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ABSTRACT

The ensemble Kalman filter provides an easy-to-use, flexible, and efficient option for data assimilation
problems. One of its attractive features in land surface applications is its ability to provide distributional
information about variables, such as soil moisture, that can be highly skewed or even bimodal. The en-
semble Kalman filter relies on normality approximations that improve its efficiency but can also compro-
mise the accuracy of its distributional estimates. The effects of these approximations can be evaluated by
comparing the conditional marginal distributions and moments estimated by the ensemble Kalman filter
with those obtained from a sequential importance resampling (SIR) particle filter, which gives exact solu-
tions for large ensemble sizes. Comparisons for two land surface examples indicate that the ensemble
Kalman filter is generally able to reproduce nonnormal soil moisture behavior, including the skewness that
occurs when the soil is either very wet or very dry. Its conditional mean estimates are very close to those
generated by the SIR filter. Its higher-order conditional moments are somewhat less accurate than the
means. Overall, the ensemble Kalman filter appears to provide a good approximation for nonlinear, non-
normal land surface problems, despite its dependence on normality assumptions.

1. Introduction

Ensemble-based data assimilation methods are be-
coming popular in many of the earth sciences, largely
because they are easy to use, flexible, and make rela-
tively few restrictive assumptions (see the review by
Evensen 2003). In particular, the ensemble Kalman fil-
ter has recently been suggested as a practical option for
real-time estimation of land–atmosphere fluxes from
remote sensing data (Reichle et al. 2002; Margulis et al.
2002; Crow and Wood 2003; Reichle and Koster 2003;
Entekhabi et al. 2004). Ensemble estimation proce-
dures have the advantage of providing distributional
information about uncertain variables, including ap-
proximate marginal distributions, quantiles, and higher-
order moments. This information is particularly useful
in land surface applications, where variables such as soil
moisture can be highly skewed toward the wet or dry
ends and can even be bimodal, depending on the time

and space scale considered (Rodriguez-Iturbe et al.
1991). In such cases, means and covariances alone may
not adequately characterize variability.

In sequential filtering the distributional properties of
an uncertain state xt, given a set of measurements y0:t

taken through time t, are conveyed by the conditional
probability density p(xt | y0:t). The random replicates
generated by ensemble methods may be used to com-
pute finite sample approximations to this density and its
moments. When new measurements become available
some version of Bayes’s theorem is typically used to
update the replicates (and the corresponding distribu-
tional approximations). The accuracy of this update de-
pends on the assumptions made when applying Bayes’s
theorem as well as the number of replicates. The en-
semble Kalman filter is particularly efficient because it
relies on normality assumptions that greatly simplify
the update process. But this simplification can also limit
the filter’s ability to provide accurate distributional in-
formation. Here we evaluate the accuracy of the en-
semble Kalman filter by comparing its distributional
estimates to those of a less efficient ensemble method
that relies on an exact Bayesian update. This is done for
two examples that provide useful insight about the en-
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semble Kalman filter’s performance in land surface ap-
plications.

2. Ensemble filtering

Many of the nonlinear filtering problems encoun-
tered in the earth sciences rely on discrete time state
and measurement equations of the following form:

xt � f�xt�1, ut� and �1�

yt � g�xt� � vt , �2�

where xt is the system state vector with an uncertain
initial condition x0, ut is a vector of uncertain model
inputs (not necessarily additive), yt is the measurement
vector, and vt is a vector of additive random measure-
ment errors. In a land surface problem xt could be a
vector of soil moisture values in different pixels and
layers, ut a vector of precipitation rates, and yt a vector
of microwave radiometer measurements indirectly re-
lated to soil moisture. The uncertain variables x0, ut,
and vt are assumed to have known prior probability
distributions and the measurement error vectors at dif-
ferent times are assumed to be independent. The func-
tions f() and g() represent spatially and temporally dis-
cretized models of the system dynamics and measure-
ment process.

The objective of filtering is to characterize the cur-
rent state xt from y0:t, the set of all measurements ob-
tained at discrete times in the interval [1, t]. The ideal
probabilistic characterization is the conditional prob-
ability density p(xt | y0:t), which conveys everything
known about xt given y0:t. Since this multivariate den-
sity is difficult to compute or interpret for large prob-
lems we typically focus on particular properties of
p(xt | y0:t), such as its moments and univariate marginal
densities of p(xt | y0:t).

In filtering applications it is convenient to distinguish
two sequential estimation operations: 1) propagation of
the state from one measurement time to the next (fore-
casting) and 2) updating of the propagated state with
the new measurement (analysis). If the complete den-
sity p(xt | y0:t) is desired, forecasting is carried out by
deriving p(xt | y0:t�1) from p(xt�1 | y0:t�1) (e.g., using the
Fokker–Planck equation) and analysis is carried out by
deriving p(xt | y0:t) from p(xt | y0:t�1) (e.g., using Bayes’s
theorem; Jazwinsky 1970). The required calculations
are generally feasible only for very small problems.

Ensemble methods are able to provide a practical
alternative to exact Bayesian solutions because they
rely on discrete approximations of the densities
p(xt | y0:t�1) and p(xt | y0:t). The approximations can be
expressed as

p�xt | y1:t�1� � �
i�1

N

wt | t�1
i ��xt � x t | t�1

i � and �3�

p�xt | y1:t� � �
i�1

N

wt | t
i ��xt � x t | t

i �. �4�

These approximations replace each continuous density
by a sum of N Dirac delta densities located at the ran-
domly generated state vectors, or replicates, x i

t | t�1 or
x i

t | t, for i � 1, . . . , N. The Dirac delta terms (and the
corresponding replicates) for each approximation are
assigned discrete probabilities (or weights) wi

t | t�1 or
wi

t | t, respectively. If the weights in each expansion sum
to unity, the integrals of (3) and (4) yield stepwise ap-
proximations of the continuous cumulative distribution
functions for p(xt | y0:t�1) and p(xt | y0:t), respectively.
The random replicates and corresponding weights can
be generated in a variety of ways. The sequential im-
portance resampling (SIR) particle filter and ensemble
Kalman filter discussed in this paper are two particular
alternatives.

