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Abstract. Many stability measures, such as Normalized Mutisfairmation (NMI), have been proposed to validateetof
partitionings. It is highly possible that a setpafrtitionings may contain one (or more) high qyatituster(s) but is still
adjudged a bad cluster by a stability measure,and result, is completely neglected. Inspired \®luation approaches
measuring the efficacy of a set of partitioningssearchers have tried to define new measures &wating a cluster. Thus
far, the measures defined for assessing a clustezrdirely based on the well-known NMI measuree @hawback of this
commonly used approach is discussed in this pafier, which a new asymmetric criterion, called &lizadeh—Parvin—
Moshki—Minaei criterion (APMM), is proposed to assdhe association between a cluster and a sartifignings. The
APMM criterion overcomes the deficiency in the centional NMI measure. We also propose a clusteengemble
framework that incorporates the APMM'’s capabilitiasorder to find the best performing clusters. Tra@mework uses
Average APMM (AAPMM) as a fitness measure to setentimber of clusters instead of using all of #sultts. Any cluster
that satisfies a predefined threshold of the meetiomeasure is selected to participate in an@fisemble. To combine the
chosen clusters, a co-association matrix-basedeosns function (by which the set of resultant partings are obtained) is
used. Because Evidence Accumulation Clustering (Ez&@)not derive the co-association matrix from asstibf clusters, a
new EAC-based method, called Extended EAC (EEAG)miployed to construct the co-association matorfthe chosen
subset of clusters. Empirical studies show thatpwaposed approach outperforms other cluster erisesplproaches.

Keywords: Clustering Ensemble, APMM Stability MeasurExtended Evidence Accumulation Clustering, Cluster
Evaluation.

1 Introduction

Data clustering is an important and very challeggiroblem. The objective of clustering is to p#otita set of
unlabeled objects into homogeneous groups or cki$8d. There are many applications that use ctirgie
techniques to discover structures in data. Thestude data mining [9], information retrieval, image
segmentation, and machine learning [11]. In realldvproblems, the clusters can have different shapiees,
and degrees of separation and sparseness. Clgstedhniques require the definition of a similanieasure
between patterns that have extreme effects onethef sesultant clusters. Due to a lack of any pkizowledge
about cluster shapes, choosing a specialized dlugtenethod is not easy [23]. Studies in the past fears
have tended to combinational methods. Cluster eblgemmethods attempt to find a better, more robust
clustering solution by fusing as much informatienp@ssible among several distinct executions @&rétipning
algorithm over primary data [1].

Clustering ensemble [33,34] is the problem of degva consensugsartitioning given a number of resultant
outputs of a clustering algorithm. The resultanipats of the clustering algorithm used is calledearemble
The consensugpartitioning should be the most representative one for all negmin the ensemble, and it
optimizes a certain objective function. Generalhgre are two main steps in the clustering ensenfa)ethe
creation of some weak partitionings (the outputiaflustering algorithm is called a partitioninghda(b) the
aggregation of the primary partitionings obtained.

The first step is the creation of some weak partitigs. Because every primary partitioning reveatsdden
aspect of some data, their ensemble can compefwatbeir individual downside. Therefore, the prima
resultant partitionings need to be as diverse asiple in order to give more information about timelerlying
patterns in the data. Many methods to create thessary diversity for the primary results have bhe@posed.
However, the use of different clustering algorithimshe most straightforward method of obtainingedse
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primary resultant partitionings. Other methods ue the selection of different initializations, fdient
algorithm parameters, subset of features, mappiagdata to other feature spaces [1], and resamplfinbe
data [19]. In this paper, techniques based on #eead different base algorithms, different initzaliions, and
different parameters, and the resampling methodcaresidered to provide the necessary diversitytfier
primary results.

The second step in the clustering ensemble is taboee the primary partitionings obtained in thestfistep.
The co-association matrix-based aggregator is érireomost common methods used to combine the pyima
partitionings; it is also employed in this studyAE which was first proposed by Fred and Jain [h23ps the
individual data partitionings in a clustering enddeninto a new between-patterns similarity measure,
summarizing inter-pattern structures perceived fthase clusterings. The final data partitioningli¢ained by
applying the single-link method to this new similamatrix.

In this paper, a new clustering ensemble methotlubes a subset of primary clusters is proposedev
validity measure, called AAPMM, to evaluate thestér goodness is also proposed. Each clusterdhisfias a
threshold of the measure can be considered tocymat® in the construction of the co-associatioririxaln
addition, a new method, called EEAC, is proposedceftablishing the matrix. Finally, a hierarchiozdthod is
applied over the obtained matrix to extract thesemsus partitioning. In summary, the main contriimg of
this paper are as follows:

1- We propose a general framework for cluster ebdeselection.

2- After examining the strengths and weaknessakeofvell-known NMI measure, we propose the APMM
criterion, which evaluates individual clusters.

3- We offer a simple but efficient EEAC method tocamulate the selected clusters from primary
partitionings in the co-association matrix.

