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University of Napoli Federico II (Italy) – Email: {a.botta, pescape}@unina.it

Abstract—The bursty nature of losses over the Internet is
constantly asking for effective solutions. Packet interleaving or
time diversity allows to cope with loss burstiness, at the cost
of an additional delay. In this work, after determining the
loss burstiness degree of real networks, we implement a real
interleaver (we called TimeD), and we tackle the problem of
how to apply such a transmission schema to UDP flows in real
networks. For this aim, we propose a methodology composed of
the following steps: (i) firstly, we develop a simulator to study the
potential benefits of TimeD, understanding its loss decorrelation
power and determining the interleaving configurations most
suited to different network conditions and loss burstiness degree;
(ii) then, using an emulated network, we validate TimeD and
derive important operating parameters; (iii) finally, we study
TimeD over a real satellite network. Thanks to this multifarious
analysis we are able to move step-by-step from the theory to the
practice, showing how it is possible – using TimeD – to actually
decorrelate bursty losses and increase the performance of real
applications.

I. INTRODUCTION AND MOTIVATION

Packet loss, especially when happening in bursts, degrades

the performance of Internet applications, affecting the quality

perceived by the users (the so called Quality of Experience).

Several studies in literature report the characteristics of the

loss process in different environments (backbone [1] and stub

networks [2]), with different kinds of traffic (unicast [3] and

multicast [4]), different protocols (UDP [3] and TCP [5]), and

at different time scales (sub-round trip time [6] or larger [5]).

They found, and we also experimentally confirm these findings

(see Sec. V-A), that losses on the Internet are not isolate but

rather happen in bursts. The problem is that the performance of

the applications (e.g. streaming using predictive codecs such

as MPEG) is more impacted by bursty losses than by the same

quantity of isolated losses [7], [8].

To cope with this problem, different techniques have been

proposed, which can roughly be classified as FEC- and ARQ-

based. Such techniques normally imply overhead in terms of

error-correction information, which have to be added before

transmission (FEC) or retransmitted in case of loss (ARQ).

Interleaving, also known as time diversity, represents a good

candidate for network scenarios with bursty losses, allowing to

spread the losses without transmitting additional information.

Different approaches have been proposed for applying inter-

leaving in TCP/IP networks. They are typically based only

on theoretical and simulative works, or, when presenting real

implementations, they are tight to specific applications.

In this paper we propose, for the first time in literature, a

practical approach for studying the time diversity at packet

level in real networks affected by bursty losses. Even if the

approach is not tight to a particular transport protocol, in this

work we explicitly target UDP flows. Our choice is motivated

by the expected rise of UDP traffic volume [9], [10], [11],

which steps from the momentum of applications (e.g. VoIP,

streaming, p2p IPTV, etc.) and new protocols (e.g. uTP) for

p2p applications that deeply rely on UDP, also to avoid traffic

shaping techniques. As reported in [10], in the period 2002-

2009, UDP has gained popularity, especially considering the

number of flows: UDP allows efficient establishment and

maintenance of p2p overlay networks, while the use of random

ports evades detection by port-based traffic engineering or

filtering techniques. This increasing trend in UDP usage has

been seen all over the world, with a peak in data from China

where UDP-based p2p IPTV traffic is already common.

To the best of our knowledge, there are no platforms

implementing packet interleaving in real networks. Also, no

methodologies are provided to study pros and cons of a real

packet-level interleaver. With the methodology presented in

this paper, we show how the proposed interleaver can be

used in real networks without being dependent on a particular

application, codec, or protocol. Our work extends the literature

in that: (i) we study the burstiness of losses over real networks;

(ii) we present a tool (called TimeD) implementing time diver-

sity at packet level; (iii) we propose a complete and repeatable,

three-steps methodology (i.e. based on simulation, emulation,

and experimentation) to study packet-level time diversity in

real networks; (iv) we analyze, discuss, and propose practical

and effective solutions for several issues arising from the use

of an interleaver in real networks; (v) we publicly release the

implemented tools (both the simulator and TimeD); (vi) we

provide results on the use of TimeD in a real satellite network,

demonstrating its positive impact on loss burstiness and video

application performance.

II. TIMED: TIME DIVERSITY AT PACKET LEVEL

In this section we discuss the loss model we consider for

the analysis, and we describe our approach and the tool in

which it is implemented.

