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Abstract. Many stability measures, such as Normalized Mutual Information (NMI), have been proposed to validate a set of 
partitionings. It is highly possible that a set of partitionings may contain one (or more) high quality cluster(s) but is still 
adjudged a bad cluster by a stability measure, and as a result, is completely neglected. Inspired by evaluation approaches 
measuring the efficacy of a set of partitionings, researchers have tried to define new measures for evaluating a cluster. Thus 
far, the measures defined for assessing a cluster are entirely based on the well-known NMI measure. The drawback of this 
commonly used approach is discussed in this paper, after which a new asymmetric criterion, called the Alizadeh–Parvin–
Moshki–Minaei criterion (APMM), is proposed to assess the association between a cluster and a set of partitionings. The 
APMM criterion overcomes the deficiency in the conventional NMI measure. We also propose a clustering ensemble 
framework that incorporates the APMM’s capabilities in order to find the best performing clusters. The framework uses 
Average APMM (AAPMM) as a fitness measure to select a number of clusters instead of using all of the results. Any cluster 
that satisfies a predefined threshold of the mentioned measure is selected to participate in an elite ensemble. To combine the 
chosen clusters, a co-association matrix-based consensus function (by which the set of resultant partitionings are obtained) is 
used. Because Evidence Accumulation Clustering (EAC) can not derive the co-association matrix from a subset of clusters, a 
new EAC-based method, called Extended EAC (EEAC), is employed to construct the co-association matrix from the chosen 
subset of clusters. Empirical studies show that our proposed approach outperforms other cluster ensemble approaches. 
 
Keywords: Clustering Ensemble, APMM Stability Measure, Extended Evidence Accumulation Clustering, Cluster 
Evaluation. 

1   Introduction 

Data clustering is an important and very challenging problem. The objective of clustering is to partition a set of 
unlabeled objects into homogeneous groups or clusters [9]. There are many applications that use clustering 
techniques to discover structures in data. These include data mining [9], information retrieval, image 
segmentation, and machine learning [11]. In real-world problems, the clusters can have different shapes, sizes, 
and degrees of separation and sparseness. Clustering techniques require the definition of a similarity measure 
between patterns that have extreme effects on the set of resultant clusters. Due to a lack of any prior knowledge 
about cluster shapes, choosing a specialized clustering method is not easy [23]. Studies in the past few years 
have tended to combinational methods. Cluster ensemble methods attempt to find a better, more robust 
clustering solution by fusing as much information as possible among several distinct executions of a partitioning 
algorithm over primary data [1]. 

Clustering ensemble [33,34] is the problem of deriving a consensus partitioning given a number of resultant 
outputs of a clustering algorithm. The resultant outputs of the clustering algorithm used is called an ensemble. 
The consensus partitioning should be the most representative one for all members in the ensemble, and it 
optimizes a certain objective function. Generally, there are two main steps in the clustering ensemble: (a) the 
creation of some weak partitionings (the output of a clustering algorithm is called a partitioning), and (b) the 
aggregation of the primary partitionings obtained. 

The first step is the creation of some weak partitionings. Because every primary partitioning reveals a hidden 
aspect of some data, their ensemble can compensate for their individual downside. Therefore, the primary 
resultant partitionings need to be as diverse as possible in order to give more information about the underlying 
patterns in the data. Many methods to create the necessary diversity for the primary results have been proposed. 
However, the use of different clustering algorithms is the most straightforward method of obtaining diverse 

                                                           
∗This work is based on our earlier work: Alizadeh, H., Minaei-Bidgoli, B., Parvin, H., and Moshki M (2011), An Asymmetric Criterion for Cluster Validation. 

Developing Concepts in Applied Intelligence, Studies in Computational Intelligence, vol. 363, pp. 1-14. 
† Corresponding author. E-mail: halizadeh@iust.ac.ir 



primary resultant partitionings. Other methods include the selection of different initializations, different 
algorithm parameters, subset of features, mapping the data to other feature spaces [1], and resampling of the 
data [19]. In this paper, techniques based on the use of different base algorithms, different initializations, and 
different parameters, and the resampling method are considered to provide the necessary diversity for the 
primary results. 

The second step in the clustering ensemble is to combine the primary partitionings obtained in the first step. 
The co-association matrix-based aggregator is one of the most common methods used to combine the primary 
partitionings; it is also employed in this study. EAC, which was first proposed by Fred and Jain [12], maps the 
individual data partitionings in a clustering ensemble into a new between-patterns similarity measure, 
summarizing inter-pattern structures perceived from these clusterings. The final data partitioning is obtained by 
applying the single-link method to this new similarity matrix. 