4- We provide a set of experimental results thaégicredence to our idea and demonstrate the &ffich
our proposed method.

The rest of this paper is organized as follows. Méet section reviews background as well as redated
works on the cluster ensemble problem. In Sectipmv@ introduce our framework and discuss the NMI,
APMM, and EEAC methods in detail. In Section 4, present a number of empirical results obtainedgusin
diverse datasets and compare them directly witerotrell-known methods. Finally, we conclude thipgain
Section 5 with some directions for future research.

2 Background

Similar to its closely related problem in classifion, combining classifiers [36-39], the clustesemble has
evoked an increasing interest among researchersné¥ereview some of the newest and most important
studies of cluster ensemble methods.

Although significant research has been conductedthenissue of clustering thus far, it has remaimaed
challenging problem. In this respect, researcherthé field of clustering have turned poojective clustering
andclustering ensembletn a work done by Gullo et al., a novel clustgrproblem, called projective clustering
ensembles, was introduced [30], and subsequentigrexed [31].

Minaei et al. [32] proposed non-adaptive and agaptesampling schemes for the integration of migtip
independent and dependent clusterings. They alamieed the efficacy of the bagging method, with and
without replacement. In their work, primary paditings in the ensemble are sequentially generated b
clustering specially selected subsamples of thergdataset.

The main challenge faced by a clustering ensenfialeis based on a subset of selected primary ctuete
partitionings is the manner in which clusters attiianings are evaluated. As data clustering isiagupervised
problem, its validation process is a most trouhtesaask. Baumgartner et al. [2] presented a resagiphsed
technique to validate the results of exploratorgzfuclustering analysis. Since the concept of elustability
was introduced as a means to assess the validitlataf partitionings, it has been increasingly usethe
literature [13]. This idea, which is based on theampling method, was initially described in [SHdater
generalized differently in [15]. Roth et al. [23joposed a resampling based technique to validakester. The
basic element in their method, which is a compleamnversion of the past methods, is cluster stgbilhe
stability measures the association between obtgaetitionings from two individual clustering algithms. The
large value of the stability measure lies in thet fdhat applying the clustering algorithm severales on a
dataset probably yields fixed results [21]. Rothl &ange [22] presented a new algorithm for datatehing
based on feature selection. In their method, teampling based stability measure is used to sealtierithm
parameters. There are several cluster validaticthads that are based on the stability concept B&h-Hur et
al. [3] defined a stability measure for clusterggutions. It is based on the perturbation of asktt In their
approach, stability is characterized by the distitn of the pairwise similarities between clusigd obtained



from sub-samples of the data. First, the co-asBonianatrix is acquired using the resampling methblgen,

the Jaccard coefficient is extracted from this ma#ts the stability measure. Estivill-Castro andnyd8]
proposed a method in which Support Vector Machif®@éMs) are used to evaluate the separation of the
clustering results. By filtering noise and outlietisis method can identify robust and potentiallgamingful
clustering results.

Moller and Radke [20] introduced an approach ttadidates clustering results based on the partitigprf
stability measure. The approach uses perturbatioduced by adding some noise to the data. Theiirerab
study indicates that the perturbation usually otigpens bootstrapping and subsampling. While the igogd
choice of the subsampling size is often difficuf}, the choice of perturbation strength is not verycial. The
method uses a Nearest Neighbor Resampling (NNRjoapp that offers a solution to problems of both
information loss and empirical control over the iegof modification of the original data. The NN&hnique
was first used for time series analysis [4]. Indkuet al.[16] proposed a kernelized validity measuwwhere
kernel refers to the kernel function used by SVWs0 objectives are considered in this measure. firbeis
the sum of the traces of the fuzzy covariancesiwithusters, while the second is a kernelized XieniB
measure [25]. The validity measure is applied tewheine the number of clusters and to evaluatedhastness
of different partitionings. Das and Sil [6] propdsa method that determines the number of clustats a
validates the clusters using a splitting and meydgéchnique in order to obtain the optimal setlo$ers.

Fern and Lin [10] proposed a clustering ensembjeagrh that selects a subset of solutions to fosmaller
but better performing cluster ensemble than athpri solutions as a cluster ensemble. The ensesaldetion
method is designed based on quality and diverfigytwo factors that have been shown to improvecthster
ensemble performance [10,36]. Their method atteniptsselect a subset of primary partitionings that
simultaneously has both the highest quality and tighest diversity. The Sum of Normalized Mutual
Information (SNMI) is used to measure the qualityany individual partitioning with respect to théher ones
[11,24]. In addition, the NMI is employed to measuhe diversity between partitionings. Although the
ensemble size in their method is relatively smé#élle method can achieve a significant performance
improvement over a full ensemble. Law et al. [1ligwsed a multi-objective data clustering methoskelaon
the selection of individual clusters produced byesal clustering algorithms, through an optimizatio
procedure. The method chooses the best set oftiMaidanctions for different parts of the featurgase from
the results of base clustering algorithms. Fred &aid [13] presented a new clustering ensemble adetimat
learns the pairwise similarity between points idesrto facilitate a proper partitioning of the dathout a
priori knowledge of the number of clusters or thages of the clusters. The method is based oreclsistbility
and it evaluates the primary clustering resultteid of those of the final clustering.

