments with them becomes
prohibitively expensive. In this paper we experimentally
demonstrate how a spatial index can be used to substan-
tially increase matching performance. These techniques al-
lowed us to do exhaustive experiments that confirmed pre-
vious results on the subject. The paper also introduces the
novel idea of using information retrieval techniques for cal-
culating the similarity of bags of program fragments. It is
possible to identify programs even when they are heavily
obfuscated with the innovative approach described here.

1 Introduction

Presently, the most popular open source software license
is the General Public License (GPL). Individuals are al-
lowed to copy, study, modify and redistribute software with
this license. When the binary form of the software is dis-
tributed, the corresponding source must be accessible. Oth-
erwise a GPL violation[4] occurs. Other open source li-
censes have the same restriction.

Our main objective is to create a tool capable of detect-
ing these violations. Specifically, our goal is to receive a
pirate program (suspected to contain libre software in it) as
a query, and return to the user a list of n candidates (libre

software) that are likely to be embedded in it. Once the
candidates have been found, a more detailed and intensive
analysis can be conducted. We want to protect as many li-
bre programs as possible at the same time. In other words,
we want to build an information retrieval system for pro-
grams. As explained in section 6.2, techniques like extract-
ing the “strings” of a program or partitioning the program
into blocks (“comparator”), can be easily obfuscated. Our
techniques must work even when the binary programs have
been obfuscated.

Recent research on approximate program matching [30]
showed promising results. The technique works by parti-
tioning a program into fragments. Those fragments become
a fingerprint of the program. In previous work [30], we in-
correctly called these fingerprints “slices”. As we shall see
in section 2, the term fragment is more appropriate. Frag-
ments are expressions that can be represented by a tree.
We use the terms fragment and tree interchangeably. The
matching between two programs is achieved by comparing
two bags of trees with a tree edit distance function d. The
idea is to find pairs of similar trees between the bags. Once
these pairs have been found, a score based on the frequency
of the matched fragments is calculated. This score indicates
the degree of similarity of two programs.

The generally accepted similarity measure for trees is the
tree-edit distance[37]. This distance function is very ex-
pensive to calculate. Other distance functions [42, 30] are
faster, but less precise. Even when these faster functions
are used, matching all the trees in a database of programs
becomes prohibitively expensive. Filtering is necessary to
reduce the amount of distance computations required.

A spatial database is a database that can store and query
data related to objects in space such as points, lines and
polygons. A spatial index is used to optimize queries on
spatial databases. The R-tree[22] is a typical spatial index.
Nearest Neighbor Search is a numerical optimization prob-
lem for finding similar points in multidimensional metric



spaces. A k-nn search is a nearest neighbor search that finds
the k closest elements to a given object. A range r can also
be used to get objects that are r distance units away from
the query.

The main contribution of this paper is to show how a spa-
tial index improves program matching performance when
combined with a tree-edit distance function. A dimen-
sion reduction technique called SMAP is used to achieve
this. This allowed us to do extensive experiments. Predic-
tions derived from our previous empirical results[30] have
been confirmed. The previous ranking technique has been
changed to produce better results.

We compare two indexing techniques with different pa-
rameters. One of the methods is based on a spatial index (R-
tree) and the other on sequential search. We experimentally
demonstrate that for small ranges and for small k, a spatial
index can deliver the best performance. For bigger ranges,
the spatial index method loses its effectiveness against the
second method. We also compare two different program
ranking techniques and empirically validate their effective-
ness.

In this research we have not considered code segment
encryption obfuscation techniques. The binary must be un-
encrypted before we can analyze it.

Section 2 gives background information on how frag-
ments are extracted from a binary program. Section 3 de-
scribes the distance function used to match trees. Sections 4
and 5 explain respectively, the techniques used for match-
ing trees and the experimental results obtained. In section 6
we detail some related research. Section 7 summarizes the
results of this paper and indicates future directions.

