
Multimedia Tools and Applications, 25, 217–251, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Bringing the Wireless Internet to UMTS Devices:
A Case Study with Music Distribution

MARCO ROCCETTI roccetti@cs.unibo.it
PAOLA SALOMONI salomoni@cs.unibo.it
VITTORIO GHINI ghini@cs.unibo.it
STEFANO FERRETTI sferrett@cs.unibo.it
Department of Computer Science, University of Bologna, Mura A. Zamboni 7, 40127 Bologna, Italy

Abstract. Wireless networking is becoming an increasingly important communication means. Entry points
to content delivery networks (e.g. portals) have to cope with the primary necessity of distributing multime-
dia contents to 3G mobile devices. In this paper we discuss the software architecture of a wireless Internet
application we have designed and implemented to support the distribution of Mp3-based songs to 3G UMTS
devices. Alongside the operational description of the proposed architecture, efforts have been made to exam-
ine the effects that Internet traffic has on the performance of UMTS networks, due to the distribution of Mp3
files by means of our wireless application. The download time measurements we have experimentally ob-
tained show that combining modern 3G mobile network technologies with an appropriate structuring of the
wireless Internet application may be very effective for the fast distribution of pre-recorded music to mobile
clients.

Keywords: digital media, music on demand, wireless multimedia applications, CDN, UMTS

1. Introduction

Wireless networking is becoming an increasingly important communication means, even if
wide-area wireless data connectivity is still difficult to achieve due to various technological
limitations. The possibility that many Internet users will soon access e-mail and Web pages
through a PDA or a smart phone is increasing very quickly [29]. Moreover, besides tradi-
tional electronic services, other important categories of multimedia services are emerging,
including real time entertainment (e.g., movies and songs), interactive games (e.g., lottery,
karaoke and distributed networked games) and infotainment (e.g., distributed learning and
interactive consultations of multimedia information), whose multimedia contents must be
delivered to both wired and wireless clients.

Simply stated, entry points to multimedia content networks have to cope with the primary
necessity of enabling multimedia-based content distribution to mobile terminals. Since it
is expected that there will be soon a greater demand for a mobile access to those advanced
Internet-based multimedia wireless services, it is easy to envisage that the success of the
new communication technologies will depend on how efficient the wireless access to those
Internet-based multimedia services will be.

It is well known that the most widely used standard for second-generation (2G) mo-
bile radio networks is the Global System for Mobile Communications (GSM). With the

218 ROCCETTI ET AL.

introduction of the General Packet Radio Service (GPRS) for mobile networks operating
under GSM, packet data connections have been allowed with variable bit rates up to several
tens of Kb/s. Third-generation (3G) mobile systems, using the Universal Mobile Telecom-
munications System (UMTS), will offer higher data rates (of up to a few Mb/s) and an
increased capacity. These data rates plus compression techniques will allow the access to
HTML pages, to video/audio streaming, as well as to enhanced multimedia services for
laptops and smaller devices.

Specifically, the UMTS forum describes four different traffic classes of possible services,
whose quality is as follows:

• Conversational class, for supporting traditional real-time services, like real time tele-
phony and video-telephony, with stringent and low delays.

• Streaming class, for supporting real-time traffic flows that need to preserve time relation
between different entities of the stream, e.g. video on demand.

• Interactive class, for providing support to interactive best effort traffic such as traditional
Internet applications (e.g., Web browsing),

• Background class, for supporting non-interactive best-effort traffic, such as, e.g., simple
download of electronic mails or files.

An important advantage of these new mobile network technologies (including both GPRS
and UMTS) is that packets originating from GPRS/UMTS mobile devices can be di-
rectly transmitted to data networks based on the Internet Protocol (IP), and vice-versa.
This is due to the fact that GPRS/UMTS networks support special border nodes (termed
GSN) that use IP as the backbone protocol for transfer and routing of protocol data units
[46].

However, in this communication scenario several important problems arise. The major
problem is to decide if advanced TCP/IP based applications will be able to behave well
over wireless radio links [26, 44]. TCP was especially designed for wire-based transport
and the protocol design rests upon on a number of assumptions that are typical of the
wired environment. The heart of these assumptions is that unexpected increases in delay
are interpreted as packet losses caused by network congestion. To respond to perceived
losses, standard TCP aggressively slows its transmission to allow the network to recover
[13, 43]. Unfortunately, wireline and wireless networks are significantly different in terms
of bandwidth, propagation delay and channel robustness. In a wireless environment, in fact,
TCP transmissions are typically prone to types of delays and losses that are not directly
related to congestion, but to motion. If motion is mistaken for congestion and, consequently,
normal congestion control procedures are triggered, then further performance degradation
may be experienced during transport-level connections [21]. To alleviate this problem, an
host of techniques, e.g., [1–5, 11, 12, 17, 20, 35, 42, 48, 49], has been proposed in the lit-
erature that addresses specifically the issue of making TCP suitable for the mobile wireless
environment.

However, another important problem here is that many of these proposals either entail
relevant changes in the TCP stacks within the Internet and in the mobile devices, or do not
permit the mobile devices a transparent access to the Internet.

BRINGING THE WIRELESS INTERNET TO UMTS DEVICES 219

After having considered all the above challenges, a final problem is related to the internal
architecture of those advanced Internet-based applications that should be accessed through
radio interfaces. Those applications, in fact, must exhibit a high rate of robustness and
availability, since the mobile access to those applications should not be influenced by
possible problems occurring at the Internet side.

In this context, we have designed, developed and experimentally evaluated a wireless
Internet software application that implements a mobile music-on-demand service to be
enjoyed on UMTS devices. The developed application permits to mobile users to download
and to listen to Mp3 files [32] through UMTS devices. Specifically, our wireless application
exploits the background traffic class of UMTS to provide its users with: (i) a simple and rapid
Internet-based mobile access to a music-on-demand download service, and (ii) a robust and
widely available music-on-demand distribution system based on the technique of replicated
Web servers.

From a user’s standpoint, it is worth noticing that different types of clients may exploit
our developed system. In particular our wireless application may be exploited by:

• Music listeners, they are single clients, equipped with a mobile UMTS device and con-
nected to their UMTS cell, who may want to search for their favorite songs over the
Internet, download them onto their UMTS devices, and finally play them out at their
earliest convenience.

• Music producers, they are single clients, who may wish to exploit the system in order to
distribute their own music songs to be listened to on UMTS devices. At the current state
of the art of our system, this kind of users needs a regular wireline Internet connection
in order to upload to the system their Mp3 music resources.

• Musical service providers, they may exploit the system to organize, build and maintain
structured repositories of Mp3 resources over the Internet for use from UMTS devices.

The important experience of systems for the distribution of contents over the Internet
(i.e., Content Distribution Networks) have inspired our work [3, 6, 8, 9, 14, 16, 19, 33],
but our system is essentially new, in the sense that it allows a reliable and distributed
song delivery service for mobile UMTS devices. In particular, in order to ensure both the
availability and the responsiveness of our music-on-demand service, we have structured our
system according to the special technology of replicated Web servers [7, 22]. In essence,
according to this technology, a software redundancy is introduced at the Internet side,
namely by replicating the music songs composing the music-on-demand service across a
certain number of Web servers which are geographically distributed over the Internet. In
this context, a typical approach to guarantee service responsiveness consists of dynamically
binding the service client to the available server replica with the least congested connection.

An approach recently proposed to implement such an adaptive downloading strategy at
the Internet side amounts to the use of a software mechanism, called the Client-Centered
Load Distribution (C2LD) mechanism [15]. With this particular mechanism, we split each
client’s request of a given musical resource (i.e., a song) into a number of sub-requests
for separate parts of the resource. Each of these sub-requests is issued concurrently to a
different available replica server, which possesses that song. The mechanism periodically

220 ROCCETTI ET AL.

monitors the downloading performance of available replica servers and dynamically selects,
at run-time, those replicas to which the client sub-requests can be sent, based on both the
network congestion state and the replica servers’ workload.

As far as the protocol communication problems mentioned above are concerned, our
wireless application has been structured based on the use of an ALL-IP (or open IP) approach
where the mobile UMTS device is allowed to function as any other Internet-connected device
[21], and an end-to-end direct TCP/IP continuity is guaranteed by exploiting a standard
TCP/IP protocol stack. The principal motivation behind our choice is that of providing
seamless internetworking between the wired and the wireless segments.

Additionally, as one of the most relevant problems for music distribution to mobile
devices is that of an unexpected link interruption in the midst of a long download activity,
we have equipped our wireless architecture with a session level developed on the top of
the standard TCP protocol. The goal of our session level is that of ensuring that the song
download activity is not interrupted when the TCP communication is destroyed due to very
long link outages or handoffs. As explained in the following Section 2.2, here the problem
is no longer one of adjusting TCP performance to match the requirements of the wireless
environment, but one of guaranteeing a successful termination of the download activity
even when the underlying TCP connection is destroyed due to device mobility. Based on
the consideration that our session mechanism has been designed only to recover from stable
damages experienced by TCP connections, it is possible to imagine a future extension of our
system that includes one of the TCP wireless protocols which were proposed to alleviate the
worst aspects of performance degradation of the standard TCP protocol stack [e.g., 1, 5, 17].

