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Abstract—In a cooperative diversity network, users cooperate
to transmit each others’ messages; to some extent nodes therefore
collectively act as an antenna array and create a virtual or dis-
tributed multiple-input multiple-output (MIMO) system. In this
paper, upper and lower bounds for the information-theoretic ca-
pacity of four-node ad hoc networks with two transmitters and
two receivers using cooperative diversity are derived. One of the
gains in a true MIMO system is a multiplexing gain in the high sis-
gnal-to-noise ratio (SNR) regime, an extra factor in front of the log
in the capacity expression. It is shown that cooperative diversity
gives no such multiplexing gain, but it does give a high SNR addi-
tive gain, which is characterized in the paper.

Index Terms—Channel capacity, cooperative diversity, Gaussian
interference channel, multiple-input multiple-output (MIMO)
systems, multiplexing gain, wireless networks.

I. INTRODUCTION

WIRELESS ad hoc networks consist of a number of ter-
minals (in the following referred to as nodes) commu-

nicating with each other on a peer-to-peer basis without the as-
sistance of a wired network or planned infrastructure. The com-
munication between nodes might take place through several in-
termediate nodes, creating a multihop network. Wireless ad hoc
networks have many applications, both commercial and mili-
tary: wireless local-area networks (LANs) (e.g., IEEE 802.11
[1], [2]), home networks (e.g., HomeRF [3]), device networks
(e.g., Bluetooth [4]), sensor and sensor-actuator networks [5].

A limitation to wireless ad hoc networks is that for large net-
works the capacity (bits per second) per node goes to zero as

[6], where is the number at nodes, i.e., the asymptotic
capacity is zero. Additional limitations to performance, also for
small networks, are the impairments of the wireless channel:
fading, multipath, shadowing, path loss, and interference.

One solution to the above problems is to use multiple an-
tennas at the transmitters and/or receivers (resulting in multiple-
input multiple-output (MIMO) systems), an area of research ini-
tiated by the papers [7]–[11]. The benefits include an increased
capacity—roughly proportional to the minimum of the number
of receive and transmit antennas [7], [8]—a robustness to fading
and shadowing, i.e., diversity, and decreased interference among
different transmissions. To be efficient, however, antennas need
to be spaced at least apart, where is the wavelength. For
many terminals this means that only one or two antennas are re-
alistic. In addition, even for spaced antennas different paths
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Fig. 1. Channel models for the four-node cooperative channel considered. The
desired transmission is 1! 3 and 2! 4. The coefficients h are channel gains.

might not be independent, in particular when considering shad-
owing, and the gain might therefore be less than predicted.

The solution considered in this paper is cooperative diversity.
The basic idea is that several nodes, each with one antenna, form
a kind of coalition to cooperatively act as a large transmit or re-
ceive array. When terminals cooperate as a transmit array, they
first exchange messages and then cooperatively transmit those
messages as a multiantenna broadcast transmitter; similarly for
receive cooperation. The channel therefore shares characteris-
tics with the MIMO channel, such as diversity.

Cooperative diversity for wireless networks was first inves-
tigated by Sedonaris et al. in [12]–[15] for cellular networks
and by Laneman et al. in [16]–[20] for ad hoc networks. The
idea has also previously been explored in a general informa-
tion theory context in [21], [22]. Since the nodes can cooperate
by relaying each others’ messages, cooperative diversity is also
related to the relay channel (a few references are [23]–[27]).
However, the presence of multiple sources introduces interfer-
ence into the system, and it therefore has fundamental differ-
ences with a single source relay network.

This paper considers the networks in Fig. 1. Node 1 trans-
mits to node 3 and node 2 to node 4. Either receivers (sources)
or transmitters (destinations) can cooperate by listening to the
transmission and then assist the transmission of the other nodes.
All links are wireless links. The objective of the paper is to cal-
culate inner and outer bounds for the Shannon capacity of the
two networks in Fig. 1.

This paper builds on previous results obtained in the confer-
ences papers [28], [29] for transmitter cooperation and [30] for
receiver cooperation.

A key question is what kind of rate gain can be obtained by
cooperation. In this paper, we will mainly focus on how coop-
eration can aid in overcoming the limitations of interference. It
is therefore natural to focus on the high signal-to-noise (SNR)
regime, as this is where the capacity is interference limited.
In the high-SNR region, there are two possible gains: a mul-
tiplexing gain and an additive gain. Let the sum-rate capacity as
a function of the noise power be . The multiplexing
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factor (also called multiplexing gain or degrees of freedom) [31]
is then defined by

(1)

and the high SNR offset by

(2)

measured in bits per second per hertz (bits/s/Hz), or

(3)

measured in decibels (also called the high-SNR power offset in
[32]–[34]).

We will in particular be interested in these limits along the
line to exclude trivial cases where only one source
transmits its message. If both of the limits (1) and (2) exist, it
means that the (sum) capacity in the high-SNR region can be
approximated by a line with slope and -offset , i.e.,

(4)

Clearly, having is most desirable. If the cooperation were
perfect (i.e., in Fig. 1(a) or in Fig. 1(b),
for example, by a wired connection) receiver cooperation would
reduce to a two-user multiple-access channel (MAC) with two
antennas at the receiver (base station) and transmitter cooper-
ation would reduce to a two-antenna broadcast channel with
two users. In both cases, it is well known [7], [8], [35] that the
multiplexing factor is except in degenerate cases, i.e.,
the system has two virtual channels in parallel. One interesting
question is if cooperative diversity also gives . The re-
sults in this paper show that this is not the case.1

The rest of the paper is organized as follows: Sections II–IV
introduce various preliminaries, Section V develops inner and
outer bounds for receiver cooperation, Section VI inner and
outer bounds for transmitter cooperation, and Section VII has
numerical results for upper and lower bounds for sum rate. The
appendices contain detailed calculations of achievable rates.

Notice that all logarithms throughout the paper are to base .
Also, we will use for determinant.

II. SYSTEM MODEL

Consider the system model in Fig. 1. Node 1 wants to transmit
a message to node 3, and node 2 a message

to node 4. Node (where for
Fig. 1 (a) and for Fig. 1 (b)) transmits the complex-
valued baseband symbol stream , , which is
subject to an average power constraint .
The transmission between nodes and is subject to (slow)
flat fading and path loss, which is expressed by a complex-
valued channel gain . Channel capacities will be evaluated
for fixed channel gains . The received signal at node (where

for Fig. 1 (a) and for Fig. 1 (b))
is , which is subject to independent and identically dis-
tributed (i.i.d.) circular, complex-valued additive Gaussian noise

1This result has been extended to arbitrary cooperation in a 4-node network
in [36].