A. Loss model

In this work we assume that the loss process we are dealing

with follows a 2-state Markov chain (2-MC) [12], [6]. Such

model is used for the analyses performed in both simulation

(see Sec. III) and emulation (see Sec. IV). In Sec. V-A we also

evaluate the characteristics of the loss process over a satellite
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network. The loss model based on 2-MC is also known as

Gilbert-Elliott model [13], [14]. Such model is able to capture

the potential correlation between consecutive losses both on

the Internet [3] and on wireless networks [15]. Two important

parameters of this model are: πb, which is the average loss

probability (i.e. the steady-state probability of staying in state

bad); and ρ, which represents the correlation between losses

(i.e. the higher ρ, the more losses are bursty). It is also worth

noting that 2-MC is not the only or the fittest model for packet

loss. It has actually been shown that Markov chains with more

states are able to obtain higher modeling accuracy in some

cases [3]. However, 2-MC represents the best compromise

between complexity and accuracy.

B. The approach

We focus our attention on time diversity at packet level

mainly for two reasons: (i) the losses on the Internet happen at

such level, and (ii) to exploit the flexibility of IP, being not tied

to a particular technology, transport protocol or application.

The basic idea to realize packet interleaving is to resequence

packets before transmission. Resequencing allows to space

out originally close packets, so that a loss of consecutive

packets is translated in a loss of distant ones. The main

drawback of packet interleaving is the delay introduced. In

order to resequence k packets, it is necessary to wait for them.

Such delay is however acceptable for several applications

(e.g. audio and video streaming, p2p file sharing, etc.) and,

more importantly, it is controllable through the length of the

interleaving sequence. When the length of the sequence is

chosen, determining the optimal permutation of such sequence

is not an easy task. As exhaustive searching the optimal

permutation is usually not feasible, interleaving is commonly

implemented in blocks (we refer to it as block interleaving).

Block interleaving is made inserting packets into a matrix by

rows, and picking them by columns. Basically, the traffic flow

is divided in sequences of k packets. Each sequence is then

placed into a block: a matrix of size k = n×m where n, the
number of rows, is called interleaving depth. The effectiveness

of such transmission schema depends on the values of n and

m 1 as well as on network conditions. A burst of length B will

be converted in smaller bursts of length B/n. When n ≥ B we

are able to convert the burst in an equivalent number of isolated

losses, spaced of m or m−1 packets. Therefore, increasing n
and m, the capacity of converting bursts into isolated losses

increases. On the other hand, there are two counter effects: (i)

the number of smaller bursts increases; (ii) the buffering delay

increases. We implemented time diversity at packet level, using

block interleaving, in a platform we called TimeD, and the

trade-off described before represents one of the main aspects

we considered in order to deploy TimeD in real networks.

C. TimeD design and implementation

TimeD is a user-space application that interleaves IP packets

generated by or traversing a Linux host. TimeD is written in

1Once k and n are chosen, m is automatically determined.

C language and works over Linux platforms. Besides other

interesting features, Linux provides more flexibility and allows

the interleaving application to be easily deployed as an em-

bedded system in any operational network. Moreover, TimeD

is a user-space application, which allows to interact with user-

space monitoring applications, whose output is useful to tune

the interleaving parameters (see Sec. II-D). TimeD uses the

libipq2: a mechanism provided by netfilter3 for passing packets

out of the kernel stack, queuing them to user-space, and

receiving them back into the kernel with a verdict specifying

what to do (e.g. ACCEPT or DROP). The queued packets may

also be modified in user-space, prior to re-injection back into

the kernel. With such mechanism, TimeD modifies the order of

the packets as required by time diversity. As TimeD is based

on iptables, the packets to be interleaved can be selected using

several criteria such as the destination host, transport protocol

and ports, etc.

At a very high level, TimeD operates in a cyclic fashion.

During each iteration, it performs the following operations:

(i) if present, read a packet from the queue and put it in

a buffer; (ii) if the block is full or the timeout is expired

(see Sec. II-D2), evaluate some statistics (see Sec. II-D1),

interleave the packets, and mark them as ready for release; (iii)

if present, release a packet from those ready for release, using

the packet release strategy described in Sec. II-D3. Moreover,

an additional module is activated periodically to estimate the

status of the network and configure the interleaving block

accordingly (see Sec. II-D1). An alpha version of TimeD is

publicly available at [16] under the terms of GPL.

