Combining Testing and Runtime Verification
Techniques™

Kevin Falzon' and Gordon J. Pace?

! European Center for Security and Privacy by Design
kevin. falzon@ec-spride.de
2 Department of Computer Science, University of Malta
gordon.pace@um. edu.mt

Abstract. Testing is an established and integral part of the system design and de-
velopment process, but incomplete coverage still leaves room for potential undis-
covered bugs. Runtime verification addresses this issue by integrating verification
oracles into the code, allowing for reparatory action to be taken in case of sys-
tem failure after deployment. Despite the complementarity of the two approaches,
the application of the two approaches at different stages in the development and
deployment process results in much duplication of effort. In this paper we investi-
gate the combination of the two approaches, by showing how one can use testing
oracles to derive correct runtime verification monitors. We show how this can
be achieved using QuickCheck and LArva, and apply the resulting framework to
Riak, a fault-tolerant distributed database written in Erlang.

1 Introduction

As the need for more dependable systems increased concurrently with the complexity of
the systems, validation and verification techniques are becoming integrated within the
development process. In particular, testing, has developed from a largely ad hoc and a
posteriori process to a structured approach playing a primary role throughout the whole
design and development process. One of the major shifts in perspective has been the
importance of building testing artefacts independently of the system, making them more
applicable to future iterations of system refinement and extension. Such an approach
enables, for instance, reusing much of the effort for a suite of features appearing in a
product, to future versions so as to ensure that the addition of new features do not break
the old ones. However, despite that that testing is being pushed beyond its traditional
confines, the time of actual deployment is typically considered beyond its active scope.

A largely orthogonal approach to address system dependability is that of runtime
verification, which addresses the application of formal techniques to ensure that indi-
vidual runtime traces satisfy particular properties. The approach has been applied in a
variety of ways, from verifying each step of deployed systems in a synchronous fashion,
to a posteriori verification of runtime-generated logs.

* The research work disclosed in this publication is partially funded by the German Federal
Ministry of Education and Research (BMBF) within EC-SPRIDE, and the Strategic Educa-
tional Pathways Scholarship Scheme (Malta), which is part financed by the European Union
European Social Fund.

2 K. Falzon and G. J. Pace

One aspect of testing that is usually beyond the scope of runtime verification, is
that one also considers test case generation with which the specification can be checked
before deployment. Different forms of automated test case generation can be found
in the literature, but one common approach is a model-based one, where an abstract
representation of execution traces of interest is used to generate concrete test cases [3].
For instance, one frequently finds automata used to represent the language of traces
of interest, from which actual traces are generated, and along which properties can be
verified to hold. In the domain of runtime verification, one finds similar artefacts of
automata (or other abstract language specifications) with properties attached to states
or system configurations. However, despite their structural similarities, the two domains
use these descriptions in a distinct manner.

The major difference is that, while in testing the language description is used for
both generation and classification, in runtime verification it is used to check against
for language membership — a duality similar to the one found in the natural language
processing domain, where natural language generation and parsing use similar (or iden-
tical) descriptions, but use different techniques. Although the artefacts may be syntacti-
cally similar, they maintain distinct semantics. However, many testing approaches also
include means of specifying undesirable traces, which corresponds closely to monitors
one would like to instantiate at runtime.

In this paper, we study the relationship between these language descriptions and
investigate how the two can be related together. In particular, we look at the automata
used in the testing tool QuickCheck [10], used to describe traces of testing interest,
and dynamic automata used in the runtime verification tool Larva [5]. We show how
the testing automata can be converted into runtime monitors, keeping the same seman-
tics. To illustrate and evaluate the applicability of the approach, we have implemented
the approach for Erlang [7] and applied it to Riak [2], an open-source distributed key
store, incorporating many different testing scenarios on which properties can be veri-
fied. Properties are designed to examine various aspects of the translation, such as its
generality and its performance when transforming input properties testing the program
at different granularities.

The paper is organised as follows. In Section 2, we present the semantics of both
QuickCheck automata and automata used by Larva for runtime verification. In Section
3, we present a theoretical framework to relate the two formalisms’ traces, and prove
that the automata are equivalent with respect to this relation. This result is proved using
a construction which was implemented. The approach is evaluated in Section 4, and
compared to related work in Section 5. In Section 6, we summarise and conclude.

2 QuickCheck and LArva

In this section, we summarise the semantics of QuickCheck automata used for test-
ing and a subset of Dynamic Automata with Timers and Events (DATEs) used by the
runtime verification tool LARVA.

Combining Testing and Runtime Verification Techniques 3

2.1 Function Invocation and Control-Flow Observation

Both monitoring and automated testing use references to function invocation and exe-
cution. While monitoring of a system requires awareness of events such as the moment
of invocation and the moment of termination of a function, testing requires references
to the invocation of a function, where control is relinquished to the system until ter-
mination of the call. The following defines the notation we will use in the rest of the

paper.

Definition 1. Given a set @ of function names, and type X of parameters which may
be passed to these functions, we write ®x to denote the set of possible function names
tagged with the parameters passed:> ®x = {f, | f € @, x € X}. We will use variables
f, g h to range over ®, x, y and z to range over X and f, &, h over ®y.

Given an alphabet X, we define the set of entry event names in X to be X', the set
of exit events X1 and the set of invocations over X to be X°. The sets are defined to be
the elements of X tagged by |, T and © respectively e.g. > Y (a' | a € X). The set of
observable events X is defined to be X' U X", We use variable a, B and y to range over

observable function entries and exits ®* and &, 8 and ¥ to range over @i.