2 Program Fragments

An SSA graph is a program representation. Each node
contains sequences of assignment statements. The last
statement of a node can be a control flow statement (jump,
goto). Each variable is assigned exactly once. If a variable
has more than one assignment, a new sub-indexed version
of the variable is created. Figure 1 shows how the function
f may be represented in SSA form. The variables res and
count have a subindex that uniquely identifies each assign-
ment. The φ function selects one of its parameters depend-
ing on the previously executed basic block.

Initially, a binary program is converted into SSA
form[18]. The transformation from a binary program to an
SSA representation is outside the scope of this paper. A de-
tailed explanation can be found here[25]. The next step is to
take all the assignment expressions within each basic block
of the SSA graph and generate fragments from them.

Fragments are generated by taking all the right hand side
expressions of all the assignments in the SSA graph. Then,
we recursively copy the right hand side of all the references

f(int i){
int res = 1;
int count = 1;
while(count <= i){

res = res × count;
count++;

}
return res;

}

i0 = i

res = 1

count = 1

block-0:
count1 = φ(count, count2)

res1 = φ(res, res2)

if count1 > i0 goto block-1

res2 = res1 × count1

count2 = count1 + 1

goto block-0

block-1:
return res1

Figure 1. SSA representation and its corre-
sponding source code

to other variables. We expand a variable only once to pre-
vent infinite expansions. Note that a fragment of three nodes
corresponds to one machine instruction with two operands.
As an example, the fragment for variable count1 in figure 1
is φ(1,+(count1, 1)). Expressions that cannot be expanded
“enough” are discarded because very short expressions are
too common to be useful. In our experiments we have ob-
served that trees smaller than five nodes are not useful and
affect the results negatively. This is analogous to what in-
formation retrieval systems do when they search natural lan-
guage. In English, very common words like “the” or “an”
are ignored. In a similar way, small fragments are too com-
mon to be useful.

Our fragment extraction process is described in more de-
tail here [30]. In this paper we incorrectly used the term
“slice” instead of fragment. The original definition intro-
duced by Weiser [47] stated that slices are complete pro-
grams. It is obvious that fragments do not satisfy this prop-
erty as they ignore control flow information.

Note that our fragments can be extracted from any rep-
resentation that can abstract a binary program into a se-
ries of assignment expressions. Control flow information
is not required. In practice, an SSA graph is convenient
because different static analysis can be done before creat-
ing the fragments. If an obfuscation prevents our technique



from abstracting the program into a series of assignments, a
dynamic fragment extraction approach could be applied.

As a general rule, fragments not modified by some ob-
fuscator, might be modified by another obfuscator. Taking
this into account, we can make three observations of se-
mantics preserving transformations. First, we can insert in-
structions that do not affect the original assignments. New
fragments will be created, but the original fragments will re-
main the same. We also can insert branches that will never
be reached. Therefore it is possible to assign garbage to
any local variable as many times as we want without af-
fecting the semantics of the program. This transformation
will create huge φ expressions that will never be matched
by the techniques presented here as the distance can grow
as much as the obfuscator developer wants. The parameters
of this φ function will have to be modified too, otherwise
those fragments will be matched independently. Modify-
ing all the fragments of a method could create huge binary
executables.

The second observation is that if portions of the binary
code are detected to be unreachable they can be deleted by
the obfuscator or compiler. If the obfuscator or compiler
uses information contained in the original source code of
the program, our static analyzer might not be able to re-
move those fragments. If the obfuscator/compiler uses only
binary-level information then a good static analyzer might
be able to delete those fragments too. This attack can only
be prevented with a robust static analyzer.

The third observation is that a combination of insertions
and deletions of instructions, can replace sequences of in-
structions. For instance a × 2 could be replaced by a + a.
Some of those transformations can be normalized automati-
cally. Some can be created by hand using expert knowledge.
Others will require more special techniques like the ones
described by Walenstein et al.[46]. Even if the normaliza-
tion fails to completely reconstruct the original expression,
the tree distance (section 3) might be lower or equal than r,
allowing the match. Good term rewriting rules and a good
distance function are ways to reduce the damage caused by
this attack.

We believe that creating big φ functions is the obfusca-
tion which can cause more damage to our technique.

