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1 Introduction

Database researchers, statisticians, and \data owners" often have quite di�erent views of data. In

a database context the traditional goal has been to provide a general and 
exible data management

framework, with less concern about the content of the data. Statisticians on the other hand have

traditionally focused primarily on issues of data modeling and inference with relatively little concern

for where the data physically reside or how the data will be accessed. Data owners, in turn, tend

to be more focused on using the data as a means to an end: business data owners want to increase

revenue by developing better predictive models, and scienti�c data owners typically want to develop

insight into the phenomena generating the data. In this brief position paper we take a broad-scale

view of \what people do with their data" (the data owner's perspective) and use this viewpoint to

identify current opportunities and challenges for data mining research.

2 The Process of Data Mining

The data mining process is often characterized as a multi-stage iterative process involving data

selection, data cleaning, application of data mining algorithms, evaluation, and so forth. Here we

adopt a somewhat di�erent process-oriented view and break it down into �ve basic steps:

1. Exploring and Preprocessing: the initial steps of exploring, visualizing, and querying the

data, to gain insight into the data in an interactive manner. Preprocessing steps such variable

selection, data focusing, and data validation can also be included in these initial steps.

2. Modeling: the steps involved in (a) selecting the model representations that we seek to �t

to the data (e.g., a tree, a linear function, a probability density model, etc.), (b) selecting

the score functions that score di�erent models with respect to the data, and (c) specifying

the computational methods and algorithms to optimize the score function (e.g., greedy local

search). These \components" combined together specify the data mining algorithm to be

used. The components may be \precompiled" into a speci�c algorithm (e.g., CART or C4.5

decision tree implementations) or may be integrated in a \customized" manner for a speci�c

application (much more common in the sciences).

3. Mining: the step (often repeated) of actually running a particular data mining algorithm on

a particular data set.



4. Evaluating: the step (often ignored) of critically evaluating the quality of the output of the

data mining algorithm from step 3, both the predictions of the model and the interpretation

of the �tted model itself.

5. Deploying: the step (rarely achieved) of putting a model from a data mining algorithm into

routine predictive use, e.g., using the model continuously in real-time for scoring customers

visiting an ecommerce Web site. A challenging (and under-appreciated) technical issue in

this context is how and when models should be updated for such \continuous data stream"

applications.

3 Two Extremes of Data Mining

Given the vast numbers of di�erent users of data analysis tools, across di�erent application disci-

plines, it is clearly dangerous to make broad generalizations about data analysis and data mining!

Nonetheless, we will now consider two \prototype" users of data mining tools in the general context

of the 5-step data mining provess above. These two prototypes are in some respects at opposite

ends of a hypothetical spectrum of approaches to data mining.

3.1 The Business Data Miner

The �rst prototype data miner is \The Business-Person," or \BP" for short. BP typically deals

with large numbers of customers, for example in retail consumer or �nancial services environments.

BP's main goal is to use data mining techniques for prediction of customer behavior to gain com-

petitive advantage, e.g., using decision trees to try to identify promising customers for a marketing

campaign. BP's approach to data mining is often strictly constrained by a number of factors:

cost factors (the cost of data mining development and deployment should not be less than antici-

pated gains in revenue), integration factors (the deployed predictive model may need be integrated

into an existing transaction-oriented environment), and time constraints (any potential competitive

advantage may depend critically on being able to develop and deploy a predictive model quickly).

In terms of the 5-step process from the last section, the BP may not have much time for

exploration and modeling, but instead will often use \o�-the-shelf" tools such as decision trees to

quickly generate results, i.e., they may jump quickly to Step 3 of data mining. Step 4, evaluation,

is becoming increasingly important in practical applications, where evaluation may go well beyond

the use of simple validation data sets. For example, ecommerce retailers (such as Amazon.com)

and �nancial services companies (such as CapitalOne) conduct designed experiments on random

subsets of consumers to get more precise and realistic evaluation of new predictive methods.

If one asks the BP what their most pressing problems are, they will almost certainly not say

that they need a slightly more accurate decision tree algorithm, or a slightly faster association rule

algorithm. Instead their most pressing problem is that of managing the overall process: how should

features be de�ned for time-dependent data? which models are most appropriate? how much data

is needed for training? will a random sample of 100k customers from a database of 10 million be

\good enough"? what kind of a system can be put in place to update the models as new data

arrives? and so on.

3.2 The Science Data Miner

The other prototype we consider is the \Science Person" (SP for short) which is in some sense at

the other end of a hypothetical spectrum of data miners. The SP might be an atmospheric scientist,

investigating global climate change patterns via analysis of spatio-temporal gridded observations

of temperature, pressure, wind-speed, taken on a global grid on a daily basis for the past 30 years.



Or the SP might be working in computational biology, exploring a large gene expression data set

and its relation to cancer.

The SP's data mining approach is quite di�erent to that of the BP. SP typically spends signif-

icant time in Steps 1 and 2: exploring, visualizing, de�ning alternative models, and so forth. For

example, in atmospheric science, the data can be \shaped" in di�erent ways via numerous pre-

processing techniques such as principal components analysis, time-series smoothing, and so forth.

