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Abstract: Airport congestion pricing has often been advocated as a means of controlling demand for airport 

operations and for achieving efficient resource allocation. Competition between airlines affects the extent to which 

an airline would be willing to pay for airport slots. Accurate modeling of competition is critical in order to determine 

the effectiveness of a congestion pricing mechanism. We develop an equilibrium model of airline frequency 

competition in the presence of delay costs and congestion prices. Using a small hypothetical network, we evaluate 

the impacts of congestion prices on the various stakeholders and investigate the dependence of effectiveness of 

congestion pricing on the characteristics of frequency competition in individual markets. We find that the 

effectiveness of congestion pricing critically depends on three essential parameters of frequency competition. Our 

results show that variation in the number of passengers per flight plays a vital role in determining the degree of 

attractiveness of congestion pricing to the airlines. A significant part of the impact of congestion pricing cannot be 

accounted for using the models in prior literature, which are based on the assumptions of constant load factors and 

constant aircraft sizes. Further, we find that, in comparison to flat pricing, marginal cost pricing is more effective in 

reducing congestion without penalizing the airlines with exceedingly high congestion prices. 

Draft completed August 29th, 2011. 

1. BACKGROUND 

With airport capacity being a scarce resource, market-based mechanisms such as congestion pricing and 

slot auctions are expected to bring demand and supply in balance by placing monetary prices on the 

airport capacity. These market-based mechanisms rely on the ability of the airlines to assess the 

economical value of airport slots, while bidding for slots in the case of auctions and for determining the 

demand for slots at a given level of prices in the case of congestion pricing. Airlines are typically 

assumed to be rational decision makers, each driven by its own profit-maximization objective. However, 

an airline needs to account for competition from other airlines operating in the same markets as it does, 

while ascertaining its own valuation of an airport slot. In this paper, we model the airline frequency 

decisions under congestion pricing through explicit modeling of competition and assess the dependence 

of the effectiveness, or lack thereof, of congestion pricing on the characteristics of airline markets. Many 

prior studies have accounted for airline competition using conventional micro-economic models of firm 
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competition. However, these generalized models fail to capture the essential characteristics of competition 

which are peculiar to the airline industry and consequently, as we show in this paper, tend to 

underestimate congestion pricing benefits to the airlines. We capture these characteristics through an 

industry-specific competition model and generate insights that were not possible with the previous 

models. 

Section 2 summarizes the existing literature on airport congestion pricing. Section 3 provides details of 

our equilibrium model of frequency competition. Section 4 describes our delay model that captures the 

dependence of flight delays on airline frequency decisions. Section 5 outlines the data sources and 

experimental setup for the computational experiments. Section 6 provides results of delay function fitting. 

Section 7 presents computational results for a small hypothetical network. Section 8 concludes with a 

summary of the practical implications of this research and a description of directions for future research. 

2. LITERATURE REVIEW 

A user (such as an airline) of a public resource (such as an airport) generates value for itself through the 

utilization of the resource. Such utilization might sometimes result in detrimental effects to the other users 

of the public resource. In particular, an airline operating at a congested airport imposes additional delay 

costs on the other airlines operating at the same airport. Economists have long been advocating the use of 

pricing of public resources in the presence of negative externalities such as congestion, wherein each user 

of the public resource is required to pay a price equal to the marginal cost imposed by that user on all the 

other users of the resource (1). Such prices based on marginal costs have been claimed to achieve efficient 

allocation of resources. Not surprisingly, early studies on airport congestion pricing have advocated 

marginal cost pricing of airport resources (2, 3). Levine (2) proposed to implement a system in which 

each airport user is charged fully for the marginal cost of an additional operation, while Carlin and Park 

(3) recommended a hybrid system involving pricing and administrative controls due to various 

practicality issues associated with a full marginal cost pricing scheme. 

Airport congestion pricing, however, is fundamentally different from pricing of resources such as 

highway infrastructure which involve a large number of users, each using a very small portion of the 

capacity of the resource, otherwise known as atomistic users. Airlines, on the other hand, are considered 

to be non-atomistic users of airport resources because each airline typically operates more than one flight 

at an airport, and the number of users of an airport resource is comparatively smaller. So each additional 

operation by an airline delays the flights of other airlines as well as the other flights of the same airline at 

that airport. More recent studies recognize the fact that airlines automatically internalize a part of the 

congestion costs they impose (4, 5, 6, 7, 8). A recent study by Morrison and Winston compared the 



atomistic (or flat) and non-atomistic pricing policies across 74 commercial US airports in 2005 (9). They 

found the difference between the net benefits generated by the two congestion pricing policies to be small 

because the bulk of airport delays are not internalized. In this paper, we analyze the impacts of various 

levels of flat pricing (also known as atomistic pricing) as well as the marginal cost pricing (also known as 

non-atomistic pricing) equilibrium for non-atomistic users. 

