
A graph-coloring approach to the allocation and tasks
scheduling for reconfigurable architectures

Marco Giorgetta Marco Santambrogio Donatella Sciuto Paola Spoletini

Politecnico di Milano
Dipartimento di Elettronica e Informazione

Via Ponzio 34/5
20133 Milano, Italy

{giorgett,santambr,sciuto,spoleti}@elet.polimi.it

ABSTRACT
Designing systems mapped onto FPGAs that foresee a dy-
namic reconfiguration of the application is a difficult task.
It requires that the identification of the reconfigurable tasks
and their allocation onto the FPGA must be defined during
the design phases. Furthermore, also the schedule of dy-
namic reconfigurations must be defined. This paper presents
an improved scheduling and allocation of reconfigurable tasks
onto an FPGA, based on the coloring problem. The pro-
posed algorthm stems from the one previously presented [1],
but introduces backtracking to improve the performance in
terms of number of number of colors, that represent FP-
GAs areas. The new algorithm has been experimented on
the Xilinx-based architecture defined to support dynamic
reconfigurability [2].

1. INTRODUCTION
Most applications running on FPGA-based systems are

implemented using a single configuration per FPGA, an ex-
ample of this solution is SPLASH, [3]. This means that the
functionality of the circuit does not change while the appli-
cation is running. Such an application can be referred to
as being Compile-Time Reconfigurable, CTR, because the
entire configuration is determined at the compile-time and
does not change throughout system operation. Another im-
plementation strategy is to implement an application with
multiple configurations per FPGA [4], [5], [6]. In this sce-
nario the application is divided into time-exclusive opera-
tions that need not, or cannot, operate concurrently. Each
operation is implemented as a distinct configuration which
can be donwloaded into the FPGA as necessary at run-time
during application operation. This approach is referred to
as Run-Time Reconfiguration, RTR or Dynamic Reconfigu-
ration.

In [7] the authors propose a new methodology to allow the
platforms to hot-swap application specific modules without
disturbing the operation of the rest of the system. This goal
is achieved through the use of partial dynamic reconfigura-
tion. The application presented in that paper has been im-
plemented onto a Xilinx Virtex-E FPGA. According to this,
the proposed methodology finds its physical implementation
as an external reconfiguration that implies that a Virtex-E
active array may be partially reconfigured by an external
device such as a Personal Computer, while ensuring the

correct operation of those active circuits that are not be-
ing changed [8]. The reconfigurable modules are called Dy-
namic Hardware Plugin, DHP. The methodology proposed
in [7] transforms standard bitfiles, computed by common
computer aided design tools, into new partial bitstreams
that represent the DHP modules due to the PARtial BIt-
file Transform tool, PARBIT, [9]. The PARBIT tool trans-
forms FPGA configuration bitstreams to enable Dynami-
cally Hardware Plugins modules in the Field-programmable
Port Extender, FPX, [10]. The tool accepts as input the
original bitfile, a target bitfile and parameters given by the
user and provides as output the new bitstream which can
load a DHP module into any region of the Reprogrammable
Application Device, RAD on the FPX.

In [11], the authors considered the reconfigurable com-
puting as a close combination of hardware cores and of the
run-time instruction set of a general purpose processor. The
classification of core types is generally accepted to be split
into three classes [12]: Hard cores, Firm cores and Soft cores.

