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Abstract. In the hierarchy of infinite graph families, rational graphs are
defined by rational transducers with labelled final states. This paper proves
that their traces are precisely context-sensitive languages and that this result
remains true for synchronized rational graphs.

1 Introduction

During the last fifteen years, there has been a great deal of interest around
families of infinite graphs. The decidable properties of these families pro-
vide a nice framework for validation and verification. Muller and Schupp
introduced in [16] the transition graphs of pushdown automata and proved
that their monadic second order theory was decidable. A few years later,
Courcelle extended this result to regular graphs generated by deterministic
graph grammars, [7]. In 1996 Caucal used inverse rational substitution (fol-
lowed by a rational restriction) to define the prefix-recognizable graphs; they
have a decidable second order monadic theory [4]. The automatic graphs
form a more general family of graphs. They are automatic structures, de-
fined in 2000 by Blumensath and Grädel [1], and have, thus, a decidable first
order theory. Very recently Colcombet considered an interesting extension
of prefix-recognizable graphs, namely the VRP-graphs (vertex replacement
with product) [6]. They are obtained using vertex replacement systems and
a graph product. Their first-order theory with accessibility is decidable.

The study of infinite graph families is also naturally linked to language
theory. Precisely, the transition graphs of pushdown automata and prefix-
recognizable graphs are defined from language theory. Recently, Urvoy ex-
tended the work of Ginsburg and Greibach [20] to define abstract families
of graphs [22]. The connection between families of graphs and language
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theory is even deeper: they constitute an elegant characterization of families
of languages. If we consider the trace of a graph as the language of path
labels leading from an initial set of vertices to a final set of vertices, then
traces form one of the most important link between graphs and languages.
For example, it is well known that the traces of finite graphs are regular
languages [11]. By construction, the traces of the transition graphs of push-
down automata are the context-free languages. These languages are also the
traces of prefix-recognizable graphs [4]. At this time, the languages corre-
sponding to the VRP-graphs is still unknown. In 2001 Caucal used Turing
machines to define a class of graphs whose traces are recursively enumerable
languages [3].

In this paper we establish a new correspondence between the Chom-
sky hierarchy [5] and families of graphs. We prove that the traces of ra-
tional graphs (generated by labelled rational transducers [14]), are context-
sensitive languages. We show that this result remains true if we restrict
to synchronized graphs [18]. In those cases the traces correspond to path
labels between finite sets. Extending initial and final sets to rational sets,
letter-to-letter rational graphs also trace context-sensitive languages.

This article is organized in three sections. The first one uses finite trans-
ducers, that is finite automata labelled with pairs, to define the rational
graphs. Some basic results and definitions about context-sensitive languages
are also recalled. The second section proves that the trace of any rational
graph can be recognized using a linear bounded Turing machine, and is
therefore a context-sensitive languages. Finally, the third section uses the
Penttonen normal form [17] to prove that any context-sensitive language is
the trace of a rational graph. Indeed, it proves that the synchronized rational
graphs, which is a proper subclass of rational graphs [1], [21], are sufficient
to obtain any context-sensitive language.

2 Preliminary definitions

In this section, we recall basic definitions concerning infinite graphs and
context-sensitive languages. In the first part, rational graphs, synchro-
nized graphs and letter-to-letter graphs are defined from transducers. Then,
context-sensitive languages are characterized both from Turing machines
and from Penttonen’s rewriting systems in the second part.

2.1 Graphs and transducers

Let A be a finite set of labels. A simple arc labelled graph is a subset of
V ×A×V where V is an arbitrary set of vertices.
We denote by s

a−→
G

t the existence of the arc (s, a, t) in the graph G or simply
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by s
a−→t when there is no ambiguity.

A path s
u

=⇒
G

t of a graph G leading from a vertex s to a vertex t and of

label u is a finite sequence (s0, a1, s1)...(sn−1, an, sn) of arcs of G such
that u = a1...an, s = s0 and t = sn.
A trace of a graph G is the language L(G, I, F ) of path labels leading from
a set I of initial vertices to a set F of final vertices:

L(G, I, F ) = { u | ∃ s ∈ I ∃ t ∈ F, s
u

=⇒
G

t }

An automaton A is a triple (G, I, F ) where G is a finite graph and I and F
are initial and final sets of states. The language, L(A), recognized by A is
the trace L(G, I, F ).
Let Σ be a finite alphabet. We denote by Σ∗ the set of finite words over
letters of Σ, and we write ε for the empty word.
A transducer T is a finite automaton where labels have been modified to
recognize relations instead of sets of words. It is defined by a finite subset
of Q×Σ∗×Σ∗×Q of labelled arcs, where Q is a finite set of states, by a set
I ⊆ Q of initial states, and by a set F ⊆ Q of final states. So a transducer
is labelled by pairs of words. Any transition (p, u, v, q) of a transducer T is

denoted by p
u/v−→

T

q or by p
u/v−→ q when T is understood.

A path p0
u1/v1−→ p1 . . . pn−1

un/vn−→ pn with u = u1...un and v = v1...vn

is labelled u/v and is denoted by p0
u/v
=⇒

T

pn. A path is successful if it leads

from an initial state to a final one. A pair (u, v) ∈ Σ∗×Σ∗ is recognized by
a transducer if there exists a successful path labelled u/v.

Definition 2.1. A relation is rational if it is recognized by a transducer.