Daniel modeled the interaction between airport demand, slot prices and delays using detailed queuing 

theoretic models, but did not capture frequency-based competition for passenger share in a market, even 

though such competition between airlines is intricately related to the congestion problem at major airports 

(4, 5). Several other studies have tackled this problem from a microeconomic perspective and have 

mathematically derived Nash equilibrium outcomes under congestion pricing (6, 7, 8, 10). These studies 

model airline decisions using general micro-economic models of firm competition, which typically 

assume quantity-based (Cournot) competition. By assuming constant load factors and constant aircraft 

seating capacities, they fail to recognize the important distinguishing features of the airline industry for 

which the quantity produced can be captured by three different entities: number of flights, number of 

seats and number of passengers carried. 

The incremental profitability of having an extra flight in a particular market largely depends on the 

number of additional passengers that the airline will be able to carry because of the additional flight, 

which in turn depends on the schedule of flights offered by the competitor airlines in the same market. So, 

given a set of congestion prices, the total demand for slots should reflect these competitive interactions. 

However, Cournot models of firm competition do not incorporate the inverse dependence of one airline's 

market share on competitor airlines' frequencies, which is a critical component of such competitive 

interactions. 

Furthermore, the assumption of constant load factors and constant aircraft seating capacities means that 

studies such as Brueckner (6, 7), Pels and Verhoef (8), and Perakis and Sun (10), cannot account for the 

possibility of increases in average number of passengers per flights (through increased load factors, or 

increased number of seats per aircraft, or both) as the slots become expensive under congestion pricing. 

Consequently, delay cost reductions have often been considered as the only type of benefit from 

congestion pricing. Most of the prior studies evaluate congestion pricing benefits in terms of overall 

societal welfare gain, rather than in terms of the benefits to airlines and passengers. Perakis and Sun (10) 

conclude that, while congestion pricing leads to the welfare maximization solution, both airlines and 

passengers are worse off than without congestion pricing because the welfare gain from congestion 

pricing is in the form of the revenue generated from pricing. Many of the prior congestion pricing studies 



propose some form of direct or indirect mechanisms for re-distribution of this revenue gain if the 

congestion pricing scheme is to be attractive to the airlines. 

Our models are able to capture the phenomenon of varying number of passenger per flight explicitly. In 

fact, as we show in Section 7, a reduction in operating costs is an important driver of the benefits of 

congestion pricing to the airlines, which has not been considered in any of the prior studies. 

Schorr provided a model of airline frequency competition under flat pricing of airport slots and produced 

interesting results on the benefits of flat pricing, albeit focusing on symmetric equilibria for the somewhat 

restrictive case of identical airlines (11). We model airline frequency competition under congestion 

pricing using a popular market share model of frequency competition, which is similar to Schorr's model. 

We consider the general case of non-identical airlines and do not restrict our analysis to symmetric 

equilibria. 

The main objective of this research is to investigate the role of airline frequency competition under 

congestion pricing. The major contributions of this paper are threefold. First, we develop a model for 

airline frequency competition that explicitly accounts for the relationship between the number of flights 

operated, number of seats flown and the number of passengers carried by an airline under slot pricing. To 

the best of author's knowledge, this is the first computational study that accounts for this relationship. 

Second, using a small hypothetical network, we evaluate the impacts of congestion prices on the various 

stakeholders and investigate the dependence of effectiveness of congestion pricing mechanisms on the 

different characteristics of airline competition. Third, we provide computational results under flat as well 

as marginal cost pricing. Our results show that the variation in number of passengers per flight plays a 

vital role in determining the degree of attractiveness of congestion pricing to the airlines. 

3. MODEL 

By providing more frequency on a route, an airline attracts more passengers. Given an estimate of total 

demand on a route, the market share of each airline depends on its own frequency as well as on the 

competitor frequency. Market share can be modeled according to the so-called S-curve or sigmoidal 

relationship between the market share and frequency share, which is a well-accepted notion in the airline 

industry (12, 13). Empirical evidence of the relationship was documented in some early studies and 

regression analysis was used to estimate the model parameters (14, 15, 16). Over the years, there have 

been several references to the S-curve (17, 18). In a recent study, Wei and Hansen provide further 

statistical support for the S-curve, based on a nested Logit model for non-stop duopoly markets (19). The 

most commonly used mathematical expression for the S-curve relationship (16, 13) is given by, 
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    is the market share of airline  ,     is the frequency share of airline  , and   is the number of 

competing airlines.      is a model parameter. 

Our model of airline decision-making explicitly incorporates the relationship between market share and 

frequency share as described by equation (1). In our computational experiments, we assume that 

congestion pricing is being considered at a single airport. This airport under consideration for 

implementation of congestion pricing will be simply denoted as the airport. First, we describe the 

relevant notation. 