In this paper, a new clustering ensemble method that uses a subset of primary clusters is proposed. A new 
validity measure, called AAPMM, to evaluate the cluster goodness is also proposed. Each cluster that satisfies a 
threshold of the measure can be considered to participate in the construction of the co-association matrix. In 
addition, a new method, called EEAC, is proposed for establishing the matrix. Finally, a hierarchical method is 
applied over the obtained matrix to extract the consensus partitioning. In summary, the main contributions of 
this paper are as follows: 

1- We propose a general framework for cluster ensemble selection. 
2- After examining the strengths and weaknesses of the well-known NMI measure, we propose the APMM 

criterion, which evaluates individual clusters. 
3- We offer a simple but efficient EEAC method to accumulate the selected clusters from primary 

partitionings in the co-association matrix. 
4- We provide a set of experimental results that gives credence to our idea and demonstrate the efficacy of 

our proposed method. 
The rest of this paper is organized as follows. The next section reviews background as well as recent related 

works on the cluster ensemble problem. In Section 3, we introduce our framework and discuss the NMI, 
APMM, and EEAC methods in detail. In Section 4, we present a number of empirical results obtained using 
diverse datasets and compare them directly with other well-known methods. Finally, we conclude this paper in 
Section 5 with some directions for future research. 

 

2   Background 

Similar to its closely related problem in classification, combining classifiers [36-39], the cluster ensemble has 
evoked an increasing interest among researchers. We next review some of the newest and most important 
studies of cluster ensemble methods. 
Although significant research has been conducted on the issue of clustering thus far, it has remained a 
challenging problem. In this respect, researchers in the field of clustering have turned to projective clustering 
and clustering ensembles. In a work done by Gullo et al., a novel clustering problem, called projective clustering 
ensembles, was introduced [30], and subsequently enhanced [31].  

Minaei et al. [32] proposed non-adaptive and adaptive resampling schemes for the integration of multiple 
independent and dependent clusterings. They also examined the efficacy of the bagging method, with and 
without replacement. In their work, primary partitionings in the ensemble are sequentially generated by 
clustering specially selected subsamples of the given dataset. 

The main challenge faced by a clustering ensemble that is based on a subset of selected primary clusters or 
partitionings is the manner in which clusters or partitionings are evaluated. As data clustering is an unsupervised 
problem, its validation process is a most troublesome task. Baumgartner et al. [2] presented a resampling-based 
technique to validate the results of exploratory fuzzy clustering analysis. Since the concept of cluster stability 
was introduced as a means to assess the validity of data partitionings, it has been increasingly used in the 
literature [13]. This idea, which is based on the resampling method, was initially described in [5] and later 
generalized differently in [15]. Roth et al. [23] proposed a resampling based technique to validate a cluster. The 
basic element in their method, which is a complementary version of the past methods, is cluster stability. The 
stability measures the association between obtained partitionings from two individual clustering algorithms. The 
large value of the stability measure lies in the fact that applying the clustering algorithm several times on a 
dataset probably yields fixed results [21]. Roth and Lange [22] presented a new algorithm for data clustering 
based on feature selection. In their method, the resampling based stability measure is used to set the algorithm 
parameters. There are several cluster validation methods that are based on the stability concept [18]. Ben-Hur et 
al. [3] defined a stability measure for clustering solutions. It is based on the perturbation of a dataset. In their 
approach, stability is characterized by the distribution of the pairwise similarities between clusterings obtained 



from sub-samples of the data. First, the co-association matrix is acquired using the resampling method. Then, 
the Jaccard coefficient is extracted from this matrix as the stability measure. Estivill-Castro and Yang [8] 
proposed a method in which Support Vector Machines (SVMs) are used to evaluate the separation of the 
clustering results. By filtering noise and outliers, this method can identify robust and potentially meaningful 
clustering results. 

Moller and Radke [20] introduced an approach that validates clustering results based on the partitioning of 
stability measure. The approach uses perturbation produced by adding some noise to the data. Their empirical 
study indicates that the perturbation usually outperforms bootstrapping and subsampling. While the empirical 
choice of the subsampling size is often difficult [7], the choice of perturbation strength is not very crucial. The 
method uses a Nearest Neighbor Resampling (NNR) approach that offers a solution to problems of both 
information loss and empirical control over the degree of modification of the original data. The NNR technique 
was first used for time series analysis [4]. Inokuchi et al.[16] proposed a kernelized validity measure, where 
kernel refers to the kernel function used by SVMs. Two objectives are considered in this measure. The first is 
the sum of the traces of the fuzzy covariances within clusters, while the second is a kernelized Xie–Beni 
measure [25]. The validity measure is applied to determine the number of clusters and to evaluate the robustness 
of different partitionings. Das and Sil [6] proposed a method that determines the number of clusters and 
validates the clusters using a splitting and merging technique in order to obtain the optimal set of clusters. 

Fern and Lin [10] proposed a clustering ensemble approach that selects a subset of solutions to form a smaller 
but better performing cluster ensemble than all primary solutions as a cluster ensemble. The ensemble selection 
method is designed based on quality and diversity, the two factors that have been shown to improve the cluster 
ensemble performance [10,36]. Their method attempts to select a subset of primary partitionings that 
simultaneously has both the highest quality and the highest diversity. The Sum of Normalized Mutual 
Information (SNMI) is used to measure the quality of any individual partitioning with respect to the other ones 
[11,24]. In addition, the NMI is employed to measure the diversity between partitionings. Although the 
ensemble size in their method is relatively small, the method can achieve a significant performance 
improvement over a full ensemble. Law et al. [17] proposed a multi-objective data clustering method based on 
the selection of individual clusters produced by several clustering algorithms, through an optimization 
procedure. The method chooses the best set of objective functions for different parts of the feature space from 
the results of base clustering algorithms. Fred and Jain [13] presented a new clustering ensemble method that 
learns the pairwise similarity between points in order to facilitate a proper partitioning of the data without a 
priori knowledge of the number of clusters or the shapes of the clusters. The method is based on cluster stability 
and it evaluates the primary clustering results instead of those of the final clustering. 