A single model may take 6 months or a year to develop and only be evaluated once on a particular

data set. SP's primary goal is to explore model space in such a manner as to better understand

the phenomena generating the data: generating better predictions is merely a stepping stone on

the path to identifying better models. Thus, being able to \get inside the black box" is absolutely

critical to the SP. A decision tree may provide useful predictions, but ultimately the SP will want to

understand precisely what is making the tree work. In this context, it is not surprising that tradi-

tional statistical models, \generative models" for the data, have tended to be more widely accepted

by SPs than \black box" algorithms such as neural networks, trees, and so forth. For example,

hidden Markov models (HMMs) have been very successful in protein sequence alignment because

they have taken a generic model structure (the HMM) and integrated domain-speci�c knowledge

into the model to provide a scienti�cally plausible model-based approach for sequence alignment,

clustering, and so forth.

The SP is typically much less constrained (in terms of time, cost justi�cations, etc) than the

BP. However, while the BP can use aggregate population metrics (such as classi�cation accuracy,

squared error, lift, etc.) to evaluate models, the evaluation process for the SP is typically much

more subjective in the sense that (a) it is not only the quality of the predictions that matter but

also the structure of the learned model itself, and (b) the knowledge captured by the learned model

must be evaluated relative to what is already known to the SP and to the SP's research community.

The e�ect of this is to make the overall data mining process much more interactive and human-

centered: models are carefully constructed and teased apart in a continuous labor-intensive cycle

of model being proposed, evaluated, discarded, revised, veri�ed, and so on.

4 Research Challenges in Data Mining

In the context of the discussion above, there are several challenges that appear to be worthy of

attention for data mining in the coming years.

4.1 A General Grand Challenge for Data Mining

A grand vision for data mining is the development of general-purpose data mining software envi-

ronments that assist the user in the overall process of data mining (such as the 5 steps described

earlier). The software would ideally help the data miner navigate through the space of possible

exploratory steps, modeling steps, algorithm choices, evaluation metrics, and deployment options.

The current state of a�airs is that for many applications (from ecommerce to climate modeling)

the branching factor in terms of selecting speci�c methods is so high that most novice users are

bewildered by the space of possible choices that they can make in the data mining process. The

conventional solution to date (e.g., in commercial data mining packages) is typically to support

a few standard methods and algorithms at each step. Clearly this can severely constrain how we

model our data and in the extreme may be entirely inappropriate for the scienti�c data miner

(where time and space are often important enough that they must be explicitly accounted for in

any model).

Development of such a software environment is clearly quite a challenging problem. Statisticians

have been thinking about such approaches for quite some time, i.e., general purpose environments



for \programming with data" (e.g., Chambers, 1998) as well as graphical model environments

that provide 
exible and general-purpose high-level languages for model construction (e.g., Gilks,

Thomas, and Spiegelhalter, 1994). However, these tools are primarily intended for use by statisti-

cians. To get BP and SP domain experts to use statistical algorithms on a routine basis we need

to develop a \next-generation" of interactive user-centered data exploration tools. If we don't, the

current situation will continue where only a very small set of algorithms and models are widely-

used, and the broader spectrum of modeling and algorithmic techniques are accessible to only a

small subset of data miners skilled in these techniques.

4.2 Challenges for Business Applications

4.2.1 Grand Business Challenges

� Self-Tuning Data Mining Algorithms: \turn-key" data mining tools that require minimal

intervention and tuning from data mining experts. A problem with current data mining

algorithms is that they can often require a team of experienced Phd-level researchers to

\baby sit" a data mining algorithm to get reasonable results in practice. For data mining

solutions to be economically e�ective in large-scale operational business environments they

will need a degree of autonomy beyond what we currently have available. Of course it is

not clear that it is even possible to achieve such autonomy, but clearly there are important

resource-management issues that need to be considered in this context. For example, a

decision-theoretic autonomous agent framework for data mining could be very useful. Such

a data mining algorithm could use utilities/probabilities to autonomously decide how much

historical data to store, when to update the model, how much data to use in training, which

models to use, how to validate and test the models, and so forth. This is of course a rather

challenging assignment, given the real-time nature of the environment, the scale of data that

is typically involved, and the uncertainties that abound.

4.2.2 Speci�c Business Challenges

� Modeling Time: predictive learning algorithms for time-dependent streams of customer

data. For example with clickstream data the current approaches in practice largely involve

converting clickstreams into feature vectors so that vector-based algorithms such as decision

trees can be utilized. While this is a good engineering approach that takes advantage of exist-

ing tools, it cannot take account of many critical aspects of temporal data such as periodicity,

seasonality, non-stationarity, and so forth. Models and algorithms that can incorporate these

time aspects of customer behavior will tend to be more useful and valuable in the long run.

(For an example of such models for predictive modeling with clickstream ecommerce data see

Moe and Fader (2000)).