The SIR and ensemble Kalman filters share the same
forecasting step. To examine the mechanics of this step,
suppose that replicate i at t � 1 has the value x i

t�1 | t�1

with weight wi
t�1 | t�1 � 1/N. The nonlinear state Eq. (1)

can be used to compute the value of this replicate at
time t from the value at t � 1, giving

x t | t�1
i � f�x t�1 | t�1

i , u t
i� and �5�

wt | t�1
i � 1�N. �6�

Note that this operation requires generation of a ran-
dom input replicate u i

t, which is a random sample drawn
from the specified prior input probability density p(ut).
Equations (5) and (6) yield the following approxima-
tion for the forecast probability density:

p�xt | y1:t�1� �
1
N �

i�1

N

��xt � x t | t�1
i �

�
1
N �

i�1

N

��xt � f�x t�1 | t�1
i , u t

i�	. �7�

This forecasting step is just a Monte Carlo-based
procedure for deriving p(xt | y0:t�1) from p(ut) and
p(xt | y0:t�1). The differing analysis steps for the SIR and
ensemble Kalman filters are discussed in the following
paragraphs.

a. The SIR particle filter

Particle filters are a class of sequential Bayesian en-
semble algorithms that can be derived from a discrete
version of Bayes’s theorem. Arulampalam et al. (2002)
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provide a useful tutorial that shows how several differ-
ent particle filtering algorithms may be developed from
the perspective of sequential importance sampling
(SIS). We use the SIR filter here because it is easy to
implement and converges to the exact Bayesian solu-
tion as the number of replicates approaches infinity. It
is also well suited for the land surface application,
where uncertain time-dependent inputs are generally
more important than initial condition errors. In other
applications, other types of particle filters may give bet-
ter performance for a given number of particles.

The SIR algorithm adopts the approximation of (5)
and (6) during the forecasting step of filtering. The
analysis step is based on the following form of Bayes’s
theorem:

p�xt | y1:t� �
p�yt | xt�p�xt | y1:t�1�

p�yt | y1:t�1�
� cp�yt | xt�p�xt | y1:t�1�,

�8�

where c is a normalizing constant that ensures that
p(xt | y0:t) integrates to one. If we substitute the Dirac
expansions for p(xt | y0:t�1) and p(xt | y0:t) into (8) we can
relate the analysis density replicate values and weights
of the unknown analysis density (left-hand side) to
those of the known forecast density (right-hand side).
In the SIR filter the analysis replicate values are ini-
tially kept the same as the forecast values and only the
analysis weights are changed. This gives

x t | t
i � x t | t�1

i and �9�

wt | t
i � cp�yt | x t | t

i �wt | t�1
i � cp�yt | x t | t�1

i �wt | t�1
i

�
c

N
p�yt | x t | t�1

i �, �10�

where p(yt | x i
t | t�1) is the likelihood function for the

propagated replicate x i
t | t�1 The likelihood function can

be readily computed if the measurement error is addi-
tive (as assumed here) since

p�yt | x t | t�1
i � � pyt�yt | x t | t�1

i � � p�t�yt � g�x t | t�1
i �	, �11�

where p
t is the known (e.g., normal) probability den-
sity of the measurement error vt. The likelihood func-
tion can be viewed as a measure of the “closeness” of
the replicate x i

t | t�1 to the measurement yt.
We could substitute (9) and (10) directly into (4) to

obtain an approximation of the analysis probability
density but the result may be unsatisfactory unless the
number of replicates is very large. This is because (10)
gives replicates “closer” to the measurements much
more weight than those that are “farther away.” This
can result in the “collapse” of the ensemble to a very

small number of replicates with high weights, giving a
very coarse discrete representation of the analysis prob-
ability density. To prevent this, the SIR filter resamples
the ensemble with replacement N times. The probabil-
ity that replicate i is selected on sample k is equal to its
weight:

p�replicate i selected on sample k� � wt | t
i . �12�

By construction, this resampling operation creates a
new analysis ensemble of N equally likely replicates
with the following values x k

t | t and weights w k
t | t (for

k � 1, . . . , N):

x t | t
k � replicate value selected on sample k �13�

and

wt | t
k �

1
N

. �14�

The new analysis ensemble is a subset of the old analy-
sis ensemble. Old replicates with high weight are more
likely to be repeated in the new ensemble and old rep-
licates with low weight are more likely to be omitted.
Once the resampling operation is completed (13) and
(14) can be substituted into (4) to give

p�xt | y1:t� �
1
N �

k�1

N

��xt � x t | t
k �. �15�

The new equally weighted resampled replicates can
then be propagated from t to t � 1, following the pro-
cedure given in (5) and (6) (with t replaced by t � 1 and
k by i). Although many of the resampled analysis rep-
licates at t have the same value, these values diverge in
the subsequent propagation to t � 1 because of the
influence of the random input noise ut�1. This keeps the
ensemble from collapsing and is why the SIR approach
works best for problems with random inputs.