Similar to Fern and Lin [10], Alizadeh et al. [2B3cently proposed a selection procedure that makes
ensemble of better performing clusters. They alt@duced a new metric, called MAX, to evaluatestdus and
to compare them .They empirically showed that chngpbetter clusters (with respect to the MAX métsields
better consensus partitioning. This means thateteanalogy between the MAX value of the choseistelrs
and the performance of final clustering. Howeverjndi and Fern [35] showed that choosing better prim
results based on NMI will not always yield betteaf results.
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Fig. 1. Proposed clustering ensemble framework.

3 Proposed Clustering Ensemble M ethod

In this section, the proposed clustering ensembéd¢had is first briefly outlined, and then its phasare
described in further detail in the subsequent suitmges.

The main idea underlying the proposed clusterirgemble method is the utilization of a subset oftiast
performing primary clusters in the ensemble instetdll of them. It seems that not every clusteaigood-
quality cluster. Hence, in this method only clusteith stability greater than a specified threstanie chosen to
participate in the combination. The cluster setatis done based on cluster stability that is defiaccording
to NML.

Fig. 1 depicts our proposed clustering ensembladraork. First, a set d primary partitionings is provided
usingk-means (and hierarchical linkage clustering metheo<reate the necessary diversity for an ensemble
Next, the AAPMM is computed for all clusters of baesultant clustering output. A detailed desooiptdf the
manner in which the AAPMM is computed is given lire thext sections. After that, a subset of the ratzile
clusters is selected to participate in the finadisien committee. This is done simply by applyin¢heeshold
over the AAPMM value of each cluster. In the netdps the selected clusters construct the co-adsmtia
matrix. Several methods of combining the primarguits have been proposed [12], [14], [24]. Here th
difference is the absence of some clusters in pyirpartitionings. Since the original EAC method Jt2nnot
truly identify the pairwise similarity while theris only a subset of clusters, in this paper, a mesthod to
construct the co-association matrix called EEA@rissented. Finally, the average-link method is eygd to
extract the final clusters from this matrix.

3.1 Cluster Evaluation Using APMM Criteria

A stable cluster is one that has a high likelihobdecurrence across consecutive applicationsabfistering
algorithm. Stable clusters are usually preferabiece they are robust with respect to minor charigethe
dataset [17].

Now, let us assume that we want to compute thelisyadif cluster C. In our proposed method, first a set of
partitionings over are sampled dataset (calleddference set) is provided. In this notatibnis resampled data
and P(D) is a partitioning oveD. Now, the problem is “How many times is the clust repeated in the
reference partitionings?” The problem is formallgndted by NMIC;,P(D)), which signifies the normalized
mutual information between clust€r and a reference partitionirR(D). Most previous works only compared a
partitioning with another partitioning24]. However, the stability measure used in [@Valuates the similarity
between acluster and a partitioningby transforming clusteC; to partitioning form and then employing
common partitioning-to-partitioning measures. Tosirate this method, I&, = P ={C;,D/C} be a partitioning
with two clusters, wherB/C; denotes the set of data pointdinhat are not irC;.

We can then compute a second partitioRingP® ={C",D/C’}, whereC denotes the union of all “positive”
clusters inP(D) and others are iB/C". A clusterC; in P(D) is positive if more than half of its data poiatsin
C.. Now, define NMIC;,P(D)) by NMI(P? P"), WhICh is calculated as follows [11]:

_ zzz e Iog[ nab'n]
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wheren is the total number of samplﬁ%‘,’ denotes the number of shared patterns betweeterdad$ € P* and
Cj” € Pb; nf is the number of patterns in clustesf partitioninga; andn]’?is the number of patterns in cluster
of partitioningb.

This computation is done between clugZeand all partitionings available in the referenee Eig. 2 depicts
this method.

NMI; in Fig. 2 shows the stability of clust€ with respect to théth partitioning in the reference set. The
total stability of clusteC; is defined as follows:

NMI (P2, PP) =

1)
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whereM is the number of partitionings available in théerence set. This procedure is applied to eachieslod
every primary partitioning.

G
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Fig. 2. Computing the stability of clustes;.

This approach as an evaluation of cluster stabli#ag some drawbacks that can appear under certain
circumstances. In this section, a drawback ofpghigedure is revealed, and a novel asymmetric measalled
APMM, is proposed to handle this drawback.

“b&hn %
of .cébo
N "l
O o 3 o o
o o o
@ @ o nn
e @ ® e oo o
& @ o o
@ M & a o
@ o
@ o
@ o @ a o o
& o
@ o
L o g
LI | . o % oo
. n y o o
Stability A | Stability o
| | [ B} o oo
0574 o u 0357 o o
0750 o 0198 <
nl g od o o
1.000 o " L] 1.000 o o
{a) (b)

Fig. 3. Two primary partitionings wittk=3: (a) True clustering (b) Spurious clustering.