� Personalization from Sparse Data: integration of ideas from Bayesian statistics into

customer pro�ling and prediction, e.g., the use of hierarchical Bayesian models for borrowing

strength given huge numbers of customers but with very little data for each on average. Such

modeling approaches are routinely used in statistics but are virtually unknown in data mining

at present.

4.3 Challenges for Science Applications

4.3.1 Grand Scienti�c Challenges

� Scalable Exploration: The importance of the exploration step is easy to underestimate: in

many scienti�c applications this is where the bulk of time on data analysis is actually spent, on



tasks such as visualization and clustering, leading to basic theory formation and hypothesis

generation. Notions such as outliers, unusual patterns, and trends can play a particularly

important role in scienti�c discovery. Work in database research can play an important

role here: intelligent caching for e�cient visualization, novel techniques for querying spatio-

temporal data, multi-resolution data structures for e�cient access to data, and so forth. See

Critchlow and Musick (1999) for a general discussion of the role of data management in this

context.

As a speci�c example, in the atmospheric sciences signi�cant research e�ort is currently

expended on constructing and interpreting complex general circulation models (GCMs) of

the Earth's atmosphere, oceans, and landmass. These are very complex physical models

(including wind and ocean current dynamics, atmospheric chemistry, polar ice-cap models,

and so forth) that are used to simulate multivariate gridded measurements over the Earth at

roughly daily intervals for a 100-year time-period. The returned data is a huge spatio-temporal

multivariate �eld. Scientists believe these models are quite accurate (at least in terms of long-

term climatic time-scales). The models are widely used to investigate basic hypotheses about

global warming phenomena (for example): if carbon emissions were increased at rate x how

might this propagate through to polar ice-caps, and in turn would this have any e�ect on

numbers and intensities of winter storms?

Despite the success in improving the quality of the underlying GCMs, the methods available

for exploring the resultant simulation data tend to be rather primitive. There is no equivalent

of CART or C4.5 for easy modeling and exploration. Scientists typically investigate the data

in a quite manual fashion by plotting various grids at certain times, and various summary

statistics over time. There are clear research opportunities for data miners. However, the

problems are quite challenging in that the raw underlying grid data are not the phenomena

that the scientists are interested in, but rather the evolution and characteristics of \coherent

structures" (such as storms, eddies, and so forth). Furthermore, once detected, these ob-

jects have varying spatial and temporal extent, making clustering (for example) a non-trivial

problem.

Nonetheless, despite these challenges, there are signi�cant opportunities for data mining re-

search in a broad sense: coupling ideas from pattern recognition and computer vision (for

object detection and tracking), from data mining algorithms (quantifying novelty), and from

data access and management (how to carry this out in an e�cient manner given the data

sizes).

4.3.2 Speci�c Scienti�c Challenges

� Models and Languages for Spatio-Temporal Data: Much scienti�c data involves spa-

tial and temporal data (and sometimes both). \Non-vector" data sets are inherently more

demanding to work with than multivariate vector data from a modeling viewpoint because

the branching factor in modeling choice is very high. For example, the modeler must make

many decisions about how much memory (in a temporal problem) should be modeled, what

representations to choose, etc. While more conventional multivariate data also can have a

high branching factor (variable selection, variable pre-processing, etc), this factor can be am-

pli�ed when time, space, and hierarchies are introduced. Thus, there is a general need for

\intelligent assistants" and high-level languages that support scienti�c data miners as they

navigate through large spaces of models and algorithms.

� Pattern-Finding and Prior Knowledge: techniques and algorithms that can search mas-

sive databases to �nd unusual structures that are both novel in the context of what is already



generally known to the scientist and are useful in some sense. A key word here is \struc-

ture": simple associations (such as produced by association rule algorithms) tend to be of

limited value for many scienti�c data sets. Instead, computational biologists are often inter-

ested in local subsequences in DNA sequences (motifs) that are signi�cantly di�erent from

the background DNA distribution (e.g., Pevzner and Sze, 2000). Similarly, astronomers who

study galaxy formation are often particularly interested in �nding objects in radio-images of

the deep-sky that are morphologically di�erent to known stars and galaxies. While many

data mining algorithms focus on searching for global models that describe a data set in its

entirety, searching for local structure (such as motif-�nding) is quite common in scienti�c

applications, where only a small portion of the data is of interest. The research challenges

are signi�cant: how does one incorporate the prior knowledge of the scientist in an e�ective

manner? what is the appropriate score function for patterns? how does one solve the search

problem when potentially looking for a \needle-in-a-haystack"? Is there a general theory for

such pattern-�nding algorithms or is each application relatively unique?

5 Conclusions

Research in data mining as currently practiced is good at developing speci�c \black box" algorithms

(such as learning algorithms for decision trees, naive Bayes, support vector machines, and so forth).

But the \black box" algorithms are only a part of the overall landscape of data mining practice. We

also need to be aware of how our tools are used in real applications. Ideally data mining research

should focus more on what happens traditionally both before (exploration and modeling) and

after (evaluation and deployment) the actual execution of a speci�c modeling or pattern-�nding

algorithm. These steps in the process often involve inherently hard problems but also present

interesting research opportunities that have signi�cant potential scienti�c and economic impact.
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