Similar to Fern and Lin [10], Alizadeh et al. [28] recently proposed a selection procedure that makes an 
ensemble of better performing clusters. They also introduced a new metric, called MAX, to evaluate clusters and 
to compare them .They empirically showed that choosing better clusters (with respect to the MAX metric) yields 
better consensus partitioning. This means that there is analogy between the MAX value of the chosen clusters 
and the performance of final clustering. However, Azimi and Fern [35] showed that choosing better primary 
results based on NMI will not always yield better final results. 
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Fig. 1. Proposed clustering ensemble framework. 

3   Proposed Clustering Ensemble Method 

In this section, the proposed clustering ensemble method is first briefly outlined, and then its phases are 
described in further detail in the subsequent subsections. 

The main idea underlying the proposed clustering ensemble method is the utilization of a subset of the best 
performing primary clusters in the ensemble instead of all of them. It seems that not every cluster is a good-
quality cluster. Hence, in this method only clusters with stability greater than a specified threshold are chosen to 
participate in the combination. The cluster selection is done based on cluster stability that is defined according 
to NMI. 

Fig. 1 depicts our proposed clustering ensemble framework. First, a set of B primary partitionings is provided 
using k-means (and hierarchical linkage clustering methods) to create the necessary diversity for an ensemble. 
Next, the AAPMM is computed for all clusters of each resultant clustering output. A detailed description of the 
manner in which the AAPMM is computed is given in the next sections. After that, a subset of the most stable 
clusters is selected to participate in the final decision committee. This is done simply by applying a threshold 
over the AAPMM value of each cluster. In the next step, the selected clusters construct the co-association 
matrix. Several methods of combining the primary results have been proposed [12], [14], [24]. Here, the 
difference is the absence of some clusters in primary partitionings. Since the original EAC method [12] cannot 
truly identify the pairwise similarity while there is only a subset of clusters, in this paper, a new method to 
construct the co-association matrix called EEAC is presented. Finally, the average-link method is employed to 
extract the final clusters from this matrix. 

3.1   Cluster Evaluation Using APMM Criteria 

A stable cluster is one that has a high likelihood of recurrence across consecutive applications of a clustering 
algorithm. Stable clusters are usually preferable, since they are robust with respect to minor changes in the 
dataset [17]. 

Now, let us assume that we want to compute the stability of cluster Ci. In our proposed method, first a set of 
partitionings over are sampled dataset (called the reference set) is provided. In this notation, D is resampled data 
and P(D) is a partitioning over D. Now, the problem is “How many times is the cluster Ci repeated in the 
reference partitionings?” The problem is formally denoted by NMI(Ci,P(D)), which signifies the normalized 
mutual information between cluster Ci and a reference partitioning P(D). Most previous works only compared a 
partitioning with another partitioning [24]. However, the stability measure used in [17] evaluates the similarity 
between a cluster and a partitioning by transforming cluster Ci to partitioning form and then employing 
common partitioning-to-partitioning measures. To illustrate this method, let P1 = Pa ={Ci,D/Ci} be a partitioning 
with two clusters, where D/Ci denotes the set of data points in D that are not in Ci. 

We can then compute a second partitioningP2 =Pb ={C*,D/C*}, where C*denotes the union of all “positive” 
clusters in P(D) and others are in D/C*. A cluster Cj in P(D) is positive if more than half of its data points arein 
Ci. Now, define NMI(Ci,P(D)) by NMI(Pa,Pb), which is calculated as follows [11]: 
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where n is the total number of samples;���
�� denotes the number of shared patterns between clusters ��

� � �� and 
��
� � ��; ��

� is the number of patterns in cluster i of partitioning a; and ��
�is the number of patterns in cluster j 

of partitioning b. 
This computation is done between cluster Ci and all partitionings available in the reference set. Fig. 2 depicts 

this method. 
NMIi in Fig. 2 shows the stability of cluster Ci with respect to the i-th partitioning in the reference set. The 

total stability of cluster Ci is defined as follows: 
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where M is the number of partitionings available in the reference set. This procedure is applied to each cluster of 
every primary partitioning. 

 

 

Fig. 2. Computing the stability of cluster Ci. 

This approach as an evaluation of cluster stability has some drawbacks that can appear under certain 
circumstances. In this section, a drawback of this procedure is revealed, and a novel asymmetric measure, called 
APMM, is proposed to handle this drawback. 

 
 
Fig. 3. Two primary partitionings with k=3: (a) True clustering (b) Spurious clustering. 
 
