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Two-Dimensional Coded Classification Schemes in
Wireless Sensor Networks

Hung-Ta Pai, Member, IEEE, Yunghsiang S. Han, Senior Member, IEEE, and Jing-Tian Sung

Abstract— This work proposes a novel fault-tolerant classifica-
tion system based on distributed detection and two-dimensional
channel coding. A rule is then derived to reduce the search space
such that the optimal code matrix can be found. Simulation
results reveal that the proposed scheme has higher classification
reliability and better capability of fault tolerance than previous
methods. Moreover, a code matrix using repetition codes is
presented. The proposed scheme with the repetition code has a
lower memory requirement at each sensor and higher detection
flexibility than that with the optimal code matrix while only
having a slightly lower performance. Finally, an asymptotic
performance analysis is provided for the proposed scheme.

Index Terms— Sensor networks, networks and systems, detec-
tion and estimation, source/channel coding, transmission tech-
nology.

I. INTRODUCTION

SENSORS in wireless sensor networks (WSNs) detect
environmental variations and then transmit the detection

results to a fusion center [1]. The fusion center collects all
detection results and determines the phenomenon that has
occurred. To lower the transmission burden, the detection
result is typically denoted by a local decision. The local
decision is made by the sensor.

Some sensors may have unrecognized faults under severe
conditions. Wang et al. [2] proposed Distributed Classification
Fusion using Error-Correcting Codes (DCFECC) for fault-
tolerance by combining the distributed detection theory [3]
with the concept of error-correcting codes in communication
systems [4]. One sample is detected in each of N sensors for
a given phenomenon. A codeword consisting of N symbols
is designed for each phenomenon. In other words, a one-
dimensional code (1×N ) corresponds to a phenomenon. Thus,
M phenomena form an M × N code matrix. Each symbol
with one bit is assigned to each sensor. A local decision
is made from the detection result and is represented with
the assigned symbol. Binary decisions from local sensors,
possibly in the presence of faults, are forwarded to the fusion
center that determines the final decision. Since each codeword
in the code matrix is chosen apart from each other, it can
tolerate faults made on local decisions when making the final
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Fig. 1. Structure of a wireless sensor network for distributed detection using
N sensors.

decision. This approach not only provides an improved fault-
tolerance capability but also reduces computation time and
memory requirements at the fusion center. DCSD (distributed
classification fusion using soft-decision decoding) [5] was
later developed by improving DCFECC. DCSD adopts a
symbol with L bits, instead of one bit [5]. However, the
misclassification probability remains high in the extreme case,
i.e., with many faulty sensors and very low Signal-to-Noise
Ratios (SNRs). Moreover, the multi-bit symbol increases the
sensor complexity (cost).

This work proposes an approach to reduce the misclas-
sification probability in multiple-observation scenario while
keeping the sensor complexity low. L − 1 more observations
are employed at each sensor and then L bits are required to
represent the L observations (one bit for one observation)
rather than one observation in [5]. Each phenomenon is
represented by a two-dimensional (2-D) codeword (L × N )
and then a code matrix (M × L × N ) is needed.

The key contributions of this work are summarized as
follows. (1) Develop a two-dimensional coded classification
scheme. The scheme has lower complexity and misclassifi-
cation probability than the previous works. (2) Derive a rule
such that the optimal code matrix can be found through full
search. (3) Demonstrate that the repetition code is a practical
choice as the code matrix. (4) Prove that the misclassification
probability of the scheme approaches to zero asymptotically.