 : Set of airlines operating at the airport 

  : Set of airlines whose set of potential segments includes   

  : Total passenger demand on segment   

  : Exponent of the S-curve relationship between market share and frequency share on segment   

   : Average fare charged by airline   on segment   

   : Number of passengers carried by airline   on segment   

   : Operating cost per flight for airline   on segment   

   : Daily frequency of flights for airline   on segment   (the decision variables) 

  : Set of potential segments for airline   with destination at the airport 

  : Upper bound on the number of slots available for airline   

  : Lower bound on the number of slots available for airline   

  : Unit cost of flight delays to airline   (e.g. $/aircraft-minute) 

     : Maximum average segment load factor 

 : Total number of operations at the airport 

    : Average flight delay as a function of the total number of operations at the airport 



      : Toll (in $) charged to an airline as a function of that airline’s demand for operations and total 

number of operations at the airport. 

Our model of airline decision making is an extension of the basic model developed by Vaze and Barnhart 

(20). Expressions (2) through (7) describe the problem of deciding the flight frequencies as an 

optimization formulation from the perspective of a single airline. The objective function, (2), consists of 

three parts: 1) the difference between the total revenue and operating costs summed across all markets, 2) 

flight delay cost incurred by the airline, and 3) the congestion prices paid by the airline. The operating 

cost inside the first summation excludes the cost due to flight delays. Flight delay cost is the product of 

unit cost of flight delay (  ) to that airline, the total number of operations of that airline at the airport 

(        ), and the average flight delay ( ) which is a function of total number of operations from all 

airlines at the airport (               ). The congestion price ( ) paid by the airline is decided by the 

airport administrator. It is reasonable to expect that   will be a non-decreasing function of total number of 

operations of that airline at the airport (        ). Furthermore, for the same number of operations of 

airline   at the airport, we can expect   to also be a non-decreasing function of the total number of 

operations ( ) by all airlines at the airport. Greater the total number of operations of all airlines at the 

airport, the greater is the additional delay cost imposed by airline   on other users, and consequently, the 

higher is the total congestion price paid by airline  . So we consider   to be a function of          and 

               . Note that this framework is general enough and it still accounts for the possibility that 

  is a constant (a constant function). 
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In this paper, we present two types of experiments. First, we compute the impacts of continuously varying 

slot prices. Here, we assume flat prices, that is, an equal (flat) price per slot (  ) charged to each airline 



regardless of the total number of operations of that airline. Under flat pricing, the total congestion price 

paid by airline   is, 
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In such experiments, we compute the airlines’ frequency decisions such that the frequencies of each 

airline are optimal with respect to the frequencies of other airlines at the airport. We compute one such 

competitive equilibrium for each    value. Let’s denote these experiments as Type I Experiments. 

In the second type of experiments, we compute an equilibrium between prices and demand. The total 

congestion price paid by an airline equals the marginal delay cost imposed by that airline on remaining 

airlines. Mathematically, at an equilibrium, 
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In such experiments, we compute the airlines’ frequency decisions such that the frequencies of each 

airline are optimal with respect to the frequencies of other airlines at the airport, as well as the 

corresponding prices, that satisfy equation (9). Thus the demand-price equilibrium involves equilibrium 

decisions by all the airlines and by the airport administrator. Let us denote such experiments as Type II 

Experiments. 

Inequality (3) ensures that the number of passengers carried by an airline cannot be more than that given 

by the S-curve relationship. Inequality (4) ensures that the number of passengers cannot exceed the 

number of seats on each segment, subject to a maximum load factor. Inequalities (5) and (6) are the upper 

and lower bound constraints on the number of slots available to each airline, the same as those in Vaze 

and Barnhart (20). 

In all of our computational experiments, we assumed that the aircraft sizes in terms of the numbers of 

seats per aircraft do not change with a change in congestion prices. This assumption can be considered to 

be reasonable in short term, because (a) it takes a considerable amount of time for an airline’s fleet to 

undergo changes, and (b) given a fixed fleet, airlines typically do not have a great deal of flexibility to 

change aircraft sizes significantly. Furthermore, it is very difficult to predict the actual flexibility 



available to each airline to change the aircraft sizes on individual segments. But in the long term, an 

airline can be expected to increase its aircraft sizes for flights subjected to congestion pricing. Therefore, 

the actual increases in the number of passengers per aircraft can be expected to be even higher than those 

predicted by our models. Thus our analysis is somewhat conservative in predicting the cost reduction 

impacts of congestion pricing. 

In the next section, we describe our choice of delay model     . 

