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Abstract. Techniques aimed at continuously changing a system’s attack surface,
usually referred to as Moving Target Defense (MTD), are emerging as power-
ful tools for thwarting cyber attacks. Such mechanisms increase the uncertainty,
complexity, and cost for attackers, limit the exposure of vulnerabilities, and ul-
timately increase overall resiliency. In this paper, we propose an MTD approach
for protecting resource-constrained distributed devices through fine-grained re-
configuration at different architectural layers. We introduce a coverage-based se-
curity metric to quantify the level of security provided by each system configura-
tion: such metric, along with other performance metrics, can be adopted to iden-
tify the configuration that best meets the current requirements. In order to show
the feasibility of our approach in real-world scenarios, we study its application
to Wireless Sensor Networks (WSNs), introducing two different reconfiguration
mechanisms. Finally, we show how the proposed mechanisms are effective in
reducing the probability of successful attacks.
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1 Introduction

In recent years, we have witnessed a growing interest in techniques aimed at contin-
uously changing a system’s attack surface in order to prevent or thwart attacks. This
approach to cyber defense is generally referred to as Moving Target Defense (MTD),
and it is currently considered one of the game-changing themes in cyber security by
the Executive Office of the President, National Science and Technology Council [1–
3]. As stated in [1], Moving Target Defense “enables us to create, analyze, evaluate,
and deploy mechanisms and strategies that are diverse and that continually shift and
change over time to increase complexity and cost for attackers, limit the exposure of
vulnerabilities and opportunities for attack, and increase system resiliency”.
? The work presented in this paper is supported in part by the Army Research Office under award
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The MTD paradigm can be successfully adopted to enforce security requirements in
networks composed of distributed and mobile devices, that are typically characterized
by limited hardware and software resources. Achieving high levels of security in such
constrained environments is not a straightforward task, and innovative approaches must
be devised. In this paper we propose an MTD strategy based on fine-grained recon-
figuration to protect resource-constrained distributed devices, which are characterized
by limited processing and storage capabilities, limited battery life, mobility, highly dy-
namic topology, and frequent failures. Our reconfiguration approach applies to different
architectural layers and takes into account not only the hardware and software features
of the nodes but also specific security and performance requirements depending on the
deployment scenario.

Although changing configuration or system parameters to augment security is a very
intuitive principle3, there is still a lack of metrics to evaluate the security provided by
a system and, consequently, quantify the benefits of reconfiguration. To this aim, we
introduce a coverage-based security metric to quantify the level of security provided
by a given system configuration. Such metric, along with commonly adopted perfor-
mance and cost metrics, is used to identify the configuration that best meets the current
requirements.

In order to show the feasibility of our approach in real applications, we consider
Wireless Sensor Networks (WSNs) as a case study. Different mechanisms have been
proposed to secure WSNs, but of most such efforts have primarily been aimed at lim-
iting power consumption by reducing the computational and storage requirements. Be-
cause of these constraints, the level of security provided by such mechanisms is quite
limited, and more complex solutions are not feasible in practice. In this scenario, an
MTD approach would make it possible to achieve better security, without requiring
computation-intensive solutions, by periodically switching among multiple lightweight
cryptosystems. Several reconfiguration mechanisms have been proposed for WSNs [4],
mainly based on network reprogramming. They operate at different architectural levels
but present similar limitations, as they are battery consuming, introduce a significant
overhead, and are potentially not secure.

In order to address these limitations, we introduce two novel mechanisms for re-
configuring sensors that provide better performance from several points of view. We
carried out a number of experiments by simulating attack scenarios where an attacker
is able to gather partial information on the adopted cryptosystem and attempts a brute
force attack. We evaluate the effectiveness of the proposed MTD approach by measur-
ing the probability of successfully completing an attack and show how reconfiguration
dramatically decreases such probability.

The paper, which extends the work presented in [5], is organized as follows. Sec-
tion 2 discusses some of the MTD approaches that have been proposed in the literature,
whereas Section 3 introduces our approach and presents the reconfigurable architec-
tural layers we take into account. Subsection 3.1 presents a coverage metric to evaluate
the level of security provided by a configuration and in Subsection 3.2 the dependency
of security on time is discussed. Section 4 illustrates two innovative reconfiguration

3 Consider, for instance, the trade-off between the key length in a cryptographic session and the
duration of the session itself.
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mechanisms for WSNs, whereas Section 5 reports experimental results. Finally, some
concluding remarks are given in Section 6.

2 Related Work

The idea behind the Moving Target Defense (MTD) is to change one or more properties
of a system in order to present attackers with a varying attack surface, so that, by the
time the attacker gains enough information about the system for planning an attack,
the system’s attack surface will be different enough to disrupt it [2, 3]. According to
the definition in [6], a system’s attack surface is “the subset of the system’s resources
(methods, channels, and data) that can be potentially used by an attacker to launch an
attack”. It depends on the system’s hardware and software features, and can be changed
by dynamically reconfiguring such features at different levels of granularity.

A common MTD practice consists in updating the cryptographic keys used for en-
cryption of communication channels: this introduces some uncertainty for attackers but
presents the problem of key distribution, that is a critical phase particularly subject to
attacks. More in general, MTD approaches (also referred to as diversity techniques)
may be applied both at the application level and at a lower level (e.g., code location in
memory), as suggested in [7]. Several low-level MTD techniques have been proposed
in the literature, based on the idea of automatically generating diverse variants of a
program to disrupt vulnerability exploits. A widely deployed example is Address Space
Randomization, that was introduced in 2000 by the PAX Team for Linux4, and has been
implemented in most modern operating systems. The basic idea is to randomize the lo-
cations of objects in memory so that an attack depending on the knowledge about the
address of these objects will fail.

Instruction Set Randomization [8] is another technique for obfuscating the language
understood by a system to protect against code-injection attacks: by randomizing the
underlying systems instructions, foreign code introduced by an attack would fail to
execute correctly, regardless of the injection approach.