The SIR filter’s ensemble statistics (marginal densi-
ties, moments, etc.) can be shown to converge to their
exact counterparts as the number of replicates ap-
proaches infinity. The version of the SIR filter de-
scribed here assumes that the measurement errors are
additive and independent over time but does not re-
strict the form of the probability densities for xt, ut, or
vt or the form of the functions f() and g(). The primary
disadvantage of the SIR filter is the large number of
replicates required to accurately represent the multi-
variate conditional probability densities of xt. When the
number of measurements exceeds a few hundred the
SIR filter is not practical for land surface problems.
However, it provides a very useful performance bench-
mark for small problems since it yields optimal condi-
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tional densities (as well as conditional means and other
moments) if the ensemble is sufficiently large.

b. The ensemble Kalman filter (EnKF)

Like the SIR filter, the ensemble Kalman filter uses
the Dirac expansions of (3) and (4) to approximate the
conditional probability densities of xt and it adopts the
approximation of (5) and (6) during the forecasting
step. However, the ensemble Kalman filter makes more
assumptions at the analysis step. The Kalman filter
analysis step can be derived from various perspectives.
Here we take a Bayesian or distribution-oriented per-
spective because we are interested in the filter’s ability
to estimate properties of the conditional density
p(xt | y0:t).

It is generally very difficult to derive an exact closed
form expression for p(xt | y0:t) from Bayes’s theorem,
especially for problems with nonlinear dynamics and
measurement operators. However, it is possible to ob-
tain an exact solution when the forecast states and mea-
surements are jointly normal. This typically occurs only
when the state and measurement equations are linear
and all sources of uncertainty are normally distributed.
In this special case the analysis density given by (8) is
normal and completely defined by the following mean
and covariance, which are the update expressions of the
classical Kalman filter:

xt | t � xt | t�1 � Kt�yt � g�xt | t�1�	 and �16�

Cxx,t | t � Cxx,t | t�1 � KtCyx,t | t�1, �17�

where the overbars indicate expected values, the Cs
are covariances, and

Kt � Cxy,t | t�1�Cyy,t | t�1 � C��,t�
�1. �18�

In practice, adopting a joint normality assumption is
equivalent to assuming that the forecast and measure-
ment densities are adequately characterized by their
means and covariances (i.e., higher-order moments are
ignored in the analysis step). It is possible to use the
Kalman update expressions even when the joint nor-
mality assumption does not apply. In this case the con-
ditional statistics produced by the Kalman filter may
not match the true values but they may be close enough
to be useful.

In an ensemble version of the Kalman filter we need
to generate an ensemble of analysis replicates at t, for
propagation from t to t � 1. The sample mean and
covariance of this ensemble should converge to the
mean and covariance of (16) and (17) in the limit as the
number of replicates approaches infinity. There are
many ways to generate analysis replicates that satisfy

this requirement. In nonlinear applications it is best to
use an ensemble generation method that preserves at
least some of the nonnormal characteristics of the fore-
cast ensemble when normality assumptions do not ap-
ply.

One way to accomplish this is to generate an analysis
ensemble directly from the forecast ensemble, using the
following algorithm (Evensen 1994, 2003):

x t | t
i � x t | t�1

i � Ks,t �yt � v t
i � g�x t | t�1

i �	 and �19�

wt | t
i � wt | t�1

i �
1
N

, �20�

where v i
t is a sample drawn from the measurement er-

ror probability density p(vt) and Ks,t is a sample esti-
mate of the Kalman gain Kt ,

Ks,t � Xt | t�1Y t | t�1
T �Yt | t�1Y t | t�1

T � C��,t�
�1. �21�

The columns of the sample matrices Xt | t�1 and Yt | t�1

are constructed from the mean-removed replicates of
xt | t�1, g(xt | t�1), and vt.

The ensemble Kalman filter algorithm of (19)
through (21) produces analysis replicates that converge
to the exact Bayesian solution for normal states and
measurements. When there are deviations from nor-
mality the filter is suboptimal but the replicates are able
to inherit nonnormal properties from the forecast.

There are a number of other versions of the en-
semble Kalman filter that use different approaches for
generating nonnormal ensembles that conform to (12)
and (13) (Tippett et al. 2003). Although each of these
has advantages in certain situations the basic concepts
are similar to Evensen’s (1994) classical ensemble Kal-
man filter. Moreover, we have found that the perfor-
mance differences for land surface applications are not
substantial. For that reason we focus on the classical
version of the filter described above.

3. A simple nonlinear land surface data
assimilation example

Soil moisture is one of the key states controlling the
partitioning of water and energy fluxes at the land–
atmosphere boundary. It is likely to be skewed to the
wet end (after precipitation) or the dry end (after a
prolonged drydown period). Here we use a simple sca-
lar example motivated by soil moisture behavior to il-
lustrate the two nonlinear filters described in the pre-
vious section. Suppose a scalar soil moisture value x at
a particular measurement time has the following fore-
cast probability density:
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p�x� � 27.7 exp��
x

0.1� 0.1 � x � 0.5. �22�

This truncated exponential density is shown in Fig. 1a.
The associated mean x is 0.19 and the variance is Cxx �
(0.08)2. We suppose that a single measurement y � x �
w is taken, where w is a zero mean normally distributed
additive error independent of x with standard deviation
C

 � (0.05)2.

For this problem the analysis probability density
p(x | y) may be derived in closed form from Bayes’s
theorem,

p�x | y� � cp�y | x�p�x�. �23�

This exact analysis density is plotted in Fig. 1b for a
measurement value y0 � 0.15, together with the results
obtained from an SIR filter and an ensemble Kalman
filter, each using 30 000 replicates (this large sample
size essentially eliminates sampling error problems).
The SIR filter closely approximates the skewed exact
analysis density. The ensemble Kalman filter analysis
density is much more normal in shape, reflecting the
influence of the normally distributed measurement per-
turbations vi added in the update step. As the measure-
ment error becomes larger the Kalman gain eventually
becomes very small, the forecast replicates dominate,
and the Kalman analysis density becomes more
skewed.