Fig. 3 shows two primary partitionings along with the evaluated stability of each cluster and its computation 

process. In this example, k-means is applied as the base clustering algorithm and the true number of clusters, 
k=3, is fed to the k-means algorithm. For this example, the number of partitionings in the reference set was set to 
40. In 36 of the partitionings, the result was similar to Fig. 3(a), while in the other 4,the top left cluster was 
divided into two clusters, as in Fig. 3(b). Fig. 3(a) shows a true clustering. Since the well-separated cluster in the 
top left corner is repeated several times (90% of cases) in partitionings of the reference set, it has to acquire a 
large stability value (but not equal to 1), however it acquires the stability value of 1. The two clusters on the 
right hand side of Fig. 3(a) are relatively jointed and sometimes they are not recognized in the reference set as 
well; they acquire rather low stability values. Fig. 3(b) shows a spurious clustering in which the two clusters on 
the right are incorrectly merged. Since a fixed number of clusters are forced to the base algorithm, the top left 
cluster is consequently divided into two clusters. Here, the weakness of the stability measure significantly 
emerges. Although it is obvious that this partitioning and the corresponding big cluster on the right rarely appear 
in the reference set (10% of cases), the stability of the big cluster on the right is evaluated as being equal to 1. 
Since the NMI is a symmetric criterion, the stability of the top left cluster in Fig. 3(a) is exactly equal to that of 
the big cluster on the right in Fig. 3(b); however, they are repeated 90% and 10%, respectively. In other word, 
when two clusters are complements of each other, their stabilities are always equal. This drawback occurs when 
the number of positive clusters in the partitioning of the reference set considered is greater than 1. It also means 
that when cluster C* is obtained by merging two or more clusters, the undesirable stability value results are 
obtained. 
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Here, we propose a new criterion that can solve this problem. Assume that the problem is evaluating the 
APMM criterion for a cluster C1 in Fig. 4(a) with respect to clustering obtained in Fig. 4(b).The main idea in 
this method is to eliminate the symmetrical property that inherently exists in the NMI equation. In this approach, 
except for cluster C1, all the clusters in Pa are taken out. Furthermore, all the clusters in Pb that are not included 
in the samples of cluster C1are eliminated. In the next step, the other samples that are not in C1 of Pa are 
removed from the clusters in Pb (from the clusters that contain some of these samples). This process is depicted 
in Fig. 5. 

 

 
  (a)     (b) 
Fig.4.Examples of two partitions for evaluating the APMM criterion for cluster C1 from Pain (a) compared to Pbin (b). 

Now, the entropy between the clusters remaining in partitionings Pa and Pb is computed as depicted in Fig. 6. 
Considering that the other samples involved are eliminated, this criterion is not symmetric. 

All the previous works are based on the NMI definition in equation 1. Even to evaluate the occurrence of a 
cluster in a partitioning, the problem is modified in some way to become a problem that involves comparison 
between two partitionings so that the NMI equation can be used. However, in this study, the problem is not 
changed to correspond to the definition of NMI; instead, the NMI equation is modified so that the occurrence of 
a cluster in a partitioning is computed. This is done by evaluating the entropy between the considered cluster 
and other pseudo clusters in the corresponding partitioning. The APMM is defined between a cluster Ci from Pa 
and the partitioning Pb*from Pb, asin the equation below: 
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where n is the number of the samples available in the dataset, and kb* is the number of clusters in Pb*. 
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Fig. 5.Provision of data to evaluate the APMM criterion: (a) Deletion of all clusters except C1 from Pa. (b) Derivation of 
Pb*from Pb, the corresponding samples of C1 in Pb. 

We propose AAPMM as a measure of stability for a primary cluster Ci compared to the partitionings 
available in the reference set defined in the following equation: 
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where *b
jP  is from the j-th partitioning in the reference set. 

 

Fig. 6. Computing the entropy between cluster C1 from Pa and Pb* from Pb. 

 

3.2 Consensus Function 

The final activity in our clustering ensemble framework is aggregation of the selected clusters. One way of 
doing this is to consider the selected clusters as inputs of the Hyper-Graph Partitioning Algorithm (HGPA), 
Meta-CLustering Algorithm (MCLA), and Cluster-based Similarity Partitioning Algorithm (CSPA) [24]. The 
outputs of these algorithms are the final partitioning, which is also called consensus partitioning. For example, 
in Fig. 7, four partitionings π1–π4 are extracted from a simple dataset with 12 data points and 2 real clusters by 
the k-means clustering algorithm. The k parameters of k-means clustering are set to 3, 4, 2, and 2, respectively. 
These partitionings are broken into the 11 clusters depicted in Fig. 8. The clusters are then served as input to the 
HGPA, MCLA, and CSPA algorithms. 

The second way to extract the final partitioning from the selected clusters is to consider clusters as a new 
data space, and employ a clustering algorithm, such as fuzzy k-means, to partition the mapped data. As is 
already known about the fuzzy k-means clustering algorithm, it assigns each data point to all clusters with 
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different membership values. To extract the final partitioning from the output of a fuzzy k-means algorithm as 
consensus function, each data point was assigned to the cluster with the highest membership value. For more 
information about fuzzy k-means algorithm, readers should refer to [40]. Let us again consider the example in 
Fig. 7. The partitionings are broken into the 11 clusters depicted in Fig. 8, according to the previous method. 
The clusters in Fig. 7 are considered the mapped data in a new feature space and the fuzzy k-means algorithm 
extracts consensus partitioning out of them. 