We denote by Rat(Σ∗ × Σ∗) the set of binary rational relations. The
following transducer, with initial state 0 (marked by an incoming arrow)
and final state 1 (marked by a double circle) recognizes the rational relation
{ (AnBm , BnA2m) | n ≥ 0, m > 0 }.

2.2 Hierarchy of rational graphs

Using words as vertices, infinite graphs can be defined by the relations
between the extremities of its arcs. Given any graph G ⊆ Σ∗×A×Σ∗, we
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denote by a−→
G

the relation { (s, t) | (s, a, t) ∈ G }. The graph G is rational

if for each a ∈ A, the relation a−→
G

is rational.

For instance, the following graph, on the left, called the grid is a rational
graph since it is defined by the following transducer, on the right.

Subfamilies of rational graphs are defined from subsets of rational rela-
tions.
If a transducer has labels over Σ×Σ it is called a letter-to-letter transducer:
it is a transducer labelled by pairs of letters instead of pairs of words.

Definition 2.2. A relation is letter-to-letter if it is recognized by a letter-
to-letter transducer.

A graph G is a letter-to-letter graph if for each a ∈ A, the relation Ga is
letter-to-letter.
Another particular subset of rational relations called left-synchronized re-
lations has been studied by Elgot and Mezei [8] and then by Frougny and
Sakarovitch [10]. Those relations are recognized by letter-to-letter transduc-
ers with rational terminal functions completing one side of the recognized
pairs. The terminal function associates a relation to each terminal state of the
transducer. Then, the relation defined is the set of labels of path ending at a
state q, concatenated with pairs of the terminal function’s value in q. For ex-
ample, a pair (u, v) belongs to a synchronized relation R, if there exists two
pairs of words (u′, v′) and (u′′, v′′) such that (u, v) = (u′, v′) · (u′′, v′′) with
the following condition: there exists a terminal state q, a path labelled (u′, v′)
leading to q, and (u′′, v′′) belongs to the value of the terminal function in q.
Formally:

Definition 2.3. A relation over Σ∗×Σ∗ is left-synchronized if it is recog-
nized by a letter-to-letter transducerT with terminal functionf taking values
in

DifRat = (Rat(Σ∗) × {ε}) ∪ ({ε} × Rat(Σ∗))

That is, a left-synchronized relation is a finite union of elementary re-
lations of the form R.S where R ∈ Rat((Σ × Σ)∗) and S ∈ DifRat.
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Right-synchronized relations are defined symmetrically with an initial ra-
tional function. A rational relation is synchronized if it is left-synchronized
or right-synchronized.

Example 2.4. Let us consider the relation |2 defined by x|2y if x is a power
of 2 dividing y. Provided integers are coded in base 2 (with lowest bits on
the left), the relation |2 is left-synchronized. This relation is recognized by
the following letter-to-letter transducer with the terminal function f defined
by f(q) = (ε, 0)∗(ε, 1){(ε, 0), (ε, 1)}∗ and f(r) = (ε, ε).

As the terminal function is rational, it can be introduced in the transducer
adding states and transitions. A left-synchronized transducer is a transducer
such that each path leading from an initial vertex to a final one can be divided

into two parts: the first one only contains arcs of the form {p
A/B−→ q|p, q ∈

Q ∧ A, B ∈ Σ} while the second part contains either arcs of the form

{p
A/ε−→ q|p, q ∈ Q∧A ∈ Σ} or arcs of the form {p

ε/B−→ q|p, q ∈ Q∧B ∈ Σ}
(but not both).

Remark 2.5. Automatic structures, [1], or automatic groups, [9], are defined
by automatic relations which are equivalent to synchronized relations.

Example 2.6. The following left-synchronized transducer recognizes the
left-synchronized relation of Example 2.4.

A graph G is left-synchronized if for each a ∈ A, the relation Ga is
left-synchronized.

Subfamilies of rational relations are closed under union, intersection and
complementation.
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Theorem 2.7. [8] The rational left-synchronized relations (respectively let-
ter to letter relations) form a boolean algebra.

A very important consequence of this result is the decidability of the first
order theory of the graphs defined using synchronized relations.

We also use particular left-synchronized relations. A binary relation R is
recognizable if it is a finite union of products S×T where S, T ∈ Rat(Σ∗).
A binary relation R over words is of bounded length difference if there exists
an integer b such that | |u| − |v| | ≤ b for any (u, v) ∈ R.

Proposition 2.8. [10] The family of synchronized relations contains the rec-
ognizable relations and the rational relations of bounded length difference.

When working with rational or synchronized graphs, it is sufficient to
consider the traces between singletons instead of rational sets.

Lemma 2.9. Let G ⊆ Σ∗×A×Σ∗ be a left-synchronized graph.
Let I, F ∈ Rat(Σ∗) and $, # /∈ Σ.
There exists a left-synchronized graph H ⊆ (Σ∗ ∪ {$, #})×A×(Σ∗ ∪
{$, #}) such that

L(G, I, F ) = L(H, {$}, {#}).