Fig. 2. Normalized channel models.

with power . Each transmitting node has an encoder function
which maps messages and/or past received signals to trans-

mitted signals

(5)

The rate for transmission from node is . A rate
pair is achievable if there exists a sequence of codes
so that the average probability of error goes to zero as .
The capacity region is the closure of the set of achievable rate
pairs [37, Sec. 14.3].

At the symbol level, the channel model for Fig. 1(a) is given
by

(6)

(7)

For ease of notation and to more clearly evaluate the influence
of different parameters, we will normalize this channel model as
follows to an equivalent channel (consistent with the literature
on the interference channel [38]):

(8)

(9)

Or

(10)

shown in Fig. 2(a). Here, and the
power constraint and .

The channel model for Fig. 1(b) can be described by

(11)

This can similarly be normalized to the model

(12)
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In the synchronous channel model, it is assumed that all nodes
have complete channel state information (CSI), i.e., each node
knows the instantaneous values (magnitudes and phases) of all

. It is furthermore assumed that all nodes are perfectly syn-
chronized down to the carrier level. It is relatively straightfor-
ward to obtain symbol (timing) synchronization between dif-
ferent nodes; however, carrier synchronization requires phase-
locking separated microwave oscillators, which is very chal-
lenging in practical systems [39]. In light of this observation,
we also consider the asynchronous channel model in which a
random phase offset , due to oscillator fluctuations, is added
to the transmitted signal at node . The received signal model
(10) is then replaced by

(13)

We model as random and ergodic, uniformly distributed
in . We further assume that only the destinations know
(i.e., can estimate and track) . The random phases can be
included in the coefficients , so that this model is equivalent
to the model (10), but with having a random, unknown phase.
Similarly the model (12) is changed to

(14)

where the random phases again can be included in the coeffi-
cients .

In the asynchronous model with receiver cooperation, the
transmitters need not have any CSI, except the rate at which
they should transmit. The receivers need to know all magni-
tudes , but not their phases (for transmission). In the asyn-
chronous model with transmitter cooperation, the transmitters
need to know all magnitudes . Thus, receiver cooperation
is suitable for systems with simple transmitters such as sensor
nodes.

III. CODING TECHNIQUES

In this section, we will review the coding methods used to
derive achievable rates, as these are used repeatedly.

A. Multiplexed Coding

A codeword can convey different kinds of information de-
pending on the side information the receiver has. Suppose the
transmitter wants to transmit two messages
and . The transmitter makes a table with

rows and columns, and assigns a random (Gaussian)
code to each entry in the table, denoted . A receiver
can decode both and if the channel capacity

. If it knows , however, it can decode if simply
by only searching the row corresponding to , and similarly if
it knows . This can be extended to more messages, and this
simple technique plays a key role in cooperation.

B. Block Markov Coding and Decode–Forward

Block Markov coding was introduced in [23] for the relay
channel. A message is divided into blocks, and each block
is encoded separately. Let message be divided into the blocks

. To outline the idea, consider a relay channel,
for example Fig. 2 with transmission between nodes 1 and 3 and
with node 2 acting as relay (and node 4 removed). Node 1 trans-
mits the sequence of blocks ,
where is a codeword from a random Gaussian codebook.2

The relay node decodes during block , which is pos-
sible with zero error probability if .
It then transmits during block using the random
Gaussian codebook , i.e., it transmits the sequence

. The whole trans-
mission of messages therefore uses blocks, but
as observed in [23], when this still gives a rate of

. We will call this signaling method decode–forward. Now
consider decoding at node 3. In [23], list decoding was used
for decoding. This was simplified in [40] using the backward
decoding introduced in [21] and achieving the same rate as
in [23], but actually a simpler argument based on parallel
(Gaussian) channels due to Valenti [41] will work. In multi-
source networks, it seems that parallel channel arguments and
backward decoding sometimes give different results, and we
will use both arguments.

In parallel channel decoding, the decoding at the des-
tination is forward in time. Suppose that block has been
received, and that has been decoded error-free. Then

is known. Based on the received signal,
node 3 can then form

(15)

Consider decoding of . The signal can
be considered part of the background noise. The two signals

then form a parallel Gaussian channel with
fixed power allocation for transmission/decoding of ,
and the rate bound is therefore simply the sum of the rates in
each channel [37, Sec. 10.4]. In this case we get

This argument can straightforwardly be extended to more com-
plex channels. We will mention that if we consider a MAC. the
rate bounds for the MAC parallel Gaussian channel is simply
the sum of the MAC bounds for each of the channels.

In backward decoding [21], the source instead transmits

where is encoded using multiplexed
coding. The relay still decodes forward: suppose that it has

2We denote the sequence of symbols transmitted or received during a block
by capital letters with each single symbol in lower case
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decoded in block . It can then decode from
if . The received

signal at the destination in block is

(16)
The decoding starts from the last block and proceeds backward
to the first block: suppose the source has decoded . It can
then decode from if

by multiplexed coding arguments.

C. Wyner–Ziv Compression and Compress–Forward

When a cooperating node has received a signal, instead of de-
coding it, re-encoding it and transmitting the re-encoded mes-
sage, it can instead amplify and forward the received signal
without decoding. As an alternative to simple amplification, it
can use source coding with distortion to compress the received
signal into an index. This index can then be channel coded and
transmitted to the destination. This is called compress–forward.
The most efficient source coding is Wyner–Ziv coding [42],
[43]. When Wyner–Ziv source coding is used, we get the fol-
lowing result for decode–forward coding. We will not prove it
here, as it has been used before in other papers [24], [25]. A
proof can be made along the lines of the proof of Proposition 3
in [24]

Proposition 1: Suppose that receivers 1 and 2 receive the
i.i.d. circular complex Gaussian signals and , respec-
tively, and suppose that the signal is compressed with a
rate using Wyner–Ziv source coding and forwarded to node
1. In the limit , this system is equivalent to a system
where receiver 1 has two antennas that receive the signals

(17)

where is i.i.d. circular Gaussian noise called the compres-
sion noise, independent of and , and with power

(18)

Corollary 1: If in Proposition 1 contains an inter-
ference signal which is completely known by receiver 1,
then Proposition 1 is true with everywhere replaced by

.