In the rest of the paper, we will be using this mode tagging symbol approach to be
able to refer, for instance, to both the event fired whenever a function f is entered (with
any parameter): @', and for the event which fires when f is invoked with particular
parameters: <15§. We will allow subscript tagging of mode-tagged function names e.g.
(Y, which is taken to be equivalent to (Fob.

Definition 2. To reason about testing and monitoring of systems, we will assume that
we have a system semantics which determines how the invocation of a function changes
the state of the system. If the type of system states is @, we assume we have the semantics
defined as the function run € & x © — 6. The return value of the function is assumed
to be made accessible in the system state.

Using this notation, we can now formalise the notion of testing and monitoring au-
tomata.

2.2 QuickCheck Testing Automata

QuickCheck [10] is a random test case generation and execution tool, which automati-
cally instantiates inputs of a form defined by a generator function and checks an Erlang
program’s behaviour under these inputs against a user-defined specification, or prop-
erty. The random component stems from the generating function, which, on invocation,
returns a random input. When testing a property, one would typically generate and ver-
ify a batch of inputs, the number and size of the batches being subject to the computing
resources available and the criticality of the system under test. While not systematic,
the simpler analysis involved with this technique allows for large volumes of tests to be
executed quickly on the concrete system.

3 In this paper we gloss over the issue of types — for the sake of this paper, we may assume that
fx 1s only defined if x is of the type as expected by f.

4 K. Falzon and G. J. Pace

QuickCheck Finite State Automata Other than the generation of inputs for individual
Erlang functions,* QuickCheck also allows the generation and testing of sequences of
function calls, or traces, using QuickCheck Finite State Automata (QCFSA) [10]. QCF-
SAs are automata with arcs that correspond to function calls within the system under
test. By randomly traversing a QCFSA, one generates a sequence of function calls. At
every stage of the traversal, one may restrict the generation of certain traces through
preconditions on transitions, which must evaluate to true for an outgoing transition to
be taken. The QuickCheck engine then verifies the trace by executing each function in
sequence whilst simultaneously traversing the automaton using this sequence as an in-
put. With every transition, QuickCheck verifies that the postcondition defined on each
arc holds. Every transition may also include an action which is to be executed if the
postcondition is satisfied, before proceeding. This is typically used to keep track of
information for the test oracle.

QCFSAs incorporate two aspects of model-based testing, namely the generation
of valid system traces and their verification with respect to a property, into a single
construction. Thus, a QCFSA is simultaneously a model and a property. The purpose
of a QCFSA is to describe sequences of function calls and properties that should hold
over each function’s execution.

Example 1. Figure 1 shows a QuickCheck automaton — note that transitions consist
of four expressions separated by bars, which correspond to (i) a precondition; (ii) a
function’s signature; (iii) a postcondition; and (iv) an action to be executed (for which
we use e to denote no action).

true | transmit (Chan) | true | cnt++

cnt == 0| close(Chans) | true | o
> Init > Close

cnt > 0| receive() | —timeout | cnt—— true | receive() | false | o
Fig. 1. A QuickCheck automaton testing transmit and receive operations over channels

This automaton generates test sequences made up of transmit operations, which
send data over a channel Chan in Chans. The cnt variable keeps track of the number
of outstanding acknowledgements. If cnt is not zero, then the automaton may accept a
receive event with an acknowledgement of a sent message. A close event indicates
that the channel is closed. The correctness criteria states that (i) any received receive

4 1In the rest of the paper, we will refer to these (as typically done in the literature) simply as
functions, despite the inappropriateness of the term, given that they can modify their, and other
entities’, state.

Combining Testing and Runtime Verification Techniques 5

operation may not time out, indicated over predicate timeout; and (ii) no acknowl-
edgements are to be received after a close command.

Formalising QuickCheck Automata QuickCheck automata enable one to describe
both a set of traces to check and which of these traces result in a violation. We start by
defining QuickCheck automata and the languages they characterise.

Definition 3. A QuickCheck automaton M over an alphabet of function names @, and
a system with states ranging over 0O, is a tuple {Q, qo, t), where Q is the set of states,
qo € Q is the initial state and t is the transition relation labelled by (i) the precondition
which should hold for a transition to be triggered; (ii) a function invocation which will
be executed upon taking the transition; (iii) a postcondition which determines whether
the property was violated; and (iv) a system action which is executed if the postcondition
is not violated. The precondition, postcondition and action are parametrised over the

parameters passed to the function invocation: t C Qx2XOx dx2¥0x (Xx0 — @)xQ.

. . , {pre} fipost} ,
We will write (g, pre, f, post, a, g') €tasq ———, ¢'.

To ensure determinism, QuickCheck assumes that the preconditions on outgoing

transitions from a particular state that are labelled with the same function name are

. {pre}fipost}
pairwise disjoint [10]. Formally, for any two distinct transitions q ﬂm q and

{pre’}fipost'}
« q"" we assume that pre N pre’ = 0.

We can now define the semantics of a QuickCheck automaton:

Definition 4. We define the semantics of QuickCheck automata as a relation = (Q X

10}
0) X QD?(X (Q x ©)*, such that (q, 6) ié, (q’,0") will mean that when the automaton is
in state q and the system is in state 0, the test can be extended by invoking f° resulting
in automaton state q' and system state 6. We also allow for transitions to L to denote
failing tests.

.. {pre} f®{post) .. L
The transition ¢ ———, ¢’ denotes the transition from state q to q’ which is

taken with invocation f° provided that the system was in state 6 and: (i) the precondition

is satisfied: pre(x,0)’; (ii) the postcondition is satisfied: post(x, run(12, 0)). After this,

action a is invoked, leaving the system in state a(x, run(f2,0)). If the postcondition is
s

satisfied, we allow for: (q,0) = (q’, a(x, run(f2, 9))).