4. FLIGHT DELAY MODEL 

Flight delays at a congested airport are dependent largely on the utilization ratio (the ratio of flight 

demand to airport capacity). However, some part of flight delay is independent of congestion at that 

airport. Such delays are due to other effects such as propagated delays, delays due to mechanical failures, 

absence of crews etc. Some prior studies have developed detailed queuing-theoretic models of delays as a 

function of operations and solved them through simulation or numerical methods (4, 5). Such detailed 

simulation models are beyond the scope of this research. We are interested in a simple delay function that 

captures the critical queuing-theoretic insights. Many existing studies have used simplified assumptions 

for modeling delay as a function of utilization. Carlin and Park (3) as well as Pels and Verhoef (8) 

assumed delays to be an increasing linear function of the number of operations. A linear delay function is 

not very realistic given that it is well known that delays increase with utilization and the rate of increase 

itself increases very fast as the utilization ratio approaches 1.0. Brueckner (6, 7) assumed the delay cost to 

be a general non-decreasing and convex function of the number of airport operations. Zhang and Zhang 

suggested four standard conditions that a delay function must satisfy (21). Morrison, and Zhang and 

Zhang used delay functions derived from steady-state queuing theory (22, 21). The expression that we 

chose for the delay function is given in equation (10), with   being the utilization ratio, that is, the ratio of 

the total number of scheduled operations to the airport capacity. 

   
 

   
     

(10) 

Here,   and   are parameters of the model that have to be estimated. This expression has a number of 

favorable properties. It is non-decreasing and convex in the number of operations as assumed by 

Brueckner (6, 7). Also it satisfies all the four conditions specified by Zhang and Zhang (21). The 

functional form is somewhat different from the one used by Morrison, and Zhang and Zhang. We 

considered using the exact functional form used by these two studies, but decided in favor of the chosen 

form because it gave a much better fit to the empirical delay data, as shown in Section 6. 



5. EXPERIMENTAL SETUP AND DATA SOURCES 

In order to allow extensive analysis of the relationships between congestion pricing and the market 

characteristics, we opt for a simple experimental setup consisting of 3 airports and up to 5 airlines. AP0 is 

the used to denote the airport under congestion pricing. In order to have balanced operations, on average, 

an airline operates approximately the same number of flights per day in both directions on a segment. 

Therefore, we focus on only the flights arriving at AP0 and not on those departing from AP0. Our model 

assumes segment-based demand. We assume that passengers demand non-stop service from airport AP1 

to AP0 and from airport AP2 to AP0. We assume two airlines, denoted as AL1 and AL2, operating in 

each of these two markets. In order to generate broader insights into the effectiveness of congestion 

pricing mechanisms, we varied important characteristics of our markets (viz. sensitivity of the passengers 

to frequency, average fares, number of competitors in the markets) and tested their impacts on the 

effectiveness of the congestion pricing mechanism. 

Our experiments are loosely based on data from two important markets into LaGuardia (LGA) airport at 

New York, namely, Logan (BOS) airport to LGA and Reagan (DCA) airport to LGA. The data is loosely 

based on two major airlines, namely, Delta Airlines (DL) and US Airways (US) operating in each of these 

two markets. We obtained data on average fares, seating capacities, aircraft operating costs and passenger 

flows through the Bureau of Transportation Statistics (BTS) website. We obtained the average fares from 

the DB1B Market database (23). We retrieved the operating cost values from the Form 41 financial data 

reported by the airlines in Schedules P-5.2, and Schedule P-7 (24, 25). Aircraft seating capacities and 

passenger flows were obtained from the T100 Segment database (26). Actual flight frequencies were 

obtained from the ASQP database (27). All the data used in our computational experiments corresponds 

to the 1
st
 quarter of 2008. 

6. DELAY FUNCTION FITTING 

As mentioned in Section 4, the delay function represents the relationship between airport utilization and 

average delays to flights. To model this relationship, we used data including average flight delays, 

number of operations and the expected values of airport capacities from 34 major airports in the 

continental US. The expected values of airport capacities were obtained from the FAA's airport capacity 

benchmark report (28). The number of airport operations is obtained from the Aviation System 

Performance Metrics (ASPM) database maintained by the FAA (29). The average utilization rate for each 

airport is calculated as the ratio of the average number of operations (takeoffs and landings) that took 

place at that airport in the 18-hour time period from 6:00 am to midnight across all days of the 1
st
 quarter 

of 2008, to the product of the expected value of hourly capacity of that airport and 18. The average flight 

delay is computed as the average of delays to all the flights of the ASQP-reporting airlines landing and 



taking off from that airport during the 18-hour time period, from 6:00 am to midnight across all days of 

the 1
st
 quarter of 2008. 

Parameters   and   are estimated by using simple linear regression with average flight delays as the 

dependent variable and 
 

   
 as the independent variable. The resultant parameter estimates are:         

and         . The regression analysis gave a strong goodness-of-fit, with an R
2
 value of 53.37%. We 

use this delay function in our computational experiments described in Section 8 for calculating: 1) 

average flight delays; and 2) the marginal delay cost imposed by any one airline on others at the airport. 

7. CONGESTION PRICING RESULTS 

The equilibrium model described in Section 3 is solved using an iterative algorithm. The reader is referred 

to Vaze (30) for a detailed description of the solution algorithm. In all the analysis we assume that there 

are neither upper nor lower bounds on the number of slots, that is,           ,     . In Sub-

section 7.1, we present the flat pricing results and in Sub-section 7.2, we present the marginal cost pricing 

equilibrium results. 