D. Costa’s “Writing on Dirty Paper”

Consider an additive white Gaussian noise (AWGN) channel
with interference. The received signal is

(19)

where is the transmitted signal with power , the interfer-
ence with power , and white Gaussian noise (WGN) with
power . If the receiver knows the interference perfectly the
channel capacity is the same as if there was no interference,

. In [44], Costa proved that if the receiver does

not know the interference, while on the other hand the trans-
mitter knows the interference perfectly (noncausally), then the
rate is still . This is possible through “bin-
ning” at the transmitter, and has become known as “dirty-paper
coding.” This was used in [35] to find the sum capacity of a
two-antenna broadcast channel, and it was recently proved to
give the full capacity region of a multiple-antenna broadcast
channel [45].

When needed, we will use the notation if is dirty-
paper coded with the message and or a known complex
multiple of as interference.

IV. THE GAUSSIAN INTERFERENCE CHANNEL

If there is no cooperation in the channel in Fig. 1, the channel
is the Gaussian interference channel [46], [38], [37], and we
will use this channel for baseline comparison. We will therefore
summarize a few results on outer bounds and achievable rates.
First, the outer bounds

(20)

(21)

always apply. If , we also have an upper bound [46],
[47] at node 3

(22)

with a symmetric bound at node 4 if . If both
and , this in fact gives the exact capacity region [46],
[47]. If , we have the following outer bound [48]–[50]
(slightly restated):

(23)

with a symmetric bound for if .
For the achievable rate, [46] gives a rate region, which how-

ever is very complicated to evaluate. We will only consider
simple coding: either the channel uses time-division multiple
access (TDMA), or each transmitter node encodes using inde-
pendent Gaussian codes, and each receiver decodes this using
either joint decoding (where it jointly decodes the transmission
of both source nodes) or individual decoding, where it considers
the undesired transmission as part of the Gaussian noise. This
gives in total five different combinations of coding, and we use
the maximum over these as the achievable rate. As will be seen
from numerical results later, this gives an achievable rate close
to the upper bound.

To find the performance characteristics in the high-SNR re-
gion, we recall that we are considering the normalized system
model, where transmit powers have been normalized by the
noise power. To find the high SNR limit we therefore make this
explicit by letting , (where , and

are constants), and then let . First consider the case
. For small enough, the bound (22) on the sum rate

is smaller than the sum of the bounds (20) and (21). The sum rate
is therefore bounded by . In the
limit , it is then clear that the multiplexing factor
and that the high-SNR offset is bounded by .
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For , notice that the bound on obtained
from (23) by adding on both sides of the inequality

(24)

is an increasing function . If we therefore insert the upper
bound (20) in (24), we get the following bound on the sum rate:

(25)

Again, it is clear from this that and by taking the limit
on the right-hand side of this bound subtracted by we
get that

(26)

The following proposition summarizes these results, re-
moving the primes from the nonnormalized powers for ease of
notation

Proposition 2: Unless , the multiplexing
factor for the interference channel is . If and

, the high-SNR offset is

(27)

otherwise, the high-SNR offset is upper-bounded by

(28)

The best achievable offset is in all cases given by (27).

The last statement shows that (as far as is known to the author)
there is no way to take advantage of the fact that the interference
is weak in the high-SNR regime without cooperation. The best
rate is obtained by doing joint decoding, which has poor perfor-
mance for weak interference. As will be seen later (cf. Fig. 8)
cooperation, on the other hand, can take advantage of the fact
that interference is weak.

V. RECEIVER COOPERATION

In receiver cooperation, the two receiver nodes, 3 and 4, co-
operate on receiving the signal, see Fig. 1(a). We will first derive
outer bounds on the capacity region, and then a number of dif-
ferent coding methods for achievable rate. We will show that
one of these coding methods comes within 3 dB of the upper
bounds in the high-SNR regime.

A. Outer Bound

Applying the max-flow-min-cut theorem [37, Theorem
14.10.1] to the system model results in the following bounds
on the rates:

(29)

(30)

(31)

(32)

(33)

where the variables are governed by the channel model (10).
A standard argument shows that these bounds are maximized for

jointly Gaussian (a detailed argument is similar
to the proof of [23, Theorem 5]). By assumption, and are
independent. Furthermore, by looking at the equations it can be
seen that none of the mutual informations will be increased if

and are dependent, if and are dependent, or if
and are dependent. What remains is a possible dependency
between and and and . We express this by

(34)

(35)

where , . We then get the following bounds:

(36)

(37)

(38)

(39)

(40)

which should be maximized with respect to and . For the
asynchronous case, using Lemma 1 in [24], it is easily seen that
we get

(41)

(42)

(43)

(44)

(45)

The bounds obtained by the max-flow-min-cut are rather
loose; for one thing, the multiplexing gain obtained using the
bounds is . A much stronger bound is the following.

Theorem 1: Consider a system with receiver cooperation.
The following bound applies for asynchronous systems:

(46)

and for synchronous systems

(47)
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Fig. 3. Channel transformations used in the proof of Theorem 1. All noise variables z are independent, and all have power 1.

Proof: The bound is inspired by bounds for the Gaussian
interference channel in [48], [50]. We modify the system as in-
dicated on Fig. 3, and we will argue that each step either leads to
an equivalent system or a system with a larger capacity region.
In the first step, node 3 is given as side information the message

, and the link from node 2 to node 3 can therefore be deleted.
In the second step, node 3 gets as side information the signal

. With this, knowledge of , and past
received signals it can now reconstruct ,
and the link from node 4 to node 3 can then be deleted. We con-
sider upper bounds for the system in Fig. 3(c).

Let . We can now bound
as follows using the chain rule:

(48)

(49)

(50)

(51)

Here

(52)

(53)

By Lemma 1 below

(54)

(55)

Then

(56)

The rate can be bounded by

(57)

In the asynchronous case, we can bound the first term, using
Lemma 1 in [24], by

(58)

In the synchronous case, is maximized by making ,
, and dependent. Taking into account that the variables

and are independent, we can put

(59)

(60)

Then

(61)

(62)

where we have maximized with respect to in (62).
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The second term in (57) can be bounded by

(63)

(64)

(65)

(66)

(67)

(68)

where we have repeatedly used that conditioning reduces en-
tropy. In (67) and (68), we have used that

that depends only on , and that depends only on
, , and .