Our paper concentrates on two objectives. First, it provides a complete overview of
the wireless Internet application we have designed and implemented; second, it presents
a complete set of experimental results that exhibit the performance of our system. The
reminder of this paper is organized as follows. In Section 2, we provide a detailed description
of the architecture of the wireless Internet application we have developed, and discuss some
design choices we have taken to implement our system. Section 3 reports on a large set
of performance results we have gathered from real-world experiments. In Section 4, some
related work by other researchers is presented and compared with the design goals at the basis
of our system. Finally, Section 5 gives some concluding remarks and plans for future work.

2. System architecture

The general architecture of our proposed wireless application may be thought of as con-
structed out of the following three software components, as shown in figure 1:

• The Mobile Client Application. This part of our wireless application runs on the UMTS
device, and has the responsibility of supporting the client during the subsequent activities
of:

1. Searching the Mp3 files corresponding to the client’s favorite songs over the Internet,
2. Downloading them on the UMTS device,
3. Playing them out as soon as they have been downloaded.

BRINGING THE WIRELESS INTERNET TO UMTS DEVICES 221

Figure 1. System architecture.

• The Intermediate software system (IS). This software component is hosted in an Internet
server and represents the core of our system. It is in charge of managing all the commu-
nications between the UMTS device and the Internet infrastructures. In particular, the IS
has been designed to support:

1. The wireless communication with the UMTS device, providing it with the access point
to the Internet-based music distribution service;

2. The wireline communication with the replicated Web servers. In essence, it is in charge
of implementing a reliable and responsive discover-and-download service based on
the user’s requests.

• The replicated Web Servers. They are Web servers geographically distributed over the
Internet which act as music repositories. In general, different Web servers can be managed
and administrated by different music service providers, and may also offer different set
of replicated songs. Simply stated, this replication scenario can be thought of as a loosely
coupled replication system, where, potentially, different servers support different sets of
music resources, and each single musical resource may be replicated within a number of
geographically dispersed Web servers.

222 ROCCETTI ET AL.

As to the IS, it exhibits three main functions which correspond, in turn, to the three
following software sub-components of the IS:

• the Application gateway; the Application Gateway accepts and manages all the requests
for songs arriving from the client connected to a given UMTS terminal,

• the Discovery system; it has been developed to identify and locate within our Internet-
based system all the replicated resources (i.e., the replicated Mp3 files) which correspond
to songs that have been requested by the users,

• the Download manager; it has been developed to carry out the activity of downloading
from the Web servers to the IS the songs that have been identified by the Discovery
system. The Download Manager performs this activity by exploiting the C2LD download
mechanism mentioned earlier.

A complete search-and-download session works as follows. Initially, a user from his/her
UMTS device issues to the Application Gateway a request for a given song. (Such a request
may refer either to a given song title or to a specific author). The Application Gateway
passes this request down to the Download Manager. The Download Manager asks to the
Discovery for the complete list of all the available MP3 songs which match the request
issued by the user. The Discovery subsystem performs the research of the song required by
the client.

Such an activity steps trough two different phases and proceeds as follows. First, the Dis-
covery tries to establish a relationship between the title of the song requested by the user and
the set of the available MP3 songs which can match the request. (Note that different MP3
songs may exist that match the request issued by the user). On completion of this operation,
the Discovery passes to the user (via the Application Gateway) the list of all the MP3 songs
it has found. Upon receiving this list, the user chooses one of the proposed MP3 songs. This
choice triggers an automatic process to download the correspondent song. The Download
Manager asks to the Discovery the complete list of the Internet-based locations of all the
replicated files that correspond to the MP3 song chosen by the user. After that, the Download
Manager starts the download operations by engaging all the different replica servers that
maintain identical copies of the requested song. This represents the beginning of the second
phase of the discovery/download activity, at the end of which the reassembled Mp3 file is
sent back from the Download Manager to the Gateway, and from the Gateway to the UMTS
terminal.

Needless to say, in order for the system to work correctly, a preliminary phase has
to be carried out where each potential music server announces the list of musical re-
sources it wishes to make available for distribution. Each music server which wants to
add its own repository to our IS may do that by running a software application called
the Data Collector. This application is in charge of communicating to the Discovery
the list of the Mp3 songs currently offered by different music servers. The next Subsec-
tions are devoted to examine, in turn, each of the above mentioned software application
components, along with a number of relevant design and implementation
details.

BRINGING THE WIRELESS INTERNET TO UMTS DEVICES 223

2.1. The Mobile Client application

The Mobile Client application represents the interface between human users and system
services, and provides a set of search-and-download functions. Taking into account that
portable devices (such as UMTS telephones or PDAs) are both computing-and
communication-power limited, we have taken the decision to delegate all the search and
discovery functions to the IS. In other words, the Mobile Client application cannot au-
tonomously determine which Mp3 files are precisely available, and where they are located,
but has to perform the two-phased search/download activity we mentioned earlier.

In the first phase, the mobile user initiates a search for a song, providing the system with
the request for a given song or an author. Hence, the Mobile Client application contacts the
IS to verify the existence of the corresponding music resource within the system. If that
resource exists, then this information is given back to the user. In the second phase, the
user can start the download activity to obtain the musical resource that has been previously
identified.

At the current state of the art, our mobile client application is delivered over the Microsoft
Windows CE operating system [31]. The only rationale behind this choice is that the Win-
dows CE platform provides a plethora of different programming tools, such as Visual C++
and Visual Basic, for example. Future implementation efforts will be devoted to develop
our client application over different operating systems (such as Linux). The current version
of the client software application has been implemented in Visual C++ by exploiting the
network programming environment provided by the socket programming interface.

It is worth noticing that the client software application we have developed permits to the
user the access to the music download service via a graphical interface through which she/he
can: (i) issue requests for a given song, (ii) ask for the top-10 list of songs, (iii) download
songs, (iv) listen to the downloaded songs. An example illustrating the final download phase
of a complete search/download/playout process is provided in figure 2.

2.2. The Application Gateway

The Application Gateway is the IS component that receives requests from the mobile ter-
minal and redirects them to the Download Manager. Finally, it forwards the downloaded
file to the mobile client over a wireless link. It is under the responsibility of the Application
Gateway that our system communicates with the mobile device.

Figure 3 shows the protocol stack we have developed to support all the Application
Gateway-related communications. In particular (as shown in the leftmost side of the figure)
the Application Gateway communicates with the Mobile Client application over an UMTS
link. As seen from the figure, on the UMTS protocol stack an IP layer is implemented,
based on the MobileIP (version 4) protocol. On the top of this MobileIP level, a standard
TCP layer has been built. Finally, the application layer built on the top of TCP has been
designed as constructed out of two different sub-layers:

• a Session Layer; this protocol layer is devoted to manage a download session which may
provides users with the possibility of resuming a communication that was previously

224 ROCCETTI ET AL.

Figure 2. A download playout session.

Figure 3. The application gateway protocol stack.

BRINGING THE WIRELESS INTERNET TO UMTS DEVICES 225

interrupted due to problems occurring at the lower levels of our communication archi-
tecture,

• a (Real) Application Layer; this protocol layer is in charge of supporting the different
connections needed to search and to download songs.

It is well known that mobile wireless is one of the more complex environments for
traditional transport protocols, such as TCP. Standard TCP has been designed to interpret
unexpected delays and packet losses as signs of network congestion. The normal TCP’s
response to packet losses and delays is to trigger a back off procedure (called slow start)
that aggressively reduces the congestion window to achieve connection stability [13, 43].

In a wireless environment, instead, unexpected delays and packet losses are symptoms
of problems related to mobility, such as temporary link outages, handoffs and transmission
errors due to bit-level corruption [21]. The heart of the problem is that, if mobility is
mistaken for congestion and the aggressive TCP congestion control procedures are activated,
the overall throughput of the wireless connection is drastically reduced with a significant
performance degradation of the entire system.

To alleviate the performance problems experienced by the existing TCP stack over wire-
less links, a number of different solutions have been proposed that modify the standard TCP
protocol [1, 2, 4, 5, 10, 12, 17, 20, 35, 42, 48, 49]. Unfortunately, drawbacks of practical
relevance of many of those proposals are that either their implementation requires changes
in the TCP stack within the Internet and in the mobile devices, or they do not permit the
mobile devices a transparent access to the Internet.

In this scenario, to guarantee that our mobile wireless devices may function as any other
Internet-connected device, we have taken the decision to resort to a so called ALL-IP (or
open IP) approach that exploits a standard TCP-IP stack for the communications between
the Application Gateway and the Mobile Client application. The principal motivation behind
this choice is to ensure a full end-to-end TCP/IP continuity.

However, as one of the most relevant problems for music distribution to mobile devices
is that of an unexpected link interruption in the midst of a long song download activity, we
have equipped our architecture with the wireless session layer shown in figure 3.

The aim of our session level is no longer one of adjusting TCP performance to match the
requirements of the wireless environment, but one of ensuring a successful termination of
the download activity even when the underlying TCP connections are damaged or disrupted
due to the device mobility.