7.1 Flat Pricing Results 

Experiment 1: Zero Slot Prices 

In this experiment, we assume that the slot prices are zero. The model predictions from this experiment 

are represented in Table 1. We refer to these results as the base case and use it as a reference point for our 

remaining experiments, all of which involve congestion prices. 

TABLE 1  Base Case Results 

Market Carrier 
Avg. 
Fare 

Model 
Freq. 

Seats/ 
Flight Passengers 

Operating 
Cost ($) 

Revenue 
($) 

Profit 
($) 

AP1 AL1 161 15 134 726 110,813 116,886 6,073 

AP1 AL2 163 16 124 797 110,984 129,911 18,927 

AP2 AL1 152 15 134 741 110,269 112,632 2,363 

AP2 AL2 160 16 124 813 108,747 130,080 21,333 

 

Vaze and Barnhart proved that the level of congestion introduced by airline competition is an increasing 

function of three factors, namely, 1) the S-curve parameter   (i.e. the sensitivity of passenger demand to 

frequency), 2) a measure of the gross profit margin in a market (i.e. the ratio of average fare to operating 

cost per seat), 3) the number of competitors (31). The higher the value of any of these three factors, the 

greater is the incentive for the airlines to schedule more frequent flights, and hence the greater is the 



adverse impact of competition on congestion. In the absence of congestion prices, airline competition 

leads to congestion. Thus, it is reasonable to expect that the success of a congestion pricing mechanism 

depends directly on the extent to which the congestion prices can discourage the airlines from scheduling 

frequent flights. Therefore, each of these three factors is expected to play a critical role in determining the 

success of a congestion pricing mechanism. In each of the next three experiments, we analyze the impact 

of one of these three factors. Note that, in order to analyze the impact of gross profit margin (which is the 

ratio of average fare to operating cost per seat), we will vary the average fares. 

In the next three experiments, we evaluate the impacts of varying the slot prices assuming a flat prices. 

Obviously, an exceedingly high value of congestion price per slot would result in airlines no longer being 

able to operate flights profitably. So in each case, we make sure that we do not reach such high levels of 

congestion prices per slot. In each of these three experiments, we vary the congestion price per slot and 

evaluate the impacts on total delay costs to passengers and total operating profits of the airlines. The 

results are shown in Figure 1. In each of the 6 charts in Figure 1, the flat slot price, in $/slot, is on the x-

axis. The y-axis of charts in parts (a), (c), and (e) show the normalized value of the total delay cost to 

passengers. The normalization of delay costs is performed such that the value for zero slot prices equals 

100. The y-axes of the charts in parts (b), (d), and (f) show the change in combined operating profit 

margin percentage for the airlines. The combined operating profit margin percentage is defined as the 

ratio of total operating profit earned by both airlines in both markets to total fare revenue generated by 

both airlines in both markets. 

Experiment 2: Effect of Sensitivity of Passenger Demand to Frequency 

The extent to which the distribution of market share is affected by frequencies is called the sensitivity of 

passenger demand to frequency. In the S-curve model, as shown in equation (1), sensitivity of passengers 

to frequency is represented by parameter  . In the base case, we assumed      . 

Each line in Figures 2(a) (and 2(b)) corresponds to a different value of  . The plots are not smooth 

because of the integrality constraints on the number of flights in each market. Each time the slot price 

exceeds a certain threshold value, it abruptly becomes unprofitable to operate the last flight being 

operated by an airline. So the demand drops in a lumpy fashion, resulting in non-smooth trends in the 

performance metrics. Therefore, rather than looking at any single slot price for comparison across 

different   values, we base our conclusions on the overall trends that can be observed from these charts. 

As expected, with an increase in slot price, the total demand for airport operations falls and consequently, 

the total passenger delay cost decreases. The impact on operating profit margin percentage is more 

complicated. Due to increasing slot prices, the airlines are incentivized to reduce their flight frequency, 



thus increasing load factors. Therefore, the airlines benefit from lower aircraft operating costs, as well as 

from a reduction in flight delay costs. Depending on whether these benefits partially or fully offset the 

total congestion price paid by the airlines, the airline profits increase or decrease. 

At higher  , passengers are more sensitive to frequency, which means that for a given level of slot price, 

airlines' demand larger numbers of slots and therefore the total delay costs are higher. Also, because 

airlines are comparatively more reluctant to reduce flight frequency at a higher   value, airline profits are 

lower. Thus   plays a crucial role in determining the effectiveness of flat pricing. At high  , slot prices 

result in very little reduction in delays and a significant reduction in airline profits. However, at lower   

values, slot prices result in larger reduction in delays and a less decrease (or increase) in airline profits. 

