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Abstract—The routing capacity region of networks with mul-
tiple unicast sessions can be characterized using Farkas’ lemma
as an infinite set of linear inequalities. In this paper this result
is sharpened by exploiting properties of the solution satisfied
by each rate-tuple on the boundary of the capacity region,
and a finite description of the routing capacity region which
depends on network parameters is offered. For the special case
of undirected ring networks additional results on the complexity
of the description are provided.

Index Terms—routing, network capacity, multicast sessions,
linear programming.

I. INTRODUCTION

ROUTING protocols underlie the traditional strategies

for communicating information in data networks. The

newer paradigm of network coding (see, e.g., [1], [9]) of-

fers potentially more reliable coding schemes with higher

throughput and error correcting capabilities, but it is costlier to

implement (see, e.g., [8]). It is important to better understand

routing because of its significance to most practical networks.

Furthermore, routing capacity regions provide inner bounds

for the corresponding network coding capacity regions, and

there are cases where the two capacity regions for the same

networking problem are identical (e.g., [7], [11], [16], [15]).

We here focus on the routing capacity regions for a general

class of networks supporting multiple multicast sessions. Much

of the routing literature focuses on the multicommodity flow
problem in which every message in the network is transmitted

from a source to a unique destination. The famous max-
flow min-cut theorem provides bounds on the rates of the

different messages being simultaneously transmitted between

the different source-destination pairs. [12, Part VII] surveys

many of the cases where this bound is tight. The paper [5]

is an early reference which provides an example where the

bound is not tight.

The papers [6], [10] establish a special case of Farkas’

lemma (see, e.g., [13, §7.3]) sometimes called the “Japanese

theorem;” this result provides necessary and sufficient condi-

tions for determining if an arbitrary set of rates has a feasible
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routing solution for a networking problem with multiple uni-

cast sessions. A shortcoming of this result is that the descrip-

tion of the routing capacity region for the multicommodity

flow problem involves the intersection of an infinite set of

inequalities.

While the assumption of a unique destination is natural

for many application areas of network optimization, for com-

munication problems we want to allow for the possibility

of messages from a single transmitter to multiple receivers.

Using standard terminology from communications, we further

refer to unicast or multicast messages to indicate if the set of

destinations is a single terminal or a set of multiple terminals.

We will use the terms unicast and multicommodity flow

interchangeably. In the network coding literature, [2] considers

a routing problem similar to the maximum concurrent flow

problem [14] for directed, acyclic graphs; that paper introduces

a notion of a scalar routing capacity for a network and specifies

a linear program to find it.

Just as one can form a system of linear inequalities to

describe a multicommodity flow problem, one can likewise

study the general multiple multicast problem where every

terminal in the network potentially has messages for every

non-empty subset of the other accessible terminals. For a

multicommodity flow or unicast session the flow for a session

which enters an intermediate vertex along the path is identical

to the flow for that session emanating from that vertex. The

natural generalization for multicast sessions constrains each

spanning subtree carrying flow to have all of the edges or

nodes of that subtree transmit the same flow. The set of flows

along the various paths and subtrees are jointly constrained

by the capacities of the edges or nodes in the graph, and

the corresponding fractional routing capacity region can in

principle be determined by Fourier-Motzkin elimination [13].

However, as the results of Fourier-Motzkin elimination are

specific to the set of constraints for a particular networking

problem, our objective is to offer a characterization which will

apply to many networking problems.

The papers [15] and [16] extend the Japanese theorem to

networks supporting multiple multicast sessions and describe

an inequality elimination technique to help study the network

coding capacity region of special cases of the multiple multi-

cast problem on an undirected ring network. The technique

determines the minimal necessary and sufficient set of in-

equalities among the infinite set of inequalities specified by

the Japanese theorem and is a consequence of properties of

the routing solution for any rate-tuple on the boundary of the

routing capacity region; this technique appears to be new even
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for the special case of multicommodity flow problems. We

use it to further characterize the minimal set of inequalities

for general directed or undirected networks and for undirected

ring networks.

Our focus in this paper is on the size of the coefficients of

the inequalities that appear in the minimal description of the

routing rate region of an undirected network. We combine the

inequality elimination technique with complexity results (see,

e.g., [4], [13]) on the description of a rational system of linear

inequalities to bound the coefficients of the linear inequalities

that describe the routing rate region. We further discuss an

average case analysis of the size of linear inequalities for

undirected ring networks. The outline of the paper is as

follows. In Section II we formulate the problem and review

some of the results of [15] and [16]. In Section III we present

our results on the complexity of routing capacity regions of

networks.