If the postcondition is not satisfied after executing f, we add a failing transition which

e
goes to the failure configuration L: (q,60) = L.

{pre}fipost} ,
—a(q

= pre(x, 8), post(x, run(f°,)
(9,0) = (¢, a(x, run(f2, 0)))

5 Although we encode predicates as the set of values which satisfy the predicate, we will abuse
notation and write pre(x,) to mean (x, 0) € pre.

6 K. Falzon and G. J. Pace

{pre} fipost} ,
q >a 4
- pre(x, 8), —post(x, run(f°, 9))

(.0 = L

N
We write ¢ =, ¢’ (with s being a string over @%) to denote the reflexive and transi-
tive closure of =, starting in configuration ¢ and ending in configuration c’.

It is important to observe that these automata play a dual role. On one hand, if we
ignore the postconditions, they act as generators — specifying the language of traces
which wants to generate test cases from. On the other hand, considering the postcon-
ditions, they also act as language recognisers — recognising the language of traces
leading to a violation.

Definition 5. The language of testable traces of a QuickCheck automaton M = {Q, qo,
t) for a system starting in state 6y € O, written T o,(M), is defined as follows:
e] s
Ta,(M) = {s]3c - (qo,60)=- ¢}
The language of bad traces, written Ny, (M), is defined to be the set of strings lead-
ing to a violation of a postcondition:

Noy(M) 2 {5] (g0, 60) = L}

This dual role of these automata can be explained from a computational perspective
— while it is easy to generate arbitrary traces in the set of testable traces, in general, it
is not possible to generate traces in the set of bad traces algorithmically in an efficient
way. QuickCheck uses the fact that the latter is a subset of the former, to restrict the
search space when trying to find members of the language of bad traces.

2.3 Runtime Monitors

In runtime monitoring [4], the actual behaviour of the system at runtime is checked
for compliance with a set of properties, or a model of the ideal behaviour. Traces are
obtained though instrumentation operating either at the code or the binary level — typ-
ically performed automatically so as to maintain consistency and reduce errors. The
specification of the ideal behaviour is generally done through the use of a logic or the
use of automata, to enable the exact identification of bad traces. In our work we use
DATE:s, a class of automata used in the runtime verification tool LaArva [5].

Larva and DATEs The runtime verification tool Larva [5] uses Dynamic Automata
with Timers and Events (DATEs) — a form of replicating symbolic automata — to
model the properties which are to be monitored. We will be using a constrained ver-
sion of these automata, omitting the timers and dynamic spawning of new automata at
runtime since they are not necessary in our context, and will simplify the presentation
considerably.

As an event-based formalism, DATEs will be used to specify languages over an al-
phabet of system events which the monitor will be able to intercept. Unlike the function

Combining Testing and Runtime Verification Techniques 7

names used in QuickCheck automata to invoke their execution, references to function
names in DATEs are used to match against observed system behaviour, and we distin-
guish between the moment of entry and exit to a function. For this reason, monitoring
automata will be tagged by event observations such as f* and fT and not invocations
such as f©. For example, a transition labelled by event f! will be triggered whenever
the system control enters function f (no matter what parameters it receives). Note that
in the case of a recursive function f, a single invocation f© may trigger such transitions
multiple times.

Definition 6. A symbolic event-based automaton over function names @ and running
with a system with state O is a quadruple {Q, qo,t, B) with set of states Q, initial state
qo € Q, transition relation t and bad states B C Q.

Transitions are labelled by: (i) the event in ®* which triggers it; (ii) a guard con-
dition — corresponding to predicate over the parameter passed to the function and
the system state and which determines whether the transition can be followed: 2%*°;
(iii) an action (also parametrised over the values passed to the function as parameters)
which may change the system state: X X ©@ — O. The transition relation t thus satisfies:
ICOXPI 20 x (X x O — 0)x Q.

It is assumed that bad states are sink-states, and thus do not have any outgoing
transitions, and that there is an implicit total ordering on the transitions.

In this exposition, we assume that the function return values reside in the system
state space @, which may also include information used by monitoring (e.g. to keep
track of a counter), but which will not interact directly with the system.

Example 2. Consider a system which should ensure that if a user logs in using an ac-
count with priority level of 3 or less, he or she may not delete records. We will assume
that logins occur using a function login which takes takes a parameter plevel, and record
deletion happens upon executing function delete.> A DATE which verifies this property
is shown in Figure 2.

G login' | plevel <3 | ® m delete | true | o Q

Fig. 2. Monitoring for unauthorised deletion

Note that each transition in the diagram is tagged by three bar-separated expres-
sions identifying (i) the triggering event; (ii) the guard; and (iii) the action to be taken,
respectively. Whenever no action is to be taken we still tag the transition with e so as to
aid comprehensibility. Bad states are annotated by using a double circle node.

6 We also abuse the predicate notation here and write predicates as expressions rather than as
the set of parameter and system state pairs which satisfy the guard condition.

8 K. Falzon and G. J. Pace

Example 3. As a more complex example, consider a system in which, after blocking a
port p (using the function block(port)), no data transfer may occur on that port (using
function transfer(port)). Since the function to block a port and to transfer data may be
concurrently accessed, we will enforce that only once the block function terminates,
transfer may not be entered. Figure 3 shows how such a property may be monitored.

transfer* | isBlocked(port) | e @
> 9o qb

block! | true | addToBlocked(port)

Fig. 3. Monitoring for transfers over a blocked port

There are different ways of encoding this property. The approach illustrated uses
just two states — an initial one go and bad state g,. As long as the monitor is in state
qo. event block! (with no guard) performs an action which adds the port appearing as
parameter to a set of blocked ports and goes back to state go. On the other hand, any
transfer in which the port given as parameter appears in the set of blocked ports will
take the monitor to state gp:

Definition 7. The configuration C of a symbolic event-based automaton M = {Q, qo, ,
B) is a monitor-state and system state: C € Q X ©. We write (q, 0) iM (q’,0) (with
e being of the form f' or f1) if: (i) there is a transition from q to q' with event e:
(g, f,cond, action, ¢’) € t; (ii) whose guard is satisfied on parameter x: cond(x,), (iii)
the transition is the one with the highest priority with a matching event and satisfied
condition; and (iv) changes the state to 8': action(x,) = ¢'.