Also, a reduction in passenger delays can possibly result in some increase in average fares. The airlines 

could potentially monetize a part of the passengers' gains through increased fares, which might result in 

further increases in airline profits. 



 

FIGURE 1  Delay costs and changes in operating profit margin for different slot prices, (a) delay 

costs for different   values, (b) changes in operating profit margin for different   values, (c) delay 

costs for different fares, (d) changes in operating profit margin for different fares, (e) delay costs 

for different number of competitors, (f) changes in operating profit margin for different number of 

competitors 



As shown in Figure 1(b), in the absence of average fare increases, operating profits are decreasing with 

increasing slot prices for   values of 1.5, 1.4, 1.3, and 1.2. For   values of 1.1 and 1.0, there is a slight 

increase in operating profits in some cases, but not more than 1% or 2% across different values of   and 

slot prices. In Sub-section 7.2, we note somewhat different results under marginal cost pricing and discuss 

the reasons in details. 

Experiment 3: Effect of Average Fare 

The ratio of average fare to operating cost per seat (which we term as gross profit margin or GPM) also 

affects the effectiveness of congestion pricing. Markets with higher GPM are the markets where fares are 

relatively high compared to the aircraft operating cost, which indicates that the passengers are willing to 

pay more for a given travel distance. So the passengers in such markets are more valuable to the airlines. 

So the airlines have an even greater incentive to acquire more market share and hence, are more reluctant 

to give up market share by decreasing the number of flights under congestion pricing. In this experiment, 

we vary the average fare (thus varying the GPM) on each segment in increments of 10% each 

assuming      , and hold the aircraft operating cost and flight seating capacities equal to those in the 

base case. 

For a high   value (such as 1.4 or 1.5) and for a low average fare value, (such as 0.8 times the base case 

fare), the combination of low fares and extreme sensitivity of passenger demand to frequency, makes it 

impossible for the airlines to continue operating profitably even at moderately high congestion price per 

slot, resulting in discontinuation of service. So the range of slot prices under consideration gets reduced. 

Therefore, in order to improve the expository power of our analysis, we decided in favor of using an   

value of 1.3 instead of 1.5 for this particular experiment. 

As shown in Figure 1(c), at a given slot price, there is a smaller decrease in passenger delay costs for a 

higher value of GPM. Also, at a higher value of GPM, a given slot price yields a smaller reduction in 

flight frequencies, thus leading to a smaller increase (or greater decrease) in operating profits. Airline 

profits could be even higher if airlines are able to monetize a part of the passengers' delay reduction gains 

through increased fares. In the absence of such fare increases, Figure 1(d) shows that the airline profits 

decrease (or increase by less than 2%) across all slot price levels and across all the 6 levels of GPM 

considered here. 

Experiment 4: Effect of the Number of Players 

The number of competing airlines in a market also affects the extent of congestion introduced by 

competition. However, the effect of the number of competitors on the extent of congestion is not as strong 



as that of   or GPM. Figures 2(e) and 2(f) show the impact of variation of the congestion price per slot 

for different numbers of competitors. 

Vaze and Barnhart (31) proved that for a symmetric game, the maximum number of competitors which 

can have a non-zero frequency at a Nash equilibrium, cannot exceed 
 

   
. Extending the same intuition to 

unsymmetric games, we conclude that at higher values of  , the maximum number of competitors with 

non-zero frequencies at a Nash equilibrium will be low. This was also confirmed by our computational 

experiments. So we decided in favor of using       for this experiment. The operating cost, average 

fare and the seating capacities used for this experiment are the same as those for the base case. 

We vary the number of competitors from 2 to 5. For the 3-, 4-, and 5-competitor cases, we assume that 

respectively 1, 2, and 3 additional competitors compete with AL1 and AL2 in each market. All additional 

competing airlines are assumed to have average fares, seating capacities and operating costs equal to the 

average values for DL and US on that respective segment. Vaze and Barnhart proved that the level of 

congestion introduced by competition increases 1) linearly with  , 2) linearly with GPM, and 3) slower 

than linearly with the number of competitors (31). This is found to be consistent with the trends in Figure 

1(e) and 1(f). The effect of the number of competitors on the passenger delay costs is not as high as that 

of   or GPM. But the reduction in passenger delay costs does decrease with an increase in number of 

competitors for the same slot prices. The effect of number of competitors on airline profit is more 

obvious. As the number of competing airlines increases, the operating profit margin decreases, for the 

same slot prices. 

Partial monetization of passenger delay reduction gains through increases in average fares can increase 

airline profits beyond the values shown in Figure 1(f). However, assuming constant average fares, we 

observe that the airlines' operating profits decrease with increasing flat slot prices. 

7.2 Marginal Cost Pricing Results 

Experiment 5: Marginal Cost Pricing 

We conduct three Sub-experiments, for understanding the impacts of variation in  , GPM, and the 

number of competitors on the effectiveness of marginal cost congestion pricing. Table 2 summarizes the 

results. 