In [13], a new class of cores called run-time parameteriz-
able (RTP) has been introduced. RTP cores allow a single
core to be computed and customized at run-time. For exam-
ple, an adder core can be produced, and then parameterized
at run-time for different operand widths. The core produces
all the required configuration data to define the logic and the
routing. The possibility of determining limited amounts of
routing at run-time is also dealt with in [13]. An innovation
of this approach consists in considering the RTP cores as a
specific example of a reconfigurable core, placed on the pro-
grammable device in a dynamic manner to respond to the
changing computational demands of the application. The
problem of this methodology is that the RTP are targeted
only to a single device family and there is no information
about the communication channel between RTP and about
how they solve the physical reconfiguration problem. To
control the mapping of cores at application run-time onto
the programmable device, a management mechanism is re-
quired. The algorithm proposed in this paper is part of the
Caronte methodology, [2, 14] for the dynamic reconfigura-
tion of an embedded system introducing a partial dynamic
reconfiguration degree in the design phase. Starting from a
previous solution proposed in [1] this work extends that solu-
tion by providing a more flexible algorithm, specifically tai-
lored for the Caronte architecture, [2], which is able to find
better solutions, considering the number of colors found, for

the graph coloring problem, meeting the timing constraints
of the considered architecture, where the placement of each
module has to be statically defined.

2. THE CARONTE METHODOLOGY
As proposed in [2, 14], the Caronte Flow is mainly com-

posed of three phases:
HW-SSP Phase The HardWare Static System Photo Phase
is based on the EDK, [15], tool. It identifies a set of EDK
system descriptions, the static descriptions, that will be used
to define all the necessary reconfigurations;
Design Phase This phase aims at creating all the infor-
mation needed to compute all the bitstream to physically
implement the embedded reconfiguration of the FPGA.
This phase solves three different problems:

• Identify the structure of each reconfigurable block pro-
viding a specific implementation for each of them. This
phase is based on the Xilinx Modular Based Design
approach;

• Identify, using the Floorplanner tool provided in the
ISE tool chain, the area of each reconfigurable compo-
nent of the system;

• Solve the communication problem between reconfig-
urable modules, by introducing Bus Macros that allow
signals to cross over a partial reconfiguration bound-
ary.

Bitstream Creation Phase This phase creates all the bit-
streams needed to implement the system description onto an
FPGA through the dynamic embedded reconfiguration.

The reasons why a designer could be interested in a dy-
namic system implementation could be different, but the
implementation problem remains the same: the system de-
scription must be partitioned in a fixed set of components
that have to be dynamically mapped onto an architecture,
that has been partitioned too. Both the FPGA and the ini-
tial description of the system have to be partitioned into
several parts to provide the correct starting point to find
out a dynamic reconfigurable design for the desired system
description. This first phase, solved by the proposed algo-
rithm, identifies all the processing elements of the descrip-
tion that will be mapped onto the corresponding part of the
FPGA, see Figure 1.

These elements, in order to be downloaded onto an FPGA,
have to be transformed into a set of reconfiguration bit-
streams by the Caronte Flow. Figure 1 shows the logical
partitioning layer used in the proposed methodology where:
Task Graph Layer Is the input of the Caronte Flow pro-
vided by the System Partitioning Phase;
EDK Layer All the processing elements computed in the
first phase have to be translated into a reconfigurable sys-
tem component description that can be used to compute the
bitstream that will be downloaded onto the FPGA;
FPGA Layer The FPGA has to be divided into parts that
will become the sites for the reconfiguration elements com-
puted by the previous phases.

3. THE GRAPH COLORING SYSTEM
A legal vertex coloring of a graph G = (V, E) is an as-

signment of colors to its vertices such that no two adjacent

Figure 1: Partitioning layers

vertices share the same color. Equivalently, a legal coloring
of G by k colors is a partition of its vertices into k disjoint
sets. Formally, the graph coloring problem is defined as in
the following.

Let G = (V, E) be a graph. A coloring of G is a map
θ : V → N of nodes to colors such that any two adjacent
vertices have different colors.

In this paper the graph coloring problem is solved for a
conflict graph associated with a given scheduling of an al-
gorithm, where each node represents a task to be executed
and each edge represents a scheduling conflict — that is,
two tasks cannot be executed at the same time on the same
piece of FPGA. The colors will then represent different areas
of the FPGA. In the context of the proposed architecture,
however, two novelties arise.
Reconfiguration First of all, reconfiguration complicates
the constraints. Considering the same example proposed in
[1], Figure 2 (a) shows a colored conflict graph (the labeling
is chosen in such a way that for every m, n the node m/n is
data–dependent on m/(n− 1)).