Fig. 3 shows two primary partitionings along witte tevaluated stability of each cluster and its agtafon
process. In this exampl&means is applied as the base clustering algoréhchthe true number of clusters,
k=3, is fed to thé&-means algorithm. For this example, the numberadfitionings in the reference set was set to
40. In 36 of the partitionings, the result was &mio Fig. 3(a), while in the other 4,the top lefuster was
divided into two clusters, as in Fig. 3(b). FigaBshows a true clustering. Since the well-sepdreltester in the
top left corner is repeated several times (90%asks) in partitionings of the reference set, it thagcquire a
large stability value (but not equal to 1), howeiteacquires the stability value of 1. The two ¢&rs on the
right hand side of Fig. 3(a) are relatively jointad sometimes they are not recognized in theeeder set as
well; they acquire rather low stability values. Fifb) shows a spurious clustering in which the tlgsters on
the right are incorrectly merged. Since a fixed hemof clusters are forced to the base algorittm,top left
cluster is consequently divided into two clustdiere, the weakness of the stability measure siganifly
emerges. Although it is obvious that this partitngnand the corresponding big cluster on the rightly appear
in the reference set (10% of cases), the stalufithe big cluster on the right is evaluated andpeaiqual to 1.
Since the NMI is a symmetric criterion, the stapitf the top left cluster in Fig. 3(a) is exactgual to that of
the big cluster on the right in Fig. 3(b); howeurey are repeated 90% and 10%, respectively.Harotord,
when two clusters are complements of each otheir, $kabilities are always equal. This drawbackuosavhen
the number of positive clusters in the partitionofghe reference set considered is greater thénalso means
that when clusteC* is obtained by merging two or more clusters, timelesirable stability value results are
obtained.



Here, we propose a new criterion that can solve pihoblem. Assume that the problem is evaluatirgy th
APMM criterion for a clusteC, in Fig. 4(a) with respect to clustering obtainadrig. 4(b).The main idea in
this method is to eliminate the symmetrical propénat inherently exists in the NMI equation. listapproach,
except for cluste€,, all the clusters iP® are taken out. Furthermore, all the clusterBSthat are not included
in the samples of clusteZ,are eliminated. In the next step, the other samilas are not inC, of P? are
removed from the clusters P (from the clusters that contain some of these $&shpThis process is depicted
in Fig. 5.
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Fig.4.Examples of two partitions for evaluating the APM#iterion for clusteiC; from Pfin (a) compared t&°in (b).

Now, the entropy between the clusters remaininggiritioningsP* andP® is computed as depicted in Fig. 6.
Considering that the other samples involved areielited, this criterion is not symmetric.

All the previous works are based on the NMI deifiimitin equation 1. Even to evaluate the occurrefca
cluster in a partitioning, the problem is modifiedsome way to become a problem that involves coispa
between two partitionings so that the NMI equatiam be used. However, in this study, the problemois
changed to correspond to the definition of NMItéasl, the NMI equation is modified so that the ornce of
a cluster in a partitioning is computed. This is)\@dy evaluating the entropy between the considelester
and other pseudo clusters in the correspondingipaihg. The APMM is defined between a clus@&ifrom P*
and the partitioning®®from P, asin the equation below:

—an‘log(rl]
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wheren is the number of the samples available in thesgatandk,- is the number of clusters R¥".
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Fig. 5.Provision of data to evaluate the APMM criterion) Deletion of all clusters excef from P?. (b) Derivation of
P from P, the corresponding samples@fin PP.

We propose AAPMM as a measure of stability for ampry clusterC; compared to the partitionings
available in the reference set defined in the foihg equation:

1 .
AAPMM(C,) =VZ APMM(C?, P") )
=1

where ij* is from thej-th partitioning in the reference set.

I

Fig. 6. Computing the entropy between clustgrfrom P? andP® from P®.
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3.2 Consensus Function

The final activity in our clustering ensemble framaoek is aggregation of the selected clusters. Oag of
doing this is to consider the selected clustergnpats of the Hyper-Graph Partitioning Algorithm GRA),
Meta-CLustering Algorithm (MCLA), and Cluster-bas&imilarity Partitioning Algorithm (CSPA) [24]. The
outputs of these algorithms are the final partitign which is also called consensus partitioningr &ample,
in Fig. 7, four partitioningsy—Ty are extracted from a simple dataset with 12 datatp and 2 real clusters by
the k-means clustering algorithm. Theparameters ck-means clustering are set to 3, 4, 2, and 2, réspbc
These partitionings are broken into the 11 cluddesicted in Fig. 8. The clusters are then sergadaut to the
HGPA, MCLA, and CSPA algorithms.