Note that the total ordering on the transitions, used to choose the one with the high-
est precedence, ensures that the automaton is deterministic.

Definition 8. The language of bad traces of a symbolic event-based automaton M =
(0. qo. t, B) for a system starting in state 6y € O, written By, (M), is defined to be the set
of strings over @i such that &,@; . .. &, € By,(M) if and only if there are intermediate

configurations such that: (q, 6p) gM (q1,61) a—2>M ﬂ>M (gn,6n), and g, € B.

3 From Validation to Verification Automata

Even at a syntactic level, the automata used for testing and those used for runtime
verification differ: while references to functions in testing automata are prescriptive,
identifying which functions are to be invoked, references in the monitoring automata
act as guards which trigger upon invocation or termination. The difference arises from

Combining Testing and Runtime Verification Techniques 9

the fact that QuickCheck Finite-State Automata fulfil a dual role of both generators (of
the testable traces) and recognisers (or violation oracles) of function call sequences.
On the other hand, runtime monitoring automata act only as recognisers. In this section
we show how the two approaches are related, and how monitors can be automatically
derived from testing automata.

3.1 Relating Prescriptive and Observational Traces

The key issue in relating testing traces and monitoring ones is that a single function
invocation may generate multiple monitorable events. At a bare minimum, a termi-
nating invocation f° would generate two events fxi, fxT), but may generate longer
traces if f invokes further functions from within it. For instance, if f is a recursive im-
plementation of the factorial function, the trace generated by invocation f5* would be

Sy S Sy S AL D

Matching fxl with the exit from f with the same parameter fxT does not work, since
our system may use a global state, thus having the possibility of a function eventually
invoking itself with the same parameter and still terminate. Counting open invocations
to a function with particular parameters, and finding the corresponding exit event also
fails to work since concurrency on the system side may create ‘superfluous’ exit events
which we do not care for.

The solution we identified is that of ensuring that all functions have an additional
identifying parameter which is guaranteed to be different for each invocation of that
function. For instance, a function f(n) which takes an integer parameter n would be
enriched with an additional invocation identifier id to obtain f’(id,n) which the system
ensures that the value is different upon every invocation. In practice, programs do not
follow this design pattern, but one can easily automate the transformation of a program
to enforce that every function f works in this manner by changing it as follows:

function f(x) {
f’(getFreshId(),x);
}

function f'(id,x) { ...}

Once we can assume that we have these unique identifiers in place in the code, the
relationship between invocation and event traces can be formalised in the following
7
manner:

Definition 9. An invocation f? is said to be compatible with string w over events @}(if:
(H)w= fxlalag . anf;; and (ii) none of events a; are of the form fyT with uniqueld(x) =
uniqueld(y). The notion of compatibility is extended over strings of invocations over @3,
ensuring that the event string can be split into substrings, each of which is compatible
with the respective invocation.

The uniqueness of the identifying parameter corresponds to the assumption that
observing a system starting from state 6 produce a sequence of events compatible with
I8 will necessarily end up in state run(f?, 6).

7 We assume that we can access the unique identifier of x € X as uniqueld(x).

10 K. Falzon and G. J. Pace

The invocation identifier allows us to monitor the behaviour of the exact duration of
a function in the following manner:

fl | true | id := uniqueld(x) fT|uniqueId(x) == id|e

The reflexive transition on the middle state marked by * corresponds to the set of
transitions in which either (i) an event other than fT is received; or (ii) event fT is
received but the condition (uniqueId(x) == id) does not hold. In either case, no
action is performed.

Provided that the system does not change the value of the variable id, it is possible
to prove that all strings going from the leftmost to the rightmost state in this diagram
are compatible with f©.

3.2 Monitors from Testing Automata

We are now in a position to formalise and prove the claim that given a testing automaton,
we can construct a monitor which captures exactly the bugs which are identified by the
testing automaton. The proof works by construction, which allows us to extract such
automata automatically.

Theorem 1. Given a QuickCheck automaton M, there exists a DATE M’ such that for
any initial system state 0: (i) given a QuickCheck bad trace w € Ny(M), any compatible
event trace w’ is captured by the monitor: w' € By(M"); and (ii) given an event bad trace
w € By(M’), any compatible invocation trace w' is a bad trace in M: w' € Ny(M).

The proof of this theorem follows from the construction of M’. The monitoring
automaton M’ will have the same states as M, but with (i) two additional states idle and
bad; and (ii) an additional state for each transition in M. Only state bad is a bad state,

and the initial state is the same one as in M.

. . .. {pre}f{post} .
The key to the construction is the translation of transition ¢ ———, ¢’ into the

following DATE fragment:

fYlprelid := uniqueld(x) f1| (uniqueId(x)==id) A post|a

f1| (uniqueId(x)==id) A —post| e

Combining Testing and Runtime Verification Techniques 11

Furthermore, the transition relation in M’ is finally made total by adding transitions
for any uncatered for event and condition, into the idle state.