 

Fig.7. Four partitionings,π1–π4, extracted from a simple dataset with 12 data points and 2real clusters using thek-means 
clustering algorithm. The k parameter in k-means was set to 3, 4, 2, and 2, respectively. 

An alternative way to reach the consensus partitioning is to use co-association based methods. In these 
methods, the selected clusters are first used to construct a co-association matrix. In the EAC method, the m 
primary results from re-sampled data are accumulated in an n×n co-association matrix. Each entry in the matrix 
is computed from equation 5. 

 

 
Fig.8. The clusters extracted from the partitionings in Fig. 7. 
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where nij counts the number of clusters shared by objects with indices i and j in the B ensemble partitionings. In 
addition, mij is the number of partitionings where the pair of objects is simultaneously present. There is only a 
fraction of all the primary clusters available, after thresholding. Therefore, the common EAC method cannot 
truly recognize the pairwise similarity for computing a proper co-association matrix. In our novel method 
(Extended Evidence Accumulation Clustering, or EEAC), each entry of the co-association matrix is computed 
using equation 6: 

),max(
),( ,

ji

ji

nn

n
jiC =

 
(6) 

φ 1 φ 2 φ 3 φ 4
x1 0 1 0 1

x2 0 1 0 1

x3 0 1 0 1

x4 0 1 0 1

x5 0 0 1 0

x6 0 0 1 0

x7 1 0 0 0

x8 1 0 0 0

x9 1 0 0 0

x10 1 0 0 0

x11 1 0 0 0

x12 1 0 0 0

φ 5 φ 6 φ 7 φ 8
0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0

1 0 0 1

1 0 0 0

0 1 0 1

0 1 0 1

0 0 1 1

0 1 0 1

0 0 1 1

0 0 1 1

φ 9
1 1 0

1 1 0

1 0 1

1 0 1

0 0 1

1 0 1

0 1 0

0 1 0

0 0 1

0 1 0

0 1 0

0 1 0

φ11 φ10 

π1 π2 π3 π4

x1 2 1 2 1

x2 2 1 2 1

x3 2 1 2 2

x4 2 1 2 2

x5 3 2 1 2

x6 3 2 2 2

x7 1 3 1 1

x8 1 3 1 1

x9 1 4 1 2

x10 1 3 1 1

x11 1 4 1 1

x12 1 4 1 1



 

Fig.9. Computing the co-association matrix using the EEAC method: (a) Data samples. (b) Four primary clusterings. (c) 
Remaining clusters after applying threshold, th=0.8. 

 
where ni and nj are, respectively, the number of occurrences of the i-th and j-th data points in the selected or 
remaining (after stability thresholding) clusters. In addition, nij represents the number of remaining clusters that 
contain both data points indexed by i and j. To further explain, consider this example. Let us assume that we 
have five samples (Fig. 9(a)), and that four primary clusterings are applied (Fig. 9(b)). 

In addition, suppose that the stability of the clusters in Fig. 9(b) is as follows: 
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By choosing th=0.8 the first clusters from P1 and P3 are deleted (Fig. 9(c)). According to equation 4, each 
entry in the co-association matrix is as follows: 
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In Figs. 9(a)–9(c), the data points may be “tracked” by their geometrical arrangement. Example: in 

computing C(3,4), note that points 3 and 4 are both in cluster 2 of partitionings P2 and P4, so that numerator 
n34=2; in addition, note that n3=2, since point 3 is only in cluster 2 of P2 and P4, but n4=4 since point 4 is not 
only in these clusters, but also in cluster 2 of P1 and P3. Before and after applying threshold, the co-association 
matrix is given by equations 7 and 8, respectively: 
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In this matrix, the third object can be considered to be both clusters with an equal probability of 50%. The 
stability measure adds some information to this matrix by applying the threshold. 
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Comparing these two matrices and also considering the stability values, we can see that the omission of 
unstable clusters improves the co-association matrix. By eliminating the unstable cluster, samples {1, 2, 3}, 
which are spuriously created by primary clusterings, are neglected. 

After computing the co-association matrix using the EEAC method, a consensus function is employed to 
extract the final clusters from the matrix. Here, the average-link method is generally used for this task. In the 
above example, the final two clusters are {{1, 2}, and {3, 4, 5}}. 

Because different values of k are chosen in the base partitionings, there is a high probability that even the 
most stable cluster is divided into two or more unstable ones. Consequently, the base partitionings are diverse 
enough to present a good coverage of clusters with different stabilities to be chosen. This means that our 
proposed algorithm is fed a large number of options including different clusters with different properties and 
stability values. As a result, the probability of missing any sample in the retained clusters is very low. 

Although samples are rarely overlooked, the method does not guarantee that all the observations will be 
included in at least one of the retained clusters. Therefore, post-processing in order to label the missing samples 
is inevitable. The post-processing carried out includes the assignment of each missing sample to the nearest 
cluster center in the feature space using the Euclidian distance. 