II. FAULT-TOLERANT DISTRIBUTED DETECTION

Figure 1 depicts a wireless sensor network for distributed
detection with N sensors deployed for collecting environ-
ment variation data and a fusion center for making a final
decision of detections. When one of phenomena Hi, where
i = 1, 2, . . . ,M , occurs, all sensors observe the same phenom-
enon. One observation yj is undertaken at the jth sensor. The
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TABLE I

THE 4 × 10 OPTIMAL CODE MATRIX

H1 0 0 0 0 0 0 0 0 0 0

H2 0 0 0 0 0 1 1 1 1 1

H3 1 1 1 1 1 1 1 1 1 1

H4 1 1 1 1 1 0 0 0 0 0

observation is normally a real number represented by infinite
number of bits. Transmitting the real number to the fusion
center would consume too much power, so a local decision,
uj , is made instead. For a phenomenon, if only L bits are
allowed to send the local decision from the sensor to the fusion
center, then the L bits are used to represent the decision. The
fusion center collects all local decisions and makes a global
decision according to them.

In the DCFECC approach, L = 1 is set, and an M × N
code matrix T is designed using the simulated annealing
algorithm [2], [6]. The application of the code matrix is de-
rived from error-correcting codes. The code matrix is adopted
herein not only to correct transmission errors but also to resist
faulty sensors since the incorrect local decision of the faulty
sensor can be regarded as a transmission error too. Table I
shows an example of T. Row i of the matrix is a codeword
ci = (ci,1, ci,2, . . . , ci,N ) corresponding to hypothesis Hi

and ci,j is a 1-bit symbol corresponding to the decision of
sensor j. Notably, the Hamming distance, denoted as d(ci, ck),
between two codewords ci and ck is defined to be the number
of positions in which the symbol differ and the minimum
Hamming distance of a code matrix is the smallest Hamming
distance between any two distinct codewords of the matrix [4].

Let vj be the received local decision at the fusion center,
where vj ∈ {0, 1} and v = (v1, v2, ..., vN ). A cost function
is then defined as Cv,ci

= 1 − 1
q if ci is one of q solutions

of arg min
ck

d (v, ck); otherwise, Cv,ci
= 1, which indicates

a classification error. Hence, the Bayes risk function [3]
represents the probability of misclassification,

Pe =
∑
i,v

∫
y

p(v,y,Hi)Cv,ci
, (1)

where y = (y1, y2, ..., yN ) represents all values observed at
sensors. Let u = (u1, u2, . . . , uN ) be all local decisions at
sensors, and make the following assumptions:

Assumption 1: Observations at all sensors are condition-
ally independent, i.e., p (y|Hi) = p (y1, y2, . . . , yN |Hi) =
N∏

j=1

p (yj |Hi) .

This assumption is due to the fact that all sensors observe
the same phenomenon and they are assumed to locate apart
enough.

Assumption 2: The jth local decision, uj , only depends on
the jth observation, yj .
This assumption is due to the fact that there are no commu-
nications between sensors when they make their own local
decisions.

Assumption 3: The jth received local decision, vj , at the
fusion center only depends on the jth local decision, uj .

This assumption is due to the fact that the fusion center
receives the local decisions one by one from sensors. This
can be easily satisfied in practice when TDMA transmission
protocol is employed.

Equation (1) can then be recast as

Pe =
∑

i,u,v−vj

∫
y

p(Hi)
[
p(vj=1|u)p(u|y)p(y|Hi)Cvj=1,ci

)+

p(vj=0|u)p(u|y)p(y|Hi)Cvj=0,ci
)
]
, (2)

where vj=bv
= (v1, . . . , vj−1, bv, vj+1, . . . , vN ) is a vector

with jth elements equaling to bv , bv ∈ {0, 1}, and v − vj

represents the elements of v except vj , i.e., v − vj =
(v1, ..., vj−1, vj+1, ..., vN ). The local decision rule of sensor
j is

∑
i

p(yj |Hi)Dj (T)
uj=1
>
<

uj=0

0, (3)

where

Dj(T) =
∑

i,u−uj ,v−vj

∫
y−yj

p (Hi)p (v − vj |u − uj) ×

p (u − uj |y − yj) p (y − yj |Hi) ×
{[Cvj=0,ci

(
1 − pj

10

)
+ Cvj=1,ci

pj
10] −

[Cvj=0,ci
pj
01 + Cvj=1,ci

(
1 − pj

01

)
]}. (4)