Inserting (56) into (68), using (58) or (62) we then get (46)
and (47) from (57) by letting .

Lemma 1: For any random variables and with first- and
second-order moments

(69)

Proof: First, notice that

(70)

Second, the Cauchy–Schwartz inequality gives

(71)
Inserting this gives (69).

From the general upper bound we can easily determine the
behavior of receiver cooperation in the high-SNR region. The
result is summarized in the following proposition, with argu-
ments as those leading to Proposition 2

Proposition 3: Receiver cooperation gives a multiplexing
factor . The high-SNR offset in asynchronous systems
is bounded by

(72)

and in synchronous systems by

(73)

B. Achievable Rate

The cooperative channel is a combination of the interference
channel and the relay channel. The coding methods for the co-
operative channel are therefore inspired by the coding methods
for these two channels. For the interference channel, the two
sources use independent Gaussian codebooks and the receivers
can either use joint decoding or individual decoding, consid-
ering the other signal as noise. In the relay channel, the relay
can either use decode–forward or compress–forward [24]. In the
cooperative channel combination of these methods with addi-
tional twists specific to the cooperative channel give an almost
unlimited number of variations. Instead of listing all of these
variations, we will concentrate on a selection of methods that il-
lustrate the multiuser (multisource) characteristics of the coop-
erative channel, as compared to the single-source relay channel,
and that are able to achieve rates close to the upper bound, at
least in the cases we have explored.

The general idea, in the asynchronous case, is that a receiver
node takes its received information, processes it in some way,
and forwards it to the other node. We will call this informa-
tion “cooperation data” (also called “resolution information”
in [23]).

1) Compress–Forward Coding: Fig. 4 illustrates compress–
forward coding. Node 3 takes its received signal in block

(74)

compresses it using Wyner–Ziv coding, channel codes it, and
transmits it as , indicated in Fig. 4 with an arrow; sim-
ilarly for node 4. Notice that decoding does not have to be real
time, but can wait until all blocks have been received. There are
therefore two possibilities for decoding: forward or backward.
In forward decoding, the decoding starts with the first received
block and proceeds forward to the last received block. In back-
ward decoding the decoding starts with the last received block
and proceeds backward. For illustration, in Fig. 4 node 3 de-
codes forward, while node 4 decodes backward. In both cases,
the decoding uses the received signal received in two blocks,
(74) together with

(75)

In forward decoding, the assumption is that has been de-
coded successfully. The decoding starts by decoding
and decompressing it using Wyner–Ziv. This cooperation data
is then used together with to decode

(and possibly ).
In backward decoding, the assumption is that

and have been decoded successfully. As before,
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TABLE I
ACHIEVABLE RATES FOR COMPRESS–FORWARD. THE RATE CONSTRAINTS ARE SHOWN FOR NODE 3, WITH A SYMMETRIC SET OF RATE CONSTRAINTS FOR NODE

4, GIVING A TOTAL OF NINE COMBINATIONS

Fig. 4. Compress–forward coding. Arrows indicate forwarding, while solid
lines indicate signals decoded jointly. Shaded circles indicate past decoded data.
Node 3 (on the left) use forward decoding, while node 4 use backward decoding.

the decoding starts by decoding and decompressing
is using Wyner–Ziv. This cooperation data is then used together
with to decode .

The difference between forward and backward decoding is
that in forward decoding when is (channel) decoded,

act as interference, but in
backward decoding is not subject to interference. On
the other hand, in backward decoding and
are subject to the interference from , while in forward de-
coding and are not subject to further in-
terference. We therefore say that backward decoding uses coo-
operation first decoding, while forward decoding uses cooper-
ation last decoding. Cooperation last and cooperation first give
different rates, but which one is better depends on the channel
state. Notice that this is specific to the multisource channel. In
the relay channel, it is also possible to use either cooperation
first and cooperation last decoding, but both for compress–for-
ward and decode–forward it gives exactly the same rate.3

The resulting rates for cooperation are listed in Table I, with
calculation of the rates in Appendix A.

3We explored that in connection with writing the paper [24], but this is not
included in the final version of that paper exactly because it gives the same rate

Fig. 5. Decode–forward with cooperation first. Arrows indicate forwarding,
while solid lines indicate signals decoded jointly. Shaded circles indicate past
decoded data.

Fig. 6. Decode–forward with cooperation last for node 4. Arrows indicate
forwarding, while solid lines indicate signal decoded jointly. Shaded circles
indicate past decoded data.

2) Decode–Forward Coding: In decode–forward decoding,
node 3 decodes the message , re-encodes this as , and for-
wards it to node 4, and node 4 decodes message , re-encodes
it as , and forwards it to node 3. Thus, in general, a node has
to jointly decode both messages and , and because it has
to forward the decoded message, decoding has to be forward.
Still, the system can use cooperation first or cooperation last as
in the compress–forward case, illustrated in Figs. 5 and 6.
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TABLE II
ACHIEVABLE RATES FOR DECODE–FORWARD. THE LAST TWO ROWS ALSO HAVE MIRROR-SYMMETRIC SOLUTIONS WITH THE ROLE OF

THE TWO RECEIVER NODES SWITCHED, FOR A TOTAL OF FIVE COMBINATIONS

In Fig. 5, both nodes use cooperation first in a symmetric way.
Consider node 4 with a received signal

(76)

(77)

At time , node 4 decodes and jointly using
, , and . Notice that

does not interfere when is used.
In Fig. 6, node 4 uses cooperation last. The received signal

is the same, but at time node 4 now decodes and
jointly using the , , and

. Notice that in this case, does interfere when
is used, which is is the difference from cooperation first.

In Fig. 6, node 3 still does cooperation first decoding but with
a larger delay. It can be seen that at least one node has to do
cooperation first, as opposed to the case of compress–forward.

Table II summarizes the achievable rates, with the rate cal-
culations in Appendix A. For individual decoding, node 3 only
decodes its own message and does not help node 4, while node
4 decodes both messages and forwards message to node 3 to
help.

3) High-SNR Offset: The expressions for compress–for-
ward look complicated for finite SNR. However, taking the
limit is a straightforward exercise, which result in the
following proposition

Proposition 4: “Compress–forward with cooperation last
and joint decoding” gives a high-SNR offset of

(78)

All other cooperation schemes give a high-SNR offset which is
at most equal to the offset (27) without cooperation.