The second way to extract the final partitioningnfr the selected clusters is to consider clusteis asw
data space, and employ a clustering algorithm, sascluzzyk-means, to partition the mapped data. As is
already known about the fuzaymeans clustering algorithm, it assigns each daiatpo all clusters with



different membership values. To extract the firadtiioning from the output of a fuzag¢means algorithm as
consensus function, each data point was assign#tktoluster with the highest membership value. iRore
information about fuzzk-means algorithm, readers should refer to [40]. ustgain consider the example in
Fig. 7. The partitionings are broken into the 1dstérs depicted in Fig. 8, according to the previmethod.
The clusters in Fig. 7 are considered the mappéal idea new feature space and the fukageans algorithm
extracts consensus partitioning out of them.
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Fig.7. Four partitioningsy—Ty, extracted from a simple dataset with 12 datatpoémd 2real clusters using khmeans
clustering algorithm. Thk parameter itk-means was set to 3, 4, 2, and 2, respectively.

An alternative way to reach the consensus pariitgpiis to use co-association based methods. Irethes
methods, the selected clusters are first used nsteet a co-association matrix. In the EAC methibeé, m
primary results from re-sampled data are accumdilamennxn co-association matrix. Each entry in the matrix
is computed from equation 5.
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wheren; counts the number of clusters shared by objedtsindlices i and j in th& ensemble partitionings. In
addition,my; is the number of partitionings where the pair bfests is simultaneously present. There is only a
fraction of all the primary clusters available,eafthresholding. Therefore, the common EAC methaainot
truly recognize the pairwise similarity for commgi a proper co-association matrix. In our novel hudt
(Extended Evidence Accumulation Clustering, or EEEA€ach entry of the co-association matrix is cotegu
using equation 6:

N,

max(n, n;)

Cl.j)= (6)
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Fig.9. Computing the co-association matrix using the EEA&hwnd: (a) Data samples. (b) Four primary clustgsir(c)
Remaining clusters after applying threshokcs0.8.

wheren; andn; are, respectively, the number of occurrences ®i-th andj-th data points in the selected or
remaining (after stability thresholding) clustelrs addition,n; represents the number of remaining clusters that
contain both data points indexed bgndj. To further explain, consider this example. Letassume that we
have five samples (Fig. 9(a)), and that four priyrdusterings are applied (Fig. 9(b)).

In addition, suppose that the stability of the tdus in Fig. 9(b) is as follows:

Stabilityc}) = Stability(c3) =1

Stability (cZ) = Stability (') =1

Stability (cZ) = Stability (c3) = 082

Stability (c}) = Stability (¢) = 055

By choosing th=0.8 the first clusters from P1 arddaPe deleted (Fig. 9(c)). According to equatioredch
entry in the co-association matrix is as follows:

-2 _2_
ct2)= max(2,2) 2 !
0(13):C(2,3):#(22):%:
C(3,4):C(3,5):ﬁ(24):§:
C(4,)_L:£_

max(44) 4

In Figs. 9(a)-9(c), the data points may be “tratkbg their geometrical arrangement. Example: in
computing C(3,4), note that points 3 and 4 are littluster 2 of partitionings P2 and P4, so thanarator
nz;=2; in addition, note thatsn2, since point 3 is only in cluster 2 of P2 and P4t n=4 since point 4 is not
only in these clusters, but also in cluster 2 ofaRd P3. Before and after applying threshold, thassociation
matrix is given by equations 7 and 8, respectively:

In this matrix, the third object can be considetedbe both clusters with an equal probability o#60rhe

[1 1 05 0 O]
1 1 05 0 0
Chetore=|05 05 1 05 05 7)
0 0 05 1 1
0 0 05 1 1]

stability measure adds some information to thigimaty applying the threshold.

after —

11 0 0 0]
11 0 0 O
00 1 05 05
0005 1 1
00 05 1 1

(8)



Comparing these two matrices and also considetiagstability values, we can see that the omission o
unstable clusters improves the co-association maBy eliminating the unstable cluster, samples 31,3},
which are spuriously created by primary clusterjrage neglected.

After computing the co-association matrix using BAC method, a consensus function is employed to
extract the final clusters from the matrix. Hetlee average-link method is generally used for thgkt In the
above example, the final two clusters are {{1, &hd {3, 4, 5}}.

Because different values &fare chosen in the base partitionings, there iggh probability that even the
most stable cluster is divided into two or moretabke ones. Consequently, the base partitioningsimerse
enough to present a good coverage of clusters diffarent stabilities to be chosen. This means that
proposed algorithm is fed a large number of optimetuding different clusters with different progies and
stability values. As a result, the probability ofging any sample in the retained clusters is i@mry

Although samples are rarely overlooked, the mettiods not guarantee that all the observations \eill b
included in at least one of the retained clusfEhgrefore, post-processing in order to label thesmg samples
is inevitable. The post-processing carried outudek the assignment of each missing sample to géheest
cluster center in the feature space using the @adlidistance.

4 Experimental Results

This section discusses experimental results tHatata how our proposed framework, which uses tiviM
measure, can compete with its rivals and its pwsitn relation to the other methods. Evaluationriogtare
discussed in the first subsection, while the deteilthe datasets used are given in the subsegaetibn. The
settings used in the experiments are then givenfanadly, experimental results are presented.