Figure 2: (a) Coloring of a conflict graph, [1]; (b)
New Coloring Solutions

Consider, though, what happens when mapping this solu-

tion on the FPGA: as shown in Figure 2 (a) both 1/1 and
1/2 have been assigned to the same FPGA area. This means
that at the end of the execution of block 1/1, the system has
to wait till block 1/2 is mapped on this area to proceed, and
the loading can’t be done in parallel with the execution of
1/1 since they both need the same area. This problem is
indeed serious, since reconfiguration times are still signifi-
cant with respect to execution times (for instance a 548 kB
bitstream file needs 28 seconds for the external reconfigura-
tion). Hence to properly solve the scheduling problem there
is another information that needs to be taken into account:
the reconfiguration conflicts.

In order to do so a conflict graph variant is introduced,
adding data dependency edges to the original conflict graph.
This new graph is similar to an over–constrained conflict
graph that forces a different coloration for two nodes having
a data dependency, and is called Task Conflict Graph, tcg.

The tcg can now be colored to find the new bindings; an
admissible coloring is shown in Figure 2 (b).
Online processing Secondly, the coloring task is performed
in two very different situations, as explained in Section 2:
not only statically at compile–time, but also dynamically at
run–time if some BlackBox execution time is larger than
expected. This poses an additional constraint: if at design–
time the coloring algorithm is allowed to have long runtimes
in order to determine a better solution (fewer colors), at
run–time this is not possible, since otherwise the execution
of the tasks waiting to be started will be delayed unaccept-
ably.

What is needed in this architecture, then, is a very fast
(and of course reasonably accurate) graph coloring algo-
rithm.

3.1 The Adj algorithm, previous version
Adj [1], was designed to solve the coloring problem very

rapidly while still retaining a good quality of the solution.
The approach of the Adj algorithm is to scan all the nodes,

coloring at each iteration not only the node v being con-
sidered, but also all its neighbouring nodes Nb(v):= {w ∈
V |∃(v, w) ∈ E}, unless they are already colored. If they
are, it checks for color conflicts. If during the scan of the
neighbors of node v the algorithm finds that w ∈Nb(v) is
colored and has a color conflict, this conflict is signalled set-
ting w’s color to −1, and it will be dealt with in the iteration
considering node w.

The Adj algorithm pseudo code is presented in Algorithm 3.1.
The choice of the actual color being assigned to a node is
done via an heuristic based on the Friend(c, Cols) function,
which among the colors Cols chooses the one that is most
frequently adjacent to c in the graph at a particular time.

The Friend function checks how many edges exist with
certain endpoint colors. Its complexity is therefore O(|E|).
The CheckConflict function, instead, has O(|V |) worst–
case complexity (for a dense graph). As for the ColorThis

function, steps 1. and 2. require O(|V |) while the else
branch takes O(|V |) plus the complexity of Friend. Hence
we obtain O(|V |+ |E|). It is then easy to see that ColorNb
takes O(|V |(|V | + |E|)). From this it can be deduced that
an upper bound for the worst–complexity of the overall al-
gorithm is O(|V |2(|V | + |E|)). This bound is not tight at
all, though, since it assumes that condition (a) in the main
body is always true. Obviously this is not the case, since
some coloring is performed by ColorNb executed for previ-

Algorithm 3.1: The Adj algorithm pseoudocode.