We are currently exploring other fragment extraction
strategies that are less vulnerable to this attack.

3 Fragment Similarity

As fragments are expressions, they can be represented by
trees. To match fragments, we use a tree distance function.
The generally accepted similarity measure for trees is the
tree-edit distance introduced by Tai[37]. This problem is
known to be NP-hard for unordered trees. The algorithms
available for ordered trees are at least O(n3).

a b b c c

a

b d

a b b d d

a

b c

Figure 2. Fragment Similarity

We implemented the algorithm presented by Weimann
et al. [19]. Even when using Yang’s [48] filtering approach
the function was not fast enough. Instead, we implemented
a distance heuristic that mimics the behavior of the tree-edit
distance function. Let E be the set of all fragment expres-
sions. The function tl takes as an input a tree t. It returns a
multi-set of all subtrees that compose t including t. Also for
each included node, a copy of the element without children
is added. We add this to balance the case where the node
exists in both trees, but the parameters differ. The struc-
tural length l : E → N of a fragment s is l(s) = |tl(s)|.
Algorithm 1 defines the d function. Because the function
tl always returns an even number of elements, the resulting
value from d is always in N. The size of a fragment s is l(s)

2 .
An example of tl for trees a(b, c) and a(b, d) can be

found in figure 2. Each box represents the sets created by tl
for each of the input trees. The arrows show the elements
that will belong to the intersection operation internally per-
formed by d. Calculating d for both trees returns:

d(a(b, c), a(b, d)) = (6+6)−(2×3)
2 = 3

Note that a, b, c and d are not variable identifiers. They
are low-level machine instruction codes or operands. The
algorithm that extracts the fragments from the SSA graph
guarantees this. This function has a worst-case complexity
greater than O(n2), but smaller than O(n3).

Note that d returns 2 for two fragments like “+(a, b)”
and “∗(a, b)”. They are syntactically close but semantically
different. If r ≤ 2 both fragments will be considered equal
by the program ranking techniques described in 4.3.

Algorithm 1 d function
d : E × E → N
d(e1, e2) =

(l(e1)+l(e2))−(2×|tl(e1)∩tl(e2)|)
2

Where ∩ is the multi-set intersection operation.

4 Matching Bags of Fragments (Programs)

This section explains the techniques used to match pro-
grams. In the following, we describe how spatial indexes



can be used to improve performance. In section 4.2 we de-
scribe the sequential search employed. Section 4.3 details
two similarity measures for bags of fragments.

4.1 Spatial Indexes

In Euclidean metric spaces, approximate retrieval is effi-
ciently realized by the spatial indexing method R-tree [22].
Trees cannot be directly indexed by a spatial index. Shino-
hara and Ishizaka[35] introduced a method called SMAP to
index objects in any metric space.

To use a spatial index, a tree must be mapped into a tuple.
This can be achieved by first selecting i pivots p1 . . . pi from
the database. The tuple of an object o will have the form
(d(o, p1), d(o, p2), . . . , d(o, pi)). Of course, other proper-
ties like q-grams[32] or node depths [24] can be added to
the vector if they are compatible with d. Once the vector is
created, the trees can be stored in a spatial indexing method.
For this technique to work, it is necessary to configure the
R-tree to use the Chebyshev or L∞ distance. This distance
will compute a lower bound of d. If this bound is smaller
or equal to r then the tree distance function can be com-
puted. In this way, the number of computations of d is re-
duced considerably. Current pivot selection strategies help
to reduce the amount of computations of d by 95%. See sec-
tion 5.1.3 for more details on this. SMAP is a relatively new
technique, pivot selection strategies are continuously being
developed. As these strategies improve better performance
may be achieved.

This technique can be used with any distance function
that satisfies the triangular inequality. The spatial index we
used is a packed R-tree. To our knowledge, this is the first
time SMAP is used to match trees.