Proof. i) For all a ∈ A, we define:

Fa := Dom( a−→
G

∩ Σ∗×F )

the set of vertices which are source of an arc leading to a final state. This set
is rational being the domain of a rational relation. Then we create new arcs
leading from those vertices to the vertex #. More precisely, for all a ∈ A,
we define the arcs of the graph G′ to be as follows:

a−→
G′

:= a−→
G

∪ Fa×a×{#}

This relation is left-synchronized as the union of a left-synchronized relation
with a recognizable set. Moreover and by construction,

L(G, I, F ) = L(G′, I, {#})

ii) By a symmetric argument, a graph G′′ is defined such that,

L(G′, I, {#}) = L(G′′, {$}, {#}). 
�
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2.3 Context-sensitive languages

In Chomsky’s hierarchy of languages, the family of context-sensitive lan-
guages (Csl) is located between recursively enumerable and context-free
languages. There are many different ways to characterize this family of lan-
guages. In the following, we recall two of those characterizations. The first
one, due to Kuroda [12], defines context-sensitive languages as the languages
recognized by Linearly Bounded Turing machines (LBM). The second char-
acterization due to Penttonen [17], is based on a particular rewriting system.

Context-sensitive languages from Turing machines
A linearly bounded machine is a Turing machine such that the size of the
tape is bounded, linearly, by the length of the input. These machines are a
classical characterization of Csl.

Theorem 2.10. [12] Context-sensitive languages are the set of languages
recognized by linearly bounded Turing machines.

Penttonen’s characterization of Context-sensitive languages
A different characterization of Csl, due to Penttonen [17], is based on a
rewriting system using particular rules.

Definition 2.11. A rewriting system Γ = Γ1 ∪Γ2 is a 2-system if every rule
of Γ2 is of the form AB → AC with B �= C and every rule of Γ1 is of the
form A → a where A, B, C are letters of the non-terminal alphabet Σ and
a ∈ A.

Context-sensitive languages are obtained by derivation of a 2-system
from a linear language.

A language is linear if it can be generated by a grammar whose rules are
of the form Z −→ W , where Z is a non-terminal, W is a word over terminal

and non-terminal symbols, with at most one non-terminal.

Theorem 2.12. [17] There exists a linear language LLin such that every
context-sensitive language is {v ∈ A∗ | ∃ u ∈ LLin , u

∗−→
Γ

v} for some

2-system Γ .

3 From rational graphs to context-sensitive languages

In this section, we prove that the traces of rational graphs between initial and
final rational sets of vertices are context-sensitive languages, this exposition
is a detailed (and simplified) version of the first section of [15].
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3.1 First approach

As we have seen in Section 2.3, a common characterization of Csl is given
by LBM. The first idea is to simulate a rational graph with an LBM. Any
vertex of the graph would be stored on the tape, and the machine would
compute the next vertex.

This basic approach fails to recognize the traces of rational graphs: the
length of the vertices may grow exponentially. Example 3.1 illustrates this
situation.

Example 3.1. The transducer, having a single state p (initial and final la-

belled a) and a single transition p
A/AA−−−→ p defines the following graph:

The trace of this graph between A and A∗ is obviously a∗. The problem
is that the length of the vertices is exponential in the length of the recognized
word. For example, the path recognizing a3 is the following:

A
a−→ AA

a−→ A4 a−→ A8

More generally: an leads from A to A2n
. Therefore, it is not straightfor-

ward to construct a linear bounded machine recognizing the language of the
transducer.

The last remarks leads to encode the vertices of the graph in order to
keep their length linear. In this case it becomes difficult to compute the “next
vertex function”. Especially if some branches of the transducer produce a
sub-graph with a linear growth, and some other with an exponential growth.

The next section exposes a different approach which avoids those diffi-
culties.

3.2 Construction of the LBM

Let G ∈ Σ∗ ×A×Σ∗ be a rational graph recognized by a transducer T . For
each a in A, we denote by Ta the transducer recognizing a−→

G

. We construct

a LBM recognizing the trace L(G, I, F ), where I and F are rational sets.
Roughly speaking, our solution is to simulate the transitions of G in

parallel: for example, let us consider a path U
a−→ V

b−→ W in G and



Families of automata characterizing context-sensitive languages 301

suppose that the first transition of Ta is of the form q
ε/X−−→ q′. Then X is

the first element of V , thus we can activate Tb knowing that X is the first
non-empty left-hand-side label.

Using this observation we only need to keep on the tape of the machine
one state for each transducer Ta, plus some bounded information corre-
sponding to what it might consume and what it has produced (and that has
not been consumed yet).

By Lemma 2.9 we suppose that I and F are singletons containing re-
spectively $ and #.

A transducer is normalized if all its transitions are of the form, p
u/v−−→ q,

where |u| + |v| = 1. It is straightforward to see that any rational graph can
be generated by a normalized transducer.

In order to present the LBM that we construct, we simply give moves
corresponding to obvious sequences of ordinary LBM transitions. Let M =
(Q, W,�, F,R) be a LBM, where W contains the elements of Σ, the states
of T , ε and left and right end-markers respectively denoted by � and �.
The elements of Q are not described in details, we only need to specify two
macro states (allowing to initiate a move): � and �, � being the initial state
of the machine. The set F contains a single state (♦).

The initial configuration is the following:

� � w �|w|+1 �.

There are |w|+1 blank symbols after w because the first transitions produce
this configuration:

� � $ iw(0) ε iw(1) · · · iw(|w|) ε �.