D. Most important operating features

We considered several issues in order to deploy packet-level

interleaving in real IP networks.

1) Block size: As anticipated in beginning of the section,

one of the most important problems is related to the fact

that the block size has to be tuned according to the loss

pattern on the network. And, in order to avoid unnecessarily

large buffering delay, we have always to choose the smallest

possible block size (mainly in terms of interleaving depth)

that provides the required loss decorrelation. To this end,

we integrated an active probing tool in TimeD. Thanks to it,

TimeD periodically performs active measurements, estimates

the loss pattern on the network in terms of πb and ρ (see

Sec. II-A) from the received traffic, and adjusts the block

size accordingly. In order to effectively perform these tasks,

several important aspects have to be considered and deeply

investigated:

• the block size to be used as a function of the loss pattern:

we set up a simulator to study this problem in a controlled

scenario. Our simulator allows to highly abstract the

problem and to only focus on the relation between the loss

patterns before and after the interleaving, as a function

of the block configuration. In Sec. III we present the

simulator and the main results obtained thanks to it;

2https://svn.netfilter.org/netfilter/trunk/iptables/libipq
3http://www.netfilter.org
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• the packet size and rate of the probing traffic: to choose

these parameters, we performed a large set of experiments

in an emulated scenario. We decided to perform this

analysis in emulation because, in such conditions, we can

use real operating systems, applications, and traffic on top

of an emulated network, for which we can completely

control the loss behavior. This allows on the one side, to

use the real implementation of the tool, and therefore

to also validate it, and on the other side, to have a

reliable reference value for the variables to be estimated.

In Sec. IV we present the emulation environment and the

main results obtained;

• how frequently to estimate the status of the network

(i.e. the measurement period): the measurement period

is in strict relation with how frequently the loss pattern

on the network changes. To tune this parameter we both

studied the literature and performed a set of experiments

over real networks, as described in Sec. V-A.

2) Buffering timeout configuration: TimeD buffers incom-

ing packets until the block is full and the interleaving can

take place. In order to limit the maximum delay that a packet

can experiment, we introduced a timeout mechanism for the

buffering operation: the packets are released if the timeout

fires. The value of the timeout, can be either specified by

the user or autonomously determined by TimeD. To achieve

this, TimeD estimates the average rate of the received packets,

and then sets the buffering timeout as a function of this rate.

The idea is that, knowing the rate and the block size, we

can reasonably predict the time needed to fill the block. The

estimation of the application rate is also used to release the

packets with the same rate they have been received by TimeD,

as explained in the next section. To estimate the rate, TimeD

works as follows. Let us suppose that we want to operate

with a block of size n × m = k, on a flow of packets

p1, p2, ..., pn, ..., whose arrival times are t1, t2, ..., tn, .... Every
time we release the current block, because either the block is

full or the timeout (TO) is expired after receiving p packets

(with p < k), we calculate a new rate sample r(j):

r(j) =
k

tn − tn−k

(if block is filled)

r(j) =
p

TO
(if timeout is expired)

We calculate the average and standard deviation of the flow

rate using the last α rate samples4:

ravg =
1

α

α−1
∑

i=0

r(j − i); rstd =

√

√

√

√

1

α

α−1
∑

i=0

(r(j − i)− ravg)2

(1)

And, we set the timeout as follows:

TO =
k

ravg + 4 ∗ rstd
(2)

3) Packet release strategy: Once the packets are buffered

and interleaved, TimeD releases them with the same rate they

4We empirically found that a value of α equal to 8 is enough for our aims.

TABLE I
PARAMETERS USED IN BOTH SIMULATION AND EMULATION.

Parameter Values

Interleaving block size [12, 24, 48]
Interleaving block depth [1, 2, 6, 12, 24]

πb [0.01, 0.03, 0.1, 0.25]
ρ [1, 3, 8, 15, 30]

repetitions 1000 (simulation) / 20 (emulation)

have been received. This is to preserve as much as possible

the original profile of the traffic, and to avoid artificial spikes

due, for example, to sudden release of all the packets. Besides

distorting the application rate, such sudden release can also

introduce higher packet loss, as we experimentally verified on

satellite networks.