Another type of low-level diversification is altering how data is stored in mem-
ory: in [9] authors present Data Randomization, a technique that provides probabilistic
protection against attacks that exploits memory errors by XOR-ing data with random
masks. Data randomization uses static analysis to partition instruction operands into
equivalence classes: it places two operands in the same class if they may refer to the
same object in an execution that does not violate memory safety. Then it assigns a ran-
dom mask to each class and it generates code instrumented to XOR data read from or
written to memory with the mask of the memory operand’s class. Therefore, attacks that
violate the results of the static analysis have unpredictable results.

Jackson et al. [10] present a diversity technique based on the generation, during
the compilation phase, of multiple functionally equivalent machine codes for the same
high-level source: with massive-scale software diversity, every user could get its own
diversified program version, so that it is impossible for attackers to run a successful
attack.

4 http://pax.grsecurity.net/
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The advantage of low-level diversity is that it does not require an understanding of
the application’s behavior and can be done automatically. However, it is only capable
of thwarting specific classes of attacks, such as code injection and memory corruption
attacks. Looking at higher-level MTD techniques, several approaches have been pro-
posed, aimed at thwarting the attacker’s reconnaissance effort: reconnaissance enables
adversaries to gather information about the target system including network topology,
configurations, network dynamics. This information can be used to identify system vul-
nerabilities, and to design and execute specific exploits.

In this regard, several approaches for dynamically changing nodes IP addresses for
proactive security have been proposed in the literature, [11–13]. In 2001, Kewley et
al. [13] presented a technique called DYNAT (Dynamic Network Address Translation),
aimed at confusing any adversary sniffing the network by obfuscating host identity in-
formation in TCP/IP packet headers when packets enter public parts of the network.
Whenever a client host wants to communicate with a protected server host, the address-
ing information contained in the header of its request packets is translated (encrypted)
by a DYNAT shim before routing the packet to the server. A server gateway receives
the packets, reverses the translation in the header fields (decryption) and obtains the
true host identity information, used to pass the packets to the target server.

Another work funded by DARPA is presented in [12] by Atighetchi et al., that give
an overview of current set of network-level defenses in the DARPA APOD (Application
That Participate in Their Own Defense) project. Among the proposed network-centric
defense mechanisms, the APOD toolkit also provides a port and address hopping mech-
anism, based on constantly changing a service’s TCP identity to both hide the service’s
real identity and confuse the attacker during reconnaissance. Packets intercepted by at-
tackers will reveal random addresses, which are valid only for a small period of time,
e.g., 1 minute. For a port attack to be successful, the attacker must discover the current
ports and execute the attack all within one refresh cycle.

Antonatos et al. [14] introduce a proactive defense mechanism called Network Ad-
dress Space Randomization (NASR) whose objective is to harden networks against
worms that use precomputed hitlists of vulnerable targets, by forcing nodes to fre-
quently change their IP addresses. In order to achieve this goal, the authors implemented
an advanced NASR-enabled DHCP server to expire DHCP leases at intervals suitable
for effective randomization. As the addresses are actually changed at the end-points of
a communication, active connections are disrupted during the update; moreover, NASR
is limited in the address space as it uses LAN addresses, and requires changes to the
end-host operating system, thus making the deployment costly.

In [15] the authors introduce an MTD technique called OpenFlow Random Host
Mutation (OF-RHM): each host is assigned an address range, selected from the en-
tire unused address space in the network, and at each mutation interval, a virtual IP is
chosen from this range and associated with the host. A Software-Defined Networking
(SDN) approach is adopted for range allocation and mutation coordination: a central-
ized controller (NOX) properly installs flows in OpenFlow switches to forward requests
and perform the address translation actions.

Finally, the MTD defense mechanism proposed in [16] is designed to protect the
identity of nodes in Mobile Ad Hoc Networks by turning the classical Sybil attack
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mechanism into an effective defense mechanism. Legitimate nodes use virtual identi-
ties to communicate and periodically change their virtual identity to increase the un-
certainty for attackers observing the network. To preserve communication among legit-
imate nodes, the network layer is modified by introducing a mechanism for mapping
virtual identities to real identities, and a protocol for propagating updates of a node’s
virtual identity to all legitimate nodes.

3 Improving Node Security

In this paper, we propose an MTD framework for reconfiguring resource-constrained
devices at different architectural levels, with the reconfiguration granularity chosen at
runtime based on current requirements. By reconfiguring a system, it is possible to
increase the overall security level it provides. Reconfiguration can be either reactive
– i.e., the system is reconfigured in response to a detected or perceived threat or new
security requirements – or proactive – the system is periodically reconfigured to limit
the amount of time each configuration is exposed to malicious observers. Additionally,
reconfiguration should be performed in a way to minimize its impact on the system in
terms of resource consumption and performance.

Reconfiguration consists in changing one or more of the system’s parameters. In
our case study focused on WSNs, we identified two main reconfigurable architectural
layers:

– Security layer. Security in an embedded network can be achieved by implementing
a proper cryptosystem. Security layer reconfiguration can be performed by switch-
ing among different cryptosystems that satisfy specific security requirements while
meeting certain performance and energy consumption constraints.

– Physical layer. In embedded systems, the software is part of the node’s firmware,
that is typically preloaded on internal read-only memory chips (ROM), in contrast
to a general-purpose computer that loads its programs into random access memory
(RAM) at run-time. Firmware provides the control program of the device and rep-
resents the skeleton where different libraries for the implementation of the available
cryptosystems and APIs can be plugged and activated via proper software switches.
Nodes can be equipped with several versions of the firmware in order to perform
physical reconfiguration when needed.

Clearly, further parameters could be considered for reconfiguration, such as the ap-
plication interface, the hardware configuration or the topology, as long as their recon-
figuration is feasible from a technical and energy consumption point of view. In order
to perform complex tasks, embedded nodes communicate with one another according
to specific application interfaces (APIs), defining the format of the exchanged messages
and the communication protocols. Reconfiguration could be applied at this level by pro-
viding different APIs for the same application. API reconfiguration could be useful to
confuse an attacker that is observing the communication protocol in order to find an
exploit to interfere with or control the communication.