For this configuration, each symbol iw(k) is the initial state of the transducer
corresponding to the letter w(k) (denoted by Tw(k)). In each configuration
of this machine, the even positions correspond to states of the transducers
(the machine has to simulate |w| transducers). For example, let us suppose
that A qa B qb C is a factor of some configuration of the machine, the letter
A corresponds to the left hand side of a transition in transducer Ta starting
from qa, B corresponds to the right hand-side of some transition in Ta ending
in state qa (it can be interpreted as: transducer Ta has produced B and has
to consume A). It is the same for state qb. There are three different moves
of the machine:

The machine checks for success each time state � reaches # followed by
� (if � follows any other non-ε letter there is no transition, the run fails).
It also checks for success if � reaches ε followed by a fwi (a final state of
Twi). In those cases, the machine checks whether for all i, qai equals fai and
Ai equals ε; if it is the case, it is a success. Indeed, it means that everything
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Label Transducer Initial position Final position Comment

Move (a) qa
A/ε−−→
Ta

q′
a · · · � A qa C qb · · · · · · ε q′

a � C qb · · · A, C ∈ Σ ∪
{$, #, ε} qa state of
Ta

qb state of Tb or �

Move (b) qa
ε/B−−→
Ta

q′
a · · · � A qa ε qb · · · · · · A q′

a � B qb · · · A ∈ Σ ∪ {$, #, ε}
qa state of Ta

qb state of Tb or �

Move (c) — · · · B qb � C qa · · · · · · � B qb C qa · · · C = ε or
qa = � and C = #

that has been produced has been consumed, and that each transducer is in an
acceptable state (a final state). If there is no success, the machine proceeds
to move (a), (b) or (c).

Lemma 3.2. The languages recognized by the machine M is the trace,
L(G, $, #), of G.

Proof. First, we prove that L(M) ⊆ LG. Consider a word w ∈ L(M). From
a successful run in M , we can deduce paths in the transducers corresponding
to the letters of w: all moves done by the machine can be done by a transducer,
except those to the left which correspond to a “change of transducer”.

Second, we prove that LG ⊆ L(M). Let w be a word in LG, and suppose
that n = |w|. There is a path in G between $ and # labelled w: $

w1−→ u1
w2−→

u2 · · ·un−1
wn−−→ #. Therefore we have: $ Tw1u1, u1Tw2u2, · · · un−1Twn #.

To construct a successful run of M , we use, for all i, a path in Twi labelled
ui−1/ui. We define a new transducer T ′

wi
as a copy of the transducer Twi ,

where each ε is replaced by a letter E (not in Σ). Thus ui−1Twiui implies
u′

i−1T
′
wi

u′′
i with:

u′
i−1 = Ek1ui−1(1)Ek2 · · · E

k|ui−1|ui−1(|ui−1|)Ek|ui−1|+1 .

Each E means that a transition labelled ε on the left, in Twi has been fol-
lowed. The word u′′

i is similar. Each letter in u′
i−1 witnesses for a transition in

Twi , and therefore corresponds to a letter in u′′
i (thus, for all i, |u′

i−1| = |u′′
i |).

Now we use these words u′
i to construct a successful run in M . The

function: first, over words, returns the first letter of a word (nothing if it
is the empty word), and the function tail erases the first letter of a word.
This process constructs a successful run of M :
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Set i := 1 /* index of the transducer */
Set A1 := $ and, for all i � 2, Ai := ε
Repeat

Case:
u′′

i = ε :Follow corresponding move (c)
i := i − 1

first (u′
i−1) = E:Ai+1 :=first(u′′

i ) (first(u′′
i ) �= E)

tail(u′
i−1), tail(u′′

i ), i := i + 1
Follow corresponding move (b)

first (u′
i−1) = Ai:Ai := ε

tail(u′
i−1), tail(u′′

i ), i := i + 1
Follow corresponding move (a)

Else :i := i − 1, follow corresponding move (c)
Until (For all i, u′

i = u′′
i = ε)

From the construction of the u′
i and u′′

i , this process will always be able
to follow a transition. Since all transitions to the right remove letters, the
process eventually meets the “out” condition and therefore succeeds. This
process yields a path in M , recognizing w which concludes the proof. 
�

This construction is illustrated for the graph of Example 3.1.

Example 3.3. The first step consist of normalizing the transducer, and to
separate initial and final states.

Once the transducer is transformed, we consider the trace of the graph
from A to # (the vertex A correspond to the vertex $ in the construction of
the machine). Now, let us consider the word a3 which labels following path:

A
a−→ A2 a−→ A4 a−→ #

The configurations of the machine are presented on the left. Internal states
corresponding to the process are presented on the right (we omit the initial
configuration �� aaa�����):
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�� Apεpεpε�
u′

0 = AEE u′
1 = AEEAEE u′

2 = AEAAA
u′′

1 = EAA u′′
2 = EAAEAA u′′

3 = E#EEE
i := 1

Apply move (a)

� εq � εpεpε�
u′

0 = EE u′
1 = AEEAEE u′

2 = AEAAA
u′′

1 = AA u′′
2 = EAAEAA u′′

3 = E#EEE
i := 2

Apply move (c)

�� εqεpεpε�
u′

0 = EE u′
1 = AEEAEE u′

2 = AEAAA
u′′

1 = AA u′′
2 = EAAEAA u′′

3 = E#EEE
i := 1

Apply move (b)

� εr � Apεpε�
u′

0 = E u′
1 = AEEAEE u′

2 = AEAAA
u′′

1 = A u′′
2 = EAAEAA u′′

3 = E#EEE
i := 2

Apply moves (a),(c),(b)

� εrεr � Apε�
u′

0 = E u′
1 = EAEE u′

2 = AEAAA
u′′

1 = A u′′
2 = AEAA u′′

3 = E#EEE
i := 3

Apply moves (a),(c),(b)

� εrεrεu � #�
u′

0 = E u′
1 = EAEE u′

2 = AAA
u′′

1 = A u′′
2 = AEAA u′′

3 = EEE
i := 4

Apply moves (c),(c),(b),(a), then (c),(c),(c)

�� εrεsεu#�
u′

0 = E u′
1 = AEE u′

2 = AA
u′′

1 = A u′′
2 = EAA u′′

3 = EE
i := 1

Finally, following these moves: (a,b,c,a,b,c,c,a,b), the process finishes.
We have computed a successful path from the transducer.