AllColors← ∅ ;1

Colors← (0, . . . , 0) ∈ N
|V | ;2

foreach v ∈ V do3

if Colors[v] == 0 then4

ColorThis (v);5

ColorNb (v);6

endif7

if Colors[v] == −1 then8

ColorThis(v);9

endif10

ColorNb(v);11

endfch12

function ColorThis (node v)13

ExcludedColors← ⋃ {Colors[w]|w ∈ Nb(v)} ;14

AvailColors← Colors\ExcludedColors;15

if |AvaiColors| == 0 then16

AllColors← AllColors
⋃ {|AllColors|+ 1};17

Colors[i]← |AllColors|;18

endif19

c← argmaxc |w ∈ Nb(v)|Colors[w] = c|;20

Colors[v]← Friend(c, AvailColors);21

function ColorNb (node v)22

c← Friend(Colors[v], AllColors\23

{Colors[w]|w ∈ Nb(v)});24

foreach w ∈ Nb(v) do25

if Colors[w] �= 0 then26

ColorThis (w);27

endif28

if CheckConflict (w) then29

Colors[w]← −1;30

endif31

foreach w ∈ Nb(v) do32

Colors[w]← c;33

endfch34

endfch35

function CheckConflict (node v)36

ForbiddenColors← ⋃ {Colors[w]|w ∈ Nb(v)};
return (ForbiddenColors

⋂{Colors[v]} == ∅)37

function Friend(color c, colors Cols)38

if Cols == ∅ then39

AllColors← AllColors
⋃ {|AllColors|+ 1};40

return |AllColors|;41

endif42

return argmaxf∈Cols |{w|w ∈ Nb(v)43

∧Colors[v] = c ∧ Colors[w] + f}|;44

ous nodes. In the case of sparse graphs (as those arising
from our problem always are), however, assuming that the
cardinality of every neighborhood is bound by a constant,
one gets O(1) for CheckConflict, O(|E|) for ColorThis and
hence for ColorNb, so that the total complexity is O(|E||V |).

3.2 Algorithm Modification: Backtracking
When the Adj assigns a color to a node, it might have more

than one choice of color that can be assigned to the node
without generating a conflict. If there is no possibility to use
an already introduced color, i.e. this set of choices is empty,
then a new one must be inserted in the coloring. Namely,

a new color can be inserted when coloring the adjacencies
of the first node, which is obviously unavoidable, and when
coloring a node whose adjacencies have already taken all of
the colors in the pool of used colors.

When adding a new color in the second case, chances are
that if in a previous color assignment another available color
had been chosen, the current node could be assigned to an
already used color instead of a new one. This suggests the
idea of applying a backtracking technique to the Adj algo-
rithm.

As we are dealing with directed acyclic graphs, there al-
ways exists a partial order on the vertices. Performance -
and quality of the results - may vary significantly depend-
ing on the particular total order in which the vertices are
processed. Hence, we propose to process the nodes from the
ones belonging to the denser subgraphs moving on to the
ones belonging to the sparser subgraphs, always respecting
the partial order.

After having outlined the main idea, and defined the order
in which vertices will be colored, let us define a few expres-
sions that will be used in the following.
The main computation is the first instance of the algo-
rithm, launched on the completely uncolored graph, that
may launch a backtracking procedure in order to reduce the
number of used colors.
A legal color for node i is a color that can be assigned to
node i without generating a conflict.
The freedom set of node i, is the set of legal colors that
can be assigned to node i. Note that the colors in this set
are the legal colors at the time that node i was colored, since
when the algorithm backtracks to a previously taken choice,
it must be able to set node i to another color among those
that were allowed at its previous coloring.
The BackSet of level n of node i, is composed of all the
n-hop distant nodes with non empty freedom set.
The state of the coloring is the union of the colors of the
nodes and the freedom set of each node.

The possibility to backtrack is evaluated at the steps the
Adj inserts a new color, when it is trying to solve the conflict
of current node, or color the current node.