4.2 Sequential Matching

The sequential matcher takes each of the fragments of
the query and matches them against the database. A “tree
size” filter was employed. The filter only matches trees
from the database whose size is in the range [min −
r, max + r], where min is the size of the smallest tree
from the query and max is the size of the biggest tree of
the query. Additionally, if the sizes of the fragments differ
by more than r, we discard the pair as we know that the real
distance is greater or equal than r.

It is not scalable to load into memory all the trees from
the database at the same time. What we did to overcome this
difficulty was to load all the trees from the query in memory
and match each object of the database against the query. A
priority queue can be used to store partial results. Parsing a
tree from its string representation has an important effect in
performance. “Tree-caching” is required to minimize this

important performance bottleneck. The idea is to keep in
memory frequently accessed trees.

This method consumes very little memory and takes ad-
vantage of sequential access of files and of memory locality
as the entire query can fit in cache (CPU) memory.

4.3 Ranking

In previous work [30] the scoring used for an application
A and a query Q was a naive calculation: |Q∩A|

|A| where two
fragments s1 and s2 are considered equal if d(s1, s2) ≤ r.
We will call this ranking “NR”. As section 5.2 details,
by using this we were not able to achieve reliable results.
We wanted to match programs by taking into account the
rareness of their fragments. Also, we wanted to consider the
distribution of the fragments (frequency) in the query. Such
techniques have been explored for years by information re-
trieval researchers[8]. We assume that a bag of fragments is
analogous to a text document and a word in a document is
analogous to a fragment.

Information retrieval systems use techniques like stem-
ming to normalize natural language words to a common
base “root”. This helps to improve retrieval results. This
stemming is analogous to the technique introduced in sec-
tion 3. What the distance function d allows is to associate
a possibly obfuscated fragment to a fragment that is in the
database. Fragments stored in the database can be consid-
ered analogous to a word’s root.

When a database of libre programs is to be constructed,
fragments are stored in the spatial index. Additionally, the
information of what fragments belong to which documents
(programs) is saved into an information retrieval system.
Once we receive a query, we use d to find similar fragments
in the database within a range r. The next step is to create
an artificial document with the fragments obtained in the
previous step. This document can be then fed into an infor-
mation retrieval system as a query and the top n returned
documents will be the candidates. When a web search en-
gine allows the user to find pages similar to another page,
an analogous procedure is taking place. In this paper, we
call the previously described ranking “IR”.

Note that information on where the fragments are located
(module, function) is never stored. Contrary to what we
stated in [30], this is key in protecting our technique from
in-lining attacks. An in-lining attack will change the posi-
tion of the fragments, and their frequency. The first problem
is irrelevant for our matching method, and the second one
can be compensated by using a robust scoring technique.

For this research, we employed an open source informa-
tion retrieval software called Lucene[1]. As an efficiency
consideration, the information retrieval system can be filled
with documents that contain fragment identification num-
bers. The query itself can also be constructed from fragment



identification numbers.

5 Case Studies

Since our main motivation is the detection of license vi-
olations, we set up a database of open source programs.
Various programs are matched against the database and the
corresponding results are analyzed. We executed our exper-
iments on Java byte-code.

In section 5.1 we explain the performance results ob-
tained. In section 5.2, the quality of the matching procedure
is described.

5.1 Performance

In this subsection, we compare the running time of dif-
ferent configurations of a spatial index (PRTREE) and the
sequential method (SEQ). We execute each configuration
with the same query (one program) and the same database.
Execution times and the number of distance computations d
performed are measured. Also, results for different k and r
parameters are shown.

All the tests were done on a database of 340,000 dif-
ferent fragments. The fragment sizes range between 1 and
500 nodes. The query has 1641 fragments and the fragment
sizes range between 15 and 30 nodes. The on-disk database
size is 30MB. The query size is 100kb. An Ubuntu Linux
6.06 64 bit machine was used to run the experiments. The
hardware configuration included two Xeon 64 bit 3.20 GHz
processors and 2GB of RAM. The prototype implementa-
tion was written in C++.