The correctness of the construction is straightforward. Given an invocation trace
w which takes M from a state g to a state ¢’, it is easy to show, using induction on
the length of w, that any compatible trace w’ also takes DATE M’ from ¢ to ¢’. This
implies that for any QuickCheck bad trace w € Ny(M), any compatible event trace w’
is captured by the monitor w’ € By(M’). On the other hand, for any event trace w going
from state g to ¢’ in M’, with both states ¢ and ¢’ appearing also in M, the unique
compatible invocation trace w’ takes M from ¢ to ¢’. This result allows us to prove that
given an event bad trace w € B4(M’), the compatible invocation trace w’ is also a bad
trace in M: w' € Ny(M).

Example 4. Figure 4 shows the result of applying the transformation on the QCFSA
illustrated in Example 1. Crucially, the transformation entailed (i) the creation of inter-
mediate states 7', Rx’, Close” and Rx(; (ii) the splitting up of transitions in the original
QCFSA, with preconditions being checked on arcs to intermediate states, and postcon-
ditions being verified on the outgoing arc; and (iii) the creation of a bad state towards
which failed postconditions lead. Self-loops in the input QCFSA manifest themselves
as cycles between an intermediate state and the original state. For example, the self-loop
over Init for receive operations resulted in a cycle being formed between Inif and Rx’.
Other outgoing arcs, such as that between Init and Close for the close operation, re-
sulted in the source and target state being different, with an introduced intermediate
state Close’.

receive' | true | ®

receive | false | ®

receive' | ~—timeout | ®

receive! | —~timeout | cnt- -
close' | true | o

transmit" | true | cnt++ receivel | true | o
—>

closet | ent==01]e close' | true | o

Fig. 4. The DATE obtained from the QCFSA from Example 1

12 K. Falzon and G. J. Pace

Although the resulting automaton may seem complex, it can be generated in an au-
tomatic way from the testing automaton. In the next section we will look the application
of this transformation to allow testing and monitoring from a single description.

4 Application on a Fault-Tolerant Distributed Database

The procedure of transforming QCFSAs into DATEs was evaluated using a real-life
application, namely Riak [2], a distributed database implemented in Erlang. Several
QCFSA properties were specified, each verifying different aspects of the system, and
were automatically translated into DATEs and deployed in a custom-built runtime ver-
ification framework based on LARvVA.

4.1 Riak: A Fault-Tolerant Distributed Database

Riak[2] is a distributed, noSQL database written in Erlang. Conceptually, it can be
regarded as an associative array distributed over a cluster of nodes. An object, identified
by a unique key, is inserted into the database by transmitting it to a set number of nodes,
which proceed to persist that object locally. In addition to keys, Riak allows multiple
concurrent key spaces, or buckets, to exist within the same database instance. Buckets
can be seen as separate dictionaries managed by the same infrastructure. Each element
in the data store can thus be identified by a (bucket, key) pair, which maps to the stored
value. Consequently, while keys within the same bucket must be unique, keys need not
be unique across all buckets. The mapping between a given bucket and key pair and
a data element is defined using a Riak object data structure. Riak achieves resilience
through replication, cloning objects onto multiple nodes.

To determine which nodes are involved with a particular object, each node is as-
signed partitions of a range of 2'% values, with partitions being disjoint and all values
being covered by some partition. The partitioning and allocations form a structure called
a ring. The object’s key is then hashed, and nodes are chosen based on the partition
within which the hashed value lands. For the purposes of replication, Riak transmits
the object to N partitions consecutive to the first identified partition. As the cluster may
change, and as database operations may be initiated from any node, Riak must commu-
nicate the state of the ring between all of its nodes. This is performed through a gossip
protocol, which attempts to establish a system-wide, eventually-consistent view of the
ring.

4.2 Specifications for Validation and Verification

To evaluate the approach, different QCFSAs were created and translated into runtime
monitors. Broadly, these properties can be classified as being coarse- or fine-grained
control-flow properties or properties over data structures. In addition, a QCFSA prop-
erty which was packaged with Riak was converted into a runtime monitor though the
described method, so as to gauge the method’s utility on arbitrary third-party properties.

Combining Testing and Runtime Verification Techniques 13

The Vector Clock Data Structure Vector clocks (or vclocks) are used in Riak as part of
the mechanism that enforces coherence between objects residing over different nodes
[2]. They are used to maintain a partial ordering amongst object update operations,
keeping track of the nodes involved and the timestamp at which each operation was
performed. Using vector clocks, Riak can determine which version of a given object is
the most recent, and can reconcile different objects through merging.

true | fresh() | Res == L | clocks = {Res}; 0bj = res

Clocks C clocks | merge(Clocks) |
V¢ € Clocks - descends(Res, c) |
clocks = (clocks \ {Clock}) U {Res};
if (obj € Clocks) obj = Res

true | fresh() |
obj == 1 Vv descends(Res, obj) |
clocks = clocks U {Res}

Clock € clocks | increment(Node, Clock) | descends(Res, Clock) |
clocks = (clocks \ {Clock}) U {Res}; if (clock == obj) obj = Res

Fig. 5. Vclock QCFSA property. Res contains the result of an operation.

Figure 5 describes one of the properties that were investigated. It ensures that any
vclocks created after or derived from a given vclock v are also its descendants. More
specifically, the property checks that:

1. incrementing v will result in a vclock that descends from v; and
2. merging v with another vclock will result in a vclock that descends from v.

The fresh function returns a new vclock, which the property adds to an internal list,
or pool, of vclocks clocks, as well as in obj. Beyond the creation of the initial clock, the
property creates and adds further vclocks, incrementing and merging members of the
vclock pool at random. The automaton’s state data also contains an initial seed value
for the randomization function so that the pool’s size varies deterministically between
generation and execution phases.