Notably, u − uj and y − yj , similar to v − vj , represent
the elements of u and y except uj and yj , respectively, and
pj

bvbu
= p(vj = bv|uj = bu), bv, bu ∈ {0, 1}. Equation (4)

shows that the jth local decision rule depends on not only
the code matrix T but also on the value of p (u − uj |y − yj),
which is derived from the local decision rules in the other
sensors. Wang et al. adopted a person-by-person optimization
to determine all of the local decision rules. The decision region
at sensor j can be represented by a set of thresholds such that
a local decision rule associated with this threshold set can
be performed to determine uj when yj is observed. DCSD
approach utilizes multiple bits (L > 1) and soft decoding,
respectively, to improve the reliability of the local and final
decisions. However, it still makes one observation at each
sensor and one-dimensional code matrix is employed.

III. TWO-DIMENSIONAL CODED DETECTION SCHEME

A. System architecture

After performing one observation at each sensor, L−1 more
observations are asked one by one from the fusion center to
increase the reliability of the fusion result. The vector yj =
(y1,j , y2,j , . . . , yL,j)

T , where yl,j is the observation l and a
real number, denotes the observation data at the jth sensor.
The vector uj = (u1,j , u2,j , . . . , uL,j)

T , where ul,j ∈ {0, 1},
represents the local decision at sensor j. The matrix of all local
decisions is given by U = (u1,u2, . . . ,uN ). Furthermore,
this work adopts binary modulation because it is simple [5].1

1Other modulation schemes can also be employed. However, the calculation
of the reliability of the received local decision becomes more complicated.
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The matrix received at the fusion center is given by Ṽ =
(ṽ1, ṽ2, . . . , ṽN ), where ṽj = (ṽ1,j , ṽ2,j , . . . , ṽL,j)

T and 2

ṽl,j = αl,j (−1)ul,j

√
Es

L
+ nl,j . (5)

Notice that αl,j is the attenuation factor, Es is the total
transmission energy per sensor, and nl,j is the additive white
Gaussian noise (AWGN) with the two-sided power spectral
density N0/2. Since the total energy Es is shared by the
L transmission bits, the energy of each transmitted bit is
only Es/L. This work later demonstrates that the 2-D coding
scheme improves the overall performance despite the small
transmission bit energy. We first make the following assump-
tion:

Assumption 4: Observations at a sensor are independent,

i.e., p (y1,j , y2,j , . . . , yL,j |Hi) =
L∏

l=1

p (yl,j |Hi) , for all i, j.

This assumption is due to the fact that the fusion center gets on
detection result from each sensor in each round such that the
interval between two successive detections at the same sensor
can be assumed long enough to satisfy the above assumption.
Finally, from Assumptions 1 and 4,

p (y1,y2, . . . ,yN |Hi) =
N∏

j=1

p (yj |Hi) =
L∏

l=1

N∏
j=1

p (yl,j |Hi) .

(6)
The M×N code matrix must be replaced with an M×L×N

code matrix. An L × N codeword is then assigned to each
of the M hypotheses. Restated, the 2-D L × N codeword
Ci = [ci,l,j ]1≤l≤L,1≤j≤N , corresponds to the ith hypothesis,
Hi, where ci,l,j ∈ {0, 1} is a one-bit symbol. By only
considering the hard decision, vl,j , of ṽl,j , the probability of
misclassification is given by

Pe =
∑
i,V

∫
y1,y2,...yN

p(V,y1,y2, ...,yN ,Hi)CV,Ci

dy1dy2 . . . dyN , (7)

where the definition of CV,Ci
is the same as that of Cv,ci

in
Section II and V = [vl,j ]1≤l≤L,1≤j≤N . From (6), (7) can be
regarded as (1) with a M × LN code matrix. Therefore, the
local decision rule of sensor j can be derived as (3) except
that the code matrix T is of size M × LN .

