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Unsupervised Discovery of Character Dictionaries
in Animation Movies
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and Shrikanth S Narayanan, Fellow, IEEE

Abstract—Automatic content analysis of animation movies can
enable an objective understanding of character (actor) represen-
tations and their portrayals. It can also help illuminate potential
markers of unconscious biases and their impact. However, mul-
timedia analysis of movie content has predominantly focused on
live-action features. A dearth of multimedia research in this field
is because of the complexity and heterogeneity in the design
of animated characters — an extremely challenging problem to
be generalized by a single method or model. In this paper, we
address the problem of automatically discovering characters in
animation movies as a first step towards automatic character
labeling in these media. Movie-specific character dictionaries can
act as a powerful first step for subsequent content analysis at
scale. We propose an unsupervised approach which requires
no prior information about the characters in a movie. We
first use a deep neural network-based object detector that is
trained on natural images to identify a set of initial character
candidates. These candidates are further pruned using saliency
constraints and visual object tracking. A character dictionary per
movie is then generated from exemplars obtained by clustering
these candidates. We are able to identify both anthropomorphic
and non-anthropomorphic characters in a dataset of forty-six
animation movies with varying composition and character design.
Our results indicate high precision and recall of the automatically
detected characters compared to human-annotated ground truth,
demonstrating the generalizability of our approach.

Index Terms—Animation movies; deep neural networks;
saliency; object tracking; unsupervised clustering; video diariza-
tion.

I. INTRODUCTION

Automatic analysis of movie content is of growing interest
in the multimedia research community. One of the driving
factors for this research is the large number of movies that
are produced, disseminated and consumed annually. Besides
being of entertainment value, movies often have an effect on
certain social and economic aspects, as well as have a global
reach and audience.

Researchers have addressed movie content analysis with
different objectives and outlooks. Such efforts are often based
on efficient indexing and organization of the media content for
easy user navigation. They include shot boundary detection
for movie segmentation [1], [2], video summarization [3] and
abstraction [4]. The study in [2] builds a generative model
that incorporates contextual information in order to reorganize
interleaved shots into multiple plot threads. Approaches such
as in [5] combines the aspects of video summarization, i.e.,
who, what, where and when for a semantic understanding
of the movie content and structure. RoleNet proposed in [6]
examines the movie content from a social network analysis

perspective of the movie character roles rather than using
audiovisual features. In general, movie content is a rich source
of data that includes audio, video and text (dialogs) that
enables such multimodal analysis.

Complementary to the aforementioned studies which at-
tempt to achieve a high-level understanding of movies, ef-
forts for a fine-grained (frame level or scene level statistics)
analysis of video content have also been emerging. One such
application is to quantify the amount of time a character
appears on screen in a movie. The study in [7] examined
these aspects with respect to gender revealing skewed dis-
tributions for the onscreen time of female characters. In
order to advance from gender-level statistics to character-level
statistics, person identification or character labeling is a crucial
step in this direction. We refer to this problem as automatic
video diarization — partitioning the video stream into actor-
homogeneous segments, i.e., who appeared, when and for how
long. Character labeling in live-action TV and movies has been
achieved with modest success in [8], [9], [10], [11], [12]. This
is typically performed by clustering the detected faces (e.g.
[8]) or by multimodal approaches (e.g., [9], [10]) that model
audio and subtitles or scripts alongside the detected faces from
video.

It is important to note that all these studies exclusively focus
on live-action TV and do not generalize to animated media
content. Digital animation movies have contributed to over
10% of the box office market shares in the past decade [13].
Multimedia research in this domain is extremely scarce and
technology developed for live-action TV content fails for ani-
mated content. Human face detection is the crux of character
labeling methods for live action TV. Since human-characters
can be uniquely identified by their faces, this method performs
adequately well. But, such methods developed for human
faces do not work for the digital animation genre. Animated
characters, though mostly anthropomorphic (having human
characteristics) are not always human-like in appearance. They
can be fictional animals, inanimate objects or abstract in design
(see Figure 1 for a few examples).

A major obstacle for automating content analysis of an-
imated media is the lack of a model that generalizes across
different characters with varying composition and design. This
task becomes extremely complex given that all the characters
even within a single movie may not share the same structural
characteristics (e.g., human-like and non-human characters
from the same movie - Figure la and 1b from the movie
Frozen).

In the context of video diarization, when the characters



Fig. 1. Examples illustrating the heterogeneity of animated characters.
a: human-like (Frozen) b: anthropomorphic (Frozen) ¢ and d: abstract (How
to Train your Dragon, and Cars)

that appear on screen are generally not known a priori, a
key step is to provide a list of characters that form the who
appeared component of the system. We refer to such a list of
characters specific to each movie as a character dictionary.
The automatic discovery of these character dictionaries is
the primary objective in this paper. Our overarching goal is
to engineer a model for animation movie video diarization.
With the proposed character dictionaries, animation character
labeling may be achieved by techniques such as [14] that can
retrieve frames and shots given an object of interest.

In content analysis of animated media, researchers have
thus far focused on problems such as cut detection [15],
color-based video categorization [16] and movie abstraction
[17], [18]. One method proposed in [19] performs human-like
face detection from cartoon images using skin-segmentation
techniques. Considering the variation in texture, color and
shape of animated characters in general (as illustrated in
Figure 1), these methods do not generalize well. To the best of
our knowledge, no work to date has specifically addressed the
problem of automatic discovery of characters from animated
media in a scalable manner.