As explained in the previous section, TimeD estimates

the rate of the packets received in every block (r(j)). This
value, is stored together with the packets in the queue of the

packets ready for release. Using this value, TimeD performs

the following operations continuously: (i) pull the next packet

from the queue and release it; (ii) wait for a time equal to

1/r(j), while receiving the incoming packets and performing

the related operations; (iii) verify if the time elapsed is larger

than the expected. This last condition is extremely important.

The receiving-related operations can sometimes take longer

than expected (e.g. when the process is descheduled from the

cpu). This would cause an additional delay in releasing the

packets. In some cases, such as with high-rate CBR traffic, this

can also imply a monotonically increasing queue (i.e. packets

waiting for longer and longer). To avoid that, we continuously

monitor the elapsed time, and, in case we are in late, we

recover the delay during the next cycles. The result is that

some packets can leave the buffer before their scheduled time.

However, they compensate for those which left the buffer in

late, with the final result that the original rate is respected in

average, and no blocks are buffered more than necessarily.

4) Performance: Passing packets from kernel- to user-

space impacts the performance and poses a limit on the

maximum rate supported by TimeD. We verified that the delay

introduced by TimeD is negligible with respect to the one

of our experimentation scenarios (Sec. IV-C1), and that the

tool was able to sustain the rate considered in the experiments

(Sec. IV-C2). We believe that performance issues have to be

carefully taken into account before the deployment of TimeD

in operational environments. We left this as a future work, in

which we also consider whether it would be beneficial (and

at which cost) to make packet interleaving in the kernel space

instead of user space.

III. TIMED ANALYSIS

According to what we discussed in Sec. II-D1, we im-

plemented a simulator (using MatlabTM ) to understand the

benefits of packet interleaving and to determine the best trade-

off values for its parameters. Due to space constraints we

briefly discuss here the most important simulation results.

More details are reported in [17]. An alpha version of the

simulator is publicly available at [16] under the GPL terms.
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Fig. 1. Simulation results obtained with different values of πb and ρ.

We evaluate the distribution of the length of the loss bursts

and the distribution of the distance between two loss event

(we call it no-loss sequences length). It is worth noting that

once the average loss rate is fixed, the loss bursts and the

no-loss sequences are tightly linked: the more we reduce

the loss-burst length, the more we bring losses closer to

each other. For this reason, the no-loss sequence length may

seem a redundant parameter. However, in some cases, too

close loss events may cause effects similar to loss bursts,

decreasing application performance (e.g. video applications

using H.264/AVC codecs, when the distance between losses

becomes lower than a threshold [7]).

To understand the impact of each single parameter, we

performed simulations using all the possible combinations of

the values reported in Tab. I. In the following we report and

discuss the results that are more useful to assess the impact of

the interleaving with different channel conditions. More details

and complete results of the simulations are reported in [17].

Fig. 1 shows the loss-burst length (1.a and 1.c) and the no-loss

sequence length (1.b and 1.d) as a function of the interleaving

depth, when using a block size of 48. Similar considerations

can be done for the other block sizes. The two left plots of

Fig. 1 are related to four representative combinations of ρ and

πb, with progressively degraded channel conditions. The two

right plots of Fig. 1 are obtained using πb = 0.1 and increasing
ρ. As a first consideration, the results allow to understand the

effectiveness of the interleaving in reducing the average loss-

burst length (i.e. the loss decorrelation power). As shown in

Fig. 1.a and 1.c, in all the cases such parameter presents a de-

creasing trend when increasing the interleaving depth. We also

observe that the curves are steeper when the length of the loss

bursts is high, i.e. the slope decreases when the interleaving

depth increases. This means that the more burstiness we have,

the more convenient is to use the interleaving (see also Sec. V).

The same behavior can be observed comparing the different

plots in Fig. 1.c: the higher the correlation, the more effective

the interleaving. This translates in an asymptotic behavior

of the curves, which tend to a line parallel to the x-axis,

corresponding to a memoryless channel. This happens because

after a certain depth, that depends on the channel conditions,

the interleaving manages to make the losses perceived as

uncorrelated, and the channel behaves as the Bernoulli one.