As for hardware reconfiguration, it is expensive and not feasible on most of the
available devices but needed in case of damage. Network topology could be recon-
figured in terms of the view offered to external observers. This could be achieved by
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implementing a mechanism that, for instance, presents virtual identities or introduces
additional fake nodes into the network. Such a mechanism would need additional pro-
tocols and algorithms that are often too expensive for the considered nodes.

The choice of the reconfiguration level impacts both the system’s performance
and the provided level of security. From the performance point of view, changing the
firmware of all the nodes in the network or a subset of them is much more expensive –
in terms of latency and power consumption – than changing the cryptosystem, whose
reconfiguration could be handled in software. On the other side, by changing the entire
application running on a node, it becomes harder for an attacker to exploit software
vulnerabilities and gain complete control of the node.

At the security layer, the cryptosystem itself is designed to cope with a specific set
of attacks and provides an intrinsic level of security, depending on the cryptographic
scheme, the algorithm, the length of the keys, etc. Reconfiguration of the cryptosystem
can increase the level of security in two ways, that is by switching to a cryptosystem that
covers a larger set of attacks (e.g., to cope with some detected or perceived threats), or
by selecting an equivalent cryptosystem that uses different parameters. Given a certain
fixed configuration, the more an attacker is able to observe, the more he will be able
to infer information about the system. By continuously changing the system’s configu-
ration, the attacker will be presented with different views of the system over time, and
will have to restart the reconnaissance effort multiple times in order to identify a viable
exploit.

Once the admissible configurations have been identified, the selection of the new
configuration is performed by a security-driven scheduler. The scheduler can be either
a centralized entity making decisions on the global network configuration, or a de-
centralized component, independently deployed on each network node, making local
reconfiguration decisions. In a centralized approach, a central entity triggers a configu-
ration update based on some events (e.g., timer expiration, detected security threat) and
transmits its decision to all the nodes that are involved. In a decentralized approach,
each node is able to schedule, independently from other nodes, when to update its own
configuration. Communication among legitimate nodes is preserved adopting additional
mechanisms, described in details in the following section.

In the remainder of this paper, we will discuss the methodology adopted to evaluate
the level of security provided by a system configuration, and how to increase it using a
reconfiguration approach.

3.1 Security Level Evaluation

The security of complex systems depends on many technical and organizational issues
that must be properly addressed. The need for a clear definition and selection of secu-
rity rules has led system administrators to set up security policies trying to adopt formal
approaches to describe system security configurations. In spite of the ambiguity of such
policies, a common approach to evaluate a system’s security is through evaluation of
its security policy. At present, such an evaluation is performed by hand whenever en-
terprises endeavor to extend their trusted domain and cooperate [17]. This approach
also includes well known standards as Common Criteria and TCSEC [18, 19], that are
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very suitable to assess and audit the security level provided by a company, by a specific
procedure or, in general, by a system.

The Common Criteria (CC) for Information Technology Security Evaluation (Com-
mon Criteria or CC) [18] are an internationally approved set of standard for computer
security certification. They are used by Government customers in the USA and the
NATO community along with other organizations, particularly in the public sector, to
determine the level of security and assurance of various technology products. However,
the assurance levels provided by CC (from EAL1 to EAL7) do not measure the security
of the system itself, but simply state at what level the system was tested, and do not find
a direct application in our approach.

Defining a quantitative measure of the level of security provided by a system is
a complex task. Several security metrics have been proposed in the literature, mostly
based on the analysis of attack graphs or on risk quantification [20–23]. Other ap-
proaches, such as the one adopted by the Common Vulnerability Scoring System (CVSS)
[24], try to rate the severity of security vulnerabilities and assign a score to a system
based on the vulnerabilities it is subject to.

Other metrics are linked to the adopted configurations [25, 26], they are centered
on the mechanisms that are available to enforce a subset of security requirements. We
started from these considerations to introduce a metric based on the coverage of a con-
figuration respect of a set of known attacks. An attack could have several objectives,
such as physically taking possession of a node, interfering with communication at the
physical level, exploiting software vulnerabilities to take control of a node, disturb net-
work operation at routing/application level or intercept sensitive data. In this discussion
we are interested in attacks aimed at interfering, steering or eavesdropping communi-
cations at the application layer among nodes, and at exploiting vulnerabilities of the
firmware installed on nodes.

Let Threats define the set of threats of interest, belonging to the above discussed
set of attacks. A configuration c is said to cover a threat t ∈ Threats, if either the
cryptosystem implemented at the security layer or the specific firmware version running
on the node include mechanisms to protect the node from such threat.

Once the admissible configurations and the attacks of interest have been identified,
it is possible to build an Attack Coverage Table, that helps define the levels of security
provided by each configuration [27]. Table 1 shows an example of attack coverage
table relative to configurations {c1, c2, c3, c4}, under the hypothesis that three attacks of
interest have been identified, namely AttackA, AttackB and AttackC. An increasing
level of security (from L1 to L4 in the example) can be assigned to configurations,
based on the risk associated with the attacks and their coverage properties.

Attack coverage can be defined either as an ON/OFF property (that is an attack is
covered or uncovered), or in terms of the degree of satisfaction of specific requirements
(e.g. authentication, integrity, confidentiality, key distribution...), using a scoring system
(similar to CVSS for vulnerabilities). Coverage with respect to a specific attack could
even be defined in terms of the effort an attacker needs to make the attack succeed.

The level of security associated with a configuration could simply depend on the
number of covered threats, or it could be set depending on the risk associated with each
threat, either in a static way (the risk associated with a threat is set at deployment and
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Table 1. An example of Attacks Coverage Table

Conf Attack A Attack B Attack C SL
c1 × L1

c2 × × L2

c3 × × × L3

c4 × × L2

L1 

L2 

L3 

T0 T1 T2 t 

Security 
level 

C1 C2 C3 

C1 C2 C3 

reconf reconf 

Fig. 1. Reconfigurations and security level

remains unchanged for the entire operation of the network) or dynamically (the risk
associated with a threat changes dynamically during network operation depending on
current conditions and possible detection events).