In contrast to live-action movies, animation movies are
completely artist generated. Sketches of the characters are
designed by the artists or the animators, generally referred to
as model sheets from which character-specific 3D models are
generated. Sketch based image retrieval systems such as [20]
can be used to achieve video diarization when model sheets
are available. However, model sheets are copyrighted material
and mostly owned by the animation studio which produced the
movie. As such, they are not publicly available and approaches
which are based on model sheets will not be scalable for all
movies.

In 1981, Frank Thomas and Ollie Johnston published The
Illusion of Life [21]; it outlines a set of twelve basic principles
of animation. Animators have been using this as a cookbook
for designing characters in order for the viewers to appreciate
“animation” over mere “movement”. While most of these
principles aid animators in adding semantic or artistic value
(e.g. anticipation, exaggeration), a few can be exploited in a
computer vision context (e.g. Solid Drawing: drawing volume
solidity and illusion of three dimensions; Staging: Distinctive
color, depth of field and positioning in the frame to highlight

Fig. 2. Character candidates chosen by the Multibox object detector. Conf.
indicates the confidence score of the network for the detected object

the character). Defining an animated character in a complete
sense would involve delineating abstract concepts such as life
(or sentience even) from movie content. In this paper, we only
analyze the video stream from animation movies and leverage
some of the aforementioned principles of animation as proxies
to identify the characters.

At the outset, we pose our problem as an object detection
task where any object can be a possible character candidate.
Animation movie frames are comparable with natural pho-
tographic images, especially in their similarities of depth of
field and the character presentation in a frame. Additionally,
we assume no prior models with respect to shape, size, color,
or texture for these candidates in order for the proposed system
to generalize.

A few prominent examples of state-of-the-art object de-
tection systems include discriminatively trained deformable
parts-based model (DPM, [22], [23]) and deep neural network
(DNN) models such as [24], [25], [26], both of which are
supervised and trained over a predefined set of object classes.
DPMs need a carefully designed part-decomposition model of
an object which makes it unsuitable given the heterogeneity
of characters within just a single movie. In contrast, DNN-
based methods such as [24] can detect objects in real-time
and outperform DPMs. Specifically, DNN models that are
saliency-inspired in design [25] are of interest for our problem
statement. Although supervised with a finite set of object
classes, they have been shown to detect objects in a class-
agnostic manner [26] i.e., detect classes of objects not used
for training the model.

Movies in general, portray only a handful of prominent
characters. They are more likely to appear frequently in order
for the viewer to easily comprehend the content and the plot of
the movie. Additionally in movies, characters or the objects-
of-interest tend to remain on screen for up to a few seconds
depending on the situation. Visual object tracking can be used
as an effective method to segment characters locally in time.
Several previous works have used tracking as a means to
automatically detect a class of objects (e.g. pedestrians, [27]).
Object tracking algorithms can be error-prone in a movie
video environment because of object deformation, background
clutter, changes in illumination, occlusion and lack of a station-
ary backgrounds. However, visual tracking can minimize the
number of detected objects to be considered by accounting for



minor deformation or linear motion of the object. Furthermore,
tracking also provides time information that can be used for
diarization subsequently. For example, in [11], supervisory
information available on a profile face is used to learn the
appearance of a frontal face from faces tracked in TV series.
A reasonable assumption in describing animated character is
that the prominent characters are not transient when presented
on-screen and appear frequently in the movie. In our method,
we use this aspect of character presentation in movies to select
character candidates. As a result, the character dictionaries
consist of only the frequently occurring characters.

In this paper, we propose a novel approach to automatically
discover characters that appear in an animation movie. Our
proposed method is unsupervised in the sense that we do
not train any aspect of our system with data from animated
media content. Furthermore, we use no specific knowledge of
the animation style or the physical attributes of the animated
characters, thereby ensuring that our system can scale and
generalize through the whole spectrum of animation movie
content.

The rest of the paper is organized as follows: Section II
describes the proposed system for selecting character candi-
dates from an animation movie. In Section III, we present
the experiments performed and the creation of an evaluation
database. Section IV contains the experimental results and
final considerations followed by conclusions and future work
in Section V.

II. METHODS

In this section, we first introduce the different systems
that we use to identify and prune the detected objects to
obtain a set of possible character candidates. We then use
a clustering approach to identify character exemplars that
constitute the final character dictionary. The overview of the
proposed system is shown in the Figure 3.

Our animation movie database consisted of forty-six
movies, for which we annotated their prominent characters.
We then conducted a detailed performance evaluation on eight
animation movies which were chosen to represent varying
degrees of heterogeneity in character design and composition.
The movie-cast data from forty-six movies used for our system
evaluation and the output from our system has been released as
part of the SAIL Animation Movie character Database (SAIL-
AMDDb)'. We have also made the code publicly available?.

A. Coarse Detection of Character Candidates

Animated characters are often designed to have the appear-
ance of a 3D object and characterized by shallow focus where
the image plane of the character is in focus while the rest of
the frame is out of focus [21]. In other words, they are the
salient objects in a given frame. Capitalizing on this, we define
a character candidate as any object that can be detected by a
general-purpose object detector.