Further increasing the interleaving depth provides no benefit.

This behavior is also confirmed by the plots of the no-loss

sequence length (Fig. 1.b and 1.d). According to the theoretical

results (Sec. II-B), when the block size is fixed, pushing the

interleaving depth (n) decreases (m), and consequently the no-

loss sequence length. Also, we observe that the trend of the

plots is very close to that of the loss-burst length (especially

visible in the right plots). This is due to the fact that the

interleaving does not alter the average loss rate, which can

be roughly seen as the ratio between the average loss-burst

length and the sum of the average no-loss sequence length

and the average loss-burst length.

The simulations performed allow to understand the block

size and the interleaving depth necessary for a given loss

pattern. As for the block size, we decided to use a value of

48 because it provides the best trade-off between buffering

delay (see Sec. IV-C1) and loss decorrelation. Tab. II shows

the interleaving depth sufficient to obtain uncorrelated losses

for different loss pattern and block size of 48. This table

has been obtained looking at all the results of the simulation

analysis. A depth value equal to 1 in this table means that the

interleaving is not necessary. The table has been provided as

input to TimeD. Looking at the values reported in this table,

TimeD automatically configures the block depth most suited

to the loss pattern measured on the network.

IV. TIMED VALIDATION

According to the discussion we provided in Sec. II-D1, we

used an emulative approach for validating TimeD and checking

its implementation over (controlled) real networks. In order

to validate TimeD behavior, we first compared the results in

terms of loss decorrelation obtained with the tool and that

obtained in simulation. Then, we analyzed how the probing

flow characteristics allow TimeD to effectively estimate the

loss characteristics also in time-varying conditions. Finally,

we discussed TimeD performance in terms of additional delay

introduced and achievable throughput.

The testbed we used is composed of Linux hosts con-

nected (using a Fast Ethernet network) to the Shunra Virtual

Enterprise WAN emulator5. Such hardware emulator is able

to reproduce the behavior of a WAN in terms of different

parameters. For our experiments, we set a loss pattern equal

to a 2-MC (the parameters are reported in Tab. I), and left the

delay and jitter unset (i.e. no delay or jitter is intentionally

5http://www.shunra.com/shunra-ve-overview.php
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TABLE II
INTERLEAVING DEPTH AS A FUNCTION OF THE LOSS PATTERN.

πb < 0.01 0.01 <= πb < 0.02 0.02 <= πb < 0.05 0.05 <= πb < 0.15 0.15 <= πb < 0.25 πb > 0.25

ρ = 1 1 1 1 1 1 1

1 < ρ <= 5 1 6 6 12 24 24

11 < ρ <= 22 6 6 12 12 24 24

22 < ρ <= 30 12 12 12 24 24 24

ρ > 30 24 24 24 24 24 24

added). For generating probe traffic we used D-ITG, which

emulates a real network application generating UDP flows

with several traffic profiles mixing different packet rates (10,
100, 1000 pps) and packet sizes (64, 128, 256, 512, 1024,
1472 Bytes) and exploiting the benefits of packet interleaving.

Further details and complete results of this stage are reported

in [17].

A. Loss decorrelation

Fig. 2 reports the average lengths of loss bursts and

no-loss sequences in the four channel conditions ana-

lyzed in Sec. III, which are characterized by (πb, ρ) ∈
{(0.01, 3); (0.03, 8); (0.1, 15); (0.25, 30)}. For these tests we

instructed the WAN emulator to reproduce the behavior of

such four channel conditions, and we let the test traffic

(generated with D-ITG) traverse the emulated WAN, after

being interleaved by TimeD. We also instructed D-ITG to

produce a log of the experiments. Using such information we

obtained the samples of the loss bursts and no-loss sequences.

The results in Fig. 2 have been obtained by sending UDP

packets at a constant rate of 100 pps with a payload of 512
Bytes. We observe that the average values of the length of

the loss bursts and no-loss sequences is decreasing with the

increase of interleaving depth, as done in simulation. This

shows the actual decorrelation power of TimeD. The results

obtained in such experimentations are very close to those

from the simulations (see left plots of Fig. 1), confirming

the proper behavior of TimeD. It is worth stating that similar

consideration can be made with the other traffic profiles and

channel conditions (see [17]).