For , (78) equals the upper bound (72) except
for the term. This it at most a 3-dB gap, and
for much smaller. We can therefore say that

compress–forward acheives capacity asymptotically as
and . Furthermore, compared to no cooperation
(27), the terms and essentially characterize the
gain from receiver cooperation in the high-SNR regime, at least
for .

For , there can be a large gap between the
upper bound and the achievable rate, and we do not know at
present how to close this gap.

The fact that all other cooperation scheme gives no gain in
the high-SNR regime does does not mean they are without in-
terest, as they can be superior in the medium-SNR regime. For
example, numerical experiments (which we have not included)
show that ”Compress–forward with cooperation last” gener-
ally has poor performance in the low-to-medium SNR regime,
whereas ”Compress–forward with cooperation first” has a per-
formance close to the upper bound in this region.

4) The Synchronous Case: The difference between the
upper bounds for the asynchronous and synchronous case is
the last term, , inside the
log (47). This term is less than or equal to the first term
inside the log. Thus, comparing upper bounds, the gain from
synchronization is at most 3 dB (in the numerical examples
later in the paper, Figs. 10 and 11, the gap is no more than a
fraction of a decibel). At the same time, Proposition 4 shows
that at least for strong interference in the high-SNR regime,
the achievable rate in the asynchronous case comes within 3
dB of the upper bound. This indicates, although not a proof,
that the gain from synchronization for receiver cooperation
is very limited, at most a few decibels. Additionally, it is not
clear how to extend compress–forward to take advantage of
synchronization. For this reason, it seems it does not pay to
do synchronization for receiver cooperation, and we will not
consider this further.

VI. TRANSMITTER COOPERATION

In transmitter cooperation, the two source nodes: 1 and 2, co-
operate on transmitting the signal by “eavesdropping” on the
communication signals, see Fig. 1(b). Notice that, as already
mentioned, no new energy is introduced into the system, as op-
posed to receiver cooperation. We will first derive outer bounds
for the capacity region, and then a number of different coding
methods.
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A. Outer Bound

The max-flow-min-cut theorem [23, Theorem 14.10.1] gives
the following bounds:

(79)

(80)

(81)

(82)

(83)

where the are governed by the system model (12). If we let
then

(84)

(85)

(86)

We then get the following bounds:

(87)

(88)

(89)

(90)

(91)

The bound on the sum rate can be strengthened by the same ar-
gument used to find the upper bound in [35]: the capacity region
only depends on the marginal noise distribution at nodes 3 and
4, and is therefore not changed if the noise at nodes 3 and 4 are
made correlated. We can then bound the sum rate as follows:

(92)

where is the covariance matrix of the noise, given by

(93)

and is the covariance matrix of the transmitted signals, which
depends on . The minimum in (92) can be found explicitly.
Define

(94)

Then

(95)

(96)

(97)

(98)

where the equalities (96) and (97) are by choosing the optimum
phase: . Let . Then
the optimum choice of is found by differentiation to be

(99)

Bounds for the asynchronous case is found by simply putting
in the above bounds (cf. Lemma 1 in [24]). As for re-

ceiver cooperation, we have the following additional bound that
considerably tightens the upper bound.

Theorem 2: Consider transmitter cooperation. If ,
the following bound applies in the asynchronous case:

(100)

and in the synchronous case

(101)

Furthermore, the resulting bound on is an increasing
function of .

If , the following bound applies in the asynchronous
case:

(102)

and in the synchronous case

(103)

Proof: We first assume . We transform the
system as in indicated in Fig. 7 to a system with equal or
larger capacity region. The argument for the step of Fig. 7(a)
to Fig. 7(b) is as follows: Node 3 is given the received signal at
node 2 as side information, i.e., , as well
as the message . Node 1 is given as side information
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Fig. 7. Channel transformations used in the proof of Theorem 2. All noise variables z are independent, and all have power 1, except z which has power

.

and . The link between nodes 2 and 3 can now be deleted,
as node 3, with knowledge of and the received signal
knows what node 2 transmits. Similarly, the link from node 2
to node 1 can be deleted. In the step of Fig. 7(b) to Fig. 7(c),
we replace with a degraded version of

(104)

where

(105)

This can be done because in Fig. 7(b) and in Fig. 7(c)
have the same marginal distributions (except for a scaling). The
capacity regions for the two systems are therefore identical since
they only depend on the marginal distribution of the received
signals at the destinations as they do not cooperate.

First, we can bound as follows using the chain rule:

(106)

(107)

(108)

(109)

Here

(110)

(111)

By Lemma 1

(112)

(113)

Then

(114)

The rate can be bounded by

(115)

The entropy is bounded by

(116)

in the asynchronous case, and

(117)

in the synchronous case.
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(118)

(119)

(120)

(121)

(122)

The entropy can by lower-bounded as shown
in (118)–(122) at the top of the page, where we have repeatedly
used that conditioning reduces entropy. In (121) and (122), we
have used that and that

depends only on and .
We can now use the (conditional) entropy power inequality

[51], [37, Theorem 16.6.3] (the conditional version follows as
in [52])

(123)

Then we get (124)–(126) at the bottom of the page, where the
last inequality is due to Jensen’s inequality [37, Theorem 2.6.1].
Inserting (114) into this, using (116), and letting , we
finally get

(127)

in the asynchronous case. The synchronous case follows simi-
larly by using (117). It can be seen, for example by differentia-
tion, that the sum is an increasing function of .

For , the above proof is still valid, except the step
from Fig.7 (b) to (c), as (105) becomes negative. This is solved
by increasing the gain in on the link between nodes 1 and 3
from to in Fig. 7(b), which can only enlarge the capacity
region. Equivalently, to stay with the normalized channel model,
this can be accomplished by increasing the power to
in Fig. 7(b) and dividing with . The above proof for

now applies (with ), and the bound (127)

is valid with , replaced with , and
replaced with , which gives

(128)

The bound (102) on is directly obtained from this, and
similarly for (103).

By similar arguments as used for Proposition 2 we get the
following results for the high-SNR regime.