II. PRELIMINARIES

A. Network Model

Consider a network that is represented by a graph G(V,E),
where V and E respectively denote the set of vertices and

edges in the network graph. The edges are either all undirected,

meaning that the sum of flow along both directions of an edge

is bounded by the capacity of the edge, or all directed. Further-

more, for any subgraph S of the network let V (S) and E(S)
respectively denote its set of vertices and edges. In a general

communication setting, every vertex v ∈ V can simultaneously

send messages to arbitrary nonempty subsets of accessible

vertices in V \ {v}. Every message M with source vertex

vs and set of destination nodes {v1, · · · , vk}, is associated

with a rate RM and with a set of t(M) spanning subtrees,

{T 1
M , · · · , T

t(M)
M }, that connect vs to {v1, · · · , vk}. For

message M , let rj
M be the amount of flow for that message that

passes through spanning subtree T j
M , j ∈ {1, . . . , t(M)}.

We then have
∑t(M)

j=1 rj
M = RM . In an edge-constrained

network the flows passing through every edge satisfy its

capacity constraint, i.e.,
∑

M,j: e∈E(T j
M ) rj

M ≤ Ce, for all

e ∈ E, where Ce denotes the capacity of edge e. A rate-

tuple R = (RM1 , · · · , RMN
) corresponding to the sessions

M1, · · · ,MN is said to be feasible if for each i ∈ {1, . . . , N}
there exists a non-negative assignment of {r1

Mi
, · · · , r

t(Mi)
Mi

}
that simultaneously satisfies

∑t(Mi)
j=1 rj

Mi
= RMi

and the edge

constraints.

B. Multiple Multicast Capacity Region of Networks

The Japanese theorem characterizes the set of feasible

routing rates-tuples for edge-constrained networks in problems

where there are only multiple unicast sessions. Each inequality

is based upon a collection of edge “distances” and is in terms

of the shortest path lengths for each session. It is easy to

establish an extension of the Japanese theorem to networks

with multiple multicast sessions and with edge constraints. In

what follows, Z
+ denotes the set of nonnegative integers.

Theorem 1 ([16], [15]). Consider the edge-constrained net-
work G(V,E). For function f : E → Z

+, define Lf (T ) =∑
e∈E(T ) f(e) and �f (M) = minj∈{1, ..., t(M)} Lf (T j

M ). The
rate-tuple R = (RM1 , · · · , RMN

) is feasible in G(V,E) if and
only if for every function f : E → Z

+, the following inequality
holds:

N∑
i=1

�f (Mi)RMi ≤
∑
e∈E

f(e)Ce. (1)

Theorem 1 is unsatisfying because it describes a routing ca-

pacity region with infinitely many inequalities; since Fourier-

Motzkin elimination is a finite procedure we know that the

collection of feasible rate-tuples is a polytope defined by a

finite set of inequalities. We next discuss an approach to

strengthening Theorem 1. We focus here on distance functions

f that are nontrivial in the sense that there is at least one

session M with �f (M) > 0. We say that the resulting

Japanese theorem inequality is redundant if for any assignment

of capacities the feasible rate-tuples on the corresponding

defining hyperplane all lie on the hyperplane bounding another

nontrivial Japanese theorem inequality. The following result

establishes that the true significance of the distance function

is summarized by the collections of shortest paths for the

unicast sessions and shortest subtrees for the multicast sessions

corresponding to that function.

Theorem 2 (Inequality Elimination Theorem [16], [15]).
Consider a network G(V,E) with a set of messages
{M1, · · · ,MN}, and two distinct nontrivial distance functions
f and g. If

1) for every e ∈ E, f(e) = 0 whenever g(e) = 0, and
2) for every session Mi, i ∈ {1, · · · , N} and for all

j ∈ {1, · · · , t(Mi)} the property Lg(T
j
Mi

) = �g(Mi)
implies Lf (T j

Mi
) = �f (Mi) (but not necessarily the

converse),

then the inequality (1) corresponding to g is redundant in the
description of the fractional routing capacity region given the
inequality corresponding to f .

We will illustrate the result of Theorem 2 with an example.