The exact, SIR filter and ensemble Kalman filter
analysis means are plotted versus the measurement
value y0 in Fig. 1c. The Kalman filter analysis mean

deviates only slightly from the exact and SIR filter
means. Figure 1d shows that the analysis standard de-
viations for the two filters behave quite differently. The
SIR filter standard deviation depends on the measure-
ment value while the ensemble Kalman filter standard
deviation does not. So the Kalman filter underestimates
uncertainty for midrange measurements and overesti-
mates uncertainty for low or high measurement values.

Although this scalar example is very simple it sug-
gests that differences between the SIR and ensemble
Kalman filters for land surface problems may be more
apparent in the higher-order moments than in the
analysis means. We investigate this hypothesis further
in the next section.

4. Formulation of an Observing System Simulation
Experiment (OSSE)

In this section we describe a land surface simulation
experiment that enables us to compare the perfor-
mance of the suboptimal ensemble Kalman filter to an
optimal SIR filter for a realistic land surface applica-
tion. The problem is to characterize soil moisture and
evapotranspiration from remotely sensed passive mi-
crowave (radiometer) measurements. Land surface dy-
namics are described by the Community Land Model
(CLM, version 2.0; Bonan 1996; Bonan et al. 2002).
Radiometer measurements are described by a nonlin-
ear radiative transfer model (Njoku et al. 2002). Input
uncertainties and measurement errors are described by

FIG. 1. Estimates of scalar soil moisture state statistics for a skewed prior probability density where y° is the
actual observation. (a) Prior probability density function (pdf): p(x) � 27.7 exp(�x/0.1), 0.1 � x � 0.5; (b) posterior
pdf for y° � 0.15, R � 0.05, estimated with SIR and ensemble Kalman filters; (c) Posterior mean vs y°; and (d)
posterior covariance vs y°. The theoretical Bayesian solution is also plotted.
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statistical models that are intended to realistically rep-
resent natural variability. These models determine how
the replicates of the ensemble filters are generated.

a. The land surface and radiative transfer models

The CLM is a nonlinear spatially distributed model
that describes energy, momentum, water, and CO2 ex-
change between the land and the atmosphere. Dynamic
inputs to the model include precipitation, wind speed,
air temperature, pressure, humidity, and solar radia-
tion. Time-invariant inputs include soil and vegetation
classifications. The model is discretized into square pix-
els that are each divided into several soil layers. Mois-
ture and heat can only move vertically within individual
pixels. Further details are discussed in Bonan (1996)
and Bonan et al. (2002). Although moisture does not
flow between pixels the states in different pixels are
correlated by virtue of their dependence on spatially
correlated inputs such as precipitation and vegetation.

The study region for our computational experiment
reflects conditions at the southern Great Plains
(SGP97) site in eastern Oklahoma. This 18.75 km �
18.75 km region is shown in Fig. 2. It is discretized over
a 6 � 6 grid of (approximately) 3.12 km � 3.12 km
estimation pixels with eight soil layers in each pixel.
The study region is small enough to be feasible for a
SIR filter assimilation while large enough to reveal the
impacts of horizontal correlation. The land use is as-
sumed to be cropland with a loam soil and the soil
layers have thicknesses (from top to bottom) of 2, 3, 5,
8, 12, 20, 57, and 88 cm, respectively. The CLM model
states include soil moisture and soil temperature in the
center of each soil layer as well as surface soil tempera-
ture, canopy temperature, and canopy-intercepted wa-
ter, for a total of 684 states in our 36-pixel grid. The
CLM derives evapotranspiration from these states. The
study period corresponds to a 28-day field campaign
conducted from 0000 UTC 19 June 1997 through 1500
UTC 16 July 1997 (Margulis et al. 2002). Input data are
generated and the CLM is run for a 1-h time step.

Synthetic radiobrightness measurements can be re-
lated to soil moisture through soil reflectivity, as de-
scribed by the Fresnel equation. For our experiment
this process is described by the following expression for
brightness temperature (Njoku et al. 2002):

Tb � Ts�1 � rH�e�� � Tc�1 � ���1 � e����1 � rHe���,

�24�

where Ts and Tc are the surface and canopy tempera-
ture (K), respectively, and rH is the horizontal polariza-
tion soil reflectivity. For L-band (1.4 GHz) microwave,
the vegetation can be considered predominantly ab-

sorbing with a small single scattering albedo �, and the
vegetation opacity along the slant path is given by
(Jackson and Schmugge 1991)

� � bw�cos�, �25�

where w is vegetation water content (kg m�2), b is a
vegetation-specific parameter, and 
 is the incidence
angle. The vegetation water content is derived from
normalized difference vegetation index data (Jackson
et al. 1999). Rough surface reflectivity is derived from
the procedure described by (Choudhury et al. 1979)

r �H � rH exp��h cos2��, �26�

where rH is the smooth surface reflectivity and h is a
vegetation-specific parameter. In our experiment, w, h,
and b have the values 0.3 kg m�2, 0.1, and 0.04, respec-
tively. The view angle 
 is set to zero and the scattering
albedo is 0.03.

b. Uncertain model inputs and measurement errors

The primary sources of uncertainty in land surface
applications are time-invariant soil properties and time-
dependent meteorological inputs, including precipita-
tion and initial conditions. In the ensemble approach,
random replicates for each of the uncertain inputs are
provided to the CLM, which generates random repli-
cates of the land surface states. Corresponding radio-