From Lemma 3.2 it is easy to prove the desired result.

Proposition 3.4. Traces of rational graphs are context-sensitive languages.

Proof. First, we transform the graph in order to consider the trace between
two vertices. Then we construct the corresponding machine M which rec-
ognizes the same language,by Lemma 3.2. Thus the traces of rational graphs
are Csl. 
�

4 From context-sensitive languages to synchronized graphs

In the previous section, we proved that the traces of rational graphs are the
context-sensitive languages. Thus any trace of a synchronized graph is a
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context-sensitive language. Conversely, we show that any context-sensitive
language is the trace of a synchronized graph. The proof uses Penttonen’s
characterization of Csl. It is a detailed construction of [19].
Let L be a context-sensitive language. We construct a synchronized graph
whose traces between two finite sets is L.
By Theorem 2.12, there exists a 2-system Γ such that L is obtained by
derivation of the linear language Llin. Recall that the derivation rules of
non-terminal words are of the form AB → AC. Consider a transducer
having transitions (A, B)A/C−→(A, C) for each (AB, AC) of Γ2. Any deriva-

tion AB1
Γ2−→AB2 . . .

Γ2−→ABm of a word of length 2 corresponds to an arc

Am → B1B2 . . . Bm on the graph. Following this idea, we first get a ratio-
nal synchronized graph GLin such that L = L(GLin, LLin, {ε}). Then, we
transform GLin into a graph G having a rational set of vertices LRat such
that L = L(G, LRat, {ε}). Finally, using Lemma 2.9, we obtain finite initial
and final sets of states.

4.1 Traces from the linear language LLin

Let T2 be the transducer defined from Γ2 by:

I
[A/[B−→ (B, A, B) for all A, B ∈ Σ (type 1)

(A, B, C)
B/D−→ (A, B, D) for all A, B, C, D ∈ Σ

such that BC −→
Γ2

BD (type 2)

(A, B, C)
D/C−→ (A, D, C) for all A, B, C, D ∈ Σ (type 3)

(A, B, C)
]A/]−→ F for all A, B, C ∈ Σ (type 4)

This transducer starting at I and ending at F recognizes pairs of the form
([AA1. . .Am]B, [BB1. . .Bm])

meaning that under the successive contexts A, A1, . . ., Am the letter B can
be rewritten successively B, B1, . . ., Bm. If the context does not change:
Ai = Ai+1, one can apply a rule AiBi −→

Γ2

Ai+1Bi+1. If the context changes:

Ai �= Ai+1, we copy the letter Bi = Bi+1. The first component of states of
T2 stores the first word of the derivation.
Note that the relation R2 recognized by T2 is of bounded length difference.

Example 4.1. Let Γ2 = {(AB, AC), (AC, AD), (DA, DE), (EA, EE)}.
We have [AAA]B R2 [BCD] because under the context A, letter B can
be rewritten to C and then to D. The following derivation:

ABAA −→
Γ2

ACAA −→
Γ2

ADAA −→
Γ2

ADEA −→
Γ2

ADEE

is represented as follows:
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A B A A

A C A A

A D E A

A D E E

We have [AAAAA]B R2 [BCDDD] and [BCDDD]A R2 [AAAEE]
and [AAAEE]A R2 [AAAAE].

Consider a word X1 ∈ LLin of length n and a derivation
X1 −→

Γ2

X2 −→
Γ2

. . . −→
Γ2

Xm represented by the following figure.

. . .. . .

Xm(n)

Xm−1(n)

Xm(i)

Xj(i − 1)

X3(i − 1)

X2(i − 1)

X1(i − 1)

Xm(i − 1)

Xm−1(i − 1)

X1(n)

X2(n)

X3(n)

Xj(n)

X1 X1(1)

X2(1)

X3(1)

Xj(1)

X1(2)

X2(2)

X3(2)

Xm(1)

Xj(2)

Xm−1(2)Xm−1(1)

Xm(2)

. . . . . . . . .

. . .

. . .

. . .

. . . . . .

. . .

. . . . . .. . .

X1(i)

. . .

. . .

. . .

. . .

. . .

X2

X3

. . .

Xj

. . .

Xm−1

Xm

X2(i)

X3(i)

Xj(i)

Xm−1(i)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

The transducer T2 produces pairs corresponding to m successive letters of
adjacent positions: Given the m successive letters at a position i, it yields
the m successive letters at position i + 1.
For any words X, Y ∈ Σ∗ of length n, we denote by X 
 Y the cardinal
of { 1 ≤ i ≤ n | X(i) �= Y (i) }. The following technical lemma states that
any two consecutive columns are recognized by T2.