Proposition 5: The multiplexing factor from transmitter co-
operation is . If the high-SNR offset in the
asynchronous case is bounded by

(129)

and in the synchronous case by

(130)
If , the high-SNR offset in the asynchronous case is

bounded by

(131)

and in the synchronous case by

(132)

(124)

(125)

(126)
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TABLE III
ACHIEVABLE RATES FOR TRANSMITTER COOPERATION IN THE ASYNCHRONOUS CASE. THE BOUNDS CAN BE OPTIMIZED WITH RESPECT TO A , ~A , A , AND ~A

SUBJECT TO A + ~A � P AND A + ~A � P . IN ADDITION TO THE CASES LISTED IN THE TABLE THERE ARE THE MIRROR-SYMMETRIC CASES WHERE THE

TWO SOURCE–DESTINATION PAIRS ARE EXCHANGED, AND THE CASE OF NO COOPERATION, FOR A TOTAL OF 13 CASES

B. Achievable Rate in the Asynchronous Case

We will limit our consideration to decode–forward coding.
Each transmitter decodes the other transmitter’s message stream
and forwards the messages. For this to be possible, a transmitter
must be able to decode the other transmitter’s messages, and that
puts a basic constraint on the rates, no matter how the encoding
is done

(133)

(134)

However, it may pay off that only one node cooperates, while the
other transmission is direct. In that case, only one of the bounds
(133) and (134) apply.

The destination nodes use either joint decoding of the two
messages, or individual decoding considering the undesired
signal as part of the Gaussian noise. If a destination node,
say node 3, is using joint decoding, the cooperating node,
node 2 here, can also use joint encoding of the messages,
multiplexed coding. Otherwise, node 2 uses superposition of
its own information, dedicating a power for this, and the
cooperation information, with power . This gives a number
of different possibilities that are outlined in Table III. The proof
is in Appendix B.

It can be seen that none of the cooperation schemes give any
gain over no cooperation in the high-SNR regime. On the other
hand, Proposition 5 indicates that there might be a potential
gain. To realize this we need to consider synchronous systems.

C. Achievable Rate in the Synchronous Case

The most significant gain that results from synchronized
transmitters is the ability to null interference, combined with
“dirty-paper” coding using the fact that signals are now com-
pletely known including phase. This was used in [35] for the
multiple-antenna broadcast channel and is what gives the mul-
tiplexing gain in rate. Recently [45], this was proven to in fact

give the total capacity region of the multiple-antenna broadcast
channel. We will therefore concentrate on generalizing this to
transmitter cooperation. This kind of coding method was first
presented in [28].

We consider the case where both receivers use individual de-
coding, i.e., consider the undesired signal as interference. The
transmission in block is

(135)

where are some real constants, and are some complex
constants. All of the codes , , , and are independent
i.i.d. Gaussian codebooks of power . The code is a standard
Gaussian code for . The code encodes with
“dirty-paper” coding using as interference (which at the time
of coding is known at both sources). The code encodes
with “dirty-paper” coding using as interference. Finally,
jointly encodes and using multiplexed coding
combined with “dirty-paper” coding using a linear combination
of and as interference.

Node 1 transmits alone with a power and node 2 alone
transmits with a power . Node 1 additionally transmits,
using superposition, the linear combination . It
can do so because and only depend on past codewords,
which have been decoded under the decode–forward assump-
tion. Similarly for node 2.

The power constraint for this transmission scheme is

(136)

We will next derive the rate region achievable by this coding
scheme for fixed and .
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First, nodes 1 and 2 must be able to decode each others’ mes-
sages. Consider node 2, which has a received signal

(137)

Node 2 knows , and perfectly, so it can subtract them to
form

(138)

As node 2 knows by the forward decoding assumption,
and also and , it can decode if 4

(139)

Similarly, node 1 can decode if

(140)

Now consider decoding at node 4. Node 4 uses forward de-
coding, so by assumption at time it has decoded . It
then forms

(141)

(142)

The signals form two channels in parallel for
decoding of . In the first, has been “dirty-paper”
coded with as “dirt,” so that does not result in interfer-
ence. In the second channel, is subject to all interference.
Therefore, node 4 can decode if

(143)

Node 3 uses backward decoding, i.e., it uses the received signal

(144)

4More precisely, it can create a copy ofY [i] in (144) below by adding a linear
combination of U and U .

assuming that has been decoded. Notice that both code-
words for have been “dirty-paper” coded with knowl-
edge of , so that the rate constraint is

(145)

This leaves an optimization problem over the real and the
complex . It does not seem possible to do this optimization an-
alytically, and the numerical optimization problem is not convex
and also seems very sensitive to small deviations from opti-
mality. We will briefly discuss how the optimization complexity
can be somewhat reduced. First, the optimal choice of phase for

and is so that and have the same phase, so that
in (143)

Second, we choose (possibly suboptimally) the phases of
and so that is minimized, i.e.,

The argument is that what gives the dramatic gain from co-
herency is nulling, not beamforming.5 Then (145) is

(146)
with

(147)

Fix the value of between and the maximum (given by the
relay channel between nodes 1 and 3 with node 2 as relay node).
For a given value of it is optimal to choose as small as
possible, so is therefore also fixed through (139). Now fix

. From (146), we find that and should satisfy the
equation

(148)

What remains is an optimization over , , and which
can be done by a grid search.

While the solution for finite SNR requires numerical opti-
mization, we can find a closed-form solution for the high-SNR
offset, as follows.

Proposition 6: The high-SNR offset using ”dirty-paper”
coding is given by

(149)

5This corresponds to ZF-DP coding in [35], which is shown to be near op-
timum in many cases.



1536 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 4, APRIL 2006

where and satisfy

(150)

(151)

furthermore, this high-SNR offset is achieved along the line
.

Proof: To get a solution with multiplexing factor for the
sum rate , we must have (this
excludes solution where and increase at different rate
with SNR, but such solutions are not true multisource solutions
and are mostly suboptimal). From (139) and (140), it is seen that
we must have SNR, and from (145) and (143), that

SNR. We therefore put , , and
, where , , and are constants (or, to be more

precise, converge toward constants for ), and let
in the corresponding expressions.

First, from (143) it is seen that we must have ;
otherwise, would be bounded. Inserting in
the rate bounds, we can now write the rate region as

(152)

(153)

(154)

(155)

We will argue that without loss of generality we can assume
that the two bounds for are equal and that the two bounds
for are equal in the high-SNR region. Suppose that we have
a solution where (152) is larger than (154). If we decrease ,
the bound (152) clearly decreases. In the bound (154) the last
term inside the log also decreases, but this is a bounded term,
and it therefore does not influence the high-SNR limit. Thus,
decreasing decreases the limit of (152) but either increases
or has no influence on the limit of (154), and can therefore
be decreased to make the two bounds equal. A similar argu-
ment can be used if we have a solution where (154) is larger
than (152).