Figure 6 illustrates the DATE obtained on translating the QCFSA. The automaton
is structurally similar, with transitions split via an intermediate state. While the moni-
tor can recognize an equivalent set of bad traces, it should be noted that the automaton
expects a single event sequence, with events arriving in the correct order. Consider the
case where multiple vclocks exist concurrently within the system. Each monitored op-
eration on a vclock will fire a corresponding event. While interleaving each stream into

14 K. Falzon and G. J. Pace

|

fresh! | true 0/.

fresh' | Res == 1| clocks = {Res}; 0bj = res

merge' |

Yc¢ € Clocks - descends(Res, ¢) |
clocks = (clocks \ {Clock}) U {Res};
if (obj € Clocks) obj = Res

fresh' |
obj == 1V descends(Res,obj) |
clocks = clocks U {Res}

merge' |
Clocks C clocks | ®

running r~
merge

running r~

rens fresht | true | e
res

increment’ |
descends(Res, Clock) |
clocks = (clocks \ {Clock}) U {Res};
if (clock == obj) obj = Res

increment |
Clock € clocks | e

fresh' |
—Res==11]e

fresh'|
—(obj == LV
descends(Res, obj)) | e

increment |
—descends(Res, Clock) | o

bad_state

Fig. 6. DATE monitoring vclock operations.

merge' |
—Vc € Clocks - descends(Res, c) | ®

a single event stream may work for some properties, this is often not the case, partic-
ularly when operations are being performed in parallel. Thus, the monitoring system
must typically isolate each event stream and employ some monitoring policy, such as
allocating a monitor to each stream or using a single monitor and interleaving streams
deterministically.

The issue of uniquely identifying event sources is further complicated by Erlang’s
data types. For an object-oriented language, one may identify the subject of a method
call as implicitly being that object on which the method is taking place. In addition, ob-
jects may be allocated an immutable identifier that is preserved across calls, simplifying
the recognition of that object. In contrast, when monitoring in Erlang, one may only in-

Combining Testing and Runtime Verification Techniques 15

fer the subject of an operation based on the arguments to a function, and persistent and
unique identifiers cannot be attached to values in a straightforward manner.

In our monitoring framework, we considered several schemes for identifying an
event-generating value. One may encapsulate each relevant value within a server pro-
cess, which would then be uniquely identifiable by its process ID. This scheme, while
valid, would require significant modifications to the system under test. A derivative
approach is to separate streams based on the ID of their originating process, yet this
is only valid if processes have at most one such monitored object, and if events that
should be transmitted to a monitor do not originate from multiple sources. An alter-
native approach is to first annotate the system under test at the instrumented function
points to also transmit the object being monitored. The runtime verification framework
then maintains a mapping of objects to monitors, spawning a new monitor whenever a
event originating from a hitherto-unseen object is received. Since the source object may
change over time, each monitor is in charge of updating its local copy of the object with
which the comparison is made. In our implementation, this is handled within each tran-
sition’s next_state_data function, with the new value typically being copied from an
input argument to a function. Thus, for example, the previous example maintains an obj
variable in its state data, which contains the vclock to which the monitor should be tied.
While this scheme works well in several scenarios, it requires detailed knowledge of
the system under test, and complicates the creation of QCFSA properties, as they must
incorporate the object-preservation logic.

Verification of Coarse-Grained Insertion and Retrieval When writing properties, it
is apparent that the level of abstraction, or equivalently, the granularity of the operations
being examined, directly influences their complexity. The property in Figure 7 checks
the overall functioning of Riak by inserting and retrieving objects using its high-level
database operations, namely put and get, which accept an object and a bucket and key
pair, respectively. The property stores local copies of objects which have been inserted
into the database via put in a dictionary ObDict, and verifies that objects retrieved from
the database match their local versions. Since the property makes use of an internal
model of the Riak database, it will be unable to verify the retrieval of objects which
have been inserted by other processes, unless their insertion functions are also being
monitored and update the property’s model.

When operating as a QuickCheck automaton, it is necessary that the pool of objects
be defined at initialisation, so as to ensure that the preconditions and state data transfor-
mations produce matching results during the generation and execution passes. To avoid
hard-coding the initial state, the QCFSA is passed a set of randomly-generated objects
on initialisation via the property harness, so as to lead to more varied tests.

The property is coarse-grained in terms of the level of detail at which the control
flow is being analysed, as it concerns itself with high-level operations without testing
the intermediate steps taken when executing them. The granularity at which the system
is examined depends largely on the instrumentation points available and the property
that must be verified, as will be seen shortly.

16 K. Falzon and G. J. Pace

true | put(0) | true | #riak_object{bucket = Bucket,key = Key} = 0;
dict:store({Bucket,Key}, riak_object:get_value(0),0bDict)

true | get(B,K) | {Code, Obj} = Res;
Code == ok A dict:is key({B,K},ObDict) A
dict:fetch({B,K},0bDict) == riak object:get_value(Obj) | e

Fig. 7. QCFSA for coarse-grained object insertion and retrieval

Fine-Grained Verification of Insertion Protocol While the previous property may be
simple to grasp, treating operations as monolithic blocks hinders the ability to isolate
failure points should a property be violated. Points of failure can be localised to a greater
degree by moving towards finer-grained properties that consider an operation’s internal
states. By decomposing a high-level operation’s control flow, an automaton can verify
that individual steps or sequences conform to a property.

Figure 9 describes a QCFSA which verifies the protocol used when committing
an object to Riak, verifying that the number of positive acknowledgments received by
nodes taking part in the object’s persistence matches or exceeds the defined quota.

Within Riak, the protocol is implemented as a Generic Erlang Finite State Machine,
or gen_fsm [7]. Broadly, the automaton goes through three stages, namely: (i) initial-
isation, where parameters such as the acknowledgment quota and the target node list
are set; (ii) transmission, where the object in question is sent to the identified nodes;
and (iii) confirmation, where the transmitting gen_fsm waits until the expected number
acknowledgments are received.

