
Securing Operating System Services

Based on Smart Cards

Luigi Catuogno, Roberto Gassirà, Michele Masullo, and Ivan Visconti

Dipartimento di Informatica ed Applicazioni,
Università degli Studi di Salerno - Italy

{luicat, robgas, micmas, visconti}@dia.unisa.it

Abstract. The executions of operating system services based on smart
cards allow one to personalize some functionalities of the operating sys-
tem by using the secret information stored in a smart card and the basic
computations that a smart card can perform. However, current solutions
for integrating smart card features in operating system services require
at least a partial execution of the operating system functionalities at
“user level”. Such executions decrease the security and the performance
of the system as they are less robust compared to the kernel-level ones.

In this paper we present the design and implementation of SmartK,
a kernel module that integrates directly in the Linux kernel the support
of smart cards. The use of SmartK allows one to securely personalize an
operating system service still maintaining its execution at kernel level.

1 Introduction

Cryptographic protocols allow the execution of many real world economic trans-
actions (e.g., auctions, voting) in the digital world. Nevertheless, an important
role in the digital world is played by the hardware and software architectures
that run cryptographic protocols. Among the different hardware and software
components, a central role is played by smart cards.

Smart card is one of the most interesting technologies that have been pro-
posed in the past and are nowadays crucially used in many digital transactions
(e.g., inside satellite decoders, ATM machines). Originally, development of card-
aware applications was a non-trivial task since there was a lack of high-level
card programming languages, standard devices and development tools. Cur-
rently, several smart-card manufacturers have joined into consortia in order to
define common standards for each aspect of the interaction with smart cards
(e.g., physical and electrical specification for cards and readers, specifications of
the provided services, communication protocols among cards, readers and host
computers, data representation). Moreover, many high-level tools that satisfy
many requirements of software designers and developers have been recently in-
troduced. Such tools are application-oriented, that is, their use is reasonable for
user-level applications but it is not practical for kernel-level executions.

We focus on the use of smart cards in operating system services. Here, the
smart card allows one to personalize some functionalities of the operating system.

S. Katsikas, J. López, G. Pernul (Eds.): TrustBus 2005, LNCS 3592, pp. 321–330, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

322 Luigi Catuogno, Roberto Gassirà, Michele Masullo, and Ivan Visconti

Indeed, a smart card is a tamper-resistant miniature computer that performs
some basic computations on input a secret information.

However, current solutions for supporting smart card features in operating
system services require at least a partial execution of the operating system func-
tionalities at “user level”. Unfortunately the execution of system functionalities
at user level decreases the security of the system as user-level executions are
less robust compared to the kernel-level ones. Indeed, attacks to the kernel are
generally harder compared to attacks to user level applications since kernel code
is specifically protected to avoid tracking and replacing attacks. Furthermore,
kernel-level applications offer a better performance since they are in general not
affected by context switches or frequent copies of large memory buffers among
user and kernel space. Erez Zadok, in [28,17] gives accurate and strong motiva-
tions in flavor of kernel-level implementations of system-relevant applications.

In this paper we present the design and implementation of SmartK, a kernel
module that integrates directly in the Linux kernel the support of smart cards.
The use of SmartK allows one to securely personalize an operating system ser-
vice still maintaining the execution at kernel level. More generally, SmartK is
a compact and easy-to-use tool for software development of kernel applications
(e.g., device drivers, filesystems, kernel modules). Our design of SmartK focuses
on modularity, therefore it is possible to plug in (transparently to the applica-
tions) different modules that allow the applications to work with different cards
and different readers connected to different ports. Moreover, the size of SmartK
is very tiny and does not significantly affects the performance of the kernel.

We stress that the aim of SmartK is not necessarily to replace the existing
smart-card frameworks. Indeed, some of them are quite suitable for many user
applications. Instead, the use of SmartK is crucial when card-based services must
be supported by the kernel itself. In such cases, SmartK outperforms the existing
available tools. We stress also that a kernel module that runs a large high-level
framework has a large (and negative) impact on the performance of the system.