5.1.1 Optimization by Tree Size

We explored the impact of the naive tree filtering strategy
described in section 4.2. Experimentally, we found that for
our distance function, tuples of 30 pivots are optimal. We
reduced the pivot tuple to 29 elements and added a tree
size dimension. Figure 3 shows the effects of using 30
pivots (PRTREE, SEQ) or 29 pivots with size filtering
(PRTREEn, SEQn). For PRTREEn, the performance
is not affected. For SEQn, the performance is improved
substantially as irrelevant trees are discarded. From this
point we use the 29 pivot spatial index with one dimension
for size.

5.1.2 Using Cache

We added tree caching (section 4.2) to study its effects in
performance. Figure 4 shows the effect of this optimiza-
tion. For r = 3, PRTREEncache outperforms all the other
methods. The execution time is 390 seconds. Compare it
with SEQ in figure 3 (10 hours).

0
5000

10000
15000
20000
25000
30000
35000
40000

10/105/105/75/32/3

parameters k and r

Execution time in seconds

PRTREEn

PRTREE
SEQn

SEQ

Figure 3. Pruning by tree size

0

2000

4000

6000

8000

10000

12000

14000

16000

10/105/105/75/32/3

parameters k and r

Execution time in seconds

SEQncache

PRTREEncache

PRTREEn

Figure 4. Using Cache

For r ≥ 7 the sequential method SEQncache outper-
forms the spatial index. Since the range is relatively big, the
R-tree is reading randomly almost all the disk pages. The
fact that SEQncache is reading the fragments sequentially
improves performance.

5.1.3 Distance Computation

The number of distance computations performed is shown
in figure 5. Because SMAP is calculating a lower bound
of d, many pairs of fragments can be discarded. Distance
computations are reduced by 95%. The average execution
time for SMAP’s L∞ was 0.0004 milliseconds. For d it was
0.005 milliseconds.

5.1.4 Results Summary

For small k and r, a spatial index configured with SMAP
and tree caching can improve the performance a hundred
times.



0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

10/105/105/75/32/3

parameters k and r

Calculation count for d

PRTREEn

SEQn

Figure 5. Distance computations

5.2 Program Matching

In this section, we compare the precision of NR and IR
ranking techniques. Our main goal is to verify if our tech-
niques can uniquely identify programs in a relatively large
database of programs.

A database of Java programs was created by manually
downloading binary packages from the Internet and extract-
ing their class files. Also we downloaded Java programs
from JPackage[5]. A total of 1878 programs were down-
loaded. The binary to SSA generation procedure failed
for some cases and only 1673 programs were processed
successfully. All these programs were fragmented and a
database of 1673 applications was created. The fragment
sizes range from 1 to 1000. Many types of programs were
indexed. From a P2P program called “limewire” to a text
editor called “jedit” or an application server called “jboss”.
The bag of fragments extracted contains 23 million frag-
ments. The set holds 468,505 fragments. Applications with
as little as 2 fragments and as many as 255,998 fragments
were indexed.

The SSA graphs are extracted with the soot optimization
framework [44]. Our prototype is written in Java and is
called “Furia”.

Obfuscators usually require to have access to program
dependencies (libraries). Therefore only JPackage applica-
tions were used for the experiments with obfuscated pro-
grams. Even though program dependency meta-data is pro-
vided by JPackage, not all the programs were obfuscated
successfully due to different errors.

Three different sets of queries (pirate programs) were
created. All the sets are created from applications that
are also in the database. Set A consists of applications
with unmodified binaries (just as they were inserted in the
database). Set B consists of applications obfuscated with
Zelix Klass Master (ZKM)[6] version 4.5. Method, class
and field names are shortened. Unused classes, methods or

Set Transformation # of Programs
A default 1293
B Zelix 290
C Sandmark 281

Table 1. Query Sets

fields are removed. This obfuscator encrypts all the strings
embedded in the byte-code and the decryption code has its
control flow obfuscated in each method. Control flow ob-
fuscation was set to the maximum level.