Uhttps://github.com/usc-sail/mica-animation/wiki
Zhttps://github.com/usc-sail/mica-animation

We use a pre-trained deep neural network (DNN) called
MultiBox [25], [26], designed for object detection. Our pre-
liminary experiments with other region proposal networks such
as [24] yielded similar results. We chose MultiBox since our
motivation for using an object detector was only to generate
an initial set of potential character candidates.

MultiBox is a convolutional neural network (CNN) with
an inception-style architecture [28] trained with the full 200-
category object detection challenge data set from ImageNet
Large Scale Visual Recognition Challenge 2014 (ILSVRC-
2014) [29]. This model generates multiple bounding boxes and
an associated confidence score that quantifies the network’s
confidence of each box containing an object. The model
has been shown to perform object localization in a class-
agnostic manner and achieve state-of-the-art performance in
object detection tasks [25]. Furthermore, since the network
is tailored towards the localization problem, it achieves a
scalable representation of multiple salient objects in an image.
These features make this model uniquely suitable for our
problem. It is important to note that this model is trained
with natural images of distinct object classes. Although the
authors in [25] have shown that the model generalizes over
unseen classes, here we apply the pre-trained DNN for images
sampled from animation movies. We refer to this discrepancy
as DNN training bias. This results in detecting objects that are
not characters in a movie (e.g., traffic-light, chair). We refer
to such objects as noisy objects.

In order to reduce the computational time, we downsample
a movie (originally encoded at 23.98fps) by one frame every
0.42s (every 10" frame). The resulting frames are input to
MultiBox[25] to obtain all possible bounding boxes for each
image. The confidence score that is returned with each of
these boxes was originally optimized in the DNN to match
the ground truth object boxes from natural images.

Because of the aforementioned DNN training bias, we gen-
erally observed lower range of confidence scores for objects
detected that were animated characters. We chose to retain
objects with a confidence score greater than 0.1. In order
to determine this threshold, we randomly sampled 100,000
frames from the movie Frozen (2013) in our movie database.
We first assumed to have at most five possibly overlapping
objects of interest in one frame and obtained the confidence
scores for the five most confident objects in each frame. We
then examined the distribution of the confidence scores for
all the objects detected. We set the confidence threshold to
75" percentile of the distribution of confidence scores which
is equal to 0.1002, thus retaining all objects with confidence
score greater than 0.1. We apply this confidence threshold for
all the movies in our database. A few examples of objects
detected and their confidence scores returned by the network
are shown in Figure 2.

We also computed the area of each bounding box of an
object relative to the image frame and excluded objects in
bounding boxes with an area less than 1% or greater than
99% of the entire frame. This ensures that very small objects
and holistic scenes are excluded as character candidates. When
multiple objects were detected in a single frame, we pruned
them to obtain at most one object per frame following the
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Fig. 3. Schematic diagram of the proposed method

approach in [25]. We performed non-maximum-suppression
with a Jaccard similarity [30] threshold of 0.5 and, chose the
object with the maximum area in that frame. We identified only
a single object per frame in order to simplify the subsequent
step of single-target visual object tracking. We refer to a
chosen frame containing a character candidate as a candidate
frame.

A schematic of the proposed approach is illustrated in
Figure 3. Let Nj;,; be the initial number of images (movie
frames) input to MultiBox and N,,; be the number of
character candidates chosen. We denote the candidate frame K
and the bounding box W enclosing the object as a set
Mobj = {(Kt(f), Wt(f))|i € [1,Nop;]} and t; refers to the
time (or frame number) in the movie at which the object ¢
occurs. Qualitative analyses showed that this step captures
most of the characters in an animation movie at least once (e.g.
images shown in Figure 2a-c). However, this set also contains
redundant and noisy objects which include non-characters or
background objects (e.g. Figure 2d).

B. Saliency Constraints and Object Tracking

In the next phase of our system, we used the saliency
of the detected object as a constraint to prune the set of
character candidates obtained in the previous step. We use
this pruned set of candidate frames as seed-points for tracking.
During tracking, we do not distinguish camera motion from
object motion, thereby ensuring that a sufficient condition for
a character candidate is its presence on the screen rather than
motion (e.g. a talking tree).

1) Saliency-constrained pruning: As described in section
II-A, the DNN training bias may result in choosing objects
that, although salient, may not be the characters of interest
(e.g. detected lamp in a scene with two characters - see

Figure 4a). To quantify this, we use a saliency measure
proposed in [31] for the character candidate with respect to
the entire frame. Unsupervised methods that estimate saliency
typically use pixel-level features such as color, intensity (e.g.
[32]) or background-detection in dynamic scenes (e.g. [33]).
In contrast, the measure proposed in [31] estimates saliency
of local areas (instead of pixel level) in static images and
requires no training. This method uses a kernel-based approach
where the size of the window relates to the scale of the
target objects. The saliency of a pixel inside the window is
estimated using the conditional probability of that pixel drawn
from the distribution estimated inside that window versus the
distribution of the surrounding area.