4   Experimental Results 

This section discusses experimental results that validate how our proposed framework, which uses the APMM 
measure, can compete with its rivals and its position in relation to the other methods. Evaluation metrics are 
discussed in the first subsection, while the details of the datasets used are given in the subsequent section. The 
settings used in the experiments are then given and, finally, experimental results are presented. 

4.1 Evaluation Metrics 

After producing the consensus partitioning, the most important challenge may be the assessment phase. The 
NMI measure by itself is generally considered an evaluation metric for a partitioning. Therefore, a partitioning 
is evaluated here by measuring the NMI between the consensus partitioning and the real labels of the dataset.  

An alternative that can be used to evaluate a partitioning is accuracy metric, provided that the number of 
clusters and their true assignments are known. To compute the final performance of a clustering algorithm in 
terms of accuracy, one can first re-label the clusters obtained in such a way that they have maximal matching 
with the ground true labels, and then count the percentage of truly classified samples. Therefore, the error rate 
can be determined after solving the correspondence problem between the labels of the derived and the known 
clusters. The Hungarian algorithm [26], which has been shown to efficiently solve this label correspondence 
problem, can be employed to solve the minimal weight bipartite matching problem.  

F-measure is another measure for evaluating a partitioning. It considers both precision and recall to compute 
the score. Precision p is the number of correct results divided by the number of all results returned, while recall r 
is the number of correct results divided by the number of results that should have been returned. The F-measure 
can be interpreted as a weighted average of the precision and the recall, where an F-measure reaches its best 
value at 1 and its worst score at 0 [29]. The F-measure used in this paper is computed based on equation 7. 
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where ���
��again denotes the number of shared patterns between clusters ��

� � �� and ��
� � ��; ��

� is the number 

of patterns in cluster i of partitioning a; ��
� is the number of patterns in cluster j of partitioning b; and π is a 

permutation of {1,…, kb} for the relabeling of ��. 
It is worth mentioning that in all the experiments, the NMI, F-measure, and accuracy were scaled in the 

range [0–100] for consistency, thus they are always reported in the range [0–100]. 

Table 1.Brief summary of the datasets used 

 
Dataset Name 

# of 
Classes 

# of 
Features 

# of 
Samples 

1 Breast-Cancer* 2 9 683 



2 Iris* 3 4 150 
3 Bupa* 2 6 345 
4 SAHeart* 2 9 462 
5 Ionosphere 2 34 351 
6 Glass* 6 9 214 
7 HalfRing 2 2 400 
8 Galaxy* 7 4 323 
9 Yeast* 10 8 1484 
10 Wine* 3 13 178 

 

Fig.10. HalfRing dataset 

4.2 Datasets 

Our proposed method was examined over nine different standard datasets and one artificial dataset. Since a 
large variety in the datasets used can more effectively validate the obtained results, the datasets were chosen in 
such a way that they had adequate diversity in the number of true classes, features, and samples. The datasets 
used are briefly summarized in Table 1. More information is available in [27]. 

Note that the datasets that are marked with an asterisk (*) in Table 1 were normalized. The experiments were 
conducted over the normalized features in the starred dataset. This means that each feature was normalized with 
a mean of 0 and variance of 1, N(0, 1). The artificial HalfRing dataset is depicted in Fig. 10. It is considered one 
of the most challenging datasets for clustering algorithms [32]. 

4.3 Experimental Settings 

To be more general and fairer, all experiments were averaged over 10 independent runs. In all the 
experiments, there were 120 independent partitionings obtained by 120 independent runs of the k-means 
clustering algorithm with different initialized seed points and different values for the k parameter, ranging from 
k to 2k. 

We should mention here that there are no rigid rules for determining the exact ways in which diversity in the 
primary results can be achieved. Therefore, we set our diversity generation policies empirically. In other words, 
one can change these parameters and achieve different results. However, we believe that any differences in the 
results will not be so significant as to surpass the results attained in this paper. 

After selecting a subset of clusters, to extract the final partitioning out of them, the real number of clusters, 
i.e., the third column in Table 1, is served by the consensus functions.  

4.4 Experimental Results 

The NMI values in terms of employing different ratios from the most stable clusters in the final ensemble 
over different datasets are depicted in Fig. 11. As is obvious for the Iris dataset (Fig. 11(a)), the NMI value 
increased as the ratio of the most stable clusters participating in the final ensemble increased up to 50%. 
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However, after 50%, it did not increase, and even decreased in some cases. The same figure for the Yeast 
dataset is depicted in Fig. 11(b).In this case, the NMI value rose for the first 30%, after which it abated in almost 
all cases. 

Like the results for the Iris dataset, for both the Wine dataset in Fig 11(c) and the Galaxy dataset in Fig 11(d), 
the NMI value increased up to 50% almost in all cases. However, after 50%, it did not increase, and even 
decreased in some cases. For the Wine dataset, the single-linkage aggregator was an exception. In the single-
linkage aggregator, the best ensemble occurred when all clusters participated in the ensemble, but its peak was 
not comparable with others. However, fuzzy k-means stood out from the other consensus functions in the 
Galaxy test case. In the fuzzy k-means aggregator, the best ensemble occurred when 10% of the most stable 
clusters contributed to the ensemble. However, its peak did not give a result that was comparable with that of the 
others. 