A subtle aspect of TCP-supported wireless communications, in fact, is represented by
the problems that may be caused by long link outages and handoffs. For example, a mobile
user may enter an area of no signal coverage for a given period of time. Typically, if this
period of time exceeds a given threshold (e.g., a few minutes) the network gateway located
in between the wired and the wireless segments assumes that a link level interruption has
occurred and, after having informed the mobile device, it destroys the data link connection
over the wireless link. We have two possible cases here:

In the former case, the mobile client may have left the area of no signal coverage in time to
receive the information that the communication has been interrupted at the link level. In
such a case, the TCP software running on the mobile device may only take the decision

226 ROCCETTI ET AL.

to destroy the TCP connection as no more data will be delivered to the mobile device
through that TCP connection.

In the latter case, instead, the mobile client may still be in the area of no signal coverage
when the network gateway tries to inform it that the link level communication has been
lost. Under this circumstance, there is no way that the TCP software can be informed of
the link level interruption and a further negative result is that the TCP connection remains
open forever at the client side, even though no more data may be received over that TCP
connection.

Both the cases mentioned above may be very critical as they may cause the interruption of
the download activity of large Mp3 files, with no possibility to resume the data stream. Based
on these considerations, it easy to recognize that only the presence of a session mechanism
which is able to manage the communication interruptions we have illustrated may guarantee
the full success of a song download activity. With this in view, we have designed a session
management mechanism which is able to manage possible interruptions at the lower levels
of the communication architecture even in the presence of a wireless cellular access which
may exhibit a scarce connection stability and an unpredictable availability.

Our session layer works at the Client side as illustrated in figure 4, and summarized
below:

When the UMTS Client Application opens a download session with the Application
Gateway through a TCP connection, the Application Gateway assigns a unique identifier
to this new session and transmits it to the Client (lines 1–2, figure 4). During the download
activity (line 3, global variable: download completed), if the TCP software running on

Figure 4. Implementation of the session layer (Mobile Client).

BRINGING THE WIRELESS INTERNET TO UMTS DEVICES 227

the Client is informed of an interruption occurred at the wireless link level (line 4, global
variable: TCP error), or if a too long period of time has passed since the instant when
the last byte was received by the Client (line 4, global variable: connection timeout), the
(download) session state is saved at the Client side. In particular, a pointer to the last byte
received of the Mp3 song is saved along with the session identifier (lines 6–7), while the
current TCP connection is destroyed since it has been presumably damaged due to a link
level interruption (line 8).

As soon as the wireless link has become operational and the Mobile Client is able to open
a new TCP connection with the Application Gateway, then the Client tries to resume the
interrupted session by transmitting to the Application Gateway the session state that was
previously saved (lines 9–11, global variable: session resumed).

Eventually, when the Client detects that the download is successfully completed, the
session is terminated (line 15). At this point, the termination of the session is communicated
to the Application Gateway.

The session management mechanism implemented at the Application Gateway side works
to keep the operations performed by the Application Gateway synchronized with the Client.
In particular, as shown in figure 5, when the Mobile Client contacts the Application Gateway
to download a song, the Gateway detects if this is either a request for a new download session
or an attempt to resume an already existing session. (We have already mentioned that in this
latter case the Client transmits to the Gateway both the session identifier and the pointer to
the last byte it has received in that session).

If the Gateway is requested to open a new session (line 1 in figure 5, global variable:
new session request), it assigns an identifier to this new session and, using the current TCP
connection, transmits the session identifier to the Mobile Client along with the first data of
the requested song (lines 2–3 and 8).

Instead, upon receiving a request to resume a session the Gateway first checks if an old
TCP connection exists which is still open and inactive under the session to be resumed. In
such a case, the Gateway destroys that old TCP connection as it has not any active counterpart
at the Client side. Then, the Gateway resumes the session and starts sending data to the

Figure 5. Implementation of the session layer (Application Gateway).

228 ROCCETTI ET AL.

Client using the most recently generated TCP connection. This upload activity commences
with the byte that follows the last byte that was successfully received by the Client before
the link disruption (lines 5 and 8). If, eventually, the Client informs the Application Gateway
that the download activity has been successfully completed then the current session may be
terminated at the Gateway side (lines 7 and 10, global variable: download completed).

It is also worth noticing that the session layer implemented at the Gateway is equipped with
an internal mechanism based on a timeout which may be used to autonomously terminate a
session. This decision is taken by the Application Gateway when a considerable amount of
time has passed without any communication coming from the Client about a given session
(lines 7 and 10, global variable: session timeout). In our prototype implementation the value
of this timeout is set equal to one hour.

As a final note, it is important to remind that the session management mechanism we have
developed is suitable for recovering download activities that are interrupted due to long link
outages and handoffs, but it is not adequate to recover from system failures occurring at the
UMTS terminal or at the Application Gateway.

2.3. The Download Manager

The Download Manager is the real agent responsible for the download process and has been
designed to be able to optimize data transmissions in the sense that:

• It maximizes the service availability, i.e., it tries to maximize the percentage of success-
fully served requests.

• It maximizes the service responsiveness, i.e., it tries to minimize the time after which a
requested song is successfully downloaded on the UMTS terminal.

The aforementioned objectives have been fulfilled, at the Internet side, by exploiting the
technique of replicated Web servers. According to this technology, a software redundancy
is introduced at the Internet side. In essence, the songs which compose a music-on-demand
service are replicated across a number of Web servers, geographically distributed over
the Internet. In this context, a typical strategy to guarantee service responsiveness and
availability consists of dynamically binding the client to the available server replica with
the least congested connection [22].

An approach recently proposed to implement such a download strategy at the Internet side
amounts to the use of a software mechanism, called the Client-Centered Load Distribution
(C2LD) mechanism [15]. The principal goal of this mechanism is to minimize what we term
the User Response Time (URT), i.e., the time elapsed between the generation of a request
for the retrieval of a given Web resource and the delivery of that resource to the final user
over the wireless link.

Simply stated, rather than binding a client to its “most convenient” replica server as
proposed in [7], C2LD intercepts each request for a music resource, and fragments that
request into a number of sub-requests for separate parts (or fragments) of that resource.
Each sub-request is issued to a different available replica server, concurrently. For each
sub-request, an internal timeout is set, and if this timeout expires before the requested

BRINGING THE WIRELESS INTERNET TO UMTS DEVICES 229

fragment is received, the fragment is required from another replica server. Finally, the
replies received from the replica servers are reassembled to reconstruct the requested song
which is then delivered to the final user.

The C2LD mechanism is designed so as to adapt dynamically to state changes in both the
network (e.g., route congestion, link failures) and the replica servers (e.g., replica overload,
unavailability). To this end, the C2LD mechanism monitors periodically the available replica
servers and selects, at run-time, those replicas to which the sub-requests can be sent, i.e.,
those replicas that can provide the requested song fragments within a time interval that
allows the mechanism to minimize the URT.

We have implemented the C2LD mechanism on top of the HTTP 1.1 interface. The
timeliness requirement that our C2LD mechanism has to meet, in order to be effectively
responsive, can be expressed by means of a Intermediate System Specified Deadline (IS2D),
i.e., a value that indicates the extent of time our Intermediate System (IS) is willing to wait
for a requested music resource to be fetched from the Web.

For the purposes of this implementation, we have provided our mechanism with a con-
figuration procedure that allows the IS to set the IS2D timeout before a music resource is
accessed (a default IS2D value is used by our C2LD implementation, if the configuration
procedure is not exploited).

Typically, in order to obtain a song, a mobile user starts a request by providing the name
of the song. When the request for a given song is received at the IS, a translation of this
request is performed by the Discovery System that returns the IP addresses of all the Web
replica servers that store that song. At that precise instant, the Download Manager may use
standard HTTP GET methods with the IP addresses of all the replica servers associated to
that song. The C2LD mechanism intercepts each HTTP GET invocation, starts the IS2D
timeout, and uses the IP addresses in the GET invocation to interact with each replica as
illustrated in figure 6, and summarized below.

In particular, C2LD invokes an HTTP HEAD method on each replica i . The reply from
replica i to the first HTTP HEAD invocation is used by C2LD to: (i) get the exact size of the
requested song, (ii) estimate the data rate (DRi) that replica i can provide, and (iii) assess
the fragment size (FSi) of the first fragment that can be fetched from that replica (lines 3–5
in figure 6).

C2LD maintains a global variable (download done, line 8 in figure 6) that indicates
whether or not all the fragments of a requested song have been delivered. Before proceeding
in our discussion, it is worth observing that, owing to the IS2D timing constraint, each replica
server that receives a sub-request for a song fragment must honor that sub-request within a
time interval that allow the C2LD mechanism to reconstruct the requested song, out of all
the received fragments, before the IS2D deadline expires. Thus, it is crucial that the C2LD
mechanism assesses accurately both the size of the fragment each replica is to supply, and
the time intervals within which these fragments are to be received at the IS site.

To this aim, until a song is not fully downloaded, C2LD periodically computes the size of
the fragment (FSi,r) to be requested to the replica i within a period r of expected duration
equal to Di,r , using the following formula:

FSi,r = DRi,r ∗ Di,r.. (1)

230 ROCCETTI ET AL.

Figure 6. Implementation of the C2LD Service.