FIG. 2. Multiple scales used in the land surface OSSE. Precipi-
tation data are available in a single 100 km � 100 km (GPCP)
pixel, synthetic radiometer measurements are generated in a
single 18.75 km � 18.75 km pixel, and estimates are computed in
36 pixels, each 3.12 km � 3.12 km, nested inside the radiometer
pixel.
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brightness values at the estimation pixel scale are gen-
erated by the radiative transfer model of (24). The
time-dependent random inputs can cause the ensemble
to spread during the propagation step while assimila-
tion of radiobrightness measurements can cause the en-
semble to narrow at the analysis step. These effects are
moderated by the physics of the problem, which con-
strains the states to lie in limited ranges (e.g., the volu-
metric soil moisture must lie between 0.0 and the po-
rosity, which is less than 1.0).

The uncertain inputs are generated by transforming
nominal input values to obtain sets of physically real-
istic replicates. This is done in various ways, depending
on the variable. Table 1 lists the uncertain inputs and
measurement errors considered in our simulation ex-
periment. Note that different methods are used to in-
troduce randomness for different inputs. The soil, veg-
etation, and precipitation inputs deserve some elabora-
tion.

The nominal soil is assumed to be loam throughout
the study region. Loam corresponds to a certain section
of the classical silt–sand–clay soil triangle. The soil
properties associated with different replicates and dif-
ferent pixels are obtained by selecting random points in
the loam section and then reading off the correspond-
ing silt, sand, and clay fractions that are used by CLM.
Different independent random samples are taken in
different pixels and soil layers so soil property fluctua-
tions are not correlated over space.

The vegetation type is assumed to be cropland
through the study region. The CLM characterizes land-

use types in terms of the leaf area index (LAI) and the
stem area index (SAI). It uses these indices to compute
various model vegetation parameters that control net
radiation, energy partitioning, and intercepted water
capacity. In our experiment the nominal LAI for crop-
land is 1.6 for June and 1.3 for July. The nominal SAI
is 0.4 for June and 0.8 for July. Individual LAI repli-
cates are generated by multiplying the nominal value by
a uniformly distributed random variable in the range
(0.85, 1.15). SAI is treated as a deterministic input.

Precipitation displays significant correlation in time
and space and has a patchy pattern that cannot be re-
produced with simple multiplicative or additive pertur-
bations to spatially uniform nominal values. A more
realistic option is to generate small-scale replicates by
downscaling (or disaggregating) larger-scale measure-
ments of real precipitation over both time and space
(S. A. Margulis 2004, personal communication). Down-
scaling relies on statistical models of small-scale vari-
ability.

Our simulation experiment uses nominal precipita-
tion data from the Global Precipitation Climatology
Project (GPCP). These daily data are available in the
SGP97 region at a spatial resolution of 1° (100 km �
100 km). The GPCP time series for SGP97 during the
28-day time period of interest in our experiment is
shown in Fig. 3d. We need to downscale this GPCP data
from daily to hourly values in time and from 100 km �
100 km to 3.1 km � 3.1 km values in space, as indicated
in Fig. 2.

Our temporal downscaling procedure is based on a

TABLE 1. Summary of uncertain inputs and measurement errors for the land surface simulation experiment.

Variable Specified nominal value Uncertainties in replicates

Soil fractions (sand–silt–clay) Loam over entire study region Uniformly distributed points in loam section of
soil triangle

Vegetation Cropland with LAI � 1.6 and SAI � 0.4
(June); LAI � 1.3 and SAI � 0.8 (July)

Spatially uncorrelated multiplicative uniform noise
U(0.85, 1.15) for LAI

Humidity, solar radiation,
wind speed

Oklahoma Mesonet time series at El Reno,
assumed to apply over entire study region

Spatially and temporally uncorrelated multiplicative
uniform noise: relative humidity: U(0.9, 1.1); solar
radiation: U(0.9, 1.1); wind speed: U(0.7, 1.3)

Air temperature Oklahoma Mesonet time series at El Reno,
assumed to apply over entire study region

Spatially and temporally uncorrelated additive
uniform noise U(�4, �4 K)

Precipitation GPCP 1° daily data for SGP97 region Nominal GPCP values downscaled in time from daily
to hourly values with random pulses model.
Temporally downscaled replicates downscaled in
space from 100- to 3.1-km pixels with multiplicative
cascade model

Initial soil moisture
(at t � �10 days)

Specified soil moisture profiles Spatially uncorrelated additive Gaussian noise
N(0.0, 0.3)

Initial soil temperature
(at t � �10 days)

Specified temperature profiles Spatially uncorrelated additive Gaussian noise
N(0.0, 4 K)

Radiobrightness
measurement

Simulated true value at 18.3 km � 18.3 km
scale

Temporally uncorrelated additive Gaussian noise
N(0.0, 3 K)
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probabilistic rectangular pulses model (RPM; Margulis
and Entekhabi 2001) that is constrained to reproduce
observed daily totals (see Fig. 3a). The RPM treats
rainfall events as random rectangular pulses with an
exponentially distributed constant intensity ir, and du-
ration tr and a uniformly distributed arrival time be-
tween 0 and 24 � tr. Different RPM replicates have
different hourly rainfall values. A given replicate may
have no rainfall in any particular hour but its 24 hourly
values must add up to the observed GPCP daily value.
In our experiment the RPM mean intensity is 3.2 mm
h�1 for June and 2.3 mm h�1 for July, and the mean
time between storms is 5.0 h for June and 8.0 h for July.
These were estimated from climatological data (Hawk
and Eagleson 1992).