 
(a) Iris dataset 

 

(b) Yeast dataset 
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(c) Wine dataset 

 

(d) Galaxy dataset 

Fig.11. Effect of selection size on the performance in terms of NMI for (a) Iris, (b) Yeast, (c) Wine, and (d) Galaxy datasets. 
The horizontal axis represents the rate of stable clusters that were selected. The vertical axis represents the NMI value for the 
datasets. 

The averaged NMI value in terms of choosing different ratios from the most stable clusters in the final 
ensemble over all ten datasets is shown in Fig. 12. In Fig. 12(a), it is easy to see that in most cases the NMI 
value increased as the rate of participants grew to 50%. However, after 50%, it did not increase significantly; 
and even decreased in some cases. However, our proposed method peaked when 50% of the most stable clusters 
were taken into the final ensemble and by employing the average-linkage algorithm as the consensus function 
along with the EEAC method. The accuracy result of Fig. 12(b) confirms the NMI result (of Fig. 12(a)). In 
addition, the F-measure outcome of Fig. 12(c) also confirms both previous results, except in the case where the 
single-linkage aggregator is superior to the average-linkage aggregator. However, in this case, the average-
linkage aggregator is the second best method. 
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(a) NMI 
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(b) Accuracy 

 
(c) F-measure 

Fig.12. Effect of selection size on performance in terms of (a) NMI, (b) Accuracy, and (c) F-measure overall datasets. The 
horizontal axis represents the rate of stable clusters that were selected. The vertical axis represents the averaged F-measure 
over all ten datasets in Table 1. 

Fig. 13 illustrates the effect of selection size on performance in terms of averaged NMI, accuracy, and F-
measure over all ten datasets. Supporting the results of Fig. 12, this figure confirms that the average-linkage 
aggregator is superior to all aggregators. Therefore, we can conclude that using the average-linkage algorithm as 
aggregator along with the EEAC method is the best option for consensus function. Furthermore, it verifies that 
choosing the selection ratio of the most stable clusters to construct the final ensemble at 50% hits the peak. By 
comparing the average of the vertical axes of Figs.13(a) and 13(b), we can infer that employing APMM as the 
measure to evaluate a cluster generally yields better consensus partitioning.  
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(a) APMM 

 
(b) MAX 

Fig.13. Effect of selection size on performance in terms of averaging all three validation measures: NMI, accuracy, and F-
measure overall datasets. In (a) the stability criterion is APMM, while in (b) it is MAX [28]. The horizontal axis represents 
the rate of stable clusters selected. The vertical axis represents the averaged vertical axes of Figs.12(a), 12(b), and 12(c). 

A more general understanding over the three cluster evaluation criteria used—NMI, MAX, and APMM—can 
be captured from Table 2. The average-linkage algorithm is used as aggregator along with the EEAC method in 
Table 2. As can be seen, except for the eighth dataset, APMM and MAX completely outperformed NMI. In 
addition, the APMM-based cluster ensemble is slightly superior to the MAX-based cluster ensemble. As a 
result, in this paper, we conclude that using APMM for cluster evaluation is a better option than using its rivals. 

Table 2. Accuracy of consensus partitioning produced by cluster selection based on NMI and MAX measures [28] and 
APMM. 

Evaluation 

Measure 

Dataset Number 
Average 

1* 2 3* 4* 5 6* 7 8* 9* 10 

NMI 
95.73 76.13 54.33 63.36 70.60 50.76 74.48 31.27 42.93 69.38 62.90 

MAX 

[28] 
96.49 84.87 57.42 63.87 67.75 49.35 74.55 29.85 51.27 70.00 64.54 

APMM 
95.56 90.00 55.07 63.87 70.66 50.79 74.00 30.65 53.10 70.23 65.39 

 
The first four columns in Table 3 show the results of some base clustering algorithms. The results show that 

although each of the base algorithms can obtain a superior result over a specific dataset, it does not perform well 
over other datasets. For example, as shown in Table3, the k-means algorithm gives a more superior clustering 
result over the Wine dataset than that of the linkage methods. However, it has a lower performance than that of 
the linkage methods in the case of the Bupa dataset. Moreover, the complete linkage gives an efficient 
performance for the Breast-Cancer dataset compared with that of the others; however, this is not so for all 
datasets. 

The last five columns show the performance of some ensemble methods compared with that of our proposed 
method. A glance at the last five columns and comparison with the first four columns reveals that the ensemble 
methods do better than simple base algorithms in the case of performance and stability against different datasets. 
For all cluster ensemble algorithms, the 90% sampling from dataset is used to create diversity in the primary 
results. Sub-sampling (without replacement) is used as the sampling method. In addition, the random 
initialization of the seed points of thek-means algorithm helps them to be more diverse. Finally, the average-
linkage algorithm is employed as consensus function for deriving the final clusters from the co-association 
matrix. 
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The first column of the ensemble methods gives the results of an ensemble of 100 k-means that were 
combined by the EAC method. The second column from ensemble methods is the full ensemble, which uses 
several clustering algorithms to generate the primary results. Here, 70 k-means with the above-mentioned 
parameters in addition to 30 linkage methods provide the primary results. Since different runs of a specific 
linkage method always yield the same result, there is a limitation for using them as the base clustering 
algorithms. Here, forcing a set of different number of clusters, k ±2, is used to create diversity, in which k is the 
true number of clusters.  