In the Formula (1) above DRi,r represents the value of the most recently measured data
rate that can be estimated by means of the following equation:

DRi,r = FSi,r−1

DTi,r−1
. (2)

In the above equation, FSi,r−1 represents the size of the song fragment downloaded with
the previous sub-request r − 1 issued to replica i , while DTi,r−1 is the download time
experienced for downloading the r −1 song fragment of size FSi,r−1. (Note that the DTi,r−1

value may be experimentally measured at the time of completion of the previous sub-request
r − 1). Once the requested fragment size has been calculated, C2LD issues a HTTP GET
request to the replica i to retrieve the required fragment (lines 9–11 in figure 6).

It is worth noticing, here, that no modification is needed to the standard storage of
sequential MP3 files on the Web servers, due to fragmentation. Specifically, a fragment of Z
bytes size may be requested by invoking a standard HTTP GET method with the following
option set: “Range: bytes = Y –X”, where X and Y denote the bytes corresponding to the
beginning and the end of the requested fragment of size Z , respectively.

In essence, to adapt to possible fluctuations of the communication delays that may occur
over the Internet, each time a fragment is to be requested, its size is computed based on the
value of the download time DTi,r−1 experienced in fetching the previous fragment. Thus,
as the GET request r − 1 directed to a given replica i terminates, a new GET request r can
be issued to the replica i with the fragment size value FSi,r computed on the basis of the
previous download time.

BRINGING THE WIRELESS INTERNET TO UMTS DEVICES 231

Figure 7. The download manager protocol stack.

Note that some of the replica servers may not respond timely to the HTTP (HEAD
and GET) invocations described above (e.g., they may be unavailable owing to network
congestion). Thus, C2LD associates a timeout to each HTTP request it issues to each server
i (line 6 in figure 6). If that timeout expires before C2LD receive a reply from a replica
server i , it assumes that the server i is currently unavailable, and places it in a ”stand by”
list. Replica servers in that list are periodically probed to assess whether they have become
active again. Requests for replicas in the stand by list are redirected to other active replicas
[7].

We conclude this Subsection by reporting in figure 7 the Download Manager protocol
stack. As the Download Manager has to communicate simultaneously with different mobile
clients, it has been designed to fork into different children processes for each different
request. Each process then uses the C2LD mechanism to download Mp3 files from the Web
server replicas, as shown in the figure.

It is also worth mentioning that the use of the C2LD mechanism does not force music
providers to organize Mp3 repositories which are all perfect replicas of the same list of
songs. A song, in fact, may be replicated within only some of the available server replica
of our system. The way in which our system is able to determine if a requested song is in
existence in the system, and where it is replicated, is discussed in the following Subsection.

2.4. The discovery and the data collector

The software component of our system where the relevant information about songs are
stored and indexed is the Discovery system. The main responsibility of the Discovery is
that of performing a sort of naming resolution for musical songs which are requested by
clients. In particular, it is in charge of:

• establishing a formal relationship between the requested songs and the correspondent
Mp3 files stored in the system,

• identifying the exact Internet locations where Mp3 files are replicated.

232 ROCCETTI ET AL.

It is easy to understand that song titles and correspondent authors are useful for file
indexing, but are not sufficient for accurate file identification. For example, the same song
may be encoded at different sampling rates thus resulting in different Mp3 files, or identical
Mp3 files may exist with different names or titles. To overcome this kind of problems,
the Discovery is able to identify identical Mp3 copies of a given song by calculating a 32
bit-based identifier (called the checksum) which is computed on the basis of the file content.
In essence, the complete list of information managed by the Discovery are the following:

• The information needed for identifying the set of Mp3 files corresponding to a given
song, namely: the File Name, the File creation time, the File length, the Song Title and
Author, and finally the Checksum.

• The information needed for localizing different identical Mp3 copies of the same song,
namely: the File Name, the Host server address (the IP address of the server that maintains
the requested song), the Path (along which the file is stored in the host server), the Transfer
Application Protocol used for distribution (e.g., HTTP) and finally the Checksum.

Specifically, the Discovery system manages two different hash indexes: the former,
needed to resolve user’s requests, is created on the basis of the song title and author while,
the latter, used to localize the requested files, is created on the basis of the checksum value
mentioned above. Two alternative methods may be devised for performing the calculation
of the checksum:

• a Centralized method, according to which each MP3 file is transmitted from the host
server to the Discovery that, in turn, computes the checksum, and

• a Distributed method, where each host server computes the checksum of its musical files
and communicates the results to the Discovery system.

To minimize the traffic overhead, we have taken the decision to implement the distributed
method, where each server has to locally run a software application, termed the Data
Collector, which provides the possibility to add or to delete the songs to be referenced by
the Discovery system. In this case, it is the responsibility of the Data Collector to locally
perform the checksum computation. The Data Collector is implemented as a Java applet to
enhance the software portability, and also meets standard security constraints, as it can only
read from the local file system, but it cannot execute local write operations. After having
computed the checksum of all the files that a given music provider wishes to distribute, the
Data Collector opens a TCP connection towards the Discovery and uploads the computed
checksums to it.

It is worth noticing that our signature mechanism has been specifically designed to cope
with the fragmentation/reassembly process provided by the C2LD mechanism which needs
to work with identical Mp3 copies of a given song. Based on our experience with other
systems designed to distribute music over the Internet (e.g., Napster [33]), we feel that our
signature mechanism and the fragmentation/reassembly process cannot be considered as a
limitation, but an important contribution to accelerating the activity of music distribution.

Typical interactions with Napster, in fact, were as follows. Different versions of a
given song (say song A) were often present within Napster depending, for example, on

BRINGING THE WIRELESS INTERNET TO UMTS DEVICES 233

the bit rate used for sampling (e.g., songA-version1.mp3, songA-version2.mp3, songA-
version3.mp3, . . .). Several identical copies of a given Mp3 song were also frequently
offered by different owners (e.g., five identical copies of songA-version2.mp3, and three
identical copies of songA-version3.mp3). Napster clients were used to choose a given ver-
sion of a certain song based on their preference and convenience. After having chosen a
given version of a song (e.g., songA-version2.mp3), the download of that Mp3 song was
performed by establishing a sequential HTTP connection with only one out of the different
servers that stored the song of interest.

With our signature mechanism, instead, it is possible to build a replicated repository for
each different version of a given song. Each replicated repository can be built with the
contribution of each different owner of an identical copy of a given Mp3 song. For example,
a replicated repository for songA-version2.mp3 could be set up with the contribution of all
the five different owners of that Mp3 song. The real advantage of our approach is that:

• the construction of such a replicated repository may be carried out following a distributed
and independent process, where each owner may use the Data Collector and its signature
mechanism to add/delete its copy of a given Mp3 song, and

• a rapid song distribution is ensured by the C2LD mechanism which is able to exploit all
the available identical copies of a given Mp3 song.

3. An experimental assessment

We present an experimental study we have developed in order to assess the effectiveness
of our music-on-demand service. The intention behind our experimental study has been to
investigate the quality of the Internet/UMTS download sessions carried out by our wireless
application. During the period July 2001–May 2002, we conducted around 4000 experi-
ments consisting in the download of a set of different Mp3 files. Four different Web server
replicas were exploited at the Internet side. Instead, the communications between the Ap-
plication Gateway (located at the border between the Internet and the wireless UMTS link)
and the mobile client was simulated by means of an UMTS simulator able to produce the
transmission delay time of each frame at the radio link layer. Detailed information concern-
ing the experimental models we adopted for our experiments are discussed in the following
Subsections.

3.1. Application level model

We used four different Web servers, geographically distributed over the Internet, providing
the same set of 40 different songs. The four different replica servers were respectively
located in Finland, Japan, USA and New Zealand (figure 8). The Intermediate System was
running on a Pentium 3 machine (667 MHz, 254 MB RAM) equipped with the Windows
2000 Server operating system, and was located in Italy (Bologna). The UMTS network
was simulated by means of an UMTS simulator provided by the “Fondazione Marconi” (a
public Italian foundation for wireless computing). Finally, the UMTS device, on which the

234 ROCCETTI ET AL.

Figure 8. Web server replicas and clients.

client of our application was running, was emulated by means of a Pentium 2 computer
(266 MHz, 128 MB RAM) equipped with the Windows CE operating system.

To provide the reader with an approximate knowledge of the transmission times expe-
rienced over the considered Internet links, it is worth mentioning that the average mea-
surements, obtained with the ping routine, of the Round Trip Times between the client and
the four different servers (i.e., Finland, Japan, USA and New Zealand) were 70, 393, 145
and 491 milliseconds, respectively. As to the downloading process, the two following basic
assumptions were taken:

1. Mp3 file size: we used 40 different Mp3 songs whose correspondent file sizes ranged
from 3 to 5 MB. The file size of 3-5 MB corresponds to the average file dimension of
the songs maintained in the Napster system.

2. Type of download activities: our software application is able to support to two different
types of download services: the former consists of downloading a single song, the latter
amounts to the download of a complete set of songs (a compilation). To evaluate the
performance of our system under both these circumstances, we conducted the following
experiments:

• A set of independently replicated experiments consisting of the download of a single
song.

• A set of independently replicated experiments, each one consisting of the download of
a compilation. The number of songs for each compilation was chosen equal to either 3
or 5 or 10. These three values were chosen based on the consideration that the average
disk capacity of typical Mp3 players never exceeds 50 MB.