3.2 Modeling the Security Level

As previously said, each configuration provides a certain level of security, which de-
pends on the implemented cryptosystem (cryptographic scheme, algorithms, and keys)
and is characterized by an intrinsic value. Indeed, the longer a system configuration is
exposed to malicious observers, the more the actual level of security decreases. For this
reason, the security level is a monotonically decreasing function, with its maximum
corresponding to the intrinsic security level associated with the specific implemented
cryptosystem.

As illustrated in Fig. 1, using reconfiguration, we can prevent the security level
from falling below a certain threshold, and periodically reset it to the intrinsic value
associated with a new configuration. Dually speaking, we avoid that the probability of
successfully completing an attack increases beyond a certain threshold. In fact, such
probability depends on the considered type of attack and is usually represented by a
monotonically increasing function: the longer an attacker can try to exploit a system,
the higher the success probability is. It is easy to demonstrate that, by introducing re-
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configuration, we can break the monotonicity, such that the probability of successfully
completing an attack actually decreases every time the system is reconfigured.

Theorem 1. Let [0, T ] be an observation interval, and let n ∈ N be an integer greater
than or equal to 2, representing the number of reconfigurations in [0, T ]. Then the fol-
lowing inequality holds.

Pr (success ([0, T ], n)) ≤ Pr (success ([0, T ], 0)) (1)

where Pr (success (I, x)) denotes the probability that the attacker is successful within
the temporal interval I if x reconfigurations are performed during the same interval.

�

In order to prove Theorem 1, we need to consider that the probability that the at-
tacker will successfully break the cryptosystem between 0 and T when the interval
[0, T ] is broken down into n validity intervals – and a different cryptosystem is used in
each such intervals – can be written as

Pr(success([0, T ], n)) = 1− Pr(¬success([0, T ], n)) (2)

The probability Pr(¬success([0, T ], n)) that the attacker does not succeed by time
T is the probability that he does not succeed in any of the n validity intervals.

Pr(¬success([0, T ], n)) = Pr(¬success
([
0, 1

n · T
])

∧¬success
([

1
n · T,

2
n · T

])
∧ . . . ∧ ¬success

([
n−1
n · T, T

])
)

(3)

The events ¬success
([
0, 1

n · T
])

, . . ., ¬success
([

n−1
n · T, T

])
are clearly inde-

pendent, thus Pr(¬success([0, T ], n)) can be computed as follows.

Pr(¬success([0, T ], n)) =
n−1∏
i=0

(
1− Pr

(
success

([
i

n
· T, i+ 1

n
· T
])))

(4)

As the probability that the attacker can break the system in a given interval is di-
rectly proportional to the length of the interval itself, we can conclude that, for all
i ∈ [0, n − 1], Pr

(
success

([
i
n · T,

i+1
n · T

]))
= Pr(success([0,T ]))

n . This conclusion
relies on the simplifying assumption that the different cryptosystems used in our frame-
work are equivalent in terms of attack time. Generalizing this result to the case of het-
erogeneous cryptosystems is straightforward, but it is omitted for reasons of space.
Additionally, the above conclusion assumes that the interval [0, T ] is larger than the
time needed to complete a full brute force attack5. Then, Equation 4 can be rewritten as
follows.

5 If Pr(¬success([0, T ])) = 1, then there may exist a sub-interval [ti, tj ] of [0, T ] such that
Pr(¬success([ti, tj ])) = 1.
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Pr(¬success([0, T ], n)) =
∏n−1

i=0

(
1− Pr(success([0,T ]))

n

)
=
(
1− Pr(success([0,T ]))

n

)n (5)

In order to complete the proof, we need the results of another theorem:

Theorem 2. Let x ∈ [0, 1] be a real number and let n ∈ N be an integer number. The
following inequality holds. (

1− x

n

)n
≥ 1− x (6)

�

Using the binomial theorem, the expression
(
1− x

n

)n
can be expanded as follows.

(
1− x

n

)n
=

n∑
k=0

(
n

k

)(
−x
n

)k
=1− x+

n∑
k=2

(
n

k

)(
−x
n

)k
(7)

To complete the proof, we need to show that the alternating series
∑n

k=2

(
n
k

) (
− x

n

)k
is greater than or equal 0. As the first term in the series is positive, we only need to show
that all the terms have decreasing absolute values. In order to do so, we now show that
the ratio between two consecutive terms is greater than 1.∣∣∣∣∣

(
n
k

) (
− x

n

)k(
n

k+1

) (
− x

n

)k+1

∣∣∣∣∣=
n!

k!·(n−k)!
n!

(k+1)!·(n−k−1)! ·
x
n

=
n · (k + 1)

(n− k) · x
(8)

It is clear that the quantity at the right end side of Equation 8 is greater than 1, as
n · (k + 1) ≥ n and (n− k) · x ≤ n. Using Theorem 2, we can conclude that(

1− Pr (success ([0, T ]))
n

)n

≥ 1− Pr (success ([0, T ])) (9)

Combining Equations 2, 5, and 9, we can write

1− Pr (success ([0, T ] , n)) ≥ 1− Pr (success ([0, T ])) (10)

Equation 1 follows directly from Equation 10.
In conclusion, Theorem 1 shows that, in theory, the proposed mechanism is effective

in reducing the probability that the attacker will successfully discover currently used
cryptographic keys in a given amount of time. In other words, it will take more time for
the attacker to break the system. Experiments reported in the next section confirm this
result.

In the following, we will refer to the level of security as a security metric to express
how secure is a configuration with respect to the considered attacks. A security value
can be assigned, based on the attacks coverage table, both to a single node and to a
link, defined as a connection between communicating nodes. Node security is related
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primarily to the physical layer (e.g., tamper resistant HW, protected external ROM),
while subnet security depends on the security layer (e.g., cryptographic algorithm, key
length, key agreement mechanisms); as previously discussed, both also depend on the
reconfiguration mechanism itself, that is on time.

Assume that the set SEC of available cryptosystems is a totally ordered set: given
s1, s2 ∈ SEC, there is an ordering relation between them, and s1 ≤ s2 means that the
cryptosystem s1 is not more secure than the cryptosystem s2. It is possible to have ele-
ments in SEC that are equivalent from the security point of view, adopting for instance
the same algorithm but using different parameters (e.g. different keys).