2 Background

Specifications. Informally, a smart card is a plastic card (with the same size of a
credit card) with either a magnetic strip or a micro chip. The physical properties
of a smart card (e.g., the size, the position of contacts, their number), the elec-
trical specifications (e.g., power, signals) and the communication protocols have
been standardized, in order to allow cards, readers and applications (off-card
applications) produced by different factories to be used together. The standard
ISO-7816[9] provides a definition of these characteristics for a smart card. The
card and the reader communicate by means of a master/slave half-duplex pro-
tocol. Once the card is inserted in the slot, the reader powers on it and sends
to it the reset signal. The card sends back an important message called Answer
To Reset (ATR). The ATR message contains all information needed to establish
the connection between card and reader. The ISO-7816/3 document defines the
format of the ATR message and two communication protocol: T = 0 and T = 1.

Securing Operating System Services Based on Smart Cards 323

The T = 0 protocol is byte-oriented, and allows one to send just one command
per time, the T = 1 is a block-oriented protocol and allows one to send sequences
of commands.

ISO-7816/4 commands are sent to the card as a record called APDU (Appli-
cation Protocol Data Unit) that contains the description of the invoked command
and its arguments. The card also replies to the commands by means of another
type of record: the Response APDU.

Development Frameworks. The known smart card frameworks are user-oriented,
therefore they can be used by operating system services in the following two
ways: 1) The frameworks are executed at user level. This is precisely what we
want to avoid since for security reasons, operating system services should be
run at kernel level. 2) The frameworks are compiled directly in the kernel. This
brute-force approach hurts the performance of the kernel.

The “Application Independent Card Terminal Application Programming In-
terface for ICC applications” (CT-API)[7], is a simple package for the develop-
ment of card-aware applications. CT-API is a library that manages the specific
reader’s device driver and provides a raw programming interface.

The “Interoperability Specification for ICCs and Personal Computer Sys-
tems” (PC/SC, for short)[18,19] is a standard definition of a complete framework
for smart card deployment. PC/SC specifies the architecture and the components
of a distributed “card environment”, the services provided by each component
and the protocols that components use to communicate. Moreover, PC/SC also
defines a standard API for the development of off-card applications. PC/SC was
initially used only on MS Windows platforms, but recently, it is also used in
UNIX-like systems, with the support of the “Movement for the Use of Smart
Cards in a Linux Environment (MUSCLE)”[15]. Actually, both CT-API and
PC/SC implement a raw programming interface for the interaction with the
smart card.

The Open Card Framework (OCF)[16] offers a powerful tool for developers of
smart card-enabled software, based on the Java technology. OFC provides a high-
level programming interface (composed of several Java classes) that implements
the ISO-7816 protocol.

The RSA Laboratories produces and maintains the PKCS standard doc-
uments. This documents introduce a widely accepted set of specifications for
cryptographic data structures, operations and procedures. Documents PKCS11
and PKCS15[21,22] concern interface and information format of Cryptographic
Tokens (a set of cryptographic capable devices that includes smart cards). More-
over, they define an architecture and an API for the development of crypto-
graphic applications based on these tokens.

The Smart Card File System (SCFS)[11] is a tool that allows the host ma-
chine to mount a smart card as a disk, and therefore to access the stored data
by means of the standard UNIX system calls.

Webcard[20] implements a tiny web server on a Java card. Card-ware appli-
cations access to data stored on the card by using the HTTP protocol.

324 Luigi Catuogno, Roberto Gassirà, Michele Masullo, and Ivan Visconti

Trusted Computing Architectures. The Trusted Computing Group [26] consor-
tium has been formed by some important hardware and software corporations
(e.g. Microsoft, IBM and Intel), in order to define a standard technology for
enhancing the security of computing environments that span over different plat-
forms and devices.

According to the TCG specifications, a Trusted Platform, should feature
a safe storage for sensitive data, the capacity of verifying the integrity of a
platform component and the capability to prove to a challenger the integrity of
the platform through an attestation.

The Trusted Platform Module (TPM) is a hardware device available for dif-
ferent platforms like PCs, PDAs and cellular phones that implement the features
listed above. Applications, firmware and the other components that use the TPM
features, are developed on top of a software layer defined by the Software Stack
Specification (TSS). Moreover, the TPM provides cryptographic functions such
as hashing, random number generation, asymmetric key generation and encryp-
tion/decryption.