BRINGING THE WIRELESS INTERNET TO UMTS DEVICES 235

3.2. TCP/IP and UMTS models

As currently no real measurements of UMTS data transmissions are available, the commu-
nication between the Application Gateway (at the Internet side) and the client application
running on the UMTS device was carried out through a simulated UMTS network using
the background traffic class.

It is well known that the UMTS protocol stack consists of: a PHY (Physical) layer, a
MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer that implements
an ARQ mechanism for ensuring reliable data transmission, and finally, a PDCP (Packet
Data Convergence Protocol) layer that provides data and header compression to improve
channel efficiency [46]. On the top of this UMTS stack we have the standard IP and TCP
protocols [13].

The UMTS network simulator we exploited is able to return after simulations a complete
Wireless Network Transmission Time (WNTT) value computed at the PDCP layer. Needless
to say, these WNTT values depend on some operational parameters, such as the amount
of traffic present in the cell and the number of active clients and their speeds. WNTT
measurements include also the time spent for possible retransmissions at the UMTS RLC
level. In our experiments, different values of this WNTT measurements were taken based
on the different possible sizes of the TCP segments coming from the Internet (namely
120/440/920 bytes).

The unique problem that stems from this hybrid approach (i.e., both experimental and
simulative) is that segment errors and resulting retransmissions at the TCP level are not
taken into account. To circumvent this problem, our experiments have included the possible
retransmission time delays incurred at the TCP level, by exploiting an external delay intro-
duction mechanism that was designed to take into account the typical TCP error recovery
mechanism based on received ACKs. Simply stated, this delay mechanism compares the
WNTT values obtained through the UMTS simulation against the timeout values computed
by TCP. If the simulated WNTT value is larger than the correspondent TCP timeout value,
then we conclude that a retransmission must occur at the TCP level. In such a case, the
WNTT value of that given TCP segment is augmented by an additional value which is cho-
sen as equal to the next WNTT value extracted from the set of the UMTS-based simulated
values. Consequently, the TCP timeout value is updated as follows. If a retransmission at
the TCP level is detected according to the method mentioned above, then the subsequent
TCP timeout value is calculated as double with respect to the previously computed value. If
no retransmission at the TCP level has been detected, then the traditional adaptive formula
for the calculation of the TCP timeout value is followed [13, 43]:

Timeout = RTT + 4 ∗ D,

RTT = α ∗ RTT + (1 − α) ∗ M,

D = α ∗ D + (1 − α) ∗ |RTT − M |,

where α = 7/8, M is the simulated value produced by the UMTS simulator, RTT represents
an averaged value of M , and D is a variation of RTT.

236 ROCCETTI ET AL.

Table 1. WLNTT and SA results.

HTTP
C2LD

(4 Servers) Finland USA Japan New Zealand

Download time (Seconds) 32.547 47.889 122.191 248.740 624.195

C2LD improvement (Percentage) – 32% 73.4% 86.9% 94.7%

Successful download (Percentage) 100% 98.5% 99.5% 95% 89%

3.3. Experimental results

This section reports on a large set of results obtained during the experimental trials we
conducted. In particular, in the following section, we present both the download times
and the service availability level we measured at the Internet side. Instead, Sections 3.3.2
and 3.3.3, respectively, present the measurements of the download times obtained for the
distribution of single songs and for the distribution of sets of songs over an UMTS link.

3.3.1. Download times at the internet side. In this Section we report the measurements
of the:

• WireLine Network Transmission Time (WLNTT) values, that is the time spent over the
wired Internet links to download a requested Mp3 song from the Web server replicas to
the IS. These measurements have been compared with those that may be obtained by
downloading the same Mp3 song with a standard HTTP GET method. The first row of
Table 1 reports those results for Mp3 files whose size is 5 MB. The second row shows
the average WLNTT percentage improvement obtained by the C2LD mechanism with
respect to the standard HTTP protocol. As shown in the Table, our system obtains an
average percentage improvement over the fastest HTTP replica which is equal to 32%;

• Service Availability (SA) values, i.e., the capability of carrying out a successful download
of the requested song (within a maximum time interval of 900s). As shown from Table 1,
a full SA may be achieved with the use of the replication technology adopted by our
C2LD mechanism. On the contrary, only a partial SA may be obtained by exploiting the
standard HTTP protocol.

3.3.2. Download times for single songs on UMTS links. We examine here the cumulative
Wireless Network Transmission Time (WNTT) values we obtained to download single Mp3
songs to UMTS devices. In particular, figures 9 and 10 show the WNNT values (respectively
for 5 MB-sized and 3 MB-sized songs) depending on the two following simulation traffic
parameters:

• the speed at which users move throughout the cell (expressed in km/h),
• the additional traffic in the cell (expressed via erlang values).

BRINGING THE WIRELESS INTERNET TO UMTS DEVICES 237

Figure 9. WNTT values for 5 MB-sized songs.

Figure 10. WNTT values for 3 MB-sized songs.

Two main considerations about the results of figures 9 and 10 are in order: (i) the larger
the traffic in the cell (and the user speed), the larger the corresponding WNTT values, and
(ii) the best WNTT result may be obtained when the mobile device is completely still.
(In such a case a data rate of about 12 KB/s may be obtained.) Figure 11 summarizes
the behaviour of the WNNT values for some different traffic combinations, depending
on the song sizes. In particular from the top to the bottom of the graph represented in
figure 11, the curves for the following traffic parameters have been respectively plotted:
15 erlang-70 km/h, 15 erlang-40 km/h, 12 erlang-70 km/h, 12 erlang-40 km/h, 6 erlang-0
km/h. It is easy to note that the more the song size increases (along with the amount of
traffic in the cell) the more the WNNT values increase. As an example figure 12 reports

238 ROCCETTI ET AL.

Figure 11. Summary of WNTT values depending on song size.

Figure 12. Data rate for 3 MB-sized songs.

BRINGING THE WIRELESS INTERNET TO UMTS DEVICES 239

on the average data rates that may be obtained on the wireless link for the download of
songs of 3 MB (depending on the user speed). As expected, the larger the user speed,
the smaller the obtained data rate. An important consideration is in order now, which is
related to the impact that the download time values, obtained at the Internet side, have
on the total time requested to download songs on UMTS terminals. The obtained average
download delays at the Internet side (about 33 seconds) seem to be quite irrelevant if
compared with the WNTT values which have been experienced on the wireless links (ranging
from 250 to 1325 seconds, i.e. from about 4 to about 22 minutes). This optimal result at
the Internet side is probably due to the use of the adopted Web replication technology
along with the use of our distribution mechanism (C2LD). Note, in fact, that if we try to
download songs from a single Web server (such as the New Zealand Web server) with
the standard HTTP, this can lead to an increase of the WNTT value by about 600 seconds
(10 minutes).

To conclude this Subsection, it is worth mentioning that additional experiments were
carried out to assess the ability of the session mechanism embodied in our architecture to
provide reliable operations over unstable wireless links. To conduct those experiments we
replaced the simulated UMTS layer of our wireless architecture by a real GPRS layer where
real handoffs and long temporary link outages may be experienced.

In those experiments (about 30), in the midst of a song download session we entered
with our mobile device an area of no signal coverage for a variable period of time rang-
ing from several seconds (about 20) to several minutes (about 10). The result of this ac-
tivity was the following. When the period of no signal coverage was limited within a
maximum value of a very few minutes (around 1 or 2 minutes), the underlying TCP con-
nection was able to respond to link restoration, even if a considerable amount of time
(several seconds) passed from the precise instant the link became operational and the in-
stant when TCP started packet retransmissions. Instead, when the routing level repaired
the link outage after a longer period (about 3 minutes) the result was that the TCP con-
nection was either destroyed or completely damaged, with no possibility to resume packet
transmission at the TCP level. In these negative cases, our session mechanism was trig-
gered and, after that the signal was obtained again at the link level, a new TCP connec-
tion was established to resume the data stream and to guarantee download continuity.
The result of the activity of the session mechanism was that all the download opera-
tions were successfully completed, even though download times got unavoidably larger.
The additional latencies that were introduced amounted to the time needed to repair the
link.

3.3.3. Download times for sets of songs on UMTS links. It is well known that when a
user wishes to listen to a set of songs, he would prefer to be able to listen to each single
song in sequence, without any interruption occurring in between subsequent songs. Now,
typical Mp3 songs with a 128 Kbit encoding (based on a 44100 Hz sampling rate) produce
a needed data throughput of about 17 KB per second. Unfortunately, we already know from
the simulation results presented earlier that, even in the best case (6 erlang of traffic in the
cell, user speed equal to 0 km/h), the data rate which may be achieved does not exceed the
value of 12 KB per second.

240 ROCCETTI ET AL.

A possible solution to guarantee an uninterrupted playout amounts to keep the user
waiting for a certain initial time period before he can begin to listen to the songs contained
in the compilation.

Based on the WNTT results obtained for the download of single songs, we have tried
to estimate the preliminary amount of time that a user should wait before he can begin to
listen to the songs contained in a compilation without any interruption. The results of this
theoretical estimation are reported in figures 13 and 14 for two given cases, respectively
Case 1: song size = 4 MB, traffic = 6 erlang, user speed = 0 km/h; and Case 2: song size
= 4 MB, traffic = 12 erlang, user speed = 70 km/h.