We first converted the RGB images to CIELAB color space
(because of the perceptual uniformity of the CIE color space?)
to estimate a saliency map for the entire candidate frame by
choosing window sizes at different scales as described in [34].
The resulting saliency maps are binarized by setting values
greater than 0.7 to 1 as recommended in [34]. An example
of the saliency map is shown in Figure 4b. Let A,(WW) be
the area of the salient region contained within a bounding
box, W in an image frame K. We define a relative saliency
score, Rs(W) of an object enclosed by the box W as the
percentage salient area it contributes to the frame, K:

As(W)

AW =40

x 100 (1
We obtained the relative saliency score, Rs(Wt(j)) for every
character candidate in the set Mop; from the MultiBox
object detector. We used a threshold of 10% and retain only
those character candidates which have a relative saliency

3http://www.brucelindbloom.com



Fig. 4. a) Example for DNN training bias and saliency constraint; b) Masked
regions showing saliency, here relative saliency score Rs(W1) = 9.2%

score greater than this threshold. These candidates are next
used as seed-points for tracking. This threshold was initially
decided based on qualitative observation. We then conducted
additional experiments to assess the effect of this threshold
parameter as described in the section III-C. The resulting set
of salient character candidates is denoted as Mgy = {(Kt(j),

Wt(;))|i € [1, Nsa]}, where Ngq is the total number of
objects deemed salient after this step with [Mga1| < [Mopj|
where |- | indicates the cardinality of the set.

2) Deformable Object Tracking: An important property
of animated characters is their appearance on screen for up
to a few seconds depending on the context. We utilized
this property by performing a single-target visual tracking
of the salient character candidates. Since animated characters
are mostly deformable bodies, the rigidity assumption that
most tracking algorithms employ in their motion models (for
review, see [35]) does not hold. We employ a deformable
object tracking algorithm [36] which does not impose rigidity
assumptions on the object-of-interest while tracking.

This method first builds a static-appearance model of the
object by clustering the key-points into sets of inliers (for
the object body) and outliers (for the background) using
a dissimilarity measure that quantifies the correspondences
between key-points. The dissimilarity measure is estimated by
computing the distance between the initial set of corresponding
key-points and the transformed version. The model is then
adaptively updated in time by propagating only the inlier
correspondences by estimating the optical flow of the key-
points. The degree of tolerance towards the deformation of
the object is factored into the model by setting a parameter
in the tracking algorithm which ensures that the cluster of
inlier points are spatially localized. We used the BRISK [37]
features for key-point detection and the parameters were set
according to [36] after histogram equalization of the images.

Tracking every object from the set of salient character
candidates for the full length of the movie is computationally
expensive and may lead to accumulated tracking errors. Hence,
we performed local-tracking in a serial and progressive fashion
as described in Algorithm 1. We refer to the first candidate
frame and the corresponding bounding box for the object
of each track as a seed-point. Local-tracking substantially
reduced the number of character candidates by eliminating
objects that were successfully tracked in consecutive frames.
As we performed single-target visual tracking, this process
may also exclude other characters that co-occur within a
given track. However, since prominent characters occur quite
frequently in a movie, the issue of losing certain characters

Algorithm 1: Local Tracking

Input: Set of salient character candidates:
Maar = {(K, W)} € [1, No]}; movie, V
Output: Set of track seed-points;
Mk = { (K, W{")li € [1, Nywi]} and
corresponding track duration 7;
Parameters: Track duration threshold: 7
while ( 'V open) do
Mtrk - {}
while ( Mg, # 0) do
Begin‘ tracking at the earliest time frame, i.e.,
(R W) | min (Mo}
Object tracking lost at 1y > t;
Track duration, Tj <t —t;
if ( T; > 7) then
Update tracked seed-points
Mtrk — Mtrk U {(Kt(]]), Wt(]]))}
Prune character candidates
Maat  Mear 0 {(E™ W™ ¥m > &}

m

else
| Maar ¢ Maar 0 {(E W) ym > j}
end
end
Ntrk = ‘Mtrk‘

end

was not significantly noted. The duration of time for which an
object is tracked is used as a threshold for retaining objects. We
refer to this as the track duration threshold, T and initially set
to one frame. This would only eliminate the transient and/or
spurious object detections. Additional experiments varying the
T parameter are conducted as discussed later. We denote the
set of character candidates returned after tracking as Mgk
with | Mepk| = Nyg such that Nyp < Nggp < Ny The
number of character candidates obtained after pruning at each
step as a percentage of the initial number of input frames is
shown in Table II.

C. Exemplars for Character Representation

The character candidates chosen thus far may be redundant
to some extent, and may contain multiple images with varying
view-point or segments of the same object. In order to group
similar objects together, we pose this as an unsupervised
clustering problem with an unknown number of clusters. A
suitable approach to represent such data is to identify a smaller
set of samples, referred to as exemplars. We use affinity
propagation (AP) clustering [38] to obtain exemplars which
constitute the final character dictionary for a given movie.
AP clustering is well suited for this problem because it is
deterministic, achieves a lower clustering error compared to
other clustering methods such as k-means [39] and does not
require a predetermined number of clusters.