Microsoft Next Generation Secure Computing Base (NGSCB)[14], is one of
earliest technology based on the TCG specifications and will be integrated in
the upcoming version of the Windows operating system. Microsoft stresses that
NGSCB provides a lot of benefits to costumers (e.g., protection against viruses
and unauthorized accesses, platform and data integrities, enhanced authentica-
tions) but many known researchers[1,25,24] are afraid by these benefits.

The trusted computing architectures could be used to achieve the secure and
efficient execution of operating system services. However, these architectures are
not flexible since the cryptographic tasks are only based on the secret information
encoded in a secure chip plugged in the motherboard. Moreover, the cost of such
technologies and the trust and ethical issues that they generate slowdown their
effective use.

3 Design and Implementation of SmartK

SmartK provides a simple framework for the management of smart cards at
kernel level. Specifically, the end user of the SmartK API is a generic kernel
module that features a service based on smart cards. This is crucial for our main
contribution, i.e., securing operating system services based on smart cards. In
the design of SmartK we therefore focus on achieving an efficient kernel module
that serves both other kernel modules and user applications.
SmartK exposes a very simple interface that we describe below.

- smartk init card starts the connection to the card. This procedure supplies
power to the card, receives the ATR message from the card, parses it and finally,
collects and stores all communication parameters like the response time (and the
timeout) of the card, the communication protocol and the data representation
adopted.

Securing Operating System Services Based on Smart Cards 325

- smartk data sends commands and receives the corresponding responses. This
function transparently wraps all steps needed by data transfer, according with
the information collected during the initialization.
- smark cleanup card closes the communication, cleans all memory buffers,
and turns off the power to the card.

This kind of interface implements any off-card application. A similar ap-
proach (at user level) can be found in the CT-API. The applications communi-
cate by means of the I/O port, with the reader and the card. More precisely, the
application organizes the data as specified by the protocol provided by the card
(for example the T = 0 protocol). Then the application sends the data to the
reader through the port. This is achieved by sending the proper signals and, if
necessary, re-encoding the data with the communication parameters that have
been negotiated during the startup. Therefore our framework has been designed
following an object oriented style. For each part of the communication, SmartK
features a specific class and each module of SmartK implements an object of a
class.

SmartK is designed to be modular, it can support different readers, each one
potentially connected to the host machine by means of a different port (e.g.,
serial, USB). Specifically, SmartK is composed by the following four modules1.

- smartk.o is the core of the framework and provides the interfaces to the
kernel-level applications and to the the other modules of SmartK;
- pt t0 smartk.o implements the API of SmartK according to the T = 0 pro-
tocol;
- ifd towitoko smartk.o is the Towitoko reader’s driver;
- io serial smartk.o is a simple interface for the communication with a serial
port.

The module smartk.o is the skeleton of the whole framework. It provides an
object-oriented infrastructure on top of which the other modules are plugged in.
Moreover, it handles the object core of the class smartk that reports the status of
the card (e.g., ATR, communication parameters) and provides a general interface
to the objects implemented by the other modules.

In order to achieve the modularity of the architecture, all methods of the
different objects are referenced by a pointer of the core object. Thus, each object
can invoke the methods of each other object by reaching them only through this
object. This approach maintains each module independent of each other module
and limits the number of symbols exported by each module.

Implementation details. We call “registration” the assignment of pointers of the
object core. The module smartk.o provides the methods register protocol
smartk, register ifd smartk and register io smartk that are executed to
plug in the components in the framework. These methods link the related objects
to the object core. Once the smartk.o module has been loaded, it instances the

1 We now discuss the specific case of using a towitoko micro reader that is connected
to a serial port, since this is the solution that we have effectively implemented. The
discussion however can be generalized to any reader and any port.

326 Luigi Catuogno, Roberto Gassirà, Michele Masullo, and Ivan Visconti

smartk object core. Then, during their initialization phase, the other modules
instance their own objects and register them by means of the corresponding
registration procedure.

A pt smartk object implements the communication protocol with the smart
card (in our prototype, only protocol T = 0 is provided). It features a very simple
interface composed by the following three methods: activate card, data and
disactivate card.