B. Probing flow characteristics

As said, TimeD performs active probing on the network to

estimate the loss characteristics and set the proper block size.

Therefore, it is important to understand how to perform such
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Fig. 2. Results obtained with TimeD in four different channel conditions.
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Fig. 3. Relative error of loss correlation estimation.

probing, in order to obtain a sufficiently accurate estimate for

this aim. Different contrasting interests have to be considered,

that are the measurement intrusiveness and the accuracy. In

fact, the more accurate we want our measurements to be, the

more samples we have to collect. And, once the measurement

period is fixed, to collect more samples we have to probe the

network with a higher packet rate, which implies an higher

intrusiveness. To choose the parameters of the probing flow,

we have performed a large set of measurements, varying the

probing traffic profile (packet rate and size) and varying the

loss pattern on the emulated WAN in a controlled scenario.

We then looked at the values of loss rate and correlation

estimated by TimeD. The results showed that the loss rate

is easily estimated with a small probing rate: a probing rate

of 10 pps was already enough to obtain a relative error in

the order of 10−1, which is sufficient for our aim. As for

the rate correlation, instead, we observed a different situation.

Fig. 3 shows the relative error obtained in two experiments

performed using πb = 0.01 and ρ ∈ {3; 30}. As shown, at low
probing rates (e.g. 10 pps) the relative error reaches values

up to 2. However, the results of the simulations performed

in Sec. III indicate that it is necessary to estimate the loss

correlation with an absolute error in the order of few units

(i.e. 100). It is also worth saying that, in order to observe the

same channel conditions experimented by the application, it is

never necessary to probe the network with a rate higher than

that of the application. For these reasons, we chose to probe the

network at a packet rate equal to the minimum between that of

the application and 50 pps. This guarantees both a sufficient

accuracy and a low intrusiveness of the probing traffic (50 pps

×50 Bytes/pkt = 20 Kbps).

To validate the achieved accuracy, we performed a set of

experiments in which we continuously varied the channel

conditions imposed by the network emulator every 5 → 35
minutes. During the experiments, we run both TimeD and

D-ITG: the former interleaved the packets generated by the
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Fig. 4. Results obtained with TimeD with time-varying channel conditions.

latter. Fig. 4 shows the results in terms of loss-burst length

over time, obtained during a period of about 1.5 hours. As

we can see, the channel changes behavior 4 times during the

experiment, and TimeD accurately estimates the time-varying

channel conditions (gray bold line), being always able to set

the proper block size. Consequently, the application whose

traffic is interleaved experiments a channel with non-bursty

losses during the entire experiment (red dashed line).

C. TimeD performance

1) Additional delay introduced: In simulation we neglected

the delay issues because we wanted to understand the potential

benefit and the optimal configuration. However, if we want to

deploy the interleaving on a real network we have to consider

all the effects that we might expect. For these experiments

we connected the hosts of the testbed back-to-back, disabling

the WAN emulator. We then performed two different kinds

of measurements to estimate the two main delay components:

the forwarding delay and the buffering delay. To estimate the

forwarding delay we performed experimentations with TimeD

configured to use a block depth = 1 and we injected UDP

packets at all the rates reported above. With such a block

depth, TimeD was forwarding the packets as soon as they

entered the queue, and no buffering was performed. We then

performed the same experiments without TimeD and compared

the delays obtained. We discovered that the forwarding delay

is in the order of 10 µs at all the considered packet rates, we

believe this delay can be considered negligible, at least for the

operating scenarios we consider.

For the buffering delay, we measured the transfer time

experimented by UDP packets using all the rates and inter-

leaving configurations reported in Tab. I. The experiments

evidenced that, thanks to the packet release strategy presented

in Sec. II-D3, the delay is typically constant (except few

spikes), and in average, it is equal to:

δavg = (N − 1)× IPTavg (3)

where N is the block size and IPTavg is the average inter-

packet time. As already remarked before, such delay has to be

carefully taken into account from the application point of view.

To provide a real example, if we use TimeD with a streaming

server – assuming that the stream has a constant packet rate

of 720 pps (i.e. frame rate of 24 frames/s, 30 slices per frame,

and a single slice per packet) and that packet sizes follow a

normal distribution [18] – and with an interleaving block of

48 packets, we obtain an average buffering delay of about 65
ms, which is acceptable in most cases.