Table 3.Experimental results 

 Simple Methods (%) Ensemble Methods (%) 

Dataset 
Single 
Linkage 

Average 
Linkage 

Complete 
Linkage 

k-means 
k-means 
Ensemble 

Full 
Ensemble 

Cluster 
Selection 
by NMI 
Measure 

Cluster 
Selection 
by MAX 
Measure 

[28] 

Cluster 
Selection 

by 
APMM 
Measure 

Wine* 37.64 38.76 83.71 96.63 96.63 97.08 97.75 98.27 98.31 
Breast-

C* 
65.15 70.13 94.73 95.37 95.46 95.10 95.75 96.49 95.56 

Yeast* 34.38 35.11 38.91 40.20 45.46 47.17 42.93 51.27 53.10 
Glass* 36.45 37.85 40.65 45.28 47.01 47.83 50.76 49.35 50.79 
Bupa* 57.68 57.10 55.94 54.64 54.49 55.83 54.33 57.42 55.07 

 
The last three columns show the results of ensemble methods that use only a subset of primary clusters. The 

first one shows the results of an ensemble that uses the traditional NMI-based stability for cluster validation 
[17]. The second one is our proposed clustering ensemble method, which uses the MAX measure [28] for cluster 
validation. The last column is our proposed clustering ensemble method, which uses the APMM measure for 
cluster validation. The selected clusters in the co-association matrix in all three methods are accumulated using 
the proposed EEAC method. Finally, the average-linkage algorithm is applied over the co-association matrix to 
extract final clusters. The primary clustering results are provided similar to the full ensemble. We used the idea 
of cluster ranking and thresholding to select the best subset of base clusters. More precisely, the threshold that is 
used for cluster selection is determined adaptively. First, it is adjusted to 95%. If less than 10% of the samples 
are absent in the selected clusters, the threshold is then reduced to 90%. This procedure (reducing 5% from the 
threshold value) is continued until the selected clusters include more than 90% of the samples. The results in the 
last three columns verify that although these approaches use a subset of the primary clusters, they usually 
outperform the full ensemble. In addition, comparing the last three columns shows the power of APMM-based 
stability in comparison with the NMI-and MAX-based stability. Examinations by 10 independent runs over 
different datasets robustly show the quality of the APMM measure with respect to the NMI and MAX measures. 

5   Conclusions 

In this paper, a new clustering ensemble method that is based on a subset of total primary spurious clusters is 
proposed. Since the qualities of primary clusters are not equal and the presence of some of them can even result 
in poor performance, we present a method to select a subset of more effective clusters. A common cluster 
validity criterion that is required to derive this subset is based on normalized mutual information. In this paper, 
some drawbacks of this criterion is discussed and an alternative criterion—the Alizadeh–Parvin–Moshki–Minaei 
(APMM) criterion. The results of experiments conducted indicate that the APMM criterion generally performs 
slightly better than the NMI (and also the MAX) criterion; moreover, it significantly outperforms the NMI 
criterion in the case of synthetic datasets. Because of the symmetry concealed in the NMI criterion and also in 
NMI-based stability, decreased performance results are obtained whenever symmetry also appears in the dataset. 

After selecting a subset of clusters, several consensus functions are employed to extract consensus 
partitioning. This paper empirically showed that the most effective consensus function results from the average-
linkage hierarchical clustering algorithm. Another novel contribution of this paper is a method for constructing 
the co-association matrix where some of the clusters and some of the corresponding samples do not exist in 
partitionings. This new method is called Extended Evidence Accumulation Clustering (EEAC). The empirical 
studies conducted over several datasets robustly show that the quality of our proposed method is usually better 
than that of other methods. 



This paper finally concludes that using APMM for cluster evaluation is the best option. We can also conclude 
that using the average-linkage algorithm as an aggregator along with the EEAC method is the best option for 
consensus function. The performance of consensus partitioning peaks when the ratio of the most stable clusters 
to participate in the final ensemble is 50%. 

As future work, the effect of data sampling on the performance of the final ensemble should be investigated. 
The subsampling and bootstrap methods in addition to the adaptive cluster ensemble [32] approach can be 
incorporated into our framework. We believe that enforcing diversity in primary results can expand the range of 
possible choices for selection, as it appears that selection from a wider range of possible clusters can improve 
the final results obtained from our proposed method. Furthermore, in this paper, we investigate and conclude 
that using the most stable clusters improves the final partitionings. However, to maintain the stability of the final 
ensemble, one can investigate other aspects of clusters such as diversity. Moreover, similar to many other 
research in the field of cluster ensemble [9-15,32-35,38,39], we assumed that our data set is standard and free of 
noise and missing values. In the future, the effect of noise and missing values of the data on the APMM 
evaluation measure should be investigated. All of these examinations will be carried out in our future studies. 
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