In such cases, the behavior of the AdjB is the following.
Let i be the node that is causing the introduction of a new
color. The BackSet for node i is built, according to the level
(which is user-defined). Then the BackSet is ordered since
the backtracking will be performed from the closest node to
the farthest. Subsequently, we try to backtrack to a node in
the BackSet (from the closet to the farthest) until a better
solution is found or the BackSet has been completely used
(in such case, backtracking does not produce any better so-
lution). Backtracking to node j ∈ BackSet(i) means setting
that node to another color among the ones in j’s freedom,
and starting the coloring from node j up to node i. Once
node i has been reached, if the number of used colors is
less than the used colors in the main computation then the
state of the computation is replaced by the result state of the
backtrack operation. During the computation, in case the
number of colors increases over the number of used colors
in the main computation, the backtrack operation is simply
interrupted.

If all the colors in the freedom set of all the nodes in
the BackSet have been tried and no improvement has been
achieved, then the backtrack did not lead to a better so-

lution, and the color is added to the pool of used colors.
Otherwise, a color could be saved; in any case the coloring
procedure goes on.

The pseudocode of the modified algorithm is presented in
Algorithm 3.2. Note that throughout the algorithm, all the
commands (such as assignment of a color to a vertex) are
implicitly executed on the current state of the graph, which
includes, as explained before, the state of each node as well
as the freedom sets and back sets of the nodes.

Accordingly to the notation used in the above explana-
tion, the node that is causing the introduction of a new
color is node i, while the node we are backtracking to is
node j.

Algorithm 3.2: The AdjB algorithm
pseoudocode.

Main: called upon insertion of a new color in Adj1

verticesList ← orderedVertices(BackSet(i));2

foreach node v ∈ BackSet(i) do3

foreach node u ∈ FreedomSet(v) do4

backtrackState ← buldColoringState (v);5

backtrackSstate ← doColor6

(backtrackState);
if |UsedColors(backtrackState)| <7

|UsedColors(currentState)| then
currentState ← backtrackState;8

break;9

endif10

endfch11

endfch12

function buldColoringState (node i)13

foreach color c ∈ FreedomSet(i) do14

if c �= Color[i] then15

Color[i] ← c;16

FreedomSet(i) ← FreedomSet(i) \ {c};17

break;18

endif19

endfch20

function doColor (graph state state)21

foreach node w from j to i do22

if Color[w] �= 0 then23

foreach u ∈ Adjacency(w) do24

if u < j then25

continue;26

endif27

if Color[u] �= 0 then28

if Color[u] = Color[w] then29

Color[u] = -1;30

endif31

endif32

Color[u] ← ColorThis (u);33

endfch34

endif35

Color[w] ← ColorThis (w);36

endfch37

function ColorThis (node w)38

–see Adj for ColorThis function39

The main pseudo code portion, from line 1 to line 12, is

 1

2 3

4

5

6

7

1

2 3

4

5

6

7

Figure 3: Graph used as example, with the coloring
obtained applying the Adj algorithm.

run when the Adj algorithm tries to insert a new color in
the set of used colors. The algorithm goes backwards in the
total order of colored nodes so far; it builds a backtracking
temporary state of the graph by assigning to a node in the
backset a legal color in its freedom set, and resumes the
coloring from that node.

Notice that the doColor function performs a coloring of
the node and adjacencies just like the Adj’s ColorThis does;
but, unlikely the latter, it does not affect the nodes that are
lower than j in the considered total order. This happens be-
cause in case we mark a conflict in a node lower than j, then
we are not going to solve that conflict, since the node will
not be processed by the main computation anymore (unless,
of course, another backtracking run is performed on a node
even lower than the marked one, but this is unpredictable).

It must be noticed that when the ColorThis function is
called in a “backtracking step”, and it introduces a new color
to the set of used colors, the backtracking is not recursively
applied.

Figure 3 shows an example of a simple graph, whose col-
oring is improved by the adoption of our backtracking so-
lution. Indeed, the Adj algorithm uses three colors for this
graph, since it solves the conflict that arises on node 7 by
introducing a new color. Instead, as shown in Figure 4, the
backtracking version of the Adj algorithm, before introduc-
ing the new color, tries to assign to a previously colored node
with non empty freedom set another legal color. In Figure 4,
next to each node its freedom set is indicated. Hence, when
the Adj algorithm would add a new color in order to solve
the conflict on node 7, the AdjB algorithm backtracks to
node 6, whose freedom set is non empty, and chooses the
other coloring option, i.e. red. This allows to color node 7
in orange, thus saving the introduction of a new color.