The maximum-likelihood (ML) soft-decision decoding rule
is applied at the fusion center, as in DCSD. That is, the
received vector at the fusion center is decoded as the ith hy-
pothesis if p

(
Ṽ|Ci

)
≥ p

(
Ṽ|Ck

)
for Ck, k = 1, 2, ...,M,

where Ṽ = [ṽl,j ]1≤l≤L,1≤j≤N . From Assumptions 2 and

3, the inequality can be rewritten as
L∏

l=1

N∏
j=1

p (ṽl,j |ci,l,j) ≥
L∏

l=1

N∏
j=1

p (ṽl,j |ck,l,j) . Since ṽl,j does not depend on ci,l,j given

2Soft-decision decoding is adopted such that the elements of Ṽ are real
numbers.

ul,j , the above equation can be expanded to

L∏
l=1

N∏
j=1

1∑
bu=0

p (ṽl,j |ul,j = bu) p (ul,j = bu|ci,l,j) ≥

L∏
l=1

N∏
j=1

1∑
bu=0

p (ṽl,j |ul,j = bu) p (ul,j = bu|ck,l,j)

⇒
L∑

l=1

N∑
j=1

ln

1∑
bu=0

p (ṽl,j |ul,j = bu) (ul,j = bu|ci,l,j)

1∑
bu=0

p (ṽl,j |ul,j = bu) (ul,j = bu|ck,l,j)
≥ 0.

(8)
Because ci,l,j and ck,l,j are binary, the bit reliability of
the received matrix at the fusion center can be defined as

λl,j = ln

1�

bu=0
p(ṽl,j |ul,j=bu)(ul,j=bu|ci,l,j=0)

1�

bu=0
p(ṽl,j |ul,j=bu)(ul,j=bu|ck,l,j=1)

. Equation (8) is

then equivalent to
L∑

l=1

N∑
j=1

[(−1)ci,l,j λl,j − (−1)ck,l,j λl,j ] ≥ 0,

i.e.,
L∑

l=1

N∑
j=1

[λl,j − (−1)ci,l,j ]2 ≤
L∑

l=1

N∑
j=1

[λl,j − (−1)ck,l,j ]2 .

To obtain λl,j , p(ṽl,j |ul,j = bu), which is related to the
characteristics of αl,j , must be calculated first. For instance,
if αl,j in (5) is Rayleigh-distributed [7], then p (αl,j) =
2αl,j

E[α2
l,j]

exp
(

−α2
l,j

E[α2
l,j]

)
, αl,j ≥ 0, where E

[
α2

l,j

]
is the

expected value of α2
l,j . Hence, from (5), p (ṽl,j |ul,j = bu) =∫ ∞

0
p(αl,j)√

πN0
exp

(
− ṽl,j−αl,j(−1)bu

√
Es
L

N0

)
dαl,j . Furthermore,

as described in [5], p(ul,j = bu|bc) =
M∑
i=1

p(ul,j =

bu|Hi)p (Hi|bc), bc ∈ {0, 1}, where p(ul,j = bu|Hi) can
be determined from the local decision rule at sensor j and
p (Hi|bc) = p(bc|Hi)

M�

k=1
p(bc|Hk)

. Similar to p(ul,j = bu|ci,l,j),

p(ul,j = bu|ck,l,j) can also be obtained.
The above derivation shows that the 2-D coded detection

scheme is equivalent to DCSD with LN sensors and 1-bit
symbols. This finding can be easily verified by replacing the

subscripts (l, j) with j and
L∑

l=1

N∑
j=1

with
LN∑
j=1

. However, since

the size of the code matrix becomes M × LN and then the
number of candidate code matrices is 2MLN , the simulated
annealing approach [2] takes much longer to derive a near-
optimal code matrix.

B. Optimal code matrix design

If several candidate code matrices correspond to the same
probability of misclassification, only one of them had to be
checked, while the other could be excluded from the optimal
code matrix search. The number of the candidate code matrices
can be significantly reduced as revealed in the following
theorem.