An ifd smartk object implements the functions required for the communica-
tion with the reader. Its methods allow one to enable and disable the reader and
the card, transmit/receive data and power on/off the card.

A io smartk object takes care of maintaining the status of the communication
with the I/O port. This object summarizes the status of the port (the serial port
in our prototype) and provides a set of methods to init/free the port, set/get
communication parameters (baud rate, parity etc.), send/receive data to/from
the port.

The communication protocol is implemented by the object t0 of the class
pt smartk (module pt t0 smartk.o). This object implements the T = 0 protocol
as defined by the ISO-7816/3 document. Once the module pt t0 smartk.o has
been loaded, it registers the object t0. The interactions with the reader are
performed by means of the methods of the ifd object (through their pointers in
the core object).

The object towitoko of the class ifd smartk (module ifd towitoko smartk.o)
implements the driver of the reader. The module startup procedure initializes
the reader through the method init reader and registers the object by means
of the register ifd smartk function. This function verifies that the serial port
control module has been loaded and subsequently configures the port according
to the reader properties. The object towitoko interacts with the serial port
through methods of the object serial.

The object serial of the class io smartk (module io serial smartk.o) per-
forms the communication with the serial port. This module implements new
line discipline[23]: the mechanism through with the linux kernel manages the
data flow through the serial port. Once the line discipline has been enabled, the
module instantiates the object serial, initializes and registers it by means of
register io smartk.

As discussed above, all aspects of the interaction with the card are modular,
thus, for example, in order to use a different reader one has to implement a
different module ifd-something.o that has to be loaded instead of our IFD
handler. Obviously, the new module has to provide a new implementation of the
ifd object.

The test module. The module test mod is a practical example of a SmartK
end-user module. It was initially developed for debugging purposes, but it is an
useful tool for the development of simple user-level card-aware applications. More
precisely, this module is an example of how to write a kernel service that uses
SmartK. Specifically, the services given by this module allow user applications
the use of any reader, card and port by means of SmartK.

Securing Operating System Services Based on Smart Cards 327

Fig. 1. SmartK data structures

Technically, test mod allows user applications to communicate with smart
cards by means of the usual I/O system calls on a character device
(i.e., /dev/smartk). When the user application (user, for short) opens the de-
vice, the module executes the activate card method of SmartK that initial-
izes the communication and locks the device. When user closes the device, the
module closes the communication, unlocks the device and cleans all buffers
(disactivate card). The write() operation uses the SmartK’s smartk data
method to send APDUs to the card and to get the responses. The module keeps
a private buffer where the responses returned by the smartk data call are stored.

4 Securing Operating System Services

Here we discuss as a proof of concept two cases in which SmartK can be reliably
used for securing operating system services based on smart cards.

Kerberos. The setting in which Kerberos [12,13] works is the following. There
exists an open distributed computing environment (DCE) where the users of the
workstations cannot be trusted. The setting is hostile since an intruder could
pretend to be someone else. Therefore, an authentication system must be used.

Kerberos is an authentication system based on the existence of a trusted
third-party that authenticate users of a DCE. More specifically, in case a user
needs a service, he asks for a credential from the Kerberos authentication server
(AS). The credential can be later sent to the ticket granting server (TGS) to
obtain a service ticket. Finally, the service ticket allows the user to get the
service from the corresponding server. The security problem of Kerberos is that
an attacker can use a password guessing approach (by means of an off-line attack)
to obtain the credential of another user. This problem was considered by [8]

328 Luigi Catuogno, Roberto Gassirà, Michele Masullo, and Ivan Visconti

where they proposed the use of smart cards for performing user authentication
in Kerberos.

Consider now the case of an operating system that needs services from an-
other system. In this case SmartK has a crucial role for securely run this trans-
action. Indeed, the functionality offered by the smart card for system authenti-
cation is run completely at kernel level.

Run-time verification of executables. Run-time verification of executables con-
stitutes a typical field of application for SmartK. Indeed, this is a service that
is implemented at kernel level, since the kernel parses and runs executables. We
stress that the integration of a kernel-level architecture and a user-level smart
card interface is unsafe and impractical. The WLF project[4] provides kernel
modules for this verification process. It is build on top of AEGIS[2,10] that pro-
vides an architecture for the secure loading of the operating system during the
bootstrap. We now briefly introduce WLF and describe the implementation of a
smart card-based key management scheme that has been built on top of SmartK.