The temporal downscaling procedure provides 1-h
precipitation replicates at the 100 km � 100 km GPCP
measurement scale. These coarse-resolution replicates
can be downscaled to the 3.1 km � 3.1 km estimation
pixel scale if we suppose that rainfall follows a multi-
plicative cascade model that relates intensities at differ-
ent scales (Gupta and Waymire 1993; Gorenburg et al.
2001). This model can be portrayed as a six-level tree
composed of groups of pixels (nodes) covering regions
of different areas (see Fig. 3b). The top (root) node
defines the coarsest scale (one GPCP pixel) while the
bottom nodes define the finest scale (the 1024 estima-
tion pixels contained in the GPCP pixel). The rainfall
value at a given node is obtained by multiplying the
value at the next coarsest node (the parent) by a ran-
dom lognormally distributed coefficient W(s),

W�s� � exp�w�s� � 	w
2 �s� �2	, �27�

where w(s) � N[0, �2
w(s)], �w(s) � 2�0.3(s�1), and the

scale index s increases from 1 at the root node of the
cascade to 6 at the finest scale. A typical realization
from this random multiplicative cascade is shown in
Fig. 3c. The cascade model generates rainfall that has a
patchy pattern and is correlated over space.

In our simulation experiment the cascade model gen-
erates spatially downscaled rainfall on a 32 � 32 grid
with a finest scale resolution of about 3.1 km, enforcing
the same spatial pattern for each replicate in each hour
of a given rainy day but allowing the rainfall intensity to
change every hour. Rainfall intensities at the finest
scale are normalized for each replicate to ensure that
the total rainfall at this scale is equal the total rainfall at
the GPCP scale. A 6 � 6 portion of this grid provides
the 3.1 km � 3.1 km rainfall data needed by the CLM
model.

The CLM model is started at t � �10 days with
random initial conditions generated by perturbing uni-
form soil moisture and temperature profiles. Each rep-
licate is run forward with the model for 10 days to t �
0 to allow moisture in individual pixels to redistribute in
accordance with local soil properties. The resulting soil
moisture and temperature replicates initialize the SIR
and Kalman filter ensemble simulations.

c. Simulation experiment specifications

For our synthetic experiment “truth” is defined by
the state from a single CLM run obtained for a particu-
lar set of soil, vegetation, meteorological, and initial
condition replicates, as described above. The CLM
states and associated soil properties for this truth rep-
licate are then used in (24) to generate a synthetic

FIG. 3. Spatial and temporal rainfall disaggregation model. (a) RPM for temporal disaggregation of
daily rainfall, (b) multiplicative cascade model for rainfall spatial disaggregation, and (c) one realization
from the random cascade model over a 32 � 32 grid.
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brightness temperature measurement at 1500 UTC ev-
ery day during the 28-day simulation period. This mea-
surement is defined at a coarser scale than the model
states, reflecting the lower resolution of anticipated sat-
ellite microwave radiometer measurements. In particu-
lar, we assume that the microwave measurement covers
an 18.3 km � 18.3 km area (6 � 6 pixels) and is the
average of the 36-pixel-scale brightness values computed
from (24). At each measurement time a zero-mean nor-
mally distributed random perturbation is added to the
averaged brightness temperature to account for the ef-
fect of measurement noise. This set of noisy measure-
ments is provided to the two ensemble filters.

5. Results of the simulation experiment

It is useful to start our comparison of the SIR and
ensemble Kalman filters by examining surface (top
layer) soil moisture, surface soil temperature, and
evapotranspiration replicates produced by the SIR fil-
ter at a typical pixel (pixel 9). These time series are
shown in Fig. 4, together with the applicable 1° daily

(1DD) GCPC precipitation record for the study period.
The red line is the true replicate, the thick blue line is
the mean of the SIR filter ensemble, and the thin cyan
lines are the individual SIR filter replicates.

Before t � 100 uncertainty in soil moisture, indicated
by the ensemble spread, is mainly due to uncertainties
in initial conditions, soil properties, and LAI. After
rainfall events occur, the uncertainties in surface layer
soil moisture primarily reflect uncertainties in precipi-
tation. Note that the ensemble spread is narrower dur-
ing the dry periods, when the absence of rainfall makes
it easy to infer that soil moisture values are low, even
without the added information provided by radio-
brightness measurements. By contrast, the ground tem-
perature ensemble spread is wider during dry periods
and narrower during wet periods. The spread of the
evapotranspiration ensemble depends strongly on time
of day, peaking just after noon. This is more apparent in
the evapotranspiration ensemble standard deviation
plot included just below the replicate plot. Replicates
from the ensemble Kalman filter have a very similar
structure.

FIG. 4. Ensembles from SIR solution at pixel 9 and the associated GPCP rainfall data: (a) ensemble of the
first-layer soil moisture 
; (b) ensemble of evapotranspiration and �1 std dev of the ensemble; (c) ensemble of
surface temperature; and (d) GPCP 1DD daily rainfall data time series. The asterisks on time axis of (d) represent
the measurement times.
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It is important that our comparison of the SIR and
ensemble Kalman filters is based on enough replicates
to ensure that sampling error is not a significant factor.
Figure 5 shows the spatial root-mean-squared error
(rmse) for the top-layer soil moisture, computed over
all analysis times, where error is defined as the differ-
ence between the analysis ensemble mean and the true
value. Also plotted are error bars that show plus or
minus one standard deviation of the rmse, computed
over q filter runs started with different filter ensemble
random seeds. The truth and measurements are kept
the same for these runs. Clearly, the SIR filter needs
more replicates to converge, although it eventually
gives nearly the same rmse as the Kalman filter. This is
not surprising, considering that the converged SIR filter
needs to resolve higher-order distributional properties
that are ignored by the Kalman filter.