Lemma 4.2. The two following properties are equivalent:
a) X1 −→

Γ2

X2 −→
Γ2

. . . −→
Γ2

Xm

b) [X1(i − 1)X2(i − 1). . .Xm(i − 1)]X1(i) R2 [X1(i). . .Xm(i)] for all
2 ≤ i ≤ |X1|
and |Xj−1| = |Xj | and Xj−1 
 Xj = 1 and Xj−1(1) = Xj(1) for all
2 ≤ j ≤ m.



Families of automata characterizing context-sensitive languages 307

Proof. i) By definition of Γ2, we have, for all 2 ≤ j ≤ m,

|Xj−1| = |Xj | and Xj−1 
 Xj = 1 and Xj−1(1) = Xj(1) .

We show that

[X1(i − 1)X2(i − 1). . .Xm(i − 1)]X1(i) R2 [X1(i). . .Xm(i)]

by induction on m ≥ 1.
Basis case : m = 1. For all 2 ≤ i ≤ |X1|, we have

[X1(i − 1)]X1(i) R2 [X1(i)]

considering the path

I
[X1(i−1)/[X1(i)−→

TΓ2

(X1(i), X1(i − 1), X1(i))
]X1(i)/]−→

T2

F

Inductive case : m =⇒ m + 1.
Suppose the implication for a derivation of length m and let
X1 −→

Γ2

. . . −→
Γ2

Xm −→
Γ2

Xm+1.

There exists 2 ≤ k ≤ |X1| such that Xm(k) �= Xm+1(k) and for all
i �= k, Xm(i) = Xm+1(i).
Let 2 ≤ i ≤ |X1|. We want to show that

[X1(i − 1). . .Xm(i − 1)Xm+1(i − 1)]X1(i) R2 [X1(i). . .Xm+1(i)]

By inductive hypothesis, we have

[X1(i − 1). . .Xm(i − 1)]X1(i) R2 [X1(i). . .Xm(i)]

By definition of the transducer T2, we have

I
[X1(i−1)...Xm(i−1)/[X1(i)...Xm(i)

=⇒
T2

(X1(i), Xm(i − 1), Xm(i))

We distinguish the two complementary cases below.
Case 1 : i �= k. Then Xm(i) = Xm+1(i) and we add an arc of type 3.

(X1(i), Xm(i − 1), Xm(i))Xm+1(i−1)/Xm+1(i)−→
T2

(X1(i), Xm+1(i − 1), Xm+1(i))

Case 2 : i = k. We have the rule Xm(i−1)Xm(i) Γ2 Xm+1(i−1)Xm+1(i).
The following arc of type 2 is associated to previous rule:

(X1(i), Xm(i − 1), Xm(i)) Xm+1(i−1)/Xm+1(i)−→
T2

(X1(i), Xm+1(i − 1), Xm+1(i))
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Finally, we add the arc leading to the final state:

(X1(i), Xm+1(i − 1), Xm+1(i))
]X1(i)/]−→

T2

F

We get the result for m + 1 and the direct implication.

ii) Conversely, we prove that (b) =⇒ (a).
Suppose that [X1(i − 1). . .Xm(i − 1)]X1(i) R2 [X1(i). . .Xm(i)] for all
2 ≤ i ≤ |X1|
and |Xj−1| = |Xj | and Xj−1 
 Xj = 1 and X1(j − 1) = X1(j) for
all 2 ≤ j ≤ m.
Let 2 ≤ j ≤ m. Let us show that Xj−1 −→

Γ2

Xj .

As Xj−1
Xj = 1, there exists a unique 2 ≤ k ≤ |X1| such that Xj−1(k) �=
Xj(k).
Moreover Xj(1) = Xj(1) thus k �= 1 and Xj−1(k − 1) = Xj(k − 1).
We have [X1(k − 1). . .Xm(k − 1)]X1(k) R2 [X1(k). . .Xm(k)].
By definition of the transducer T2, the following arc exists

(X1(k), Xj−1(k − 1), Xj−1(k))
Xj(k−1)/Xj(k)−→

T2

(X1(k), Xj(k − 1), Xj(k))

This arc is of type 2 and gives the existence of the following rule of Γ2

Xj−1(k − 1)Xj−1(k) −→ Xj(k − 1)Xj(k)

Thus for any 2 ≤ j ≤ m, Xj−1−→
Γ2

Xj i.e. a) holds. 
�

The transducer T2 recognizes arcs of the form [U ]A → [AV ]. In order to

create paths on the graph, we add to T2 the set of transitions {F
A/A−→ F | A ∈

Σ}. New arcs are of the form [U ]AW → [AV ]W where W is a suffix of
the initial word of the derivation. If X1 ∈ LLin with |X1| = n and

X1
m−1−→

Γ2

Xm, the graph GLin contains the following path:

[X1(1)m]X1(2). . .X1(n) → [X1(2). . .Xm(2)]X1(3). . .X1(n) . . .

→ [Xm(1). . .Xm(n)].