To validate the theoretical results presented in figures 13 and 14, we carried out an
additional set of experimental trials by downloading sequences of different subsequent
songs. Figures 15 and 16 show the WNTT results for compilations composed by 3 and

Figure 13. Waiting time for a 3-song compilation (song size: 4 MB, traffic: 6 erlang, user speed: 0 km/h).

Figure 14. Waiting time for a 3-song compilation (song size: 4 MB, traffic: 12 erlang, user speed: 70 km/h).

Figure 15. WNTT values for a 3-song compilation (12 MB).

BRINGING THE WIRELESS INTERNET TO UMTS DEVICES 241

Figure 16. WNTT values for a 5-song compilation (about 19 MB).

5 songs, respectively. Each Mp3 song used in these experiments had a size of 4 MB.
By analyzing the WNTT curves of figures 15 and 16, we may understand that the obtained
experimental values are very close to the theoretical ones shown in the examples of figures 13
and 14. Hence, we may conclude that, based on an analysis of the curves of figures 15 and
16, one could derive quite precise estimates on the extent of time a user has to wait before
he can start to listen to a compilation without any interruption.

4. Related work and comparison

The aim of this section is to briefly present some related work by other researcher and to
compare it with the most relevant design choices we have taken to implement our system.

4.1. Content delivery networks

Some issues of paramount importance for the development of our system are those related
to the problem of multimedia distribution over the Internet. In this context, in recent years,
there has been plenty of emphasis about the possibility of an effective, secure and reliable
access to multimedia information from mobile terminals. This has determined the evolution
of architectural solutions and technologies based on content.

Whereas lower-layer network infrastructures are focused on the routing, forwarding,
and switching of packets, the so-called (Internet-based) content networks deal with the
routing and forwarding of requests and responses for content using upper-level application
protocols. Typical data transported in content networks consist of images, movies and
songs which are often very large in dimensions. According to a widespread definition,
a Content Distribution Network (CDN) can be seen as a virtual network overlay of the
Internet that distributes contents by exploiting multiple replicas. A request from a client
for a single content item is directed to a good replica, where good means that the item is
served to the client quickly compared to the time it would take if that item were fetched

242 ROCCETTI ET AL.

from the original server. In the CDN-related literature it is said that a typical CDN has some
combinations of a content-delivery infrastructure, a request-routing infrastructure and a
distribution infrastructure.

The content-delivery infrastructure consists of a set of surrogate servers that deliver
copies of content to users that issues requests for a certain content. The request-routing
infrastructure consists of mechanisms that enable the connection of a given client with a
selected surrogate. The distribution infrastructure consists of mechanisms that copy content
from the origin server to the surrogates. Additionally, content internetworking allows differ-
ent content networks to share resources so as to reach the most distant participants. A set of
software architectural elements constitute the core of the Content Distribution Internetwork-
ing (CDI) infrastructure that use commonly defined protocols for content internetworking,
as discussed at length in [3, 6, 8, 9, 19].

It is easy to recognize that the architecture of the wireless Internet application we have
developed resembles the above mentioned CDI technology for the reason it interconnects a
CDN, located in the Internet, with the UMTS network. At the basis of our CDI infrastruc-
ture we have put the Application Gateway which manages all the interactions between the
UMTS terminals and the wired Internet. Our developed Intermediate System (IS), along
with the set of all the replica servers, constitutes a real CDN: the content-delivery infras-
tructure is implemented by means of the replica servers which store multiple copies of Mp3
songs; the search functionalities of the Discovery, integrated with the C2LD download-
ing mechanism that operates by engaging all the available replicas in supplying fragments
of the required song, provide a combination of the request-routing infrastructure and the
distribution infrastructure.

Another prominent issue in the design of our architecture for the distribution of musical
contents is concerned with the fact that mobile clients have typically scarce computational
capacity and need a stable access point to the wired CDN. Hence our choice to exploit
a centralized entity (comprising the Application Gateway, the Download Manager and
the Discovery) which functions like a stable and wired intermediary with respect to the
decentralized musical resources.

To conclude this Subsection, it is worth noticing that while several CDNs have been
created by a number of companies, there is little that has been published on the extent to
which they are being used and their correspondent performance in serving contents [25,
28]. In this context, an interesting scheme called Dynamic Parallel Access (DPA) has been
recently proposed by Rodriguez and Biersack that manages the distribution infrastruc-
ture in a CDN [40]. DPA exploits the parallelism inherent in globally replicated contents
by involving all active replicas in the retrieval of a given resource. Unlike C2LD, DPA
splits a client’s request into more sub-requests for resource portions which are of fixed
size.

We have compared the download times which can be obtained by the C2LD mechanism
on the Internet side with those produced by an implementation of the DPA scheme. A simple
CDN was used for our experiments with three different replica servers which were located
in Europe: two of them were in Italy (Cesena and Trieste) and one in the UK. The client
was running on a host in Bologna (Italy). 20 different experiments were carried out with
files of different size, ranging from 0.1 KB to 11 MB.

BRINGING THE WIRELESS INTERNET TO UMTS DEVICES 243

Figure 17. CDN performances: C2LD vs. DPA.

The average results of our experimental comparison are plotted in figure 17 in terms of
User Response Time (URT). As all the replica servers were quite near to the client, very
small download times were experienced in all the experiments. As shown in figure 17, an
important result of our experiments is that the C2LD mechanism (lower curve) outperforms
the DPA scheme (upper curve) when the size of the files exceeds 25 KB. Based on these
results, we feel that C2LD is currently one of the best candidate to implement the distribution
infrastructure of a music delivery network.

4.2. Transport layer protocols

Mobile wireless is one of the more complex scenarios for Internet protocols, and in particular
for transport protocols. One approach to supporting the wireless environment is the so-called
walled garden approach [21]. According to this approach, the transport protocol used within
the mobile wireless environment is not TCP, but is instead a transport protocol that has been
specifically designed for mobile wireless. The WAP approach is exactly based on this kind
of solution: almost every layer of the standard TCP-IP protocol stack has been redefined
and modified, with the result of losing a full compatibility with standard IP applications
which are designed for wireline environments [47].

An alternative solution to the walled garden approach is represented by the ALL-IP
approach where mobile wireless devices are allowed to perform like any other Internet-
connected device. If this approach is chosen, then some form of end-to-end TCP continuity
is required to ensure that TCP operates efficiently on the wireless link. All the following
events may occur on the wireless links which are interpreted by the standard TCP as signs
of network congestion:

• communication pauses due to handoffs between cells,
• packet losses experienced when the mobile host enters a region of no signal coverage,
• packet losses due to transmission errors at the radio link level.

244 ROCCETTI ET AL.

To react to these negative situations the standard TCP triggers exponential back off poli-
cies to achieve connection stability. Unfortunately, as both packet losses and delays are
caused by host mobility (and not by congestion), performing such conservative schemes
over wireless links results in further performance degradation, instead of relieving the
connection.

As already mentioned, the quest to solve the performance problems encountered by
standard TCP over wireless links is an active area of research, and several alternative
solutions have been proposed [1, 2, 4, 5, 10, 12, 17, 20, 35, 42, 48, 49]. Some of those
proposals have been of particular interest for our work. For the sake of clarity, we can
classify many of the different proposed protocols into three categories [11]: split connection
protocols [1, 20, 49], link layer protocols [2, 35] and end-to-end protocols [5].

The main idea behind the split connection approach is to split into two different parts
the communication, with the base station in the middle, and to shift the bulk of network
protocol from simplified mobile machines to the base station. In this way, the wired half of
the connection does not require any changes, while a specialized protocol can be used at
the wireless segment to improve performance.

A significant example of this approach is the Indirect TCP for Mobile Hosts (I-TCP)
protocol [1]. I-TCP splits a standard TCP connection into two different parts, with the base
station at the middle point. Then, modifications of the TCP protocol are proposed for the
wireless communication segment which, exploiting the use of selective ACKs, permit to
recover more than one lost TCP packet in one round trip time, thus improving the final
throughput [49].

Also in [20] a TCP connection is split into two parts at the base station (Mobile TCP).
The designers of Mobile TCP devise a simplified communication mechanism which can
replace the standard TCP on the wireless half of the connection. Based on the consideration
that a base station is more powerful and stable than a mobile device, they move to the base
station much of the work due to the connection management and the flow control of the
wireless link.

The link layer approach, instead, tries to hide the characteristics of the wireless link from
the transport layer and solves performance problems at the link layer.

As an example, in [2] Balakrishnan et al. propose the use of the SNOOP module between
the TCP and the IP layers. The idea of SNOOP is to monitor, at the base station, both
the packet addressed to the mobile hosts and the relative acknowledgements sent by the
mobile host. Packets not yet acknowledged by the mobile host are buffered by the base
station. If a packet loss is detected, the base station can directly exploit buffered packets to
manage retransmissions. In the scheme proposed by the designers of SNOOP, the problem
of managing delays due to handoffs and temporary link outages is also faced by using a
complex mechanism based on buffering and multicast transmissions.