4.1 Evaluation Metrics

After producing the consensus patrtitioning, the mmgortant challenge may be the assessment phhse.
NMI measure by itself is generally considered aal@ation metric for a partitioning. Therefore, atjiening
is evaluated here by measuring the NMI betweertdmsensus partitioning and the real labels of diasét.

An alternative that can be used to evaluate atjmenitig is accuracy metric, provided that the numbk
clusters and their true assignments are known.oropate the final performance of a clustering aldponi in
terms of accuracy, one can first re-label the ehssbbtained in such a way that they have maxinathing
with the ground true labels, and then count thegraage of truly classified samples. Therefore,ehter rate
can be determined after solving the correspondpnaielem between the labels of the derived and tiewk
clusters. The Hungarian algorithm [26], which ha&ei shown to efficiently solve this label corregpemce
problem, can be employed to solve the minimal wigigbartite matching problem.

F-measure is another measure for evaluating aipaitig. It considers both precision and recaltdéonpute
the score. Precisigmis the number of correct results divided by thenhar of all results returned, while recall
is the number of correct results divided by the hanof results that should have been returned.Frheeasure
can be interpreted as a weighted average of thasme and the recall, where an F-measure reatbdsest
value at 1 and its worst score at 0 [29]. The Fsueaused in this paper is computed based on equati

ab ab
r-‘zr(i) r-‘zr(i)
o 2XMX (X )

a \ no,.
FM(P*,P?) =max}, 0
El nx(nn:) + n:(i)) 9)
n N

wheren{”again denotes the number of shared patterns betliestersC* € P* andC? € P”; n is the number
of patterns in clusterr of partitioninga; nj? is the number of patterns in clusfeof partitioningb; andmis a

permutation of 4,..., kJ} for the relabeling oP?.
It is worth mentioning that in all the experimentise NMI, F-measure, and accuracy were scaledén th
range [0-100] for consistency, thus they are alwapsrted in the range [0-100].

Table 1.Brief summary of the datasets used

# of # of # of
Classes| Features Sample
1 Breast-Cancer* 2 9 683

Dataset Name

2




2 Iris* 3 4 150
3 Bupa* 2 6 345
4 SAHeart* 2 9 462
5 lonosphere 2 34 351
6 Glass* 6 9 214
7 HalfRing 2 2 400
8 Galaxy* 7 4 323
9 Yeast* 10 8 1484
10 Wine* 3 13 178

Fig.10. HalfRing dataset

4.2 Datasets

Our proposed method was examined over nine diffesemdard datasets and one artificial dataseteSin
large variety in the datasets used can more effdgtivalidate the obtained results, the datasete whkosen in
such a way that they had adequate diversity imtimaber of true classes, features, and samplesdatasets
used are briefly summarized in Table 1. More infation is available in [27].

Note that the datasets that are marked with amigls{¢) in Table 1 were normalized. The experingewere
conducted over the normalized features in theesaglataset. This means that each feature was ripechabith
a mean of 0 and variance of 1, N(0, 1). The aidificlalfRing dataset is depicted in Fig. 10. Itansidered one
of the most challenging datasets for clusteringtigms [32].

4.3 Experimental Settings

To be more general and fairer, all experiments wareraged over 10 independent runs. In all the
experiments, there were 120 independent partitgmiabtained by 120 independent runs of khmeans
clustering algorithm with different initialized s&@oints and different values for thgparameter, ranging from
kto X

We should mention here that there are no rigidsride determining the exact ways in which diversityhe
primary results can be achieved. Therefore, wegetiversity generation policies empirically. Ither words,
one can change these parameters and achieve diffesults. However, we believe that any differanicethe
results will not be so significant as to surpassrésults attained in this paper.

After selecting a subset of clusters, to extraetfthal partitioning out of them, the real numbérctusters,
i.e., the third column in Table 1, is served bytbasensus functions.

4.4 Experimental Results
The NMI values in terms of employing different catifrom the most stable clusters in the final erfdem

over different datasets are depicted in Fig. 11.isAebvious for the Iris dataset (Fig. 11(a)), el value
increased as the ratio of the most stable clugiarcipating in the final ensemble increased upb@86.



However, after 50%, it did not increase, and eveorebsed in some cases. The same figure for thet Yea
dataset is depicted in Fig. 11(b).In this caseNNH value rose for the first 30%, after which bated in almost
all cases.

Like the results for the Iris dataset, for both Wme dataset in Fig 11(c) and the Galaxy datasEtg 11(d),
the NMI value increased up to 50% almost in allesaHowever, after 50%, it did not increase, anenev
decreased in some cases. For the Wine datasedintjle-linkage aggregator was an exception. Insthgle-
linkage aggregator, the best ensemble occurred ahetusters participated in the ensemble, bupéak was
not comparable with others. However, fuzzyneans stood out from the other consensus funciiortbe
Galaxy test case. In the fuzkymeans aggregator, the best ensemble occurred ¥W#nof the most stable
clusters contributed to the ensemble. Howevepetk did not give a result that was comparable thith of the
others.
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Fig.11. Effect of selection size on the performance in gohNMI for (a) Iris, (b) Yeast, (c) Wine, and (@plaxy datasets.
The horizontal axis represents the rate of stdbkers that were selected. The vertical axis spres the NMI value for the
datasets.