WLF Overview. The WLF project [4] proposes a prototypal implementation
of an architecture for integrity checking of executables (both ELF binaries and
script files) at run time for the Linux operating system. In a system equipped
with WLF, all executables have been signed before their installation. The kernel
(that is assumed to be safe) is provided with the public keys of the trusted
software providers. Each time an execution is invoked, the kernel verifiers the
corresponding files. If the verification succeeds, the execution is performed as
usual, otherwise, the execution fails. In the Linux kernel, each executable is
interpreted and executed by its proper handler. In a WLF system each handler
includes a verify() function that executes the signature verification task. Public
keys are managed by a distinct module (that we refer to as key agent), that
takes care of loading keys from a given repository and providing them to a WLF
handler.

The SmartK Key Management Scheme for WLF. The key agent in WLF
is a kernel module that takes care of loading in memory the public keys from the
storage device and provides them (on demand) to the WLF handlers. Currently,
WLF is equipped with two key management schemes that were developed as
proofs of concept: the basic and the floppy key management scheme (respectively
BKM and FKM). The BKM simply satisfies testing requirements and loads
public keys from a character device (/dev/wlf). Users push keys (contained in
a file) into the kernel by means of an ioctl call on the device. The FKM loads
keys from a read-only floppy disk. It comes out trivially that both systems are
not suitable to be used in a real-world context.

The SmartK Key Management scheme (SKM) is a kernel module that im-
plements a key agent for WLF. Since it is loaded, the SKM loads in memory all
public keys that are stored on a a given smart card, that we refer to as WLFCard,
by means of the APIs of SmartK, and then, it provides to the WLF handlers all
required public keys.

Securing Operating System Services Based on Smart Cards 329

5 Concluding Remarks

In this paper, we have discussed security issues for operating system services
based on smart cards. First we have introduced the importance of using of smart
cards for digital transactions. Then we have given the rationale for the need of
a kernel-level framework for integrating smart-card features in the kernel of the
operating system. Then we discussed the design and implementation of SmartK:
a kernel-level framework for development of smart card-based services and ap-
plications for the Linux operating system. The integration in the kernel of such
a tool, achieves a more compact and robust implementation of any intrinsically
kernel-level security service based on smart card features. We have finally dis-
cussed the use of SmartK for operating system authentications (Kerberos) and
we presented the implementation of a Key Agent for WLF, an operating system
service for the verification of the integrity of Linux executables at run time. As
we have discussed, such applications represent a typical example of off-card ap-
plications that should be run at kernel level and hence, are suitable “end-user”
for SmartK. SmartK does not significantly affect the performance of the kernel
and does not significantly increase the size of the kernel memory image as the
total size of the modules is less than 20 kbytes. SmartK has been developed
on a Linux operating system with kernel 2.4.20[5,23], the only reader currently
supported is the Towitoko micro (serial port). Only the card communication
protocol T = 0 has been partially implemented. We also implemented a simple
management application that provides the usual administrative functionalities
(e.g., format card, create and store keys) built on top of the PC/SC lite frame-
work version 1.1.1[6]. Sources are available on the SmartK Home Page at the
URL http://smartk.dia.unisa.it.

Acknowledgements. We would like to thank Pino Persiano and the anonymous
reviewers for many useful suggestions and comments. The work presented in this
paper has been supported in part by the European Commission through the IST
Programme under contract IST-2002-507932 ECRYPT.

References

1. Ross Anderson (2003) TCPA Frequently Asked Questions.
http://www.cl.cam.ac.uk/users/rja14/tcpa-faq.html.

2. W. Arbaugh, D. Farber, J. Smith (1997) A Secure and Reliable Bootstrap Archi-
tecture. Proc. of IEEE Symposium on Security and Privacy ’97, pp. 65–71.

3. S. M. Beattie, A. P. Black, C. Cowan, C. Pu, L. P. Yang (2000) CryptoMark:
Locking the Stable door ahead of the Trojan Horse. White Paper, WireX Commu-
nications Inc.