Theorem 1: Based on the assumptions in Section II and as-
suming the transmission channel is symmetric, if two columns
of a code matrix are exchanged or any column of a code matrix
is taken one’s complement to form a new code matrix, then the
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new matrix and the original matrix have the same probability
of misclassification.
Proof: From the definition of the cost function and
(1), if two columns of the code matrix are exchanged,
neither Pe nor the result of the cost function change.
Next, the one’s complement of column k of a code matrix
T =

(
cT
1 , cT

2 , . . . , . . . , cT
M

)T
is computed, and the new

code matrix is obtained as T̄ =
(
c̄T
1 , c̄T

2 , . . . , c̄T
M

)T
, where

ci = (ci,1, ci,2, . . . , ci,N ), c̄i = (ci,1, ci,2, . . . , c̄i,k, . . . , ci,N ),
and c̄i,k represents the one’s complement of ci,k.
From the definition of the cost function, we get (a)
Cvk=0,c̄i

= Cvk=1,ci
and Cvk=1,c̄i

= Cvk=0,ci
. The

minimum probability of misclassification using T is
denoted as Pe,min (T) = Pe

(
T,Dopt

1 (T) ,Dopt
2 (T) , . . . ,

Dopt
k (T) , . . . , Dopt

N (T)
)
, where Dopt

j (T) is the optimum
local decision at sensor j. The same local decision rules as
above are now utilized, but with local decision rule Dk(T̄) and
with T̄ as the code matrix. Because the transmission channel
is symmetric, (b) p(vk = 0|uk = 0) = p(vk = 1|uk = 1)
and p(vk = 0|uk = 1) = p(vk = 1|uk = 0)
results. That is, pk

00 = pk
11 and pk

01 = pk
10. From (4),

Dk(T̄) = −Dopt
k (T). Consequently, (3) indicates that (c)

the value of p(uk = 1|y) (p(uk = 0|y)) using Dk(T̄)
(Dk(T̄)) equals the value of p(uk = 0|y) (p(uk = 1|y))
using Dopt

k (T) (Dopt
k (T)). From (a), (b), (c), and (2),

Pe

(
T̄,Dopt

1 (T) ,Dopt
2 (T) , . . . , Dk

(
T̄

)
, . . . , Dopt

N (T)
)

=
Pe,min(T). Since the other local decision rules are optimal
for T, not T̄, Pe,min(T) = Pe

(
T̄,Dopt

1 (T) ,Dopt
2 (T) , . . . ,

Dk

(
T̄

)
, . . . , Dopt

N (T)
) ≥ Pe,min(T̄). Similarly,

Pe,min(T̄) ≥ Pe,min(T) can be derived. Therefore,
Pe,min(T̄) = Pe,min(T). �

Every column of a code matrix has 2M combinations.
According the above theorem, any combination has the same
characteristics as its one’s complement does. Moreover, neither
all 0’s nor all 1’s can differentiate one hypothesis from the
others. Thus, there are only (2M − 2)/2 = 2M−1 − 1 useful
combinations with different characteristics. Next, since the
column interchange of a code matrix does not modify Pe, the
number of candidate code matrices to be checked is given by
B = (LN+2M−1−2)!

(LN)!(2M−1−2)!
. Thus, B � 2MLN . For example, when

M = 4 and LN = 10, the number of matrices to be searched
is reduced from 1.1× 1012 to only 8008. Hence, this rule has
made the exhaustive search possible to find an optimal code
matrix.

C. Code matrix using repetition codes and asymptotic perfor-
mance analysis

Since L local decisions need L sets of thresholds in each
sensor, the complexity of the sensor is increased in the
proposed 2-D scheme. This work further proposes a repetition
code as a component code of the proposed 2-D coded scheme
instead of the optimal code. Restated, code bits ci,j,k are the
same for all 1 ≤ j ≤ L in the 2-D codeword Ci corresponding
to hypothesis Hi, where 1 ≤ i ≤ M and 1 ≤ k ≤ N .
Thus, each sensor needs only one set of thresholds. The sensor
applies the same threshold set to make a local decision for each
detection at each sensor. Therefore, the code matrix and the
local decision rule can be designed to be the same as those in

DCSD with L = 1. That is, one dimension of a codeword is
the original code and the other is a repetition code with length
L. Consequently, the overall codeword Ci can be derived from
ci by repeating each component of ci L times.