The averaged NMI value in terms of choosing différeatios from the most stable clusters in thelfina
ensemble over all ten datasets is shown in FigIiLEig. 12(a), it is easy to see that in most sake NMI
value increased as the rate of participants gredO8b. However, after 50%, it did not increase digantly;
and even decreased in some cases. However, owsawmethod peaked when 50% of the most stableerdus
were taken into the final ensemble and by employirgaverage-linkage algorithm as the consensugifum
along with the EEAC method. The accuracy resulfigf. 12(b) confirms the NMI result (of Fig. 12(a)h
addition, the F-measure outcome of Fig. 12(c) atsafirms both previous results, except in the calsere the
single-linkage aggregator is superior to the avefdatkage aggregator. However, in this case, theramge-
linkage aggregator is the second best method.
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(b) Accuracy
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(c) F-measure

Fig.12. Effect of selection size on performance in terrh§ad NMI, (b) Accuracy, and (c) F-measure oveddtasets. The
horizontal axis represents the rate of stable etaghat were selected. The vertical axis represtiet averaged F-measure
over all ten datasets in Table 1.

Fig. 13 illustrates the effect of selection sizepmiformance in terms of averaged NMI, accuracy Bn
measure over all ten datasets. Supporting thetsestilFig. 12, this figure confirms that the averdigkage
aggregator is superior to all aggregators. Theegfee can conclude that using the average-linkiggeithm as
aggregator along with the EEAC method is the bpsbno for consensus function. Furthermore, it vesifthat
choosing the selection ratio of the most stablstehs to construct the final ensemble at 50% hispeak. By
comparing the average of the vertical axes of ER(s) and 13(b), we can infer that employing APM#/tlae
measure to evaluate a cluster generally yieldebetinsensus partitioning.
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(8) APMM
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Fig.13. Effect of selection size on performance in terrhaweraging all three validation measures: NMl,uaacy, and F-
measure overall datasets. In (a) the stabilitedan is APMM, while in (b) it is MAX [28]. The hdzontal axis represents
the rate of stable clusters selected. The verdixial represents the averaged vertical axes of @), 12(b), and 12(c).

A more general understanding over the three clestaluation criteria used—NMI, MAX, and APMM—can
be captured from Table 2. The average-linkage #hguris used as aggregator along with the EEAC owkth
Table 2. As can be seen, except for the eighthsdgt&APMM and MAX completely outperformed NMI. In
addition, the APMM-based cluster ensemble is digbtiperior to the MAX-based cluster ensemble. As a
result, in this paper, we conclude that using APK&Kicluster evaluation is a better option than gsta rivals.

Table 2. Accuracy of consensus partitioning produced bysteluselection based on NMI and MAX measures [28] a
APMM.

Dataset Number

Evaluation
Average
Measure| 1* 2 3* 4% 5 6* 7 8* 9* 10
NMI 95.73 | 76.13| 5433 63.3 70.60 50.716 7448127 | 4293 | 69.38| 62.90
MAX 96.49 | 84.87 | 5742 | 63.87 | 67.75 | 49.35| 7455 | 29.85 | 51.27| 70.00 64.54
[28]
APMM 95.56 | 90.00 | 55.07 | 63.87 | 70.66 | 50.79 | 74.00 | 30.65| 53.10 | 70.23 | 65.39

The first four columns in Table 3 show the resoltsome base clustering algorithms. The resultsvshat
although each of the base algorithms can obtairpargr result over a specific dataset, it doespeotorm well
over other datasets. For example, as shown in Babiek-means algorithm gives a more superior clustering
result over the Wine dataset than that of the lijgkmethods. However, it has a lower performance that of
the linkage methods in the case of the Bupa datddeteover, the complete linkage gives an efficient
performance for the Breast-Cancer dataset compaittdthat of the others; however, this is not so &l
datasets.

The last five columns show the performance of semsemble methods compared with that of our proposed
method. A glance at the last five columns and caiepa with the first four columns reveals that #resemble
methods do better than simple base algorithmsdrtéise of performance and stability against diffedatasets.
For all cluster ensemble algorithms, the 90% samgpifiom dataset is used to create diversity inpghmary
results. Sub-sampling (without replacement) is ussdthe sampling method. In addition, the random
initialization of the seed points of tkeneans algorithm helps them to be more diverseaallyinthe average-
linkage algorithm is employed as consensus functiwnderiving the final clusters from the co-assicin
matrix.