4. RESULTS AND ANALYSIS
The AdjB algorithm has been implemented in C, and

timed on an Intel PIII running at 1GHz. In the current
implementation, in all the attempts of introduction of a
new color, the backtracking technique is currently called.
While this leads to an improvement in the number of colors
adopted for the graph coloring, it also implies a sensible loss
in terms of performance, due to the fact that the backtrack-
ing does not always provide gains. This issue will be solved
with the introduction of a backtracking confidence function,

1

2 3

4

5

6

7

{Red}

{ }

{ }

{ }

{ }

{ }

{Red}

1

2 3

4

5

6

7

{Red}

{ }

{ }

{ }

{ }

{ }

{ }

Figure 4: The graph of Figure 3, with the Free-
domSet of each node, colored with the backtracking
technique.

that shall evaluate the probability of success of a backtrack-
ing call keeping into consideration the previous calls and the
density of the sub graph surrounding the node that is requir-
ing a new color: the denser the graph is, the less likely we
will be able to get an improvement. Note that the imple-
mentation of this confidence function has been left to future
developments.

Anyway, preliminary results indicate a sensible improve-
ment in the number of used colors against the number com-
puted by the Adj algorithm. As in [1], tests have been con-
ducted on the instances of the graph coloring problem for
dimacs computational challenge. The results for some of the
graphs are shown in Figure 6. As it can be noticed, there is
no explicit correlation between the improvement the number
of used colors and the size of the graph, since the variance
of the color gain is below 1% of the average (0.0034 against
0.87).

The maximum level of backtracking for these tests has
been set to two, which means that in the backtracking color
choice affects only the 2-hop-distant nodes. Such a conser-
vative setting of the algorithm has been made due to the
lack of the backtracking confidence function; once this fea-
ture is implemented, the AdjB algorithm can be set to affect
a broader sub-graph when attempting to avoid a new color.

0

5

10

15

20

25

30

0,00 0,05 0,10 0,15 0,20 0,25 0,30

Density

U
s
e
d

 c
o

lo
r
s

Adj Adj Backtracked Dfmax

Figure 5: Colors required for different densities

Figure 5 plots the number of used colors against the graph
density for some graphs colored by the Dfmax algorithm, the

Graph Nodes Edges Density Adj Adj Time Dfmax AdjB AdjB Time Color Gain

jean 80 254 0,04 10 0.1 10 9 0.18 0,90

huck 74 301 0,06 11 0.11 11 10 0.2 0,91

myciel6 95 755 0,08 7 0.96 7 6 2.4 0,86

myciel5 47 236 0,11 6 1 6 5 0.24 0,83

queen7_7 49 476 0,20 12 0.1 7 10 1.46 0,83

queen9_9 81 1368 0,21 15 0.17 10 13 4.45 0,87

queen14_14 196 8372 0,22 24 1.13 19 55.3 0,79

queen6_6 36 290 0,23 9 0.1 7 9 0.38 1,00

queen13_13 169 6656 0,23 21 0.78 13 19 39.41 0,90

queen15_15 225 12640 0,25 26 1.51 22 98.2 0,85

queen12_12 144 5192 0,25 21 0.51 17 35.6 0,81

Figure 6: Some test results.

Adj and the AdjB algorithm. As expected, AdjB results find
place between the Dfmax and the Adj ones, as it performs
corrective interventions on the Adj coloring.