4. L. Catuogno, I. Visconti (2004) An Architecture for Kernel-Level Verification of
Executables at Run Time. The Computer Journal, Vol. 47, Num. 5, Pages 511-526.

5. D. P. Bovet, M. Cesati (2002) Understanding the Linux Kernel (second edition).
O’Reilly Associates, Inc.

6. David Corcoran (1999) PC/SC lite API version 1.1.1. http://www.linuxnet.com.

330 Luigi Catuogno, Roberto Gassirà, Michele Masullo, and Ivan Visconti

7. Detusche Telekom et al. (1998) Application Independent Card Terminal Applica-
tion Programming Interface for ICC Applications.

8. G. Gaskell, M. Looi (1995) Integrating Smart Cards Into Authentication Systems.
Cryptography: Policy and Algorithms, pp. 270-281.

9. The International Organization for Standardization and The International Elec-
trotechnical Commission (1995) ISO/IEC 7816 parts 1-4: Information technology
- Identification cards - Integrated circuit(s) cards with contacts.

10. N. Itoi, W. A. Arbaugh, S. J. Pollak, D. M. Reeves (2001), Personal Secure Booting.
LNCS vol. 2119, pp. 130–144.

11. N. Itoi, P. Honeyman, J. Rees (1999) SCFS: A UNIX Filesystem for Smartcards.
Proc. of the First USENIX Workshop on Smartcard Technology, pp. 107-118.

12. B. Clifford Neuman and Theodore Ts’o (1994) Kerberos: An Authentication Service
for Computer Networks, IEEE Communications, 32(9):33-38.

13. John T. Kohl, B. Clifford Neuman, and Theodore Y. T’so (1994) The Evolution of
the Kerberos Authentication System. In Distributed Open Systems, pages 78-94.
IEEE Computer Society Press.

14. Microsoft Corporation (2003), Security Model for the Next-Generation Secure
Computing Base. http://www.microsoft.com.

15. MUSCLE (Movement for the use of smart cards in a Linux Environment).
http://www.linuxnet.com.

16. Opencard Consortium (1998) OpenCard Framework, General Information Web
Document. http://www.opencard.org.

17. S. Patil, A. Kashyap, G. Sivathanu, E. Zadok (2004) I3FS an In-Kernel Integrity
Checker and Intrusion Detection File System Proceedings of the 18th USENIX
Large Installation System Administration Conference (LISA ’04).

18. PC/SC workgroup, (1997) Presentation of the Interoperability specification
for ICCs and Personal Computer System (PC/SC) Revision 1.0, parts 1-8.
http://www.pcscworkgroup.com/.

19. PC/SC workgroup, (1999) Presentation of the Interoperability specification for
ICCs and Personal Computer System (PC/SC), Revision 2.0. White Paper,
http://www.pcscworkgroup.com/.

20. J. Rees, P. Honeyman (2000) Webcard: a Java Card Web Server, Proc. of CARDIS
2000, pp. 197-208.

21. RSA Security Inc. (2004) PKCS11: Cryptographic Token Interface Standard v.2.20
http://www.rsasecurity.com/.

22. RSA Security Inc. (2000) PKCS15: Cryptographic Token Information Format Stan-
dard v.1.1 http://www.rsasecurity.com/.

23. A. Rubini, J. Corbet, (2001) Linux Device Drivers, second edition. O’Reilly Asso-
ciates, Inc.

24. Seth Schoen (2003) Trusted Computing: Promise and Risk, Report of Electronic
Frontier Foundation. http://www.eff.org.

25. Richard Stallman (2002) Can you trust your computer.
http://www.gnu.org/philosophy/can-you-trust.html.

26. Trusted Computing Group (2004), TCG Specification Architecture Overview.
27. L. van Doorn, G. Ballintijn, W. A. Arbaugh (2001) Signed Executables for Linux.

University of Maryland Technical Report CS-TR-4259.
28. Erez Zadok (1999) Stackable File System as a Security Tool. CS dept. Columbia

University Technical Report CUCS-036-99.

	Introduction
	Background
	Design and Implementation of SmartK
	Securing Operating System Services
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