The first column of the ensemble methods gives rémilts of an ensemble of 1@@means that were
combined by the EAC method. The second column femsemble methods is the full ensemble, which uses
several clustering algorithms to generate the pymasults. Here, 7&-means with the above-mentioned
parameters in addition to 30 linkage methods pmwlte primary results. Since different runs of acsic
linkage method always yield the same result, thera limitation for using them as the base clustgri
algorithms. Here, forcing a set of different numbéclustersk +2, is used to create diversity, in whikls the
true number of clusters.

Table 3.Experimental results

Simple Methods (%) Ensemble Methods (%)
sy Cluster | Cluster
singl A c | K Full Select Selection| Selectio
Dataset | Sngle verage omplete | | s | k-means u election by MAX by
Linkage | Linkage Linkage Ensemble| Ensemble| by NMI Measurel APMM
MERSIRD [28] Measure
Wine* 37.64 38.76 83.71 96.63 96.63 97.0 97.7p 2P8.| 98.31
Brng" 65.15 70.13 94.73 95.37 95.46 95.1 9575 9649 | 95.56
Yeast* 34.38 35.11 38.91 40.20| 45.44 47.1f 42.93 .261| 53.10
Glass* 36.45 37.85 40.65 45.28] 47.01 47.88 50.16 .3549( 50.79
Bupa* 57.68 57.10 55.94 54.64 54.49 55.88 54.33 57.42 55.07

The last three columns show the results of ensemblbods that use only a subset of primary clustére
first one shows the results of an ensemble that tiee traditional NMI-based stability for clusteslidation
[17]. The second one is our proposed clusteringmbte method, which uses the MAX measure [28] faster
validation. The last column is our proposed clisteensemble method, which uses the APMM measure fo
cluster validation. The selected clusters in th@ssociation matrix in all three methods are acdated using
the proposed EEAC method. Finally, the averagealijgkalgorithm is applied over the co-associatiotrimto
extract final clusters. The primary clustering tesare provided similar to the full ensemble. Wsedi the idea
of cluster ranking and thresholding to select tbstlsubset of base clusters. More precisely, tieshiold that is
used for cluster selection is determined adaptiveirst, it is adjusted to 95%. If less than 10%h# samples
are absent in the selected clusters, the threstiolebn reduced to 90%. This procedure (reducingffa¥h the
threshold value) is continued until the selectedtdrs include more than 90% of the samples. Tédtesin the
last three columns verify that although these apghes use a subset of the primary clusters, thesllys
outperform the full ensemble. In addition, compgrihe last three columns shows the power of APMIgeda
stability in comparison with the NMI-and MAX-basestlability. Examinations by 10 independent runs over
different datasets robustly show the quality of MRMM measure with respect to the NMI and MAX measu

5 Conclusions

In this paper, a new clustering ensemble methodishbased on a subset of total primary spurioustets is
proposed. Since the qualities of primary clusteesr®t equal and the presence of some of themeamresult
in poor performance, we present a method to selesibset of more effective clusters. A common elust
validity criterion that is required to derive thabset is based on normalized mutual informatinrihis paper,
some drawbacks of this criterion is discussed analtarnative criterion—the Alizadeh—Parvin—-MoshWiraei
(APMM) criterion. The results of experiments conhacindicate that the APMM criterion generally perhs
slightly better than the NMI (and also the MAX)terion; moreover, it significantly outperforms théMl
criterion in the case of synthetic datasets. Bezadithe symmetry concealed in the NMI criterioml ahso in
NMI-based stability, decreased performance resuéiobtained whenever symmetry also appears idataset.

After selecting a subset of clusters, several amse functions are employed to extract consensus
partitioning. This paper empirically showed that thost effective consensus function results froenaerage-
linkage hierarchical clustering algorithm. Anotmavel contribution of this paper is a method fonstoucting
the co-association matrix where some of the clasterd some of the corresponding samples do not iexis
partitionings. This new method is called Extendedd&nce Accumulation Clustering (EEAC). The emgitic
studies conducted over several datasets robugily $itat the quality of our proposed method is Uguadtter
than that of other methods.



This paper finally concludes that using APMM foustier evaluation is the best option. We can alselode
that using the average-linkage algorithm as anegggor along with the EEAC method is the best opfar
consensus function. The performance of consenstitigrang peaks when the ratio of the most staidesters
to participate in the final ensemble is 50%.

As future work, the effect of data sampling on preeformance of the final ensemble should be ingastid.
The subsampling and bootstrap methods in additiothé adaptive cluster ensemble [32] approach @n b
incorporated into our framework. We believe thdbering diversity in primary results can expand thage of
possible choices for selection, as it appearsdékction from a wider range of possible clustens inprove
the final results obtained from our proposed methadthermore, in this paper, we investigate ancchae
that using the most stable clusters improves tia fiartitionings. However, to maintain the stapitf the final
ensemble, one can investigate other aspects ofecdusuch as diversity. Moreover, similar to martlyeo
research in the field of cluster ensemble [9-158828,39], we assumed that our data set is starztardree of
noise and missing values. In the future, the effdchoise and missing values of the data on the MPM
evaluation measure should be investigated. Alhesé examinations will be carried out in our futsigdies.
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