Assume the sequence of the M configurations adopted by a node n is given by
〈C1(n), . . . , CM (n)〉, and the sequence of time instants in which such configuration
were activated is 〈T1(n), . . . , TM (n)〉.

Let the configurations Ci(p) = (imi(p), apii(p), si(p)) and Ci(q) = (imi(q),
apii(q), si(q)) be the i-th active configurations respectively on node p and q. Note that
in order for the nodes to be able to communicate, they should either share the same se-
curity and API configurations, or they should be provided with a mechanism to always
know what is the configuration currently used by other legitimate nodes. Let Ti(p, q)
identify the initial time instant when the status of p and q is such that they are able to
communicate. In the following, we will refer to a link as a directed edge (p, q) con-
necting two nodes involved in a communication, with packets traveling from p to q. A
link configuration is defined as Ci(p, q) = (Ci(p), Ci(q)).

Let us refer to SL(p,q)(t) as the level of security, at time t, of a link (p, q). It is
the level of security associated with the cryptosystem used to secure data flow from p
to q, denoted with si(p, q). With SLp(t) we identify the level of security of node p,
depending on its physical configuration imi(p) and on time.

Definition 1 (Level of security of a link). The level of security SL(p,q)(t) of a link
(p, q), provided by Ci(p, q) at time t ∈ [Ti(p, q), Ti+1(p, q)], can be expressed as a
function of the specific cryptosystem adopted si(p, q) and the time elapsed since the
current configuration was activated.

SL(p,q)(t) = f(si(p, q), t− Ti(p, q)) (11)

Definition 2 (Level of security of a node). The level of security SLp(t) of a node p
can be expressed as a function of the specific firmware adopted imi(p) and the time
elapsed since the current physical configuration was activated.

SLp(t) = f(imi(p), t− Ti(p)) (12)

Finally, we can define the Security Level associated to a configuration as:

Definition 3 (Level of security of the network). Assuming that the network is parti-
tioned in different subnets, each composed of nodes communicating with one another
with a certain interface (security and application layer), the overall level of security of
the network depends both on the security of nodes composing the network, and of the
different subnets, other than on time.
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SLnet(t) = A ·
N−1∑
i=0

N−1∑
j=0,j 6=i

αij · SL(i,j)(t) · xij +B ·
N−1∑
i=0

βi · SLi(t) (13)

where

– A and B represent the relative importance of the set of links and the set of network
nodes respectively, and satisfy the following constraint: A+B = 1.

– theαij constants represent link weights, and the βi constants represent node weights
and are useful to give more importance to critical nodes or portions of the network.
They are subject to the following constraints:∑N−1

i=0

∑N−1
j=0,j 6=i αij = 1

∑N−1
i=0 βi = 1

(14)

– the xij variables represent the existence of links and are defined as follows:

xij =

{
1 if i 6= j and ∃ a link between node i and j
0 if i 6= j and @ a link between node i and j (15)

4 WSN Reconfiguration: a Case Study

A WSN is an embedded network composed of a base station – able to perform multi-
node data fusion and complex application logic, and often provided with a consis-
tent source of energy – and several motes, which merely perform local processing on
sensed data. Nodes communicate by exchanging messages over a radio channel: the
base station sends queries to motes in order to sample physical variables (e.g., humid-
ity), whereas motes simply reply to these queries by sending unicast messages to the
base station.

Security is a fundamental concern in WSNs, as they are widely adopted in several
critical application domains. Nevertheless, because of their peculiar features – con-
strained processing and storage capabilities, limited battery life, highly dynamic topol-
ogy and mobility, frequent failures – providing security is not a straightforward task.
The introduction of security mechanisms has a strong impact on performance and re-
source consumption, that often represent a limiting factor. For this reason, although the
adoption of a complex cryptosystem (e.g., based on public key primitives) for all net-
work activities could be desirable from a security point of view, it is not feasible in
practice. The proposed reconfiguration approach is able to overcome these concerns, as
it allows to maintain an acceptable level of security in the network by leveraging not
only the intrinsic features of the adopted cryptosystems, but also other features, such
as the physical configuration and the application interfaces, other than the reconfigu-
ration mechanism itself. This way, the use of simpler cryptosystems for short periods
of time can be preferable to the adoption of a single strong but computation-intensive
cryptosystem.
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In this discussion, we refer to TinyOS, the most commonly adopted operating sys-
tem for WSNs. TinyOS applications and the OS itself are built by connecting com-
ponents that represent functional building blocks, such as communication protocols,
device drivers, or data analysis modules. During the default compilation process of
TinyOS, these building blocks are converted into a monolithic, static binary, to enable
code optimization and ensure a small memory footprint. This means that the OS and
its applications’ executables lack modularity, and it is not possible to dynamically re-
place a single component at runtime. Security mechanisms could be implemented either
as independent TinyOS components or as different static libraries wired in the same
component, whose functions are invoked by applications to ensure security require-
ments. Reconfiguration of both the security layer and the application interfaces could
be easily achieved by including the implementation of all the available solutions into
the firmware installed on the device, and activating the desired configuration through
software switches and ad hoc protocols. Firmware reconfiguration can be performed by
adopting node reprogramming techniques, that will be illustrated in details later. Two
innovative approaches to reconfiguration are presented in the following subsections,
along with some implementation details.

4.1 Security Layer Reconfiguration

Assume that, in order to enforce security, queries are signed by the base station for
authentication purposes, and reply messages are encrypted for ensuring confidentiality
and integrity. The security layer performing these operations can be designed to im-
plement different cryptographic protocols, depending on the required security level and
available resources. The basic idea of the proposed approach is to dynamically change
the security layer, by switching between two or more different implementations. We as-
sume that each node is provided with a pool of different cryptosystem implementations,
which are identified by a unique ID.