In sub-experiment 5a, as   decreases, a greater percentage reduction is achieved in passenger delay costs. 

Also, the percentage improvement in airline profits at equilibrium is greater at lower values of  . Thus, 



congestion pricing can be more beneficial in markets with lower sensitivity of demand to frequency. 

These results are consistent with the results from Experiment 2. 

In Sub-experiment 5b, we assumed       and used the operating costs and seating capacities equal to 

those in the base case experiment. In markets with a higher GPM, airlines continue to find it profitable to 

operate high frequency even if it means paying congestion prices. Loosely speaking, in such markets, 

airlines benefit more from an additional flight than the marginal delay cost they impose on other users. 

Comparatively, congestion pricing has a more positive impact for lower GPM. These results are 

consistent with our flat pricing results in Experiment 3. 

In Sub-experiment 5c, we assumed      . The average fares, operating costs and seating capacities are 

assumed to be those in the base case experiment. The extent of congestion introduced by competition 

increases slower than linearly with an increase in the number of competitors (31). Consequently, as 

shown in Experiment 4, the reduction in passenger delays and the increase in airline profits is greater for a 

smaller number of competitors. But the effect is not as strong as the effect of   or GPM. As shown in 

Table 2, with increases in the number of competitors, the percentage reduction in delays increases while 

the increase in operating profit margin shows no clear trend. 

On the face of it, the results in Sub-experiment 5c appear to be inconsistent with those in Experiment 4, 

but the disparity can be easily explained by noting that these results are for marginal cost pricing, while 

those in Experiment 4 are for a given level of flat prices. As the number of competitors increases, the 

marginal delay cost imposed by each airline on all other airlines also increases, which in turn increases 

the slot prices under marginal cost pricing, leading to a greater reduction in operations and delays. Thus, 

for greater number of competitors, the airlines benefit more from reduction in operating costs and delays, 

but at the same time have to pay more slot prices. Thus the net effect of increase in number of competitors 

on the operating profit margin is complicated and no clear trend is observed. This phenomenon cannot be 

observed under the flat pricing regime (in Experiment 4), leading to the apparent inconsistency between 

results in Experiment 4 and in Sub-experiment 5c. 

Beyond these factors affecting the effectiveness of congestion prices, results presented in Table 2 show 

airline profit increases due to marginal cost pricing, while the results from the flat pricing experiments 

show the operating profits to be either decreasing (or increasing very modestly) with congestion prices in 

most cases. This is another interesting manifestation of the difference between flat prices and marginal 

cost prices. Under marginal cost pricing, an airline has to pay a congestion price equal to the cost of the 

increase in the delays to other airlines because of the operations of that airline. Therefore, the additional 

congestion price of a marginal slot to an airline is often substantially greater than the average cost being 



paid by each airline. So under marginal cost pricing, the additional cost of an extra operation becomes 

prohibitively high at a level of demand where the actual average congestion price per slot being paid by 

the airlines is still relatively low. Consequently, airlines are discouraged from adding extra frequency 

even though they pay a relatively small congestion price per slot for the flights they operate. Thus 

marginal cost pricing can discourage airlines form increasing airport operations without penalizing them 

with an exceedingly high congestion price per slot, leading to a lower level of congestion and higher 

profits for the airlines. This is a ramification of the fact that some of the delay is internalized by the 

airlines. 

TABLE 2  Marginal Cost Pricing Results (Experiment 5) 

Sub-experiment 
Quantity 
Varied 

% Change in 
Passenger 
Delay Costs 

Change in Operating Profit Margin 

Due to 
Tolls 

Due to 
Delays 

Due to 
Operating 
Costs Overall 

5a 
Impact of Variation in 

  

  = 1.0 -16.67% -2.58% 2.25% 4.69% 4.35% 

  = 1.1 -15.90% -2.97% 2.36% 4.69% 4.08% 

  = 1.2 -15.22% -3.23% 2.40% 4.86% 4.02% 

  = 1.3 -14.44% -3.61% 2.45% 4.86% 3.70% 

  = 1.4 -14.14% -3.81% 2.50% 4.89% 3.58% 

  = 1.5 -11.61% -4.42% 2.15% 4.09% 1.82% 

5b 
Impact of Variation in 

Profit margin (i.e. 
Fare Variation) for   = 

1.3 

0.8*Fare -16.67% -3.23% 2.81% 5.86% 5.44% 

0.9*Fare -15.56% -3.37% 2.61% 5.43% 4.67% 

1.0*Fare -14.44% -3.61% 2.45% 4.86% 3.70% 

1.1*Fare -11.84% -3.94% 1.97% 3.68% 1.71% 

1.2*Fare -11.37% -3.87% 1.82% 3.40% 1.35% 

1.3*Fare -10.93% -3.46% 1.69% 2.78% 1.01% 

5c 
Impact of Number of 
Players under   = 1.0 

2 Competitors -16.67% -2.58% 2.25% 4.69% 4.35% 

3 Competitors -17.67% -5.26% 3.08% 6.59% 4.41% 

4 Competitors -18.01% -7.30% 3.50% 7.34% 3.53% 

5 Competitors -18.70% -8.42% 3.82% 8.36% 3.76% 

 