It remains to add arcs of the form [U ] → ε for any word U and to
label arcs of G. Since Xm is derived by Γ1 in a word of L, the last letter
of each column gives labels of arcs. Thus, we set [UA]BW

a−→
GLin

[BV ]W for

each a ∈ A such that A−→
γ1

a. The graph GLin obtained is left-synchronized

graph, and verifies that L = L(GLin, LLin, {ε}).
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4.2 Traces from a rational set

The problem is that LLin is not rational. In order to reduce LLin to a
rational set, we complete T2 into a transducer generating words of LLin

successively from left to right.
Let Gr be a grammar in Greibach normal form generating LLin from a
non-terminal S. Each rule of Gr is of the form Z → AW where Z ∈ Σr

is a non-terminal of Gr, A ∈ Σ is a terminal (which is also a non-terminal
of Γ ) and W ∈ Σ∗

r is a non-terminal word of Gr. Let the transducer

T ′
2 := T2 ∪ {F

Z/U−→ F ′ | (Z, U) ∈ Gr} ∪ {F ′ Z/Z−→ F ′ | Z ∈ Σr},

where F ′ is a new state of the transducer. We denote by R′
2 the relation

recognized by T ′
2 from I to F ′. This relation is still of bounded length

difference. Let

LRat := { [Am]BW | S 2−→
Gr

ABW ∧ A, B ∈ Σ ∧ W ∈ Σ∗
r ∧ m ≥ 1 }.

Let us reformulate Lemma 4.2 for derivations starting from LLin .

Lemma 4.3. Let X1, . . . , Xm ∈ Σ∗ and n = |X1|.
The two following properties are equivalent:
a) X1 −→

Γ2

X2 −→
Γ2

. . . −→
Γ2

Xm and X1 ∈ LLin

b) There exists W1, . . . , Wn−1 ∈ Σ∗
r such that

[X1(1). . .Xm(1)]X1(2)W1 ∈ LRat and Wn−1 = ε

and [X1(n−1). . .Xm(n−1)]X1(n)R2[X1(n). . .Xm(n)]
and [X1(i−1). . .Xm(i−1)]X1(i)Wi−1R

′
2[X1(i). . .Xm(i)]X1(i+1)Wi

for all 2≤i<n

and |Xj−1| = |Xj | and Xj−1 
 Xj=1 and Xj−1(1)=Xj(1)
for all 2≤j≤m.

Proof. i) We suppose (a) and show (b).
Since X1 ∈ LLin, we consider the derivation from S to X1 according to
Gr: there exists non-terminal words W1, . . . , Wn−2 of Gr such that

S
2−→

Gr

X1(1)X1(2)W1 −→
Gr

. . . −→
Gr

X1(1). . .X1(n − 1)Wn−2

−→
Gr

X1(1). . .X1(n)

By Lemma 4.2, we have for all 2 ≤ i ≤ |X1|,
[X1(i − 1). . .Xm(i − 1)]X1(i) R2 [X1(i). . .Xm(i)],

|Xj−1| = |Xj |, Xj−1
Xj = 1 and Xj−1(1) = Xj(1) for all 2 ≤ j ≤ m.
Let 2 ≤ i ≤ n − 1. We know that Wi is obtained from Wi−1 by the
rewriting of the non-terminal Wi−1(1) :
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Wi−1 = ZV −→
Gr

UV = X2(i + 1)Wi.

We complete the preceding path leading to F with the arc F
Z/U−→ F ′ and

then with arcs F ′ Z/Z−→
T ′
2

F ′ for V . Thus, we have

[X1(i − 1). . .Xm(i − 1)]X1(i)Wi−1 R′
2 [X1(i). . .Xm(i)]X1(i + 1)Wi.

ii) We suppose (b) and show (a).
We cut the paths

[X1(i − 1). . .Xm(i − 1)]X1(i)Wi−1 R′
2 [X1(i). . .Xm(i)]X1(i + 1)Wi

which become

[X1(i − 1)X2(i − 1). . .Xm(i − 1)]X1(i) R2 [X1(i). . .Xm(i)]

By Lemma 4.2, we have X1 −→
Γ2

X2 −→
Γ2

. . . −→
Γ2

Xm.

By hypothesis [X1(1). . .Xm(1)]X1(2)W1 ∈ LRat and X1(1) = . . . =
Xm(1). So S

2−→
Gr

X1(1)X1(2)W1. Thus S
∗−→

Gr

X1(1). . .X1(n) = X1

hence X1 ∈ LLin. 
�
The transducer T ′

2 successively generates letters of X1 . It remains to
label arcs of the recognized graph to get a left-synchronized graph such that
the language of path labels leading from the rational vertex set LRat to the
final vertex set {ε} is the context-sensitive language defined by Γ . As in
Section 4.1, any arc of the form [UA]BW → [BV ]W is labelled a ∈ A if
A−→

Γ1

a.

Proposition 4.4. Any context-sensitive language is trace of a synchronized
graph.

Proof. Let L be a context-sensitive language. There exists a 2-system Γ
such that

L = { v ∈ A∗ | ∃ u ∈ LLin , u
∗−→
Γ

v }.

For all letter a ∈ A, we denote by

Σa := { A ∈ Σ | A −→
Γ1

a }

the set of non-terminals generating the terminal a in Γ .
We define the graph G0 such that for any a ∈ A,

a−→
G0

:= R′
2 ∩ [Σ∗Σa]ΣΣ∗

r ×([Σ+]ΣΣ∗
r ∪ [Σ+]Σ∗

r ).
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Since R′
2 is a bounded length difference relation, so G0 is by Proposition 2.8

and Theorem 2.7.
In particular, G0 is left-synchronized and the following graph:

G := G0 ∪ ⋃
a∈A[Σ∗Σa]×{a}×ε

is also left-synchronized since [Σ∗Σa]×{a}×ε is recognizable ([10]) for
all a ∈ A.
We recall that