Equalizing the two bounds for and the two bounds for ,
we get the equations

(156)

(157)

We multiply these equations through with , and take the
limit . Eliminating terms that have limit , we then end
up with the equations

(158)

(159)

From this we get

(160)

The high-SNR offset can now be calculated as

(161)

(162)

(163)

Multiplying the power constraint (136) with and taking
the limit results in

(164)

Using (160) and results in (150) and (151).
To see that the solution corresponds to the line , the

easiest way seems to be to solve the problem again with the con-
straint , and see that it results in the same high-SNR
offset. Since the calculations are similar we will not put the de-
tails here.

It is easy to find closed-form expressions for and as
functions of and (requires solving a second-order poly-
nomial equation), but the resulting expressions are complicated
and do not give much insight. Rather, it is instructive to com-
pare the expression (149) with the expressions (130) and (132).
The expressions (149), (130), and (132) all have a second log
term which is approximately —if
the extra in the expressions have little influence. From the ex-
pressions (150) and (151) it can be seen that and

if the second terms are small. This is the case, for
example, if , i.e., weak interference. If so, the achiev-
able high-SNR offset (149) is nearly equal to the upper bound,
and thus characterizes capacity.

Now comparing the upper bounds with the result for no co-
operation, Proposition 2, it can be seen that for strong inter-
ference, the difference in the upper bound is the
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Fig. 8. High SNR offset for jc j = jc j .

Fig. 9. High SNR offset for jc j = 100jc j .

term , and for weak interference the term

. Thus, these terms characterize the gain from trans-
mitter cooperation.

The above is only an approximate hand-waving type ar-
gument based on the form of the expressions, and we have
therefore plotted the expressions in Figs. 8 and 9. A couple of
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Fig. 10. Receiver cooperation: E[jh j ]P = E[jh j ]P +20 dB, E[jh j ]P = E[jh j ]P +30 dB.

Fig. 11. Receiver cooperation: E[jh j ]P = E[jh j ]P +30 dB, E[jh j ]P = E[jh j ]P +0 dB.

thingsshould be noticed from these figures, also implicit in the
expressions.

• Generally, upper and lower bounds for cooperation are
close, although there are gaps for certain parameter values
showing that better upper or lower bounds can still be
developed.

• For strong interference, , there is no gain
from transmitter cooperation. This shows that what is
going on is very different from relaying, since is this
region the relaying effect would be strongest. Thus, the
gain from transmitter cooperation is due to interference
avoidance; not enough to increase the multiplexing factor,
but enough to increase the offset.

• For weak interference, , upper and lower
bounds meet, and the gain from cooperation is given

by measured from the upper
bound without cooperation, or

from the best known noncooperative achievable rate.
• For weak interference, the achievable rate for no cooper-

ation does not increase with decreasing interference, as
opposed to the upper bound. This is because, as far as is
known to the author, there is no way to take advantage
of weak interference without cooperation. However, even
when the link between the transmitters is weak (the curve
for 6 dB) cooperation can compensate
for weak interference.
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Fig. 12. Transmitter cooperation: E[jh j ]P = E[jh j ]P +20 dB, E[jh j ]P = E[jh j ]P +30 dB. The upper bound is for synchronous systems.

Fig. 13. Transmitter cooperation: E[jh j ]P = E[jh j ]P +30 dB, E[jh j ]P = E[jh j ]P +0 dB. The upper bound is for synchronous systems.

VII. NUMERICAL RESULTS

The various results on the high-SNR offset throughout the
paper show analytically that the upper and lower bounds in gen-
eral are close in the high-SNR regime, and gives a simple analyt-
ical characterization of the gain from cooperation. But it should
not be forgotten that the bounds developed are also valid for fi-
nite SNR, and the behavior here is not necessarily the same as in
the high-SNR regime. However, for finite SNR numerical eval-
uation of the bounds are needed to compare upper and lower
bounds. We will here show a few typical numerical results.

The theoretical results are for fixed values of , and each
set of values gives different results. To generate some rep-
resentative numerical results we assume that all the channels
between the nodes are independent Rayleigh-fading channels,
i.e., in Fig. 1 all the are independent Gaussian. To generate

different scenarios, we vary the average channel gains
between different figures. The scenarios are symmetric in the
sense that and
and that all powers are equal (in the nonnormalized model).
The noise power . We use the received power on the di-
rect link, , as the SNR, and let the gains
and be relative to the SNR.

As representative performance measure we use the sum rate
, and we consider the average rate over the ensemble

. Figs. 10–13 show the results.
In the high-SNR regime (i.e., SNR 30 dB), the results are as

predicted by the high SNR analysis elsewhere in the paper. In the
medium-SNR regime, the results, however, provide some new
insights. First, when the cooperating nodes are close together,
Figs. 11 and 13, the curves for cooperation initially follow the
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two-antenna curves, i.e., cooperation does have a multiplexing
factor of defined in a heuristic fashion. Eventually, the mul-
tiplexing factor drops to , as predicted by the theory, and the
gain over no cooperation is determined by the high-SNR offset.
Secondly, even when the high SNR results predict no or a lim-
ited gain from cooperation, Fig. 12 and to some extent Fig. 10,
in the medium-SNR regime there can still be a significant gain.

Another way to look at this is to notice that the gain from
cooperation in the high- and medium-SNR regimes are for
nearly opposite channel conditions: when the gains on the in-
terlinks are much stronger than the interference links, Figs. 11
and 13, there is a gain in the high-SNR regime, but no gain
in the low/medium-SNR regime. On the other hand, when
the interference links are stronger than the interlinks Figs. 10
and 12, there is a gain in the low/medium-SNR regime, but
not in the high-SNR regime. Furthermore, to get this latter
gain, synchronization is not needed, neither for transmitter nor
receiver cooperation.

VIII. CONCLUSION

We have derived upper and lower bounds for the capacity
of a four-node cooperative diversity network, and used these
to in particular characterize the gain from cooperation in the
high-SNR regime. The results show that there is no multiplexing
gain from either transmitter or receiver cooperation,6 but there
is an additive gain, a gain in the offset in the high-SNR regime.

The results makes it possible to characterize the gain from
cooperation as a rule for thumb in a few words, at least in the
high-SNR regime.

• Transmitter cooperation gives no gain for strong interfer-
ence , but for weak interference the gain
is given by an extra term, , as-
suming there is a way to compensate for weak interference
without cooperation, or

without such a way. To get a significant gain, transmitter
synchronization is essential.