2) Achievable throughput: Even if we believe that perfor-

mance issues have to be carefully taken into account before

the deployment of TimeD in operational environments, we

verified that TimeD was able to sustain the rate used for the

experiments. In particular, we performed experiments aimed

at understanding the maximum throughput that TimeD is able

to sustain: TimeD is able to work at full speed (i.e. 100Mbps)

with all the interleaving configurations in Tab. I, even when

running on the same host as D-ITG.

V. EXPERIMENTATION OVER REAL NETWORKS

To provide evidences of TimeD benefits in real networks,

we focus our attention on satellite networks. Satellite networks

are being more and more used for Internet access (for rural

areas, in-flight and over-sea connectivity, etc.), while being

particularly exposed to bursty losses. For these experiments

we used a commercial satellite connection from one of the

largest providers in Europe. The satellite connection is bidi-

rectional and has nominal bandwidth of about 3 Mbps in

downlink and 300 Kbps in uplink. Our testbed is composed

of hosts connected to the Internet through the satellite con-

nection, and servers located in our University (connected to

the Internet though the GARR6). We generated UDP flows

with different CBR and VBR traffic profiles, with average

packet sizes ∈ {64; 128; 256; 512; 1024; 1472}Bytes and rates

∈ {10; 100; 1000} pps. It is worth noting that with packet size

> 512 Bytes and rate of 1000 pps the link was completely

saturated. Flows had duration of 3 → 10 minutes and every

experiment was repeated 10 times. Before deploying TimeD

on this infrastructure, we performed a set of measurements to

understand the loss characteristics of the satellite channel.

A. Losses over satellite networks

As anticipated in Sec. II-D1, to choose the measurement

period we studied the literature and we analyzed the time

behavior of the losses over the satellite network. In [19] the au-

thors perform a long-term measurement campaign, and report

the long-term delay and loss rate measured over different paths

connecting the same hosts. The results show that there is high

variability in the loss rate, and, if observed with a resolution

of 1 minute (i.e. computing the average loss rate over 1 minute

intervals), the paths look quite different. They also show that

the average value of the loss-variation period is 1 → 4 minutes.

Fig. 5 shows a zoom of the samples of the packet loss over

the satellite network, during a period of 10 minutes, sending

packets of 128 Bytes at 1000 pps. As we can see, there are

periods (e.g. between 350 s and 450 s, and between 500 s

and 600 s) in which the losses are higher than in the other

periods (e.g. between 0 s and 80 s). We also observed that the

duration of such good and bad periods is generally between 50
and 100 s. Tests performed with other traffic profiles evidenced

the same behavior. This result, confirming previous results in

literature [19], motivates our choice of evaluating the status of

the network every 1 minute.

6http://www.garr.it
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Fig. 6. Loss burst distribution and autocorrelation over the satellite network.

Regarding the burstiness of the losses, 50% of the flows

experimented losses over this network scenario, and they can

be divided in 4 classes. Fig. 6 shows the typical loss-burst

length distribution (left) and loss autocorrelation (right) of

flows – in the downlink direction – belonging to the 4 classes.

To study the autocorrelation of the loss process, we follow

the methodology proposed in [3]. As shown in the left plot of

Fig. 6, for all the flows the loss burst lengths range from 1 to 5
packets. On the other hand, as shown in the right plot of Fig. 6,

the loss process presents a high autocorrelation, which means

that the losses are indeed bursty. For example, fitting the loss

process of such flows with a 2-MC7 gives πb of 0.002 → 0.005
and ρ of 30 → 400. Such results indicate that the losses over

the satellite link are not frequent but highly correlated. This

means that in this scenario TimeD can provide high benefits,

as shown in the next section.

B. TimeD results

Firstly, we analyzed the effectiveness of the packet release

strategy described in Sec. II-D3. Fig. 7 shows the time

behavior of the bitrate of VBR traffic flows with exponentially

distributed packet rate (average value is 100 pps) and constant

packet size of 512 Bytes. The different lines in the figure show

the profiles of the injected traffic and of the received traffic

when TimeD enables and disables the packet release strategy.

The continuous spikes in the bitrate of the flow received

when such strategy is disabled are due to the sudden buffer

emptying. On the contrary, when the packet release strategy

is enabled, TimeD closely follows the original traffic profile.