We used the ImageNet model proposed in [40] to extract
features to cluster the character candidates. Several previous
works (e.g. [41]) have shown that feature representations



TABLE I
DETAILS OF THE EVALUATION DATASET

ID | Movie (US Release year) Duration(mins) | Prominent Characters’| Production Studio Grossing (in $ millions)
V1 | Cars 2 (2011) 107 10 (3) Pixar 191
V2 | Free Birds (2011) 91 11 4) Reel FX Creative 55
V3 | Frozen (2013) 102 9 4) Walt Disney 400
V4 | How to Train your Dragon 2 (2014) 102 12 (4) DreamWorks 177
V5 | Shrek Forever After (2010) 93 9(05) DreamWorks 238
V6 | Tangled (2010) 100 9 4) Walt Disney 200
V7 | The Lego Movie (2014) 101 12 (3) Warner Animation 257
V8 | Toy Story 3 (2010) 103 18 (9) Pixar 415

1 () indicates number of minor characters

TABLE I
PERCENTAGE OF INITIAL NUMBER OF OBJECTS AFTER EACH
STEP OF PRUNING ON THE EVALUATION DATASET

Movie ID | Nini | Nopj(%) | Noat(%)'| Nirio(%)*
Vi 15395 19.88 16.99 5.61
V2 13102 14.08 12.50 5.01
V3 14676 9.36 6.83 2.56
V4 14676 9.25 6.32 317
V5 13406 10.61 8.06 332
V6 14372 9.42 8.22 3.05
V7 14460 9.37 6.96 2.92
V8 14743 11.80 9.79 379

* relative saliency threshold = 10%
+ track duration threshold = 1 frame

from fully-connected layers in a CNN generalize well for
various image recognition tasks. Specifically, we use a 4096-
dimensional feature from the second fully connected layer,
“FC7” from the ImageNet model which was trained with
ILSVRC-2012 [29] competition data.

Because the FC7 features are sparse, we use cosine distance
to compute a pairwise similarity matrix, S;; between the
feature vectors, {v;}

ViVjT

Sij = V’L,j € [17Nt7“k] (2)

[[villllv;ll

The appearance of most characters is somewhat homo-
geneous (except for variations in pose and deformation)
throughout a movie in terms of shape, color or attire of the
character. Leveraging this observation, we also used GIST
descriptors [42] for clustering. GIST features provide a low
dimensional representation that describes the prominent spatial
structure in an image. GIST features have been used for
clustering tasks such as scene clustering (e.g., [43]) with some
success. We obtained a 960-dimensional GIST descriptor for
the character candidates using pyleargist* package in Python.
We then computed negative Euclidean distance between all
the candidates from a movie to form a similarity matrix
for clustering. Additionally, we also evaluated the clustering
performance of GIST and FC7 features.

We used the AP algorithm proposed in [44] to cluster the
similarity matrices obtained from the character candidates. The
goal of AP clustering is to choose a character candidate j to be
the exemplar of the i‘"candidate. Define responsibility (i, j):
degree of support that the candidate j should be the exemplar
of ¢ and availability a(i,7): degree of support by which the
candidate ¢ should choose j to be its exemplar. Initialize

“https://pypi.python.org/pypi/pyleargist

r(i,7),a(i,j) = 0;Vi,j and update responsibility and avail-
ability as below:

T(i,j) — Sij — ]?}c%é);(a(k, Z) + Sik) 3)
a(j,j) < > max(0,r(k, )] )
k:k#£j7
a(j,i) < min(0,r(j, )+ Y maz(0,r(k,5)]) ()
k:k¢(5,1)

Introduce a damping factor, A € [0,1) to account for
numerical oscillations over iterations in time ¢

r(J, 1) < (L=, i), + Ar(d, 1),y (©6)
a(gyi)e = (1= Na(j, i), + Aa(j, i), 4 7
Pick j to be an exemplar of ¢ if

arg max(r(i, j) + a(j, 7)) (8)
J
We set the damping factor, A which controls the update of
r(i,7) and a(4, j) in each step to 0.5. Changing this parameter
had no effect on the exemplars we obtain. Let N, be the
total number of exemplars returned.

AP clustering works well with animation movies since the
appearance of most characters (e.g. attire) is consistent within
a given movie and the features we used for clustering can
capture these attributes. An additional benefit of using AP
clustering is that the number of exemplars (i.e., the size of
character dictionary) need not be pre-specified. On the other
hand, we risk over-clustering, i.e., a single character may be
represented by multiple exemplars since the features we use
are generic and not designed to capture variation in scale,
orientation or view-point of a character. This was evident when
we performed a second pass of AP clustering on the exemplars
obtained here and failed to cluster the perceptually identical
characters together. In order to penalize for over-clustering, we
define an over-clustering index in our performance evaluation
measures as described in section III-C.

III. EXPERIMENTS

The problem of identifying character dictionaries for anima-
tion movies addressed in this paper is unique. Due to the lack
of existing performance evaluation frameworks for this task,
we first created a reference character dictionary (movie-cast)
for each movie in our database. We then used these reference
character dictionaries as ground truth to evaluate the character



dictionaries output by the proposed method. These reference
character dictionaries have been made publicly available as
a part of the SAIL-AMDb’ along with outputs used for our
system evaluation.

A. Evaluation Database

Our animation movie database consisted of a total of forty-
six movies produced between 2010-2014. Of the forty-six
movies available, we chose eight top-grossing movies to
evaluate the performance of our method in greater detail and
to determine the best parameter choices for relative saliency
threshold and the track duration threshold. The year of release,
duration, production company and size of the reference char-
acter dictionary are shown in Table 1. For brevity, we refer to
these movies as VI — V8.