The proposed scheme with the repetition code is more
flexible, as well as cheaper, than that with the optimal code
matrix proposed in Section III-A. In the proposed scheme with
the optimal code matrix, the maximum number of detections,
and the threshold set for each detection must be determined
before deploying the sensor. Since the environment may
vary very widely, the detection result with the pre-defined
parameters may not be able to reach the required probability
of misclassification. Conversely, the fusion center can ask the
local sensors to make required number of detections to achieve
the required probability of misclassification in the proposed
scheme with the repetition code. No extra threshold sets are
required in this case.

In DEFECC, the probability of misclassification approaches
zero as N → ∞ if d

(N)
min of the M × N code matrix meets

δN ≡ 1
N

⌊
(d(N)

min − 1)
2

⌋
> max

1≤i≤M
εi, (9)

where d
(N)
min is the minimum Hamming distance of the M ×

N code matrix and εi is the probability of making a wrong
decision given Hi for each sensor. By following the similar
argument, the probability of misclassification in the proposed
scheme approaches zero as L → ∞ or N → ∞ if d

(LN)
min of

the M ×LN code matrix satisfies δLN ≡ 1
LN

⌊
(d

(LN)
min −1)

2

⌋
>

max1≤i≤M εi.
By (9), δN can reasonably be used as a performance

metric in any DEFECC-like scheme. The following proof
demonstrates that if L ≥ 1, then δLN ≥ δN such that the
proposed scheme is expected perform better than DEFECC
when channel SNR (CSNR) is high. The largest minimum
Hamming distance of any code matrix with length LN , is
clearly at least L times that of any code matrix with length
N . This rule can be shown using a repetition code in the

proposed 2-D scheme. Since δLN = 1
LN

⌊
(d

(LN)
min −1)

2

⌋
≥

1
LN

⌊
Ld

(N)
min−1

2

⌋
> 1

N

⌊
d
(N)
min−1

2

⌋
when L ≥ 1, δLN ≥ δN .

This rule also indicates that using a repetition code as a
component code of the proposed scheme yields a better
performance than DEFECC. A similar conclusion can be made
when faulty sensors occur in the system.

IV. PERFORMANCE EVALUATION

The proposed scheme was evaluated using several simula-
tions, each comprising 106 Monte Carlo tests. Four hypotheses
H1,H2,H3, and H4, were detected and classified with N =
10 sensors, L = 2, and a fusion center. These hypotheses
were assumed to have Gaussian-distributed probability density
functions with the same standard deviation σ2 and means 0,
1, 2, and 3, respectively. At each sensor, observation SNR
(OSNR) was defined as −10×log10 σ2. The attenuation factors
αl,j had identical and independent Rayleigh distributions with

E
[
α2

l,j

]
= 1. Furthermore, E[σ2

l,j ] = 1 was assumed, and
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TABLE II

THE 4 × 2 × 10 OPTIMAL CODE MATRIX

Hypothesis First Detection Second Detection

H1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H2 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1

H3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

H4 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
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Fig. 2. Performance comparison of 1-bit DCSD-Opt, 2-bit DCSD-Opt, 2-bit
2D-Opt, and 2-bit 2D-Rep at OSNR = 10 dB.

then CSNR is 10 × log10(Es/N0). The performance was
measured using the probability of misclassification, Pe.3 For
L = 2, the number of all candidate code matrices is 280 ≈
1.2×1024. If the minimum Hamming distance must be greater
than or equal to 10 in order to enhance the fault-tolerance
capability of the system, then the full search only check 6668
candidate matrices. Table II presents the optimal code matrix.