Consider an undirected triangle network with V = {1, 2, 3}
and set of messages {1 → 2, 2 → 1, 2 → 3, 3 → 2, 3 →
1, 1 → 3, 1 → {2, 3}, 2 → {1, 3}, 3 → {1, 2}}, and suppose

C(1,2) = C(2,3) = C(3,1) = 1. Take g((1, 2)) = 2, g((2, 3)) =
1, and g((3, 1)) = 3. It is easy to verify

• �g(1 → 2) = �g(2 → 1) = 2 and the shortest path is

(1, 2),
• �g(2 → 3) = �g(3 → 2) = 1 and the shortest path is

(2, 3),
• �g(3 → 1) = �g(1 → 3) = 3 and both paths are shortest,

and

• �g(1 → {2, 3}) = �g(2 → {1, 3}) = �g(3 → {1, 2}) = 3
and the shortest subtree is {(1, 2), (2, 3)}.

Therefore, the halfspace corresponding to distance function g
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is

2(R1→2 + R2→1) + (R2→3 + R3→2)
+3(R3→1 + R1→3 + R1→{2,3} + R2→{1,3} + R3→{1,2})

≤ 2C(1,2) + C(2,3) + 3C(3,1) = 6. (2)

Next take f((1, 2)) = 1, f((2, 3)) = 0, and f((3, 1)) = 1.

Notice that the shortest paths and shortest subtrees for each

session under distance function g remain shortest paths and

shortest subtrees for the sessions under f , although f has a

second shortest path for unicast sessions 1 → 2 and 2 → 1
and a second shortest subtree for the multicast sessions. The

halfspace corresponding to f is

(R1→2 + R2→1) + (R3→1 + R1→3)
+(R1→{2,3} + R2→{1,3} + R3→{1,2})

≤ C(1,2) + C(3,1) = 2. (3)

The theorem states that (2) is redundant for defining the

routing capacity region in the presence of (3). The reason

is that a polytope is defined by a collection of hyperplanes,

and every feasible rate-tuple like R1→2 = R2→3 = R3→1 =
1, RM = 0, M �∈ {1 → 2, 2 → 3, 3 → 1} which satisfies (2)

with equality must also satisfy (3) with equality. The rate-tuple

R1→{2,3} = 2, RM = 0, M �∈ {1 → {2, 3}} is an example

of an infeasible rate-tuple which satisfies (2) with equality;

it is infeasible because four units of capacity are needed to

transmit two units of multicast traffic, and the network has

only three units of capacity. For the problem of characterizing

the routing capacity region of a network we can ignore the

infeasible rate-tuples.

The papers [16] and [15] consider two special cases of

the multiple multicast problem on undirected ring networks.

These papers introduce the inequality elimination technique

and use it to prove that distance functions with range {0, 1}
are sufficient for characterizing the capacity regions. We

next present new consequences of the inequality elimination

theorem.

III. ON THE COMPLEXITY OF THE ROUTING CAPACITY

REGION

We next consider the complexity of the routing capacity

region for an undirected graph. Let p and q be relatively prime

integers and let α = p/q. Define

size(α) = 1 + �log2(1 + |p|)� + �log2(1 + |q|)�.
For the rational vector c = (γ1, · · · , γn) and the rational

matrix A = (αi,j)1≤i≤m,1≤j≤n we have:

size(c) = n + size(γ1) + · · · + size(γn),

size(A) = mn +
∑
m,n

size(αi,j). (4)

Let x = (x1, · · · , xn)T . Then the size of linear inequality

ax ≤ α is defined as 1 + size(a) + size(α). The size of

a system Ax ≤ b of linear inequalities is defined as 1 +
size(A)+size(b). Next let P ⊂ R

n be a rational polyhedron.

The facet complexity of P defined as the smallest number

φ ≥ n for which there exists a system Ax ≤ b of rational

linear inequalities defining P and each inequality in Ax ≤ b
has size at most φ.

Consider an undirected network G(V,E) and the rate-tuple

R = (RM1 , · · · , RMN
). Let P denote the set of achievable

rate-tuples in R
N . Theorem 2 provides a systematic method

to characterize the minimal description of P for the general

multiple multicast problem. Here we wish to establish upper

and lower bounds on the maximum values of the functions that

appear in the minimal description of P . The following theorem

establishes a lower bound in the special case of undirected ring

networks.