The QCFSA described directly invokes the functions that implement the object in-
sertion routine. The other alternative would have been to use the QCFSA to generate
stimuli which would then be forwarded to an instantiated gen_fsm automaton, which
would manage the actual invocation of the relevant functions. Such a property, while
being valid, would not translate well into a runtime monitor, because its events would
not be correlated directly to the implemented functions and would not be monitored. It
would also have limited the granularity of the QCFSA’s tests, as one would only be able
to interact with the automaton through the defined event interface, whereas by decon-
structing the automaton, one gains finer control over what can be tested at the expense
of test complexity.

The QCFSA property is primarily concerned with the validity of the transmitting
process’s implementation, rather than the examination of network effects. Thus, when
operating as a QCFSA, the system initialises a field g_replies within the state data
structure with a stream of acknowledgment messages that matches that expected by the
transmitter, which are then consumed by the automaton’s receive loop within the au-
tomaton. This obviates the need to emulate the gen_fsm’s blocking nature within the

Combining Testing and Runtime Verification Techniques 17

put’ | true |
#riak object{bucket = Bucket, key = Key} = 0O;
dict:store({Bucket,Key},

T =
riak object:get_value(0),0ObDict) putl | ~true | o

put | true | o
bad_state

get! | true | o

get' | {Code, Obj} = Res;
Code == ok A

dict:is key({B,K},0bDict) A
dict:fetch({B,K},0bDict) ==
riak object:get_value(Obj) | e

get' | {Code, Obj} = Res;

=(Code == ok A
dict:is_key({B,K},ObDict) A
dict:fetch({B,K},0bDict) ==
riak_object:get_value(Obj)) | e

Fig. 8. DATE for coarse-grained object insertion and retrieval

property, foregoing the need to implement a mechanism for harvesting replies. Nev-
ertheless, when executing the runtime monitor on a live system, the target nodes will
send actual reply messages to the system under test, which then trigger the monitored
receive functions. As the property only tests single object insertions at a time, the mon-
itor spawning policy would be to allocate a monitor for each process initiating a put
operation.

4.3 Results and Discussion

Overall, the use of our techniques on Riak shows the automated generation of runtime
monitors from test models can be both feasible and effective. While the translation
procedure preserves the original QCFSA’s semantics, guaranteeing correctness of the
monitors with respect to the testing automata, the study also identified a number of
limitations that our approach has.

It was observed that the quality of the generated monitors can vary with the input
property. For example, QCFSA properties which base their verdicts on an internally-
updated state may produce an invalid verdict when deployed in a runtime scenario,
unless the property ensures that its local state matches that of the system. For instance,
the reply quota value used in the property defined in Figure 9 should be obtained from
a live value such as a function’s arguments list, rather than be set through a hard-coded
value within the QCFSA’s state data.

When writing properties, it was also found that certain properties that would nor-
mally be very easy to verify using DATEs can be hard to implement using QCFSAs
— implying that some properties could more easily be expressed directly as monitors
rather than extracted from QCFSAs. One root cause is QuickCheck’s use of symbolic
variables during the trace generation phase. By replacing function return values with

18 K. Falzon and G. J. Pace

true | init([ReqID,RObj, W, DW, Timeout,RClient, Options]) |
W > DW | req;d = Reqld, client = Client

update_lists() E
{T, Midx, -} = Rx, q_replies = tail(q-replies);
case T of
w — Rep-W = (Rep_-W U {Midx}),
dw — Rep_DW = (Rep_DW U {Midx});
fail — Rep_Fail = (Rep_Fail U {Midx})

true | invoke_hook(precommit,RClient,Obj) |

Res # fail | ®
{T,.,} =Rx;
(T == w A (length(Rep-W) + 1) < W) v true | q_send(ReqId,RObj1, Timeout, Options, Ring, Bucket,Key, BKey) |
(T == dw A length(Rep-W) < W) | true | ®

waiting vnode w(Rx, State) |
—timeout V (Res == fail A
(N — (length(replied_failed) + 1)) > W) |

{T..}=Rx;

updatelists() (T == w A (length(Rep_-W) + 1) > W) v
wait_w (T == dw A length(Rep-W) > W)) A (DW # 0) |
waiting vnode w(Rx, State) |
~timeout V (Res == fail A (N — (length(replied_failed) + 1)) > W) |
update_lists()
{T,_,} =Rx; (T, .} =Rx;

((T == w A (length(Rep-W) + 1) > W) vV
(T == dw A length(Rep-W) = W)) A (DW == 0) |
waiting vnode w(Rx,State) |
—timeout V (Res == fail A

(N = (length(replied_failed) + 1)) > W) |
update_lists()

(T == w A (length(Rep_DW) < DW) vV

(T == dw A (length(Rep_-DW) + 1) < DW) |
waiting vnode dw(Rx, State) |

—timeout V (Res == fail A

(N — (length(replied_failed) + 1)) > DW) |
update_lists()

w A (length(Rep_DW) > DW) v

(T == dw A (length(Rep_-DW) + 1) > DW) |
waiting-vnode_dw(Rx, State) |

—timeout V (Res == fail A

(N — (length(replied_failed) + 1)) > DW) |
update _lists()

Fig.9. QCFSA property that generates a command sequence for inserting objects into Riak. W
and DW contain the quotas on writes and durable writes, while Rep_W/DW/ Fail contain the
hitherto processed replies, sorted by type.

Combining Testing and Runtime Verification Techniques 19

symbolic variables, the system prevents properties from manipulating or directly in-
specting a function’s return value within the automaton’s state data transformations,
with [10] recommending that results should be handled as immutable black boxes. This
may constrain properties to only examining abstract program behaviours rather than
individual low-level operations.