Set C was obfuscated with Sandmark 3.4 [2]. We applied
37 of the 39 obfuscation phases available. The phases not
applied were “Irreducibility” and “Class Encrypter”. The
first phase was disabled because soot can have issues with
this transformation. The second one was disabled because
class encryption attacks are outside the scope of this re-
search. We gave Sandmark an average of 22 seconds per
phase to complete and a total of 18 minutes per applica-
tion. This timeout is set because occasionally, this obfusca-
tor runs for many hours without completing a phase. Ob-
fuscation phase examples are “Insert Opaque Predicates”,
“Buggy Code”, “Inliner” and “BLOAT”.

Also we have found that queries whose set of fragments
is lower than 100 will not be retrieved successfully. All
queries have 100 or more different fragments.

Table 1 summarizes each of the query sets. The num-
ber of queries for Zelix and Sandmark are different because
Sandmark failed to obfuscate some programs. When we
were trying to run a sample of 10 programs obfuscated with
Sandmark, only 3 were able to execute.

We consider a false negative when no result is returned
and we know the query is in the database. A false positive
occurs when the query that is known to be in the database
is not returned within the top n results. A match is consid-
ered successful if the program we are looking for appears
within the top n results. The value of n is 10 for all the
experiments. This value was determined by observing the
results of experiment A for IR. The same procedure can
be applied when creating new databases. For the following
experiments, r = 3 and k = 3.

5.2.1 Overall Precision

Table 2 shows the result for IR. %X denotes the accumu-
lated percentage of identifications for the query set X . The
value m(X) is the number of matches found for set X . The
column n indicates in what position of the candidate list the
programs were found. For query sets A and B, identifica-
tion reaches 100%. In the case of Sandmark, 96% of the
applications were identified. The remaining 4% are false
positives.



Table 4 displays the results when using the NR scheme.
Not even in experiment A this ranking is capable of achiev-
ing reliable results. Tables 3 and 5 display a summary of the
experiments for IR and NR. No false negatives were found
for both ranking techniques. The number of unidentified
applications starts in 109 for NR and is only 11 for IR.

5.2.2 Range Effects

For NR, increasing r slightly improves the results in some
cases. Table 6 summarizes how different ranges affect the
results for NR. Greater ranges improve experiment B at the
expense of A. When the range increases, syntactically sim-
ilar but semantically different fragments can be matched as
described in section 3. IR was not improved when changing
ranges. By using r = 0 none of the three sets of experi-
ments change. The ranking technique IR is robust enough
to return correct results even in this case.

5.2.3 Violation Detection

In this section we show how our program can be used in
real-life violation detections. The ranking used was IR. A
violation is detected when components of the pirate pro-
gram are inside the database. All the candidates must be
included in the top n returned results. In the query set B
when matching the application “ccmtools”, the following is
returned by the system:

antlr-2.7.6-1jpp.noarch
antlr-2.7.6-1jpp.noarch.rpm.jpackage
antlr
ccmtools

The first two lines are a duplicated entry in the database.
The third is another version of “antlr”. When exploring the
class files of “ccmtools” we found that the program “antlr”
is embedded in its class file directory. The first three can-
didates are at the top of the list because their fragments
are less common than the fragments “ccmtools” contains.
Lucene gives more weight to matches containing few un-
common fragments than matches of many common frag-
ments. As a side note, the pirate program case study pre-
sented in [30] was also successful.

5.2.4 Results Summary

Our experiments show that 96% of the time IR will return
correct results for Sandmark (C). For ZKM (B), 100% of
the queries were answered correctly. NR is not reliable as
only 22% of the queries were correctly identified. The NR
scheme fails to achieve acceptable results because all the
fragments have the same weight. Also, the distribution of
the fragments in the query and in the index are not taken
into account.

n %A m(A) %B m(B) %C m(C)
1 97.3 1259 96.8 281 87.5 246
2 98.8 19 99.6 8 90.7 9
3 99.3 7 100 1 92.1 4
4 99.8 6 – – 93.5 4
5 99.9 1 – – 94.6 3
6 99.9 0 – – 94.6 0
7 99.9 0 – – 95.0 1
8 99.9 0 – – 95.3 1
9 100 1 – – 95.7 1