Consider a concrete example of the phenomenon described above. Specifically, consider the case in the 

sixth row below the header row of Table 2. Under marginal cost pricing, the passenger delay costs are 

reduced by 11.61% and the price of each additional slot is approximately $1046. However, the average 

congestion price being paid by the airlines is approximately $367. As a result, the combined operating 

profit margin increases by 1.82% compared to the base case. Under flat pricing case, in order to achieve 

the same 11.61% delay cost reduction, the marginal as well as the average congestion price paid by the 



airlines equals $900 per slot. As a result, the total operating profit margin decreases by 4.43%. 

Alternatively, at a flat congestion price of $367 per slot, airline operations are reduced to a lesser extent, 

resulting in passenger delay cost reductions of just 6.54%, and a 1.12% decrease in total operating profit 

margin of the airlines. 

It is important to note that these results are for a relatively small number of airlines at the airport; 2 in 

most experiments and 3, 4, or 5 in the remaining experiments. Thus the large differences between flat 

pricing and marginal cost pricing results obtained in our experiments, are partly owing to the small 

number of airlines, which internalize a large part of the delays. It should be noted that for airports with 

many airlines each contributing a smaller part of the operations at that airport, the difference between the 

flat and marginal cost pricing results is expected to be lower. 

Finally, and very importantly, it must be noted that a large proportion of the congestion pricing benefits to 

the airlines come from a reduction in operating costs due to operating a smaller number of flights. In fact, 

in many cases in the Table 2, the benefits due to delay reduction are more than compensated by the 

congestion tolls. Hence operating cost reduction due to a smaller number of flights is a prime reason 

behind the profit increases. 

8. SUMMARY 

In this paper, we model airline frequency competition under congestion prices and investigate the 

differences between the atomistic and non-atomistic pricing. We identify a variety of characteristics of 

airline markets that critically determine the effectiveness of airport congestion pricing mechanisms. Our 

model of frequency competition under slot pricing is consistent with a popular form of relationship 

between market share and frequency share. 

Our results showed that the frequency sensitivity of passenger demand (or the S-curve parameter), a 

measure of the gross profit margin (or the ratio of average fare to operating cost per seat), and the number 

of competitors in a market, critically affect the effectiveness of a congestion pricing mechanism. As 

expected, slot prices reduce the congestion by reducing the number of operations at the airport. But the 

impact of slot prices on airlines' operating profit margin is not that straightforward. Airlines benefit from 

reduction in operating costs because of fewer flights and higher load factors, and also benefit from the 

delay cost reduction. The net impact of airline profit margin depends on whether these benefits are 

sufficient to offset the slot prices paid by the airlines. 

While flat pricing has the advantage of being comparatively easier to understand and implement, we 

found that the marginal cost pricing (non-atomistic pricing) is more effective in reducing congestion 



without penalizing the airlines with exceedingly high congestion prices. Marginal cost pricing 

discourages the airlines from scheduling additional operations through high incremental price for an 

additional slot, while keeping the average price for the purchased slots relatively low. On the other hand, 

for flat pricing, the incremental and average congestion prices are equal by definition. As a result, 

compared to flat pricing, marginal cost pricing results in greater operating profit margins for the airlines 

for the same level of congestion reduction. It must be noted that these differences between flat and 

marginal cost pricing paradigms were amplified because our example network involved a small number 

of airlines. 

The main aim of this research was to develop a model of congestion pricing under airline frequency 

competition and to generate insights into the critical factors that affect the effectiveness of a congestion 

pricing mechanism. Our research in this chapter was conducted for a small hypothetical network, 

consisting of 2 markets and 2, 3, 4 or 5 airlines. In order to fully quantify the effects of congestion 

pricing, it is necessary to develop a full-scale case study of a congested airport. Furthermore, we made a 

number of assumptions including a segment-based demand, constant average fares and constant aircraft 

sizes. In order to conduct a full investigation of the impacts of congestion pricing, the extent of validity of 

these assumptions needs to be assessed and the effects of relaxing these assumptions need to be 

quantified. 

Although, this evidence based on a small hypothetical network is insufficient to conclude whether the net 

effect of congestion pricing on airline profits will be positive or negative, the results clearly show that 

appropriately capturing the variation in number of passengers per flight could have a decisive impact on 

the answer to this important question. Therefore, an interesting follow-up study would be a more detailed 

experiment with a much larger real dataset. Our results and insights based on a small network provide 

sufficient motivation for a full-fledged analysis of airline frequency competition under congestion pricing, 

and the models and algorithms developed by us in this research will serve as useful tools for this follow-

up analysis. 
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