The performance of the following detection schemes is
compared: DCSD using the code matrix in Table I (DCSD-
Opt), the proposed scheme using the code matrix in Table II
(2D-Opt), and the proposed scheme using the code matrix
in Table I and the repetition code (2D-Rep). In the first
set of simulations, the OSNR was set to be 10 dB, and
the CSNRs varied from 0 dB to 15 dB. Figure 2 lists the
simulation results. The proposed scheme (2D-Opt or 2D-Rep)
outperforms DCSD. For example, the proposed scheme has a
gain of more than 5 dB over the DCSD with the optimal code
matrix on CSNR when OSNR is 10 dB and the probability
of misclassification is 0.001. Moreover, the proposed scheme
using the repetition code performs almost identical to that of
the proposed scheme using the optimal code matrix.

The second set of simulations demonstrate that the proposed
scheme with 2-D repetition codes could reduce the misclassi-
fication probability to a very small value as the number of
observations increases. The results are shown in Figure 3.

3Even though we do not present the simulation results here it can be
shown that OSNR has larger impact on the misclassification probability than
CSNR. As it will be shown later in this section, to perform more decisions of
observations at each sensor effectively increases OSNR at each sensor such
that smaller misclassification probability can be obtained.
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Fig. 3. Performance comparison of 2-bit, 4-bit, and 6-bit 2D-Rep at OSNR
= 10 dB,
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Fig. 4. Performance comparison of 1-bit DCSD-Opt, 2-bit DCSD-Opt, and
2-bit 2D-Rep at OSNR = 10 dB when two stuck-at faults are present.

For example, the misclassification probability can be reduced
to 10−4 at CSNR= 6 dB when OSNR is 10 dB and 6
decisions of observations for each local sensor are transmitted
to the fusion center; however, the misclassification probability
cannot be reduced to such small value when only 2 decisions
of observations for each local sensor are transmitted to the
fusion center. Finally, simulations were conducted with faulty
sensors. Figure 4 illustrates the performance when sensors 1
and 6 with stuck-at faults always sent out 1. The proposed
scheme using the repetition code still outperformed other
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methods. Even though not demonstrated here, when sensors
1 and 6 with random faults randomly sent out 0 or 1 to the
fusion center with the same probability, the proposed scheme
using the repetition code also outperformed other methods.

V. CONCLUSIONS

This work presents a 2-D coding scheme to reduce the
probability of misclassification in wireless sensor networks.
A method for determining the optimal code matrix for the
proposed scheme is also described. By using the optimal code,
the proposed scheme can classify phenomena more reliably
than DCSD in [2] and also has a lower memory requirement
at each sensor. The code matrix uses repetition codes rather
than the optimal code to further decrease the sensor cost. The
performance penalty for using repetition codes to design the
code matrix was found to be small. Additionally, the proposed
scheme performed better than DCSD in the presence of faulty
sensors since its code matrix has a larger minimum Hamming
distance.

REFERENCES

[1] S. A. Aldosari and J. M. F. Moura, “Detection in decentralized sensor
networks,” in Proc. ICASSP 2004, Montreal, Canada, May 2004, pp. ii-
277–280.

[2] T.-Y. Wang, Y. S. Han, P. K. Varshney, and P.-N. Chen, “Distributed
fault-tolerant classification in wireless sensor networks,” IEEE J. Select.
Areas Commun., vol. 23, no. 4, pp. 724–734, Apr. 2005.

[3] P. K. Varshney, Distributed Detection and Data Fusion. New York:
Springer, 1997.

[4] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. New York, NY: Elsevier, 1977.

[5] T.-Y. Wang, Y. S. Han, B. Chen, and P. K. Varshney, “A combined
decision fusion and channel coding scheme for distributed fault-tolerant
classification in wireless sensor networks,” IEEE Trans. Wireless Com-
mun., vol. 5, no. 7, pp. 1695–1705, July 2006.

[6] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory
and Applications. Norwell, MA: Reidel, 1982.

[7] J. G. Proakis, Digital Communication, 4th ed., New York, NY: McGraw-
Hill, 2001.

Authorized licensed use limited to: National Taipei University. Downloaded on December 28, 2008 at 21:11 from IEEE Xplore.  Restrictions apply.