• Receiver cooperation gives a gain for both weak and
strong inteference, and the gain is given by an extra term
inside the log: or
for asynchronous systems. Transmitter synchronization
does not give a significant additional gain.

6This result has been extended to arbitrary cooperation in [36].

There are a number of interesting extension of this work that
can be considered. First is the more realistic scenario when the
nodes cannot operate in full duplex, but must use time-divi-
sion duplex (TDD) or frequency-division duplex (FDD). In prin-
ciple, the theoretical results here can easily be generalized to this
model, but the whole problem ends up with a huge numerical
optimization problem over time or frequency schedules, which
is perhaps less interesting. Secondly, an extension to larger net-
works is attractive, but not straightforward.

APPENDIX A
CALCULATION OF ACHIEVABLE RATES FOR

RECEIVER COOPERATION

We will first derive the rates for compress–forward. Consider
forward decoding at receiver 3 (cooperation last). For reference,
we will repeat the received signals here

(165)

(166)

(167)

(168)

Node 3 starts by decoding the channel code from
(166). It can do so if

(169)

as can be treated as part of
the background Gaussian noise (a special case is the last block,
where nodes 1 and 2 do not transmit; that can only decrease the
probability of error). Next, node 3 decompresses . In doing
so, it has the side information . Furthermore, it knows
so that this can be ignored in the calculations according to Corol-
lary 1. Additionally, by the forward decoding assumption, it has
already decoded . The Wyner–Ziv compression therefore
operates on the virtual received signals

(170)

(171)

According to Proposition 1, this is equivalent to node 3 having
an antenna array that receives , where
has power given by (172) and (173) at the bottom of the page.

(172)

(173)
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(174)

(175)

(176)

Inserting the upper bound expression (169) for we then get
(174), at the top of the page.

Node 3 now has two alternatives: it can decode indi-
vidually, considering the signal as interference, or it
can decode and jointly. Individual decoding gives
the bound on , given in (175) and (176) also at the top of the
page, whereas there is no bound on . This gives row 2 in
Table I

Joint decoding gives the bounds on the rates and in
(177)–(179) at the bottom of the page. There are a symmetric
set of rate bounds at node 4. This gives row 3 in Table I

Consider instead backward decoding (cooperation first). The
assumption is now that node 3 has successfully decoded

and It then forms

(180)

it then decodes the channel code of , which it can do if

(181)

It then decompresses . According to Proposition 1, the
system is equivalent to a system where node 3 has two antennas
that receive the signals

(182)

where is compression noise with a power shown in (183),
also at the bottom of the page. From this received signal, it

now decodes and . Notice that acts as Gaussian
interference, and with calculation similar to (177)–(179) we get
the rate bounds in row 5 in Table I.

We next derive achievable rates for decode–forward. First,
consider the cooperation first case, Fig. 5. The received signals
are

(184)

(185)

Consider decoding at node 3 at time instant , and suppose node
3 has decoded and . By subtracting the cor-
responding signals from it can then form

(186)

using the signals and ; it then decodes
and jointly considering as Gaussian noise. Ac-
cording to Section III-B we then get the following rate bounds:

(187)

(188)

(177)

(178)

(179)

(183)



1542 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 4, APRIL 2006

(189)

If node 4 uses the same kind of decoding, we get a symmetric
set of rate bounds, which is row 1 in Table II.

When node 3 only decodes its own message, the transmission
of node 2 acts as interference, and it therefore has the rate bound
in row 2, column 2, in Table II. Node 4 does not receive any as-
sistance from node 3, but still has to do joint decoding to forward
to node 3, and it therefore has an ordinary MAC capacity bound
[37, Sec. 14.3.6], which is row 2, column 3, in Table II.

Consider instead cooperation last, Fig. 6. Node 3 waits with
decoding and forwarding until it has received the forwarded
information from node 4. The received signal is

(190)

(191)

Consider decoding at node 3 in block , and suppose node 3
has decoded and . By subtracting the corre-
sponding signals from it can then form

(192)

using the signals and it then decodes
and jointly. This is the same problem as considered above,
just with larger delay, and the decoding is therefore possible if

satisfy (187)–(189).
Now consider decoding at node 4 during block , and suppose

node 4 has decoded . By subtracting the corresponding
signal from it can then form

(193)

using the signals and it then decodes
and jointly. According to Section III-B, this is possible
if the rates satisfy

(194)

(195)

(196)

which gives row 4 in Table II.

APPENDIX B
CALCULATION OF ACHIEVABLE RATES FOR

TRANSMITTER COOPERATION

We consider at first joint decoding at both nodes 3 and 4. The
transmission is

(197)

where each of the codewords and are i.i.d. Gaussian
codewords of power , encoded using multiplexed coding, Sec-
tion III-A, and . Nodes 1 and 2 use forward decoding.
Consider decoding at node 1, with received signal

(198)

Node 1 knows , and by the forward decoding assump-
tion it has decoded correctly. It can then decode
from if . Thus, and must
satisfy (133) and (134).

Now consider backward decoding at node 3, with joint de-
coding. Node 3 receives

(199)

By assumption, mode 3 has decoded and . A standard
argument using joint typicality (cf. [37, Sec. 14.3.1], in partic-
ular equation (14.71)) now shows node 3 can decode
and if

(200)

and similarly for node 4. This gives row 1 in Table III.
If only one node 2 forward the transmission is

(201)

With similar decoding as above, this gives the rate bound in
row 2 in Table III.

Now consider instead individual decoding at nodes 3 and 4,
i.e., each node only decodes its own message. The transmission
is

(202)

where each of , , , and are independent Gaussian
i.i.d. codebooks of power , and the constants satisfy

(203)

(204)
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These constants can be (numerically) optimized to maximize the
rate region. Using parallel Gaussian channel arguments, Sec-
tion III-B, this gives

(205)

(206)

with a similar bound for . This gives row 3 in Table III.
If only node 2 forward, the transmission is

(207)

which gives the rate bounds in row 4 in Table III.
For combined decoding, with joint decoding at node 3 and

individual decoding at node 4, the transmission is

(208)

We then get the rate bounds (133) and (134) and

(209)

(210)

(211)

which is row 5 in Table III.
If only node 2 forward, the transmission is

(212)

which gives row 6 in Table III.
Finally, if only node 1 forward, the transmission is

(213)

which gives row 7 in Table III.
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