LRat := { [Am]BW | S
∗−→

Gr

ABW ∧ m ≥ 1 }

where S is the axiom of Gr. We have

u ∈ L with |u| = n > 1
⇐⇒ (By definition)

there exists X1, . . . , Xm ∈ Σ∗ of length n such that

X1 ∈ LLin and X1 −→
Γ2

X2 −→
Γ2

. . . −→
Γ2

Xm

and Xm(i) −→
Γ1

u(i) for all 1 ≤ i ≤ n

⇐⇒ (by Lemma 4.3)

there exists non-terminal words W1, . . . , Wn−1 of Gr such that

[X1(1) . . . Xm(1)]X1(2)W1 ∈ LRat

and Wn−1 = ε and such that

|X1|, [X1(i). . .Xm(i)]X1(i + 1)Wi

u(i)−→
G0

[X1(1). . .Xm(1)]X1(2)W1

u(1)−→
G0

[X1(2). . .Xm(2)]X1(3)W2

u(2)−→
G0

. . .
u(n−1)−→

G0

[X1(n). . .Xm(n)]

and Xm(n) ∈ Σu(n)

⇐⇒ (By definition)

u ∈ L(G, LRat, {ε})

Thus

L = L(G, LRat, {ε}) ∪ { u ∈ L | |u| ≤ 1 }

and it remains to apply Lemma 2.9. 
�
This leads to the main result of this paper:
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Theorem 4.5. Context-sensitive languages are exactly the traces of syn-
chronized graphs between finite sets.

Proof. Any synchronized graph is a rational graph, hence any trace of a syn-
chronized graph is a context-sensitive language by Proposition 3.4. Propo-
sition 4.4 ensures the converse. 
�

4.3 Letter to letter graphs

Using Lemma 2.9, the previous section defined Csl as traces of synchronized
graphs from and to finite sets of vertices. In this section, we study traces with
initial and final rational sets. Provided this extension, the traces of letter to
letter graphs are Csl.
Indeed, the synchronized relation of bounded length difference R′

2, we have
used in the proof of Proposition 4.4, can be completed into a letter-to-letter
relation.

Lemma 4.6. Let R ⊆ Σ∗ × Σ∗ be a left-synchronized relation and let �

be a symbol such that � �∈ Σ. We can transform R into a letter-to-letter
relation Rl such that
∀(U, V ) ∈ Σ∗ × Σ∗, ∀n ≥ 0,

(U n−→
R

V ) ⇐⇒ (∃k ≥ 0, ∃k′ ≥ 0 such that U�k n−→
Rl

V �k′
)

Proof. Let T be a left-synchronized transducer recognizing R. The trans-

ducer Tl is built from T by replacing each arc of the form p
ε/A−→ q (respec-

tively p
A/ε−→ q) with A ∈ Σ by the arc p

�/A−→ q (respectively p
A/�−→ q).

Then for each final vertex f of T , we create a new final state f ′ of Tl and

add the arcs f
�/�−→ f ′ and f ′ �/�−→ f ′. 
�

Let us reformulate Proposition 4.4.

Proposition 4.7. Any context-sensitive language is the language
L(G, LRat, FRat) of path labels leading from a rational set of ver-
tices LRat to another FRat and where G is a letter-to-letter rational
graph.

Proof. Using Proposition 2.8 we get that R′
2 is a left-synchronized relation.

Let � be a symbol such that � �∈ Σ∪Σr . Using Lemma 4.6, R′
2 is completed

into a letter-to-letter relation Rl. The result is obtained by adapting the proof
of Proposition 4.4 with

a−→
G0

:= Rl ∩ [Σ∗Σa]ΣΣ∗
r�∗×([Σ+]ΣΣ∗

r�∗ ∪ [Σ+]�∗)
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G := G0 ∪
⋃

a∈A
{ [UA]�k a−→ $|[UA]|+k | U ∈ Σ∗ ∧ A ∈ Σa }

LRat := { [Am]BW�k | S
2−→

Gr

ABW ∧ m ≥ 1 ∧ k ≥ 0}

and

FRat := $+ 
�

5 Conclusion

In this paper, we have established a connection between context-sensitive
languages and rational graphs. We have been able to prove that the traces of
these graphs are context-sensitive languages, and that the context-sensitive
languages are traces of letter-to-letter rational graphs with initial and final
rational sets. The proof of the latter result relies on the Penttonen normal
form for context-sensitive languages, it is indeed possible to avoid the use
of this form: this has been done by Carayol [2] and Meyer [13], those proofs
adapt our construction to produce a rational graph from a linearly bounded
Turing machine.

Our result might give an interesting approach to Kuroda’s conjecture
[12]: do the deterministic context-sensitive languages (i.e., generated using
a deterministic LBM) coincide with context-sensitive languages? An easier
question would be to characterize the traces of deterministic rational graphs.
This question is still unsolved.
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Rennes 1

19. Rispal, C. (2002) Synchronized graphs trace the context-sensitive languages. In: Mayr,
R., Kucera, A. (ed.) Infinity 02, vol. 68. (ENTCS)

20. Greibach, S., Ginsburg, S. (1969) Abstract families of languages. Mem. Am. Math.
Soc. 87

21. Sénizergues, G. (1992) Definability in weak monadic second-order logic of some infi-
nite graphs. In: Dagstuhl seminar on Automata theory: Infinite computations, Warden,
Germany, vol. 28, p. 16

22. Urvoy, T. (2002) Abstract families of graphs. In: Toyama, M., Ito, M. (ed.) DLT 02,
vol. 2450. (LNCS), pp. 381–392