These eight movies were chosen to test the generalizability
of the proposed system. They represent a diverse set of
characters in terms of design and composition produced by
prominent animation studios. These movies include instances
of human or human-like characters (V3, V5, V6), non-human
but anthropomorphic (V3, V5), toy-like (V7, V8) and animals
(V2, V4, V5). All movies (except V6) include at least one
instance of a character which is abstract in design. The
dataset includes movies with varying degrees of illumination,
background/environment and motion of the characters. For
example, V1, V6 and V8 have overall higher illumination
compared to V3, V4 and V5. The movies V1 and V4 have
faster moving characters (e.g. dragons and cars) compared
to the others. Quantitative analyses to evaluate the diversity
of this dataset (e.g, variation in color, illumination or other
characteristics) are beyond the scope of this paper (and an
objective of our future work).

As described in section II-C, the character dictionary output
by the proposed system for each movie are the exemplars
identified by AP clustering. The character candidates on which
the clustering is performed are obtained by optimizing two
system parameters using a grid search: relative saliency thresh-
old and track duration threshold. The settings used for the
two parameters are Rq(X) = {0,10,20,50,80,90} and T =
{1,12, 24, 48,120}. The values for 7 (in frames) correspond to
the least possible value (one frame), and approximately 0.5s,
Is, 2s and 5s of the movie duration respectively®.

B. Reference Character Dictionaries

We borrow the same definitions for a character as described
in [45] and [46] to create a movie-specific reference character
dictionary. All named characters (speaking and non-speaking)
displayed on-screen were included. Similar to [46], we first
used the set of prominent characters as listed by a leading
online box-office reporting service’. The designation of a
minor character available in this resource was retained. This
list however, does not include non-speaking characters (e.g.
dragons). Hence, if a character was given a specific name in

Shttps://g00.gl/WbESbz
SFrame rate for all movies in the dataset was 23.98fps
7www.boxofficemojo.com

a) Noisy exemplars b)

Relevant exemplars

Fig. 5. Examples of noisy and relevant exemplars

the movie (as opposed to generic names such as a Spanish
ambassador), we included them in the reference. For each of
these characters, we obtained a representative full-body image
from the movie posters or DVD covers available online. If the
said character was absent in these sources, a representative
image was manually obtained from the internet. The number of
prominent characters including the number of minor characters
are listed in Table I. For annotation purposes, all characters in
the reference dictionaries are assigned a unique ID to preserve
character anonymity.

We use annotations from Mechanical Turk workers (MTurk;
a crowdsourcing platform by Amazon Web Services) to com-
pare the proposed and reference character dictionaries. As
discussed in section II-C, the exemplars in the proposed
dictionaries may vary from the representative image used to
construct the reference. Hence, by using MTurk, we leverage
the human perceptual ability to match the exemplars with
the items in the reference. The annotators are instructed to
consider an exemplar to be a match if 1) it is identifiable
regardless to variation in scale, illumination, orientation or
viewpoint or 2) an identifiable segment of the reference
character is present in the exemplar or 3) if the exemplar
consists of the said reference character. The annotators indicate
a match with a unique ID available for every character in the
reference. Furthermore, if an exemplar consists of multiple
reference characters, the annotators are instructed to list all
the relevant IDs. Three different annotations were acquired
for each of the exemplars from unique annotators. In order to
check for possible confounding factors, additional information
on whether the annotator had watched the movie prior to
annotating was also collected.

We performed an inter-rater reliability analysis to ensure
that the MTurk annotations were reliable. Since we obtained
more than two annotations, inter-rater agreement (more specif-
ically, inter-annotation agreement) was quantified using Krip-
pendorf’s alpha [47] for each movie. The categorical values
that were used to compute this measure were the unique IDs
assigned to each character from the reference. Krippendorf’s
alpha was high for the eight movies used in our system
evaluation with mean/standard deviation of a@ = 0.81 £ 0.05
indicating strong agreement. Across all forty-six movies,
Krippendorf’s Alpha was similarly high (0.82). Furthermore,



no difference in agreement was observed between the set
of annotations performed by workers who had watched the
movie and those who had not. Following high agreement,
we obtained a single annotation per exemplar by performing
simple majority voting on the three annotations. Three-way
ties were resolved with random assignment.

C. Performance Evaluation

The performance of our method for different experiments
was quantified by comparing the reference character dictionar-
ies with the output dictionaries from the proposed method. We
refer to the set of exemplars in the proposed dictionary that
were successfully matched to a character in the reference as the
relevant exemplars and the remaining as, the noisy exemplars.
As described earlier, multiple exemplars can represent a single
character. Therefore, we examine the unique set of character
IDs in the proposed dictionary (matched characters) and
those never identified (missed characters). Following this,
we compute three measures; precision, P, recall, R and F1
score, I as follows:

l t [
P [{relevant exemplars}| ©)

[{relevant exemplars} U {noisy exemplars}|

|[{matched characters}|

R =
[{matched characters} U {missed characters}|
P-R
F,=2. 11
""" 7 P+R (v

Additionally, we define over-clustering index as a measure
to quantify the extent to which multiple exemplars per char-
acter appear in our character dictionaries. In other words, the
extent to which we over-cluster the relevant characters. Over-
clustering index for a movie is computed as the median of
number of exemplars per character in the set of the relevant
exemplars. Since this metric is defined only over the set of
relevant exemplars, it is independent of precision. It is bounded
below by 1 (one exemplar per character) and bounded above
by Nump (all exemplars represent just one character).