Figure 6 shows marginal forecast (left) and analysis
(right) probability densities for pixel 9 surface soil
moisture for some typical analysis times. Open-loop
(unconditional) densities are also shown for compari-
son. At the first analysis time, just prior to the first
measurement (t � 15 h), both filters and the open loop
share the same forecast density with a skewness of 0.2
and kurtosis of 3.5 (since there have not yet been any
measurements). The difference in the SIR and Kalman
filter analysis densities at this time is minimal. The ben-
eficial effect of the measurement is best revealed by a
comparison of the open-loop and analysis densities.

The densities plotted at times t � 231 and 279 show
conditions during two rainy periods. The skewness to
the left in both of the forecast densities reflects the
effects of the preceding drydown. The measurements at
both times move the density noticeably toward the wet
end, producing significant differences between the
open-loop and filtered densities. Here again, differ-
ences between the SIR and Kalman filter analysis den-
sities are minor. Also, at t � 351, after a drydown pe-
riod all of the forecast densities reveal bimodal behav-
ior. This bimodality is likely because of the properties
of the multiplicative cascade rainfall model, which
tends to produce replicates with wet or dry patches. The
analysis densities for the SIR and ensemble filters at t �
351 are noticeably different.

After a long period of drydown, at t � 471, the fore-
cast and analysis densities are all skewed to the dry end
and the radiobrightness measurement does not provide
much additional information about the surface soil
moisture.

The marginal densities shown in Fig. 6 illustrate the
advantages of taking a distributional perspective in data
assimilation. Ensemble means and even means plus

variances do not always tell the whole story. Physical
conditions such as prolonged wetting or drying can lead
to skewed densities where the means are much differ-
ent than the most probable values (modes). Although
SIR filters provide accurate information on marginal
distributions they are not practical for large problems.
Fortunately, the ensemble Kalman filter seems able to
convey much of this distributional information, despite
its simplifying normality assumptions. This is a direct
result of the ensemble Kalman filter’s ability to update
each replicate rather than just the ensemble mean. In-
dividual replicate updating is able to preserve some
skewness and multimodality, even when the analysis
step is suboptimal.

To assess global performance, rather than perfor-
mance at a single pixel, we examine in Fig. 7 the time
series of the differences between the ensemble mean
and the true replicates for surface soil moisture, evapo-
transpiration, and ground temperature, all averaged
over the entire domain. The errors are shown for the
SIR filter, ensemble Kalman filter, and open-loop esti-
mates. The abrupt change in soil moisture error due to
assimilation of brightness temperature can be observed
at analysis times for both filters but the impact of mea-
surements is less clear for the ground temperature. This
reflects the fact that brightness temperature is more
sensitive to soil moisture than to ground temperature.

Although evapotranspiration is a diagnostic variable
rather than an updated state we can see that the SIR
and ensemble Kalman estimates of evapotranspiration
benefit from radiobrightness measurements. Both of
these generally have lower errors than the open-loop

FIG. 5. Averaged spatial rmse of surface layer soil moisture at
measurement times vs replicate numbers. Error bars show �1 std
dev of the rmse, computed over q filter runs started with different
filter ensemble random seeds. For ensemble size n � 10, 80, 800,
3200, and 32 000, and the run times q � 40, 10, 8, 6, and 4,
respectively.
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estimate. A closer look at the plots suggest that the
study period can be roughly divided into two stages,
before and after at t � 250. During the first stage, soil
moisture is relatively high, so the evapotranspiration is
controlled by available energy rather than soil mois-
ture. Hence, the open-loop estimates of evapotranspi-
ration and ground temperature are nearly as good as
the filter estimates. During the second stage, there is a
long drydown period, evapotranspiration is moisture
limited, and open-loop errors are larger than filter er-
rors. Assimilation of brightness temperature is clearly
more beneficial during this stage.

Surface brightness temperatures can be used to esti-
mate subsurface soil moisture profiles that are difficult
to observe at large scales. Figure 8 shows the ensemble
mean of the integrated soil water depth above 50 cm
deep over the entire domain. The integrated soil water
depth could be viewed as a rough measure of the water

available to a plant with a root depth of 50 cm. Here
again, the ensemble Kalman filter gives results that are
nearly as good as the SIR filter.

Figure 9 provides some indication of the distribu-
tional differences between the two filters by comparing
time series of the higher-order moments (standard de-
viation, skewness, and kurtosis) of the surface soil mois-
ture for pixel 9. Differences between the higher-order
moments produced by the two filters are greater than
differences between the means. Both filters are able to
capture the significant reduction in variance and in-
crease in skewness experienced during the extended
drydown period after t � 300. Heavy rainfall events
seem to reduce differences between the two filters. It
should be noted that the random pulse and multiplica-
tive cascade models tend to generate very nonnormal
surface soil moisture density functions, as shown by the
skewness and kurtosis in Figs. 9b and 9c. The ensemble

FIG. 6. (left) Marginal forecast, (right) analysis probability densities for pixel 9 surface soil moisture for some
typical analysis times, and (bottom) daily rainfall series. Open-loop (unconditional) densities are also shown for
comparison.
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Kalman filter captures much of this nonnormal behav-
ior, at least for our application.

The results of our land surface data assimilation ex-
periment are summarized in Table 2, which lists rmse

values obtained from SIR filter, ensemble Kalman fil-
ter, and open-loop means for the four variables of most
interest. It is obvious that the SIR and ensemble Kal-
man filter errors are comparable in all cases. Taken

FIG. 7. Time series of the differences between the ensemble mean and the true replicates for (a) surface soil
moisture, (b) evapotranspiration, (c) ground temperature, all averaged over the entire domain, and (d) GPCP
rainfall time series.