Another link-layer oriented approach is presented in [35], where Parsa and Garcia-Luna-
Aceves present a link improvement protocol (TULIP) that allow TCP to operate efficiently in
the face of the unstable conditions of wireless links. The principal architectural characteristic
of this approach is that it proposes a MAC acceleration feature which can be applied to
collision avoidance mechanisms (e.g., IEEE 802.11) to improve throughput over wireless
lossy links.

BRINGING THE WIRELESS INTERNET TO UMTS DEVICES 245

Finally, the most studied category is that of end-to-end protocols. Here, researchers
attempt to handle losses an delays in a way that improve the performance of TCP over
wireless links, while maintaining the end-to-end semantics of regular TCP.

A very significant example of this approach is provided in [5]. In this paper, Caceres
and Iftode propose very practical solutions to improve the TCP performance on a wireless
link. The first solution amounts to implement a sort of smooth, “make then break” handoff
procedure in order to eliminate packet losses during cell crossings. The second type of
solution is identified in the necessity to engineer more accurate retransmission timers,
while a final and more attractive solution is to resume communications immediately after
that handoffs complete, without waiting for retransmission timeouts (fast retransmissions).

Also there exist proposed protocols which rest upon a combination of the assumptions
taken by the three different categories we have mentioned [4, 10, 12, 17, 42, 48, 49]. For
example, in [48] Wang and Tripathi propose a new protocol that replaces the standard TCP/IP
protocol over the wireless link by a simpler protocol with smaller headers. In addition, in
their scheme several functions needed for the communication between a mobile host and
the Internet are shifted to the base station, and, finally, link-layer acknowledgements and
retransmissions are exploited to quickly recover losses over the wireless link.

Along the line of quick reactions to link layer problems, there is a recent paper by Goff,
Moronski and Phatak where the Freeze-TCP model is presented [17]. In this paper, the
authors propose a pro-active action/signaling method that may be employed by mobile
hosts to react to disconnections with a higher performance than standard TCP.

Summarizing, the split connection approach has several important advantages. The first
is that the mobile machines may be hidden from outside, so they can be specialized and
simplified. Secondly, it is a good idea to delegate the most complex part of networking
tasks to base stations as they are, typically, more powerful and stable than mobile devices.
However a typical drawback is that most part of the proposed schemes require intermediaries
where the TCP traffic is monitored and controlled (e.g., base stations).

Shifting these functionalities from mobile hosts to intermediaries may give rise to scal-
ability problems. For example, a base station may become overloaded if it has to serve a
large amount of mobile devices with multiple connections.

An even more important drawback, which is common to almost all the proposed protocols,
is that those protocols require (from significant to modest) changes in the TCP protocol
stacks. In the worst cases, those changes may be required on the sender side or on the
intermediate machines. It is better when changes in the TCP code are restricted to the
mobile client side, making it possible to interoperate with the existing infrastructure.

To conclude this Subsection, it is worth reminding that a problem of practical relevance
for music distribution to mobile devices is that of an unexpected link interruption in the midst
of a long song download activity. To surmount this type of problems, we have equipped
our architecture with a wireless session layer developed on the top of the standard TCP
protocol. The aim of our session level is to ensure that the song download activity is not
interrupted when the data link level communication is destroyed due to very long link out-
ages or handoffs. In essence, our session mechanism was not designed to solve the problem
of adjusting TCP performance to match the requirements of the wireless environment. In-
stead, our session was developed to guarantee a successful termination of the download

246 ROCCETTI ET AL.

activity even when the underlying TCP connection is disrupted due to the device mobil-
ity. Based on these considerations, it is possible to envisage that our session mechanism
may be successfully “mounted” on top of one of the TCP wireless protocols which were
proposed to alleviate the worst aspects of performance degradation of the standard TCP
protocol.

4.3. Wireless access to Web contents

In figure 18 we illustrate three alternative methods to access Web contents from mobile
devices. In the rightmost side of figure 18, the approach is illustrated which exploits a
specific wireless protocol to access Web contents from mobile devices. A protocol gateway
uses this specific wireless protocol to enable the interaction of the wireless device with the
Internet. An already mentioned example of such type of solution is the WAP approach that
incorporates a protocol gateway able to translate requests from the wireless protocol stack
to the Web protocols. Moreover, instead of using HTML, WAP uses the Wireless Markup
Language (WML), a subset of XML, to create and deliver contents [47].

With regard to this issue, it is important to notice that the IS embodied in our architecture
performs different functions with respect to the protocol gateway of the WAP solution (see
figure 18). The WAP-type gateway performs translations from HTML-based contents to the
proprietary format which is understandable at the mobile terminal, instead our proposed
Application Gateway does not performs any form of content translation, but only implements
a Content Delivery Internetworking infrastructure.

There exist also simpler microbrowser architectures (such as, for example, Microsoft’s
Mobile Explorer) that completely rest on the use of the HTML markup language for content
delivering. However, a great limitation of this approach depends on the server ability to send
information in pure HTML (leftmost part of figure 18) [41]. Besides WAP, microbrowser
technology still moves forward with innovative solutions such as, for example, iMode and
the Pixo Internet Microbrowser. Those protocols are specifically aimed at the wireless

Figure 18. Wireless access to web contents: microbrowser, music-on-demand, WAP.

BRINGING THE WIRELESS INTERNET TO UMTS DEVICES 247

Internet, since they re-code the Internet content for wireless devices and utilize Compact
HTML (CHTML) or Extensible Hypertext Markup Language (XHTML) as their markup
languages [27, 29, 41].

Middleware often offers an alternative to manually replicating content. Its basic purpose
is to transparently transcode content on the fly without maintaining Web content in multiple
formats. The use of the Relational Markup Language (RML), the Parlay project [45], the
micro edition of Javag (J2ME) [23], the Mobile Execution Environment (MExE) [30],
the micro version of Jini (JMatos) [24], Online Anywhere [34] and Proxynet [37] are all
initiatives which fall inside the middleware-based approach.

It is not possible to conclude this Subsection without any mention to the JXTA technology
[18, 36]. This is a set of open (peer-to-peer) protocols that allow any connected device on
the network (from cell-phone to PDA, from desktop computer to consumer electronics) to
communicate. The focus of JXTA protocols is on creating a virtual network overlay on top
of the Internet allowing peers to directly interact independently of their network location,
programming language, and different implementations. At the heart of JXTA technology
we can find advertisements (XML documents) that are exploited to advertise all network
resources (from peers to contents). Advertisements are exploited to provide a uniform way
to publish and discover network resources.

5. Conclusions

We have developed a wireless Internet application designed to support music distribution
to UMTS devices with the Internet as a backplane. Simply stated, our software architecture
has been designed to interconnect a Music Delivery Network, located in the Internet, with
UMTS-based clients. From a final-user standpoint, our application enables mobile clients
to download and to listen to Mp3 files on UMTS devices.

We reported on a large set of experimental results we obtained on the field by exploit-
ing our wireless application. The download time measurements we have experimentally
obtained show that combining 3G mobile network technologies with an appropriate struc-
turing of the wireless Internet application may be very effective for the fast distribution of
music to mobile clients. We conclude this paper by noticing that the WNTT values we have
obtained from our experiments are in the range from 250 to 1325 seconds, for single songs,
depending on the user’s speed and on the additional traffic present in the cell. With different
wireless technologies, and in the absence of additional traffic, we would have obtained the-
oretical WNTT values ranging from about 1500 (GPRS technology at 28.8 Kb/s) to around
3000 seconds (GSM technology at 14.4 Kb/s) [38, 39].

In the near future, we expect to be able to assess the software architecture, which is
at the basis of our wireless application, by using a real UMTS network infrastructure. In
addition, future research efforts will be devoted to the activity of porting our Internet wireless
application on different operating platforms. We wish to mention that currently: (i) we have
not addressed yet any security and copyright protection issues for our application, (ii) we
have not considered yet the design of an accounting infrastructure. We plan to devote our
future research to these relevant issues.

248 ROCCETTI ET AL.

Acknowledgments

This research was conducted with the financial support from the EU, the Italian MIUR, the
“Fondazione Marconi of Bologna”, the Department of Computer Science of the University
of Bologna and Microsoft Research Europe. We are indebted to our colleagues Stefano
Cacciaguerra, Alessandro Gambetti, Davide Melandri, Orlando Orlandi, Mirko Piaggesi
and Daniela Salsi for their helpful assistance during the implementation and testing of
the software architecture discussed in this paper. Finally, we are grateful to the anonymous
referees of the International Journal on Multimedia Tools and Applications for their helpful
review of this article.

References

1. A. Bakre and B. Badrinath, “I-TCP: Indirect TCP for mobile hosts,” in Proc. International Conference on
Distributed Computing Systems, Vancouver, Canada, May 1995.

2. H. Balakrishnan, S. Seshan, E. Amir, and R.H. Katz, “Improving TCP/IP performance over wireless networks,”
in Proc. of Mobicom ‘95, Berkeley, California, USA, Nov. 1995.

3. A. Barbir, B. Cain, F. Douglis, M. Green, M. Hoffmann, R. Nair, D. Potter, and O. Spatscheck, “Known CDN
request-routing mechanisms,” draft-cain-cdnp-known-request-routing-02.txt, June 2001.