10 – – – – 96.0 1

Table 2. IR ranking

Set Total Identified Not Ident. False Pos.%
A 1293 1293(100%) 0(0%) 0(0%)
B 290 290(100%) 0(0%) 0(0%)
C 281 270(96%) 11(3.9%) 11(3.9%)

Table 3. IR summary

n %A m(A) %B m(B) %C m(C)
1 18.2 236 4.4 13 9.6 27
2 33.2 194 15.8 33 12.8 9
3 49.1 206 25.5 28 14.2 4
4 59.0 127 33.4 23 16.0 5
5 65.1 80 40.0 19 17.7 5
6 69.9 61 45.5 16 18.1 1
7 73.7 50 51.0 16 19.5 4
8 77.4 48 54.1 9 20.6 3
9 80.6 41 58.2 12 21.3 2

10 83.6 38 62.4 12 22.7 4

Table 4. NR ranking

Set Total Identified Not Ident. False Pos.%
A 1293 1081(83.6%) 212(16.3%) 212(16.3%)
B 290 181(62.4%) 109(37.5%) 109(37.5%)
C 281 64(22.7%) 217(77.2%) 217(77.2%)

Table 5. NR summary

Set r = 3 r = 7 r = 10 r = 15
A 1081 1076 1075 1074
B 181 186 188 191
C 64 64 65 64

Table 6. Identified applications when chang-
ing r (NR)



6 Related Research

The main obstacle present in the field of program match-
ing is the fact that checking the semantic equivalence be-
tween two programs is undecidable. Pattern matching ap-
proaches cannot be used because different compilers pro-
duce different binary programs. Even the same compiler
can generate different outputs depending on the optimiza-
tion or code generation flags used. Furthermore, the fact
that obfuscator programs can mangle the binary enough to
prevent reverse engineering[17], imposes a challenge. Also,
several important static analysis problems are undecidable
or computationally hard[27, 31].

Nevertheless, a result by Barak et al. [10] proves that in
general program obfuscation is impossible. This leads us to
believe that a computationally bounded obfuscator will not
be able to obfuscate a program completely. Approximation
attempts have been successful in restricted domains[45, 23].

In section 6.1 we introduce different tree matching tech-
niques. In section 6.2, several approaches that can be used
for program matching are described.

6.1 Tree Matching

Several approaches exist to match trees. Some tech-
niques focus on improving the distance computation of a
pair of trees. Weimann et al.[19] implemented a tree-edit
distance algorithm with complexity O(n3). Touzet[42] pro-
posed an O(nk3) algorithm for trees with k or less er-
rors. Chawathe[13] proposed a distance function that is op-
timized for external storage. Augsten et al.[7] introduced an
O(n) distance that is more sensitive to structure changes.

Other techniques try to minimize the amount of dis-
tance computations[48, 21, 32]. The approach followed by
Kailing[24] is of particular interest. This technique gener-
ates vectors of tree features. Those vectors can be indexed
in a spatial index. In their paper, they used the X-tree[12].

A more recent work by Yang et al. has outperformed
Kailing’s work by combining n-grams and an optimal fil-
ter and refine technique proposed by Seidl and Kriegel [34].
The techniques employed by Kailing and Yang, are based
on the standard definition of tree-edit distance and they
might not work well if the distance function is changed. To
achieve our main objective, we might need to use different
tree-edit distance definitions. Therefore it was necessary
to find a more general approach. The M-tree[15] is general
enough to satisfy our needs, however a combination of an R-
tree and a dimension reduction technique called SMAP[35]
performs much better in practice. We experimentally con-
firmed this for trees.

6.2 Program Matching

A first approach is to match programs by the strings they
have in common. The “strings” technique for detecting vi-
olations is not robust enough, as obfuscators can encrypt
the strings embedded in a program. Baker[9] introduced
some techniques based on adapting existing source code
similarity analysis tools. A prototype was implemented and
validated for Java byte-code programs. The author recog-
nizes that those techniques cannot work with obfuscated
programs as they are sensitive to the order in which instruc-
tions occur.