5. CONCLUSIONS
The paper has introduced a new algorithm for the col-

oring problem tackled to solve the reconfiguration problem
in the Caronte design methodology. Adj the previously in-
troduced algorithm, used the information both on the node
to be colored and on the neighbouring nodes. This solu-
tion is very fast but can be improved in terms of number
of colors introduced, improving the overall scheduling pro-
cedure. Obviously an exact method to obtain the optimal
number of colors is not acceptable in terms of computation
time. The algorithm, proposed in this paper, the AdjB , is
a good compromise between these two, in fact, as it is pos-
sible to notice from the experimental results, it reduces the
number of colors, found by Adj by preserving an acceptable
the computation time. AdjB exploits the idea of Adj but,
before introducing a new color, reconsiders the assigned col-
ors with a backtracking procedure to check if this addition
is unavoidable. This modification in the algorithm reduces
the number of colors needed to color the graph, favoring
the performance of the overall execution of the considered
program, meeting the timing constraints of the considered
architecture.

6. REFERENCES
[1] Fabrizio Ferrandi, Massimo Redaelli, Marco D.

Santambrogio, and Donatella Sciuto. Solving the
coloring problem to schedule on partially dynamically
reconfigurable hardware. In IFIP VLSI-SOC 2005,
2005.

[2] Alberto Donato, Fabrizio Ferrandi, Massimo Redaelli,
Marco D. Santambrogio, and Donatella Sciuto.
Caronte: a complete methodology to implement
partially dynamically self-reconfiguring embedded
systems on modern fpga. In IEEE Symposium on
Field-Programmable Custom Computing Machines
(FCCM 2005), 2005.

[3] D. T. Hoang. Searching genetic databases on splash2.
pages 185–191. Proceedings of IEEE Workshop on
FPGAs for Custom Computing Machines, D.A. Buell
and K.L. Pocek, 1993.

[4] D. Ross, O. Vellacott, and M. Turner. An fpga-based
hardware accelerator for image processing. pages
299–306. More FPGAs: Proceedings of the 1993
International workshop on field-programmable logic
and applications, W. Moore and W. Luk, 1993.

[5] P. Lysaught, J. Stockwood, J. Law, and D. Girma.
Artificial neural network implementation on a
fine-grainde FPGA. R. Hartenstein and M.Z. Servit,
1994.

[6] P.C. French and R.W.Taylor. A self-reconfiguring
processor. pages 50–59. Proceedings of IEEE
Workshop on FPGAs for Custom Computing
Machine, D.A. Buell and K.L. Pocek, 1993.

[7] Edson L. Horta, John W. Lockwood, and David
Parlour. Dynamic hardware plugins in an fpga with
partial run-time reconfigurtion. pages 844–848, 1993.

[8] S. Tapp. Configuration quick start guidelines.
XAPP151, July 2003.

[9] Edson Horta and John W. Lockwood. Parbit: A tool
to transform bitfiles to implement partial
reconfiguration of field programmable gate arrays
(fpgas). Washington University, Department of
Computer Science, Technical Report WUCS-01-13,
July 2001.

[10] David E. Taylor, John W Lockwood, and Sarang
Dharmapurikar. Generalized rad module interface
specification of the field programmable port extender
(fpx). Washington University, Department of
Computer Science. Version 2.0, Technical Report,
January 2000.

[11] G. Brebner. A virtual hardware operating system for
the xilinix xc6200. pages 327–336. IEEE Symposium
on Field Programmable Logic and Applications, 1996.

[12] J. Case, N. Gupta, L.J. Mitta, and D. Ridgeway.
Design methodologies for core-based FPGA design.
Xilinx Inc., 1997.

[13] S. Guccione and D.Levi. Run-time parameterizable
cores. pages 215–222. IEEE Symposium on Filed
Programmable Logic and Application, 1999.

[14] Alberto Donato, Fabrizio Ferrandi, Marco D.
Santambrogio, and Donatella Sciuto. Operating
system support for dynamically reconfigurable soc
architectures. In IEEE-SOCC, 2005.

[15] Xilinx Inc. Embedded Development Kit EDK 6.2i.
Xilinx Inc., 2004.