4. P. Bhagwat, P. Bhattacharya, A. Krishna, and K. Tripathi, “Using channel state dependent packet scheduling
to improve TCP throughput over wireless LANs,” Wireless Networks, Vol. 3, No. 1, 1997.

5. R. Caceres and L. Iftode, “Improving the performance of reliable transport protocols in mobile comput-
ing environments,” IEEE Journal on Selected Areas in Communications, Vol. 13, No. 5, pp. 850–857,
1995.

6. B. Cain, O. Spatscheck, M. May, and A. Barbir, “Request-routing requirements for content internetworking,”
draft-cain-request-routing-req-02.txt, July 2001.

7. M. Conti, E. Gregori, and F. Panzieri, “QoS-based architectures for geographically replicated web servers,”
Cluster Computing, Vol. 4, pp. 105–116, 2001.

8. M. Day, B. Cain, G. Tomlinson, and P. Rzewski,” A model for content internetworking,” draft-day-cdnp-
model-05.txt, March 2001.

9. M. Day, D. Gilletti, and P. Rzewskip, “CDN peering scenarios,” draft-day-cdnp-scenarios-03.txt, March
2001.

10. D.A. Eckhardt and P. Steenkiste, “Improving wireless LAN performance via adaptive local error control,” in
Proc. Sixth IEEE International Conference on Network Protocols, Austin, Texas, USA, Oct. 1998.

11. H. Elaarag, “ImprovingTCP performance over mobile networks,” ACM Computing Surveys, Vol. 34, No. 3,
pp. 357–374, 2002.

12. A. Fieger and M. Zitterbart, “Evaluation of migration support for indirect transport protocols,” Proc. Second
Global Internet Conference, Phoenix, Arizona, USA, Nov. 1997.

13. A. Forouzan, TCP/IP Protocol Suite, McGraw Hill: New York, 2000.
14. Freenet Project Inc., The Freenet project, http://freenet.sourceforge.net
15. V. Ghini, F. Panzieri, and M. Roccetti, “Client-centered load distribution: A mechanism for constructing

responsive web services,” in Proc. 34th International Conference on System Sciences, Maui, Hawaii, USA,
Jan. 2001.

16. Gnutella official site, http://gnutella.wego.com/
17. T. Goff, J. Moronski, D. Phatak, and V. Gupta, “Freeze-TCP: A true end-to-end TCP enhancement mechanism

for mobile environments,” in Proc. of IEEE Infocom 2000, Tel-Aviv, Israel, March 2000, pp. 1537–1545.
18. L. Gong, “JXTA: A network programming environment,” IEEE Internet Computing, May-June 2001, pp.

88–95.
19. M. Green, B. Cain, G. Tomlinson, S. Thomas, and P. Rzewskip, “Content internetworking architectural

overview,” draft-green-cdnp-gen-arch-03.txt, March 2001.

BRINGING THE WIRELESS INTERNET TO UMTS DEVICES 249

20. Z. Haas and P. Agrawal, “Mobile-TCP: An asymmetric transport protocol design for mobile systems,” in
Proc. International Conference on Computers and Communications, Montreal, Canada, June 1997, pp. 1054–
1058.

21. G. Huston, “TCP in a wireless world,” IEEE Internet Computing, March–April 2001, pp. 82–84.
22. D. Ingham, S.K. Shrivastava, and F. Panzieri, “Constructing dependable web services,” IEEE Internet Com-

puting, Vol. 4, No. 1, pp. 25–33, Jan./Feb. 2000.
23. JAVA J2ME, http://www.java.sun.com/j2me
24. JINI Network Technology, http://www.sun.com/jini/index.html
25. K.L. Johnson, J.F. Carr, M.S. Day, and M.F. Kaashoek, “The measured performance of content distribution

networks,” in Proc. Fifth International Web Caching and Content Delivery Workshop, Lisbon, Portugal, May
2000.

26. R. Kalden, I. Meirick, and M. Meyer, “Wireless internet access based on GPRS,” IEEE Personal Communi-
cations, Vol. 7, No. 2, pp. 8–18, April 2000.

27. T. Kanter, “An open service architecture for adaptive personal mobile communication,” IEEE Personal Com-
munications, Vol. 8, No. 6, pp. 8–17, 2001.

28. B. Krishnamurthy, C. Wills, and Y. Zhang, “On the use and performance of content distribution networks,” in
Proc. ACM SIGCOMM Internet Measurement Workshop, San Francisco, California, USA, 2001.

29. G. Lawton, “Browsing the mobile internet,” IEEE Computer, Vol. 34, No. 12, pp. 18–21, 2001.
30. MexE Forum, http://www.mexeforum.org
31. Microsoft, Windows CE home page, http://www.microsoft.com/windows/embedded/ce/default.asp
32. MP3 resources by MPEG.ORG, http://www.mpeg.org/MPEG/mp3.html
33. Napster official site, http://www.napster.com/
34. Online Anywhere, http://www.onlineanywhere.com/
35. Parsa and J. Garcia-Luna-Aceves, “Improving TCP performance over wireless networks at the link layer,”

ACM Mobile Networks and Applications Journal, Vol. 5, pp. 57–71, April 2000.
36. Project JXTA , http://www.jxta.org
37. Proxinet, http://www.pumatech.com/proxinet
38. M. Roccetti, V. Ghini, and P. Salomoni, “Distributing music from IP networks to UMTS terminals:

An experimental study,” in Proc. 2002 SCS Euromedia Conference, Modena, Italy, April 2002, 147–
154.

39. M. Roccetti, V. Ghini, P. Salomoni, A. Gambetti, D. Melandri, M. Piaggesi, and D. Salsi. ”The structuring of
a wireless internet application for a music-on-demand service on UMTS devices,” in Proc. ACM Symposium
on Applied Computing, Madrid, March 2002, pp. 1066–1073.

40. P. Rodriguez and E.W. Biersack, “Dynamic parallel access to replicated contents in the internet,” IEEE/ACM
Transactions on Networking, Aug. 2002

41. S. Saha, M. Jamtgaard, and J. Villasenor, “Bringing the Wireless Internet to Mobile Devices,” IEEE Computer,
Vol. 34, No. 6, pp. 54–58, June 2001.

42. N. Samaraweera and G. Faerhurst, “Reinforcement of TCP error recovery for wireless communications,”
ACM SIGCOMM, Computer Communication Review, Vol. 28, No. 2, pp. 30–38, 1998.

43. W.R. Stevens, TCP/IP Illustrated, Vol. I, Addison Wesley: Reading, Massachusetts, USA, 1998.
44. D. Staehle, K. Leibnitz, and K. Tsipotis, “QoS of internet access with GPRS,” in Proc. Fourth ACM Interna-

tional Workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Rome, Italy, July
2001, pp. 57–64

45. The Parlay Group, www.parlay.org
46. UMTS Forum, “What is UMTS?,” http://www.umts-forum.org/what is umts.html
47. Wap Forum, “WAP Architecture Specification,” http://www1.wapforum.org/tech/terms.asp?doc=WAP-100-

WAPArch-19980430-a.pdf
48. K. Wang and S.K. Tripathi, “Mobile-end transport protocols: An alternative to TCP / IP over wireless links”

in Proc. IEEE Infocom ‘98, San Francisco, California, USA, April 1998, pp. 1046–1053.
49. R. Yavatkar and N. Bhagawat, “Improving end-to-end performance of TCP over mobile internetworks,” in

Proc. International Workshop in Mobile Computing Systems and Applications, Santa Cruz, California, USA,
Dec. 1994.

250 ROCCETTI ET AL.

Marco Roccetti is a Professor of Computer Science at the Department of Computer Science of the University of
Bologna. From 1992 to 1998 he was a research associate at the Department of Computer Science of the University
of Bologna, and from 1998 to 2000 he was an Associate Professor of Computer Science at the University of
Bologna. Marco Roccetti authored 70+ technical refereed papers that appeared in the proceedings of several inter-
national conferences and journals. His research interests include: protocol design, implementation and evaluation
of wired/wireless multimedia systems, performance modeling and simulation of multimedia systems, digital audio
for multimedia communications.

Paola Salomoni is an Associate Professor of Computer Science at the Department of Computer Science of the
University of Bologna. In 1992 she received the Italian Laurea degree (with honors) in Computer Science from the
University of Bologna. From 1995 to 2001 she was a research associate at the Department of Computer Science
in Bologna. Her research interests include the following: design and implementation of distributed multimedia
systems, integration of multimedia services in wireless networks, design and implementation of teaching/learning
environments.

Vittorio Ghini is an Assistant Professor of Computer Science at the Department of Computer Science of the
University of Bologna. He received the Laurea degree (with honors) and the Ph.D. in Computer Science from the
University of Bologna respectively in 1997 and in 2002. His current research interests include QoS management at
the middleware level, Web performances, network emulation and architectural design of Internet based multimedia
systems.

BRINGING THE WIRELESS INTERNET TO UMTS DEVICES 251

Stefano Ferretti received the Italian Laurea degree with honors in Computer Science from the University of
Bologna. Actually he is a Ph.D. student in Computer Science at Computer Science Department of the University
of Bologna. His research interests are related to the design, implementation and evaluation of wired/wireless
distributed multimedia systems.