Theorem 3. Let G(V,E) be an undirected ring network with
vertices 1, 2, · · · , |E| in a clockwise direction. For i ∈
{1, 2, . . . , |E| − 1}, let edge i connect vertices i and i + 1,
and let edge |E| connect vertices |E| and 1. There exist a
distance function g that cannot be eliminated by any nontrivial
distance function f with maxe∈E f(e) < 2�(|E|−2)/3�.

Proof: Consider a multicast session with k − 1 destina-

tions, and suppose the source and destination vertices form

the set {v1, v2, . . . , vk}, where 1 ≤ v1 < v2 < · · · <
vk ≤ |E|. Observe that a minimal spanning subtree is the

subgraph consisting of the original network except for the

vertices vj + 1, . . . , vj+1 − 1 and edges vj , . . . , vj+1 − 1 for

some j ∈ {1, . . . , k} (with vk+1 = v1). Therefore, for any

distance function the shortest paths or shortest subtrees for

this collection of sessions will correspond to the longest paths

vj , . . . , vj+1 − 1, j ∈ {1, . . . , k}.

Let β = 2�(|E|−2)/3�. Suppose we consider the distance

function

g(e) =
{

β e ≡ 1 (mod 3),
2�(e−2)/3�, otherwise

and try to find another distance function f that eliminates g.

Since the shortest broadcast trees are preserved under f , it

follows that

max
i∈E

f(i) = f(e), e ≡ 1 (mod 3). (5)

Furthermore, for s ∈ {2, . . . , �|E|/3�} consider the multicast

session consisting of all vertices except 3s − 4, 3s − 3, and

3s − 1. Under g, the path consisting of edges 3s − 5, 3s −
4, 3s− 3, and the path consisting of edges 3s− 2 and 3s− 1
are both longest, and therefore (5) implies

f(3s − 4) + f(3s − 3) = f(3s − 1), s ∈ {2, . . . , �|E|/3�}.
(6)

Finally, for s ∈ {2, . . . , �(|E|+1)/3�} consider the multicast

session consisting of all vertices except 3s − 4 and 3s − 2.

Under g, the path consisting of edges 3s − 5 and 3s − 4 and

the path consisting of edges 3s−3 and 3s−2 are both longest,

and therefore (5) implies

f(3s − 4) = f(3s − 3), s ∈ {2, . . . , �(|E| + 1)/3�}. (7)

By (6) and (7), we see that

2f(3s − 4) = f(3s − 1), s ∈ {2, . . . , �|E|/3�}. (8)

2228



Equations (5)-(8) imply that f(e) = f(2) · g(e) for all e ∈ E.

Let φ∗ denote the maximum distance among distance

functions used for a shortest description of P . Theorem 3

establishes that φ∗ ≥ 2�(|E|−2)/3�. We next extend Theorem

3 to any undirected graph.

Corollary 4. Given undirected graph G(V,E) with maximum
cycle length m, for the networking problem in which all possi-
ble multicast sessions are supported, the minimum description
of the corresponding routing rate region requires a distance
function with φ∗ ≥ 2�(m−2)/3�.

Proof: Let C denote a maximum cycle of G. We extend

the proof of Theorem 3 by using the same distance function

f along C and setting f(e), e /∈ C, to be sufficiently large.

Next we bound φ∗ from above.

Theorem 5. For an undirected or a directed network G(V,E),
φ∗ ≤ 224|E|3+8|E|2 .

Proof: Suppose that the distance vector

f = (f(1), · · · , f(|E|)) belongs to the minimal description

of P . We form the homogeneous set of inequalities Ag ≤ 0
such that {g : Ag ≤ 0,g ∈ Z

|E|} is the set of all

distance vectors that can eliminate f by the criteria given

in Theorem 2. This includes all inequalities that describe

the shortest subtrees for every session corresponding to

function f , and also the nonnegativity of elements of g.

Notice that this set is non-empty since f is a solution to it.

Furthermore, all elements of matrix A are in {0, +1,−1}.

This implies the upper bound 3|E| + 1 on the size of the

inequalities in Ag ≤ 0. Therefore the facet complexity of

Ag ≤ 0, is at most φA = 3|E| + 1. [13, Theorem 10.2]

implies that Ag ≤ 0 has a rational solution of size at most

4|E|2φA = 12|E|3 + 4|E|2. Let gr = (p1/q1, · · · , p|E|/q|E|)
denote such a solution. Since Ag ≤ 0 is a homogeneous set of

inequalities, any integral multiple of gr is also a solution to

Ag ≤ 0. Now consider the vector gz = (q1 · · · q|E|)gr.