To give a concrete example, we refer to the two cryptosystems presented in [28],
based respectively on Elliptic Curve Cryptography (WM-ECC libraries) and Identity-
based cryptographic techniques (TinyPairing libraries). WM-ECC [29] provides key
agreement algorithms and digital signature that can be used to authenticate packets in
the sensor network. It provides support for all the ECC operations and we used it to
implement a hybrid cryptosystem [28] based on a public key function for ensuring au-
thentication of the base station, and on a key agreement protocol for establishing a sym-
metric key, to be used for encryption/decryption of data packets sent by the motes. Tiny-
Pairing [30] is an open-source pairing-based cryptographic library for wireless sensors,
providing an interesting solution to the key management problem, that still represents
an open issue in WSN security research.

From a security point of view, the cryptosystem based on WM-ECC does not au-
thenticate public keys, thus allowing man-in-the-middle attacks in the key exchange
phase. Moreover, sensitive data is encrypted with a symmetric cipher, and this increases
overall vulnerability of the network. Instead, TinyPairing adopts an asymmetric scheme
and is much more secure in the initialization phase as it does not use a key exchange
mechanism. As stated in Section 3.1, the intrinsic level of security of the two configura-
tions can be represented by an attack coverage table, identifying, for each configuration,
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Fig. 2. Security protocol reconfiguration

what attacks it is able to thwart or, dually, what requirements it is able to satisfy. Table 2
shows an example of attack coverage table for the two cryptosystems (configurations)
considered here. In this case, coverage is not defined as a binary property, but through
a qualitative score capturing the level of protection provided by the configuration with
respect to each considered attack.

Table 2. Attack Coverage Table for the considered cryptosystems

Configuration Man-in-the-middle Eavesdropping Brute force Replay attack

WM-ECC non-auth key yes weak symm no
TinyPairing auth key yes asymm no

In the simplest reconfiguration scenario, each node can decide independently when
to update, and an identifier of the cryptosystem used to encrypt a message is encoded
in the message itself, so that each receiving node, sharing the same reconfiguration
strategy, is able to properly handle it.
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Fig. 2 illustrates a typical scenario for security protocol reconfiguration. In the INIT
phase, the base station and the motes agree on the parameters of N different cryptosys-
tems. The details of the initialization phase depend on the specific cryptosystems (the
parameters can be public points for an ECC based cryptosystem, or system parameters
for an identity based [28]). Initialization should be performed in a secure environment,
either in the pre-deployment phase or later. After initializing the N available cryptosys-
tems, each node can independently choose the valid cryptosystem to adopt for per-
forming cryptographic operations in the current validity interval. In particular, the base
station choses the cryptosystem it will use to digitally sign the outgoing queries and
ensure authentication (CRYPTO(i) in figure). Any mote receiving the query message
will use the cryptosystem whose ID is included in the message itself to verify the sig-
nature. Similarly, after verifying the signature, any mote encrypts data using the locally
selected cryptosystem (CRYPTO(j) and CRYPTO(w) in figure), and the base station will
use the ID included in the reply messages to decrypt them.

As illustrated in Fig. 2, the parameters of the N cryptosystems (i.e., the crypto-
graphic keys) could be either preloaded on all network nodes in the INIT phase, or
dynamically determined in each reconfiguration phase according to available key agree-
ment mechanisms. All the cryptographic keys can be stored in each node for the entire
lifetime of the network, and they can be used as master keys for generating new keys.

As discussed in Section 3, the introduction of reconfiguration mechanisms impacts
a system’s performance by introducing some overhead depending on the mechanism
itself and the particular architectural level it is applied to. Each reconfiguration solution
that encompasses switching among different implementations of the same functionality
is characterized by an unavoidable increase in memory storage, at least to include the
different available versions and the additional mechanisms to implement the reconfigu-
ration itself. Referring to the application security reconfiguration mechanism proposed
in this section, each node will be loaded with an application image including the bi-
naries of all the available security libraries and their initialization parameters, along
with the software switches needed to dynamically select different security primitives.
Clearly, this could represent a problem for constrained devices such as sensor nodes,
that are typically equipped with a small flash memory and RAM, therefore a more pru-
dent design of security libraries should be devised in order to save as much memory
as possible. As for energy consumption and required CPU computational effort, the
proposed solution does not affect them, since cryptographic operations belonging to
different libraries are activated by simple software switches. Moreover, there is no la-
tency to swap from a cryptosystem to another and we do not need to stop the monitoring
application during the reconfiguration.

Let us now take a look at possible security weaknesses of this strategy: an attacker
who is aware of the message format may try to manipulate some fields of query and data
packets, such as those coding the cryptosystem ID and its parameters, so that nodes are
no longer able to communicate. As for query messages, their payload is signed with
the base station’s private key, so that, if any field is altered during transmission, the
signature verification at mote’s side will not succeed, and the message will be discarded.
This aspect of the protocol could be exploited to execute a denial of service attack, with
motes not able to verify the authenticity of queries and thus refusing to provide the
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required data. To detect this type of attack, a timeout is set by the base station every time
a query is sent. If no reply is received before the timer expires, the query is sent again to
cope with possible message losses. If no reply is received after a few attempts, an alert is
raised. The cryptosystem ID is also encoded in each response message, as it is necessary
to decrypt the message. An attacker could alter it as messages are not authenticated, but
then the base station will not be able to decrypt them, and will discard them. This
situation may cause the loss of some response messages. However, as a typical sensor
network is composed of many redundant motes, this situation is not critical.

4.2 Physical Layer Reconfiguration

Several existing approaches for sensor network reprogramming perform a full-image
replacement, consisting in completely replacing the image of the application running
on a node. Deluge [31] is a reliable data dissemination protocol for propagating large
data objects (larger than a node’s memory) from one or more source nodes to many
other nodes over a multi-hop network. As Dutta et al. pointed out in [32], this approach
is unsafe and too battery-consuming. We implemented a different approach to remotely
reconfigure each node in the network. We decoupled the reconfiguration mechanisms
from the components to enforce the new configuration according to a scheduling policy.