In order to compare the clustering performance of GIST
and FC7 features, we measure the purity of clustering as
described in [48]. We assign each cluster to the most frequently
occurring character in that cluster. Then, the we measure
purity by counting the total number of correctly assigned
characters, across all clusters and dividing by the total number
of candidates clustered ( NVy.x) as below:

1
purity = N, Xk:m]ax lwk N ey (12)
where purity € [0,1], Q = {wi,wa,...,wi} is the set of
all clusters and C = {c1,ca,...,¢;} is the set of all relevant
exemplars.

By our definition of precision (Equation 9), a lower value
would indicate that character candidates which are not listed
in the reference were identified as exemplars. These noisy
exemplars could either be a result of minor characters not
being listed in the reference or background objects being
identified as exemplars. Similarly, a high recall (Equation

10) would reflect the ability to identify all the prominent
characters at least once. Ideally, recall=1.0 and over-clustering
index=1 would indicate that every character in the reference
was detected by exactly one relevant exemplar. Higher values
of the over-clustering index reflect on the failure to cluster
similar character candidates. This is likely a consequence
of the features not being invariant to the orientation, view-
point or scale of the character candidates. Complementary to
precision, recall and F1 score which measure the performance
of clustering with respect to a reference, purity (Equation 12)
measures the extent to which clusters belonged to a single
character, thus evaluating the features (FC7 versus GIST) used
for clustering.

The F1 score, precision and recall measures for all eight
movies are averaged for each experiment to determine the
best choice of relative saliency threshold and track duration
threshold. These optimal parameters were used to obtain
character dictionaries for the remaining thirty-eight movies in
our evaluation dataset.

IV. RESULTS AND DISCUSSION

A few examples of the relevant and noisy exemplars from
the proposed character dictionaries are shown in Figure 5.
As described earlier, exemplars are categorized as relevant or
noisy based on a reference dictionary constructed for each
movie. One source of noisy exemplars is how we construct
these reference dictionaries. Since the reference consists of
only the prominent characters, it may result in some minor
characters being categorized as noisy (See bottom-left image
in Figure 5a).

The second source of noisy exemplars is the training data
used for the MultiBox object detector which comprised only of
natural images. Characters which belong to object classes that
the DNN was trained on tend to get detected more often and
consistently (e.g. traffic lights, bell). The subsequent steps in
our method that use relative saliency score and local-tracking
attempt to eliminate some of these noisy exemplars. However,
depending on the frequency of occurrence or saliency of the
character candidates, they may not always be successfully
pruned. Table II shows the percentage of the input frames
pruned at each step. The proposed character dictionaries for
three movies; V1, V2 and V3 are shown in Figure 10 — 12
in Appendix B.

The precision, recall and F1 score measures that we used to
quantify the performance of our method are shown in Figure
6. The relative saliency threshold and track duration threshold
were chosen corresponding to the best F1 score (highlighted
in Figure 6a). These measures were averaged across the eight
movies for each setting of two parameters, relative saliency
threshold, Rs(X) and track duration threshold, 7. Overall,
recall is high (over 80% for 7 = 1 and Rs(X) = 10%)
which indicates that our proposed character dictionaries were
able to identify most of the characters in the reference at least
once. Precision ranges between 70% and 90% indicating that
less than one-third of exemplars in our proposed dictionaries
are noisy.

We note that the recall measure defined here has to be
interpreted alongside over-clustering index; a metric that cap-
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TABLE III
F1 SCORE AND PURITY FOR FC7 AND GIST FEATURES USED IN
CLUSTERING

Movie ID FC7 features GIST descriptors
F1 score | Purity | F1 score | Purity

V1 0.691 0.708 | 0.713 0.414
V2 0.773 0.651 | 0.769 0.345
V3 0.825 0.842 | 0.821 0.304
V4 0.764 0.598 | 0.693 0.322
V5 0.532 0.712 | 0.653 0.408
V6 0.740 0.677 | 0.732 0.398
V7 0.732 0.693 | 0.743 0.438
V8 0.752 0.745 | 0.799 0.392
Average: | 0.726 0.703 | 0.740 0.378

tures the extent to which multiple exemplars represent a single
reference character. The distribution of number of relevant
exemplars per character for the eight movies is shown in
Figure 7. The median number of exemplars per character, i.e.,
the over-clustering index is less than 5 for all the eight movies.
As described in section III-C, this measure lies between 1 and
the number of exemplars. Here, the number of exemplars range
between 35 and 95 (with Rs(X) = 10%; 7 = 1) but the over-
clustering index is less than 5 which reflects on the effective
performance of the affinity propagation (AP) algorithm used
for clustering.