Watermarking is a technique that embeds stealthy infor-
mation that identifies the program author (either in a static
[29] or dynamic [16] manner). Since the source code of
the applications we want to protect is open and available to
anyone, this technique cannot be employed.

A technique called clone detection [11, 36] is used to
detect duplicate fragments of code in source code to reduce
maintainability problems in software projects. Automatic
tools for measuring software similarity [33, 28] have been
also created to perform plagiarism detection. Nevertheless,
the source code for the application that illegally contains
libre software is not available in our problem setting.

Birth-marking [38, 39, 40] is a technique that extracts
unique and “native” characteristics of every class file. The
approach relies heavily on class information that is only
found in higher level binary representations such as the Java
Byte-code. The technique has been tested in very small
databases only. Our approach is more general because it
only requires that the binary program can be abstracted into
a series of assignment statements.

A dynamic approach that collects birth-marks on sys-
tem API access patterns was proposed [41]. The technique
works by analyzing the sequence and the frequency of func-
tion calls of a program. This approach has been validated
only with small datasets and it is not clear how well it scales.

Malicious code detection [14] is a technique used to
find obfuscated viruses in programs. It works on annotated
Control Flow graphs using a Malicious Code Automaton
(MCA) that can be seen as an extended regular expression.
In this work the matching is done by finding if the malicious
pattern described by the MCA is in the annotated CFG. The
approach is powerful but an automatic MCA generator al-
gorithm is not available. As viruses are relatively small, a
manual construction approach is feasible. Building an au-
tomatic MCA generator that takes into account all the pos-
sible transformations made by all the compilers and obfus-
cators seems much more complicated than the proposal we
are presenting here.

Dullien and Rolles[20] introduced a method that creates
optimal isomorphisms between sets of instructions. The
method recursively finds similar pairs of graphs at the pro-



gram, control flow graph, and basic block level. The au-
thors point out that in-lining of complex functions can affect
the matching performance. As explained in section 4.3, our
technique can match fragments independently of where they
are located and therefore in-lining attacks are less likely to
affect the results.

Eric Raymond’s program “comparator”[3] works by par-
titioning a program into small blocks that are matched af-
terwards. An important feature is that the position of the
blocks is irrelevant in the matching process. This is similar
to our technique, however Raymond’s approach is vulner-
able to trivial renaming of variables and obfuscation. Our
approach solves this by removing variable names altogether.

7 Conclusions and Future Work

We have experimentally demonstrated how spatial in-
dexes can substantially improve the performance of an ap-
proximate program matcher. We also have improved iden-
tification results by using information retrieval techniques.
With the techniques presented in this paper, it is possible to
identify programs even if they are heavily obfuscated.

To take advantage of the locality characteristics that the
sequential method enjoys, it is necessary to sort the frag-
ments of the query in a way that optimizes disk caching.
Tree caching has an important effect in performance. A
cache manager that disposes less frequently accessed frag-
ments to conserve memory has to be implemented for the
R-tree. All these improvements shall be explored in the fu-
ture.

Further improvements are required for eliminating false
positives. The IR ranking method has information that can
be used for this purpose. We are currently working on this.
A possible way of achieving this would be to adapt more
intensive techniques[26, 43, 20] to binary programs. This
is feasible because with the results presented in this pa-
per, only n programs have to be processed. As long as the
fragmentation technique employed generates unique finger-
prints, n should be small. In our case studies, n = 10. A
method for rejecting pairs of fragments that are syntacti-
cally close but semantically different is required.

The matching technique we have presented here is sim-
plified in the sense that it does not use unexpanded frag-
ment references to make sure that the relationships among
fragments are preserved. Using this information may in-
troduce false negatives. Nevertheless, the ability to exhaus-
tively confirm a candidate is desirable in our application do-
main. An important feature we have not implemented yet is
fragment normalization. We believe that it may be possible
to automatically or semi-automatically learn fragment nor-
malization rules. Future research shall focus on all these
aspects.

Other possible applications of this research include ap-
proximate malware detection, and low-level functionality
duplication detection to reduce maintainability problems.
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