Clearly gz ∈ {g : Ag ≤ 0,g ∈ Z
|E|}, so it can

eliminate f . Let gz(i) be the maximum entry of gz.

Then size(gz(i)) ≤ size(q1 · · · q|E|) + size(gr(i)). Since

size(q1 · · · q|E|) ≤ size(gr) and size(gr(i)) ≤ size(gr),
then size(gz(i)) ≤ 24|E|3 + 8|E|2. This yields the result.

The following result suggests that a small fraction of the

distance functions in our characterization of the fractional

routing capacity region are truly needed and that most distance

functions can be eliminated by distance functions where the

maximum entry grows polynomially with |E|.
Theorem 6. Let G(V,E) be an undirected ring network with
edges labeled 1, 2, · · · , |E| in a clockwise order. Choose any
integer m ≥ 6, and suppose gmax = maxe∈E g(e) > g∗ .=
|E|m/(1 − |E|m/gmax). Assume without loss of generality
that g(|E|) = gmax; for e ∈ E \ |E| let g(e) be ran-
domly and uniformly chosen among the nonnegative integers
less than or equal to gmax. Then with probability at least
1 − (4/|E|m−5) − (1/|E|m|E|) − (|E|/|E|m(|E|−1)) we can
find a nontrivial distance function f with fmax ≤ g∗ that

eliminates g.

Proof: Given distance function g with gmax > g∗, let

η = �gmax/|E|m�, and define

f(e) = g(e) − (g(e) (mod η)), e ∈ E.

Distance function f eliminates distance function g if for every

pair of edge-disjoint subsets E1 ⊂ E and E2 ⊂ E occurring

along paths of G, the condition
∑

e∈E1
g(e) ≤ ∑

e∈E2
g(e)

implies
∑

e∈E1
f(e) ≤ ∑

e∈E2
f(e). Let EE1,E2 be the

event that
∑

e∈E1
g(e) ≤ ∑

e∈E2
g(e) and

∑
e∈E1

f(e) >∑
e∈E2

f(e). Define

Δg =
∑
e∈E1

g(e) −
∑
e∈E2

g(e)

and Δf =
∑
e∈E1

f(e) −
∑
e∈E2

f(e).

Since 0 ≤ g(e) − f(e) < η for all e ∈ E, it follows that

|Δg − Δf | ≤
∑
e∈E

|g(e) − f(e)| < η · |E|.

We know that Δg ≤ 0 and Δf > 0, and therefore |Δg| <
η · |E|. Let Emin = mine∈E1∪E2 e. Observe that Emin �= |E|.
Given g(e), e ∈ E \ Emin, there are at most 2η · |E| choices

for g(Emin) that result in −η · |E| < Δg ≤ 0. Furthermore,

g(Emin) is a random variable uniformly distributed over the

integers between 0 and gmax. Therefore,

P(EE1,E2) ≤ 2η · |E|
gmax + 1

<
2 · gmax

|E|m · |E|
gmax

=
2

|E|m−1
.

The number of pairs of edge-disjoint subsets E1 and E2

we need to consider can be determined by the possibilities

for mine∈E1 e,maxe∈E1 e,mine∈E2 e and maxe∈E2 e and is

therefore less than 2|E|4. Hence,

P

⎛
⎝ ⋃

E1,E2

EE1,E2

⎞
⎠ < 2|E|4 · 2

|E|m−1
=

4
|E|m−5

.

We have not yet considered if f is a trivial distance function.

f is nontrivial if and only if there exist edges e and e′ �= e
such that f(e) > 0 and f(e′) > 0. For all e ∈ E, P(f(e) =
0) = P(g(e) ≡ g(e′) (mod η)) = 1/gmax < 1/|E|m. Thus,

with probability at least 1 − (4/|E|m−5) − (1/|E|m|E|) −
(|E|/|E|m(|E|−1)) we can use distance function f to eliminate

g. Since f(e) (mod η) = 0 for all e ∈ E, we can define

distance function f∗ with f∗(e) = f(e)/η, e ∈ E, and

eliminate f by f∗. Notice that for all e ∈ E,

f∗(e) = f(e)
η ≤ g(e)

η ≤ gmax
�gmax/|E|m� < gmax

gmax
|E|m −1

= |E|m
1− |E|m

gmax

. (9)
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