5 Related Work

The language in which models are expressed often varies across different verification
techniques, based on their aims and mode of operation. While this work uses QCF-
SAs as its base property logic, other works focus on writing properties using languages
which are inherently amenable to multiple verification scenarios. Input Output Sym-
bolic Transition Systems (IOSTS), proposed in [11], extend Labelled Transition Sys-
tems (LTS) by allowing the use of symbolic parameters and variables over transitions,
which can facilitate static analysis. Similarly, the discrete temporal logic Eacte [1] has
been used as an input for several verification techniques. EAGLE is expressive in that it
allows other temporal logics, such as LTL, to be embedded within it, whilst keeping the
computational cost associated with the verification of more expressive properties to a
minimum set by the complexity of the encapsulated logic and the property’s size. An
input property can then be used either as a test case generator or an event observer. In
the former case, properties are used as inputs to the Java PathFinder [9] model checker,
which is extended with symbolic execution capabilities. For runtime verification, EAGLE
properties are used to derive monitors that examine parametrised events.

While this project focused primarily on combining testing and runtime monitor-
ing, there are other facets of the testing process which can also be unified. The ProTest
project [6] adopts a holistic view towards testing and verification in Erlang by integrat-
ing and automating the steps involved in creating and verifying properties. Of note, the
project investigated the translation of UML specifications into QuickCheck properties
and the use of QuickSpec to automatically derive a set of likely invariant properties
which could then be tested. Other research on offline analysis on log files using the
Exago tool, which extracts abstract representations of system events from logs and ver-
ifies the traces against a defined finite-state model of the system, was conducted. The
Onviso tool was subsequently created for online event tracing across multiple nodes,
and also contributed to the PULSE user-level thread scheduler, which can be employed
within QuickCheck for testing scenarios involving concurrency. Finally, the project
produced a method for efficiently converting LTL to Buchi automata, employing LTL
rewriting, translation and automaton reduction. Such an automaton could then be used
to derive a runtime monitor for verifying temporal properties, as also described in [8].

6 Conclusions

In this paper we have presented a technique which enables one to extract monitors
from a testing specification for QuickCheck. The transformation has been proved to
be correct, in that (i) if any bad trace that would have been caught by the testing oracle
were to happen at runtime, the monitor would also catch it; and (ii) any violation caught

20 K. Falzon and G. J. Pace

by the monitor will have also been caught by the testing oracle (if the trace were to be
generated by the testing tool). The approach has been implemented in a prototype tool,
which has been applied to a fault-tolerant distributed database.

Although we have studied this approach for two particular technologies — LArRvA
and QuickCheck, we believe that it can be extended to many other similar technolo-
gies with minor changes. In contrast, certain testing approaches can get in the way of
monitoring. For instance, when using using partition testing and reducing the test case
generation space (for instance, through the use of stronger preconditions), the monitors
induced may be too weak since they would only be able to capture the characteristic
bugs in the reduced testing search space. The interaction of partition testing and moni-
toring requires a deeper analysis to make our approach in such cases more effective.

We are currently looking into the use of runtime monitors to extract test case genera-
tors and oracles. Although monitors can be used as test oracles, identifying information
to generate test cases is not straightforward. Through the use of a combinaton of moni-
toring and invocations, we hope to be able to also perform this transformation.

References

1. Artho, C., Barringer, H., Goldberg, A., Havelund, K., Khurshid, S., Lowry, M., Pasareanu, C.,
Rosu, G., Sen, K., Visser, W., Washington, R.: Combining test case generation and runtime
verification. Theoretical Computer Science 336, 209-234 (May 2005)

2. Basho: The riak wiki. http://wiki.basho.com/ (last accessed 9 July 2012) (March 2011)

3. Broy M., Jonsson B., KJ.PL.M., A., P.. Model-based testing of reactive systems. Lecture
Notes in Computer Science, vol. 3472 (2005)

4. Colin, S., Mariani, L.: Model-Based Testing of Reactive Systems, chap. 18 Run-Time Veri-
fication, pp. 525-555. Springer (2005)

5. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring of real-
time and contextual properties. In: Formal Methods for Industrial Critical Systems (FMICS).
Lecture Notes in Computer Science, vol. 5596, pp. 135-149. L’ Aquila, Italy (2008)

6. Derrick, J., Walkinshaw, N., Arts, T., Earle, C.B., Cesarini, F., Fredlund, L.A., Gulias, V.,
Hughes, J., Thompson, S.: Property-based testing: the protest project. In: Proceedings of
the 8th international conference on Formal methods for components and objects. pp. 250—
271. FMCO’09, Springer-Verlag, Berlin, Heidelberg (2010), http://portal.acm.org/
citation.cfm?id=1939101.1939123

7. Ericsson: Erlang reference manual user’s guide version 5.7.5. http://www.erlang.org/
doc/reference_manual/users_guide.html (last accessed 9 July 2012) (February 2010)

8. Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal properties on
running programs. In: Proceedings of the 16th IEEE international conference on Automated
software engineering. pp. 412—. ASE 01, IEEE Computer Society, Washington, DC, USA
(2001), http://portal.acm.org/citation.cfm?id=872023.872506

9. NASA: Java pathfinder. http://babelfish.arc.nasa.gov/trac/jpf (last accessed 9
July 2012) (April 2012)

10. Quviq AB: QuickCheck Documentation Version 1.26.2 (June 2012)
11. Rusu, V., Bousquet, L.D., Jeron, T.: An approach to symbolic test generation. In: Proceedings
of Integrated Formal Methods. pp. 338-357. Springer Verlag (2000)