Secondly, we experimentally verified the improvements

achieved with TimeD in terms of average loss-burst length

reduction. The left plot of Fig. 8 is related to CBR traffic

having packet size ∈ {64, 128, 256} Bytes and packet rate of

1000 pps. We can observe that, when not using TimeD, the

7As the correlation persists also at lags > 2, fitting the process with a
Markov Chain with a higher number of states is also possible. However, 2-
MC represents the best compromise between accuracy and complexity.

average loss-burst length on the link is between 1.5 and 3
packets, with a very high variance (see the vertical segments).

The use of TimeD allows to reduce both the average loss-

burst length and the related variance. As a result, the loss-burst

length is always smaller than 1.12, and the loss correlation at

lag 2 (not shown here for space constraints) is always smaller

than 0.01. The experiments performed with the other traffic

profiles evidenced similar results. This means that, thanks to

its features, TimeD is able to decorrelate the losses in real

networks, allowing the applications to experiment a channel

that is close to the Bernoulli one.

Finally, we analyzed the benefits achievable by a real appli-

cation. We used the results from [7], which presents a model

to study the effect of packet loss on video communications,

taking into specific account the loss pattern. Using such model,

we analyzed the benefits in terms of video distortion reduction,

achievable by using TimeD on the satellite network. The right

plot of Fig. 8 shows the video distortion estimated by the

model for two test video sequences - named Foreman and

Claire - subject to the losses reported in the left plot of the

same figure (with and without TimeD). As we can see, in

accordance with the model, the distortion increases with the

loss-burst length. Consequently, the video flows whose packets

are interleaved by TimeD experimented lower average and

standard deviation values of the video distortion. Where the

losses are more correlated (i.e. for packet size of 256 Bytes)

TimeD improves the distortion of more than 60% (i.e. from 450
to 150). Summarizing, we can say that TimeD highly improves

the performance of applications such as those for video

communications, providing higher Quality of Experience.

VI. RELATED WORK

Here we provide a quick review of the literature, for a more

extensive discussion refer to [17]. In [20] the authors present

a simulation framework to study packet interleaving. Results

are presented using two channel models, one with uncorrelated

random losses and the other one following a Markov chain.

In [21] the authors propose a system that performs packet

interleaving only on MPEG audio, and they show the loss

decorrelation power of their scheme both in simulation and

on real networks. In [22] a study of the effect of packet inter-

leaving on real video sequences is presented, whereases [23]

presents a research exploiting interleaving on MPEG encoded

video frames. The system is evaluated using real videos ranked

by real users. In [24], [25] the authors present an interleaving

scheme that operates before a generic video predictive encoder.

The authors of [26] perform a simulation study of interleaving

applied to layered coding schemes. Simulations are conducted

by using loss patterns from real traffic, and they show how

interleaving and randomization are able to actually protect

the base information from bursty losses. The work [27] is

concerned with the design and verification of a VoIP technique

exploiting interleaving and a matrix-based transformation. The

receiver continuously informs the sender about the status of

the channel, i.e. the loss pattern. The sender then applies
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interleaving to the voice samples in order to compensate the

effect of samples that will be lost.

The analysis of the literature reports mostly theoretical

and simulative works, and when real implementations have

been proposed, they are tight to a specific streaming appli-

cation/codec (e.g. [21]). In this paper, we presented – for

the first time in literature – a real IP packet interleaver and

a methodology to move step-by-step from the theory to the

practice.

VII. CONCLUSION

In this work we paved the way to the deployment of time

diversity at packet level in real networks. In particular, we ver-

ified the loss behaviour over real networks, and we presented

a platform (called TimeD) to provide loss decorrelation and

targeted to UDP flows. To move from theory to practice, we

proposed a 3-steps approach (based on simulation, emulation

and real experimentation), studying pros and cons of a real

packet interleaver. Using TimeD on a real satellite network,

we also showed the benefits of the proposed interleaver for

real applications. In our ongoing work, we are studying the

interactions between TimeD and transport protocols adopting

congestion control strategies (SCTP, DCCP, and TCP) and we

are performing a careful analysis of the interleaving applied

on bidirectional traffic using TimeD on both ends of network

paths.
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