Additionally, we compared the F1 score and purity of
clustering for the eight movies, in order to evaluate the
features used in clustering, as shown in Table III. Although
the F1 scores (computed by comparing the exemplars to
the reference) were similar between the two descriptors, the
clustering purity using FC7 features was significantly higher
(paired t-test, p << 0.01 to reject Hp : pup < p1) than that
of GIST descriptors. This indicates that FC7 features yield
less noisy and more homogeneous clusters from AP clustering.
Furthermore, FC7 features perform better for clustering than
GIST features, perhaps because ImageNet was trained to
classify objects robust to variation in the the background or
view-point and occlusions, whereas GIST descriptors capture
the holistic shape information in an image.

As shown in Figure 6c, recall drops with an increase in 7
as expected. Since, by increasing 7 we retain only those
character candidates which remain longer on-screen and do
not always co-occur with other salient objects. This results in
excluding some relevant exemplars. In contrast, an increase in
precision (See Figure 6b) is noticed on increasing 7 since a
few noisy character candidates that are infrequent get pruned
successfully. Relative saliency threshold had the desired effect
on the system output i.e., increasing R4(X) results in an
increase in precision. However, these gains in precision by
increasing Rs(X) beyond 10% were not substantial.

In order to determine a good choice of the system pa-
rameters, we examine F1 score for different combinations
of Rs(X) and 7 as shown in Figure 6a. R,(X) = 10%
and 7 = 1 would be the best choice of settings. For these
settings, the number of relevant and noisy exemplars for the
eight movies are shown in Figure 8. It is interesting to
note that movies V1 and V2 have relatively larger character
dictionaries and a higher range of number of exemplars per
character (See Appendix Figure 10-11). All the characters
in the movies, V1 and V2 are similar to cars and birds in
appearance. The results at a glance show that all instances
of these characters in different scenes were detected in these
movies (which include the minor characters and different
appearances of the same character with respect to view-point).
This is likely because both cars and birds are among the object
classes in ILSVRC-2014 data used to train MultiBox.

Character dictionaries for the remaining thirty-eight movies
were obtained with the choice of Rs(X) and 7 determined
above. The range of precision was 0.45 — 0.89 (mean/standard
deviation: 0.66 £ 0.12) and recall: 0.42 — 1.0 ( 0.83 = 0.16).
The range of over-clustering index was 1.5-6.0 ( 3.5 £ 1.5).
See Figure 9 (Appendix A) for precision and recall measures
of all the forty six movies in our dataset. Further error analysis
considering different aspects of all the movies (e.g. character
design, color, illumination) is warranted and will be a part of
our future work.

We note that the movie Frankenweenie (2013) which was
produced in black and white has the lowest precision and
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recall in our dataset. This indicates that color rendering is
an important factor since the DNNs we employ were trained
with RGB images. The movies, Boxtrolls (2014) and The
Book of Life (2014) both have a low precision and high recall
indicating a larger number of noisy exemplars. On analyzing
the errors in these samples, we observed that the local tracking
method pruned approximately 42% of the initial character
candidates (c.f. the average percentage of candidates pruned
by local tracking for the rest of the movies was 62.23%). This
is likely because these movies, unlike the others in the dataset
use a rapid-fire film editing style which includes fast-action
scene cuts and rapidly changing backgrounds which are not
ideally suited for visual object tracking.

On the other hand, movies like Kung Fu Panda 2 (2011)
and Escape from Planet Earth (2013) yield high precision and
low recall. This is likely because these movies feature only a
small number of prominent characters and a larger number of
unnamed characters which are not included in the reference
dictionaries that we created. As expected, movies that feature
distinct lifelike animals or humans, generally performed the
best. For example, the movie Legend of Guardians (2010)
featured only birds and The Nut Job (2014) featured animals
— both animals and birds are included in the set of object
categories of the ILSVRC datasets.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an unsupervised method to auto-
matically create a dictionary of characters from an animation
movie. We evaluated our method on a set of eight movies with
diverse character styles and demonstrated high precision and
recall on a dataset of forty-six movies. We also showed that the
proposed method generalizes for animation movies at scale.
These character dictionaries can serve as a powerful tool for
character labeling to delineate aspects of who appeared, when
and for how long in a movie (video diarization). We believe
that our efforts can lay a foundation to provide an impetus for
multimedia research endeavors specifically involving animated
media content.
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Fig. 8. Number of relevant and noisy exemplars for each movie

with Rs(X) = 10% and 7 = 1

One of the drawbacks of the proposed method is that we use
an object detector that was trained with natural images. We
plan to address this issue using transfer learning to adapt the
existing models to specialize the network for detecting charac-
ters from animation movies. The relevant and noisy exemplars
that we annotated for the system evaluation can potentially be
used for these methods. Our future work would also include
using the relevant exemplars and associated cluster members as
a single unit to facilitate robust video diarization of animation
movies.

APPENDIX A
PRECISION AND RECALL OF OUR PROPOSED METHOD FOR
THE FORTY-SIX MOVIES

The Figure 9 plots precision vs. recall for all the movies in
our dataset. The relative saliency threshold and track duration
threshold was set to 10% and one frame respectively (tuned
on a subset of 8 movies as described in section IV).

APPENDIX B
EXAMPLES

Figures 10-12 illustrate the proposed character dictionaries
for three movies with the settings of relative saliency threshold
= 10% and track duration threshold = 1 frame. The exemplars
here are arranged in no particular order to maintain their aspect
ratios.
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