To this aim, we designed a reconfiguration application by augmenting several com-
ponents of the Deluge framework. In particular, we implemented new reconfiguration
functionalities to enable a single node to swap to a new image that was previously
preloaded on its storage. The reconfiguration application is defined by wiring new com-
ponents specifically designed to manage external reconfiguration commands, and com-
ponents designed to manage the images loaded on the node storage. The proposed re-
configuration application consists of three main components, namely (i) a bootloader
component, (ii) a reprogramming component, and (iii) a management component.

External Flash Memory 

Hardware Components  

Image1 Imagen … 

BootLoader 

M
anagem

ent 

Reprogramming 
 
 
 ReProg Store 
Manager 

Fig. 3. Reconfiguration Application components

The bootloader component is a persistent layer in the architecture, which can en-
force the chosen reconfiguration mechanisms. This component is intended for TinyOS
and provides needed functionalities to program the node with an already stored program
image. The parameters passed to this component are specified in the external command
and indicate the location of the binary in the external flash memory to program the
node’s microcontroller. When reprogramming is requested, the bootloader will erase



17

the program flash and write the new binary to it. On completion, it jumps to the first
instruction of the new application.

The reprogramming component is the core of the reconfiguration application. In
our implementation, it accepts commands from the base station, but can be extended to
implement a decentralized reconfiguration approach. This component is built by con-
necting two primary subcomponents: the ReProg and the StorageManager. The Re-
Prog component is an extension of the NetProg component of Deluge T2. It handles a
reprogramming request from the network by providing a dedicated API to initialize a
reconfiguration process. When a node wants to perform a reconfiguration, it only has to
invoke this API by specifying the name of the new binary in the flash memory to load.
Subsequently, the ReProg sets the environment variables needed by the bootloader com-
ponent and reboots the node. The StorageManager component deals with image name
resolution, mapping names of program images to their respective physical addresses in
the external flash memory.

The management component has a master (base station) and a mote side. It is used
to initialize the mote and deploy different images. Usually this operation is done in
a secure environment and it is accessible only during the initialization. The master-
side management component has been derived from the tos-deluge application of the
Deluge T2 Framework, and it is called mote-manager. This component allows to inject
one or more images into the mote by writing directly into nodes’ external flash memory
volumes. It is also possible to erase a volume and ping the status of a mote to get
information about already injected images.

Finally, the reconfiguration application runs on a workstation connected to the base
station, which implements the reprogramming scheduler. As discussed in the next sec-
tion, the reprogramming frequency and the new configuration to load can be chosen to
balance overhead and attack probability.

Clearly, physical layer reconfiguration introduces a greater overhead than security
layer reconfiguration, as it is based on full image replacement. As previously discussed,
due to resources limitations, a node’s memory cannot be preloaded with many different
application images. Consider that the monitoring application we implemented occupies
about 16 KB of ROM and 700 Bytes of RAM on a telosB platform, equipped with a 48
KB ROM memory and a 10 KB RAM.

The proposed solution introduces considerable advantages in terms of overall per-
formance with respect to WSN reprogramming approaches based on code dissemina-
tion. In fact, the reconfiguration time is now not dependent on the image size and the
network topology as the images are not sent over the network but preloaded via a se-
rial interface. This approach avoids any security risk in the dissemination phase, and
reduces the battery consumption as it only needs the introduction of a simple command
message to swap from an image to another one. As the available application images are
all loaded on the node’s external memory, the swapping latency is considerably reduced
with respect to the code dissemination case. We experimented a reduction of one order
of magnitude with respect to the original Deluge approach: from 50 seconds to send a
40Kb image implementing a monitoring application secured with WM-ECC, to about
6 seconds to perform the swap.
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One known drawback of this approach is the need to stop the monitoring application
and any ongoing query in order to swap to another image. Nevertheless, as previously
discussed, any available approach that is based on full image replacement presents even
worst issues. A possible solution to mitigate this problem could be that of delaying
the reconfiguration operation if the node is involved in some communication, or paus-
ing an ongoing communication until reconfiguration is completed. It is up to network
administrators to decide frequencies and strategies for node reconfiguration. As for pos-
sible security weaknesses of this solution, some attacks can be considered undermining
this reconfiguration mechanism. First of all, preloading nodes with all images exposes
them to physical compromise. We can assume that, in presence of strict security re-
quirements, nodes are equipped with tamper-resistant packages so that they cannot be
compromised. Moreover, an attacker may try to replay control packets sent by the base
station and containing a reconfiguration command, in order to control communication
or simply perform a denial of service attack by forcing motes to continuously swap im-
ages. This risk can be prevented by introducing a sequence number for reconfiguration
commands and proper channel encryption.

5 MTD Evaluation

In order to evaluate the effectiveness of security-driven reconfiguration – even under
adverse conditions – we assume that an attacker is able to understand when the adopted
cryptosystem changes and what type of cryptosystem is used at each time (e.g., by
observing control messages sent over the network by the base station in the node recon-
figuration strategy, or control flags found in data packets in the protocol reconfiguration
strategy).

Many types of cryptographic attacks can be considered. In our case, an attacker can
only observe encrypted packets traveling on the network and containing information
about sensed data, and can perform a brute force attack on captured packets by sys-
tematically testing every possible key for the current (known) cryptosystem – assuming
he is able to determine when the attack is successful. In the worst case (for the de-
fender), the attacker knows the encryption algorithm and the key length associated with
the algorithm, therefore he can systematically try all possible keys of that length. In the
intermediate case, the attacker knows the encryption algorithm but does not know the
key length associated with it, thus he systematically tries all possible keys for a given set
of key lengths. In the best case, the attacker does not know anything about the adopted
cryptosystem, thus he tries all possible keys for a given set of key lengths and a given
set of cryptosystems.

We evaluated our approach with respect to the cryptosystems described in [28],
whose characteristics are summarized in Table 3.