FIG. 8. The ensemble mean of the integrated soil water depth above 50-cm depth over the entire domain.
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together, our results strongly support the use of the
Kalman approximation in land surface applications of
ensemble data assimilation.

6. Discussion and conclusions

This paper considers the performance of the en-
semble Kalman filter in a particular context: land sur-
face data assimilation. Land surface problems have sev-
eral distinctive characteristics. In particular, the state
equation is nonlinear and dissipative and the states are
confined to relatively small ranges, with probability dis-
tributions that change over time and are often nonnor-
mal. Precipitation inputs are intermittent and highly
variable over space and time, and other inputs, such as
soil properties, are uncertain and difficult to observe
over large regions. The measurement equation is also
nonlinear. Ensemble Kalman filters have been applied
to land surface data assimilation with reasonable suc-

cess, despite their dependence on assumptions that may
not apply. Our objective here has been to better under-
stand the reasons for this success and to obtain a more
complete picture of the strengths and weaknesses of the
ensemble Kalman filtering approach.

The simple example described in section 3 shows that
the SIR filter’s conditional moment and marginal den-
sity estimates are very close to their exact counterparts
if the replicate size is large enough. The ensemble Kal-

TABLE 2. Rmse (over time) of spatially averaged top-layer soil
moisture, evapotranspiration, ground temperature, and water
depth above 50 cm with respect to the truth.

SIR EnKF Open loop

Top-layer soil moisture 0.026 0.027 0.036
Evapotranspiration (W m�2) 10.3 10.1 19.5
Ground temperature (K) 0.5 0.5 1.1
Water depth above 50 cm (mm) 2.2 2.4 4.3

FIG. 9. Time series of (a) standard deviation, (b) skewness, (c) kurtosis of surface layer soil moisture at pixel 9,
and (d) GPCP rainfall time series. The thick straight line in (a) and (b) shows the trend of standard deviation and
skewness during drydown period.

2140 M O N T H L Y W E A T H E R R E V I E W VOLUME 134

Fig 9 live 4/C



man filter’s conditional mean estimate is also quite
close to the exact value but its marginal density and
variance are noticeably different. This example sug-
gests that a converged SIR filter provides a good basis
for evaluating the ensemble Kalman filter when an ex-
act solution is not available.

Sections 4 and 5 describe a more realistic land surface
estimation example that relies on state and measure-
ment models used in operational settings. In this OSSE
we generate hypothetical true states and measurements
so that filter estimation errors can be evaluated exactly.
The example problem is kept small so that the SIR
filter is computationally feasible. The number of repli-
cates needed for this filter to converge becomes very
large when the state and measurement dimensions in-
crease much beyond the values used in our example.
This is why the ensemble Kalman filter, which con-
verges for much smaller ensemble sizes, is preferable to
the SIR filter in practical applications.

The results of our land surface example reveal that
the ensemble Kalman filter performs nearly as well as
the SIR filter for most conditions simulated. The sur-
face soil moisture forecast densities obtained from the
Kalman filter can be quite skewed and even multimodal
and are generally similar to those obtained from the
SIR filter. The univariate densities of Fig. 6 make it
clear that the normality assumptions that must be met
in order for the ensemble Kalman filter to yield optimal
point estimates do not prevent it from generating non-
normal ensembles. This is further emphasized in Fig. 9,
which shows that the skewness and kurtosis of the en-
semble Kalman filter soil moisture ensembles can differ
significantly from those associated with normally dis-
tributed variables.

The ensemble Kalman filter is especially good at re-
producing the correct soil moisture conditional mean.
This appears to be a consistent result at all times and
pixels in our experiment and it is observed both at the
surface (Fig. 7) and integrated over the soil column
(Fig. 8). Similar performance is obtained for evapo-
transpiration, which benefits most from radiobrightness
measurements when it is limited by soil moisture.

It is worth noting that the structure and timing of
precipitation exert a dominant influence on the land
surface system. This influence tends to reduce differ-
ences between alternative data assimilation algorithms
that make similar assumptions about rainfall. The RPM
and multiplicative cascade disaggregation models used
here tend to create very nonnormal soil moisture dur-
ing rainy periods. In these periods soil moisture is
skewed to the high end. As the surface moisture de-
creases through infiltration and evaporation, the skew-
ness and kurtosis tend to decrease, making the en-

semble filter’s normality assumptions more appropri-
ate. However, the skewness and kurtosis tend to
increase again when soil dries and soil moisture is lim-
ited at the low end.

Soil properties also have a strong influence on the
behavior of the land surface system and the perfor-
mance of alternative filters. Open-loop (unconditional)
predictions of soil moisture are usually better for rap-
idly infiltrating sandy soils than for less permeable loam
or clay soils. Also, soil moisture updates have less im-
pact on evapotranspiration for sandy soils. In such situ-
ations differences between optimal and suboptimal fil-
tering algorithms are less likely to be dramatic.

Even taking these distinctive problem features into
account, our overall conclusion is that the ensemble
Kalman filter provides surprisingly good performance
in the land surface application. This applies both to the
filter’s ability to characterize nonnormal distributional
properties and its ability to provide accurate condi-
tional means. We believe these results support previous
studies that indicate the ensemble Kalman filter is a
good estimation option for land surface applications. It
would be useful to see the results of computational ex-
periments similar to ours in other application areas.
Such experiments could provide better understanding
of when and why the ensemble Kalman filter can deal
with nonlinearities and nonnormal uncertainties.
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