The WM ECC sk and WM ECC rc5 cryptosystems are both based on the WM-
ECC library, used to execute key exchange and digital signature operations. They both
perform symmetric encryption using respectively a Skipjack cipher with a 80 bit key
and an RC5 cipher with a key of 160 bits. The TinyPairing cryptosystems is based on
TinyPairing and uses a 208 bit key. In Table 3, the time needed to test a single key is
reported for each cryptosystem, along with the maximum attack time, that is the time
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necessary to test all the possible keys. The reported execution times (third column) refer
to the execution of the decryption operation on TelosB devices, equipped with a 4.15
MHz MSP430 microcontroller, a CC2420 radio chip, a 10 KB internal RAM, and a 48
KB program flash memory.

The maximum attack times reported in the fourth column of Table 3 have been com-
puted analytically based on the measured time needed to perform a single decryption
operation. It is important to point out that these attack times are significantly high due
to the nature of the attacks we considered. In practice, attacks may be more sophisti-
cated and efficient than brute force attacks. However, this does not affect the validity
of the proposed MTD approach as we are interested in illustrating how the probabil-
ity of successfully completing an attack decreases, compared to a static configuration
scenario.

Table 3. Characteristics of cryptosystems

Cryptosystem key lenght (bits) time (ms) max attack time (ms)
WM ECC sk 80 0.001251 1.5123E+21
WM ECC rc5 160 0.001221 1.7845E+45
TinyPairing 208 13.019531 5.3560E+63

We carried out our experiments considering both worst and intermediate cases, and
analyzed the cumulative distribution function (cdf) of the attack time. In both cases, we
simulated an attacker sequentially exploring the key space. We considered an observa-
tion interval as long as the attack time of the most complex cryptosystem, TinyPairing,
and validity intervals of decreasing length. A validity interval is the time interval in
which a single system configuration is active. At the end of the i-th validity interval, the
new configuration to activate should be chosen based on a specific strategy (e.g., related
to security or battery consumption requirements) in order to maximize reconfiguration
benefits. However, for the sake of simplicity, the results shown in this section have been
obtained by performing random choices among the available cryptosystems at each
validity interval. In particular, during an observation interval, we randomly generated
1,000 different sequences of valid cryptosystems and recorded the time of successful
attacks to build the cdf. Clearly, the sequence length depends on the chosen validity
interval.

In the first experiment, we chose three validity interval lengths in such a way to
be comparable to the maximum attack times of the three different cryptosystems. The
resulting attack time’s cdf in the worst case is shown in Fig. 4: the labels in the figure
– note that the x-axis is on a logarithmic scale – identify three inflection points in the
middle of the maximum attack times of each cryptosystem. These correspond to the
maximum values of the attack time probability distribution functions (pdf) for each
cryptosystem.

When analyzing the chart, a seemingly counterintuitive behavior can be identified:
when considering smaller validity intervals the attacker seems to benefit.
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Fig. 4. Worst case attack time cdf for large validity intervals

The chart can be explained as follows. The WM ECC sk cryptosystem can be cer-
tainly broken in 1.5123E+21 ms (worst case for WM ECC sk) as shown in Table 3.
This means that, if randomly selecting one cryptosystem among the 3 available, and
choosing a validity interval greater than this threshold, the cryptosystem will always be
broken. As each cryptosystem has a 33% probability of being selected at next reconfig-
uration time – based on our assumptions – in 33% of cases the system will be broken.
Similar considerations can be made for the other two cryptosystems, explaining the
other inflection points.

As illustrated in Fig. 5, when reducing the length of the validity interval – with va-
lidity intervals larger than the maximum attack time of the weakest cryptosystem – the
attack time increases, with the percentage of successful attacks reducing dramatically.
The same behavior is highlighted in Fig. 6, which shows how the probability of com-
pleting a successful attack within a time t varies as the length of the validity interval
changes: as soon as the validity interval drops below the maximum attack time of the
weakest cryptosystem, the rate at which probability decreases becomes higher.

Similar results can be obtained when reconfiguration is performed by selecting an
equivalent cryptosystem that uses different parameters (i.e different keys). Fig. 7(a)
shows the attack time’s cdf in the worst case when reconfiguration is performed by
switching among three cryptosystems that implement the WM-ECC library with the
Skipjack cipher, but have different keys. When reducing the validity interval, the proba-
bility of successfully completing an attack significantly decrease as the intrinsic security
level is restored every time a new key is adopted. For comparison purposes, Fig. 7(b)
shows the attack time’s cdf when three different cryptosystems are used. As expected,
increased diversity results in a lower probability of attack.

Fig. 8 compares the attack time’s cdf for the intermediate and the worst cases, under
the assumption that the attacker performs a brute force attack using the set of key lengths
in Table 4. The validity interval of 5,36E+45 milliseconds is long enough to break
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both WM ECC sk and WM ECC rc5. As shown, the attacker’s success probability is
smaller in the intermediate case. Clearly, when the attacker’s uncertainty about the used
cryptosystem is higher, more key lengths will be tested, making the proposed approach
even more effective.
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6 Conclusions

In this paper, we have proposed an MTD approach for protecting resource-constrained
distribute devices. The proposed approach is based on fine-grained reconfiguration at
different architectural layers. Changing configuration or system parameters to augment
security is an intuitive principle, but there is still a lack of metrics to evaluate the security



23

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1.E+00 1.E+08 1.E+16 1.E+24 1.E+32 1.E+40 1.E+48 1.E+56 1.E+64

At
ta

ck
 p

ro
ba

bi
lit

y 
(%

) 

Attack Time (milliseconds) 

worst case intermediate case

T = 5.36e+45 ms 

Fig. 8. Worst case vs. intermediate case

Table 4. Key lengths set

Cryptosystem key len (bits) time(ms)
WM ECC sk [80] [0.001251]
WM ECC rc5 [120,160] [0.001120,0.001221]
TinyPairing [180,208] [11.023211,13.019531]

level of a system and quantify the benefits of reconfiguration. We have introduced two
innovative MTD mechanisms to reconfigure the network, and experimentally showed
that the proposed mechanisms are effective in increasing the complexity for the attacker
to successfully complete an attack. In the near future, we plan to work on different ways
to extend and generalize this approach. Indeed, we are already working on a formal
model of reconfiguration. Furthermore, we plan to define mechanisms to automatically
enforce reconfiguration strategies based on external events or on the system’s state.
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