
Bridging Pre- and Post-silicon Debugging with BiPeD

Andrew DeOrio, Jialin Li and Valeria Bertacco
University of Michigan

{awdeorio, lijl, valeria}@umich.edu

ABSTRACT

The growing complexity of modern chips has caused an increas-
ing share of the verification effort to shift towards post-silicon val-
idation. This phase is challenged by poor observability, limited
off-chip bandwidth, and complex, concurrent communication inter-
faces. Furthermore, pre-silicon verification and post-silicon valida-
tion methodologies are very different and share little information
between them. As as result, the diagnosis and debugging of post-
silicon failures is very much an ad-hoc and time-consuming task
that is largely unable to leverage the vast body of design knowl-
edge available in pre-silicon.

We propose BiPeD, a novel methodology to identify the exact
time and location of post-silicon bugs. During pre-silicon verifi-
cation, BiPeD learns the correct behavior of a design’s communi-
cation patterns. In post-silicon, this knowledge is used to detect
errors by means of a reconfigurable hardware unit. When an error
is detected, bug reproduction is not necessary: a diagnosis software
algorithm analyzes information stored in the hardware unit to pro-
vide a wide range of debugging information. We show that our
system provides accurate bug localization for a range of failures on
the industrial-size OpenSPARC T2 design.

1. INTRODUCTION
As the industry moves deeper into the multi-core era, the number

of components on a single die increases. At the system level, this
creates many more interactions among components, often struc-
tured by communication protocols to facilitate inter-block opera-
tion. While hardware blocks are often verified thoroughly in stan-
dalone setups, the communication interfaces among blocks are of-
ten sources of latent bugs. Current approaches to mitigating bugs
typically leverage two disjoint phases: pre-silicon verification of
software models, and post-silicon validation of hardware proto-
types. Due to the fast growing pace of digital designs, these two
effort directions have evolved in an ad-hoc fashion, giving rise to
vastly different pre- and post-silicon methodologies.

During pre-silicon verification, testing is performed on an ab-
stract model of the chip. In this simulation-driven phase, every
hardware unit and signal in the design is observable, and failures
can be reliably reproduced by deterministic software models. De-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IEEE/ACM International Conference on Computer-Aided Design (ICCAD)

2012, November 5-8, 2012, San Jose, California, USA.
Copyright 2012 ACM 978-1-4503-1573-9/12/11 ...$15.00.

bugging is usually carried out with waveform viewers, where an
engineer must sift through millions of cycles to locate a bug. Fur-
thermore, the coverage of pre-silicon simulation is severely limited
by slow simulation speeds. Moreover, complex chip-level interac-
tions, such as communication protocols, may require system-level
simulation: however, often the complexity of the system is beyond
the capabilities of logic simulators. The result is an increasing re-
liance on post-silicon validation to verify these interactions.

Post-silicon validation begins when the first hardware proto-
types become available, leveraging an emerging set of methodolo-
gies largely disjoint from pre-silicon verification. Tests are exe-
cuted directly on silicon chips, enabling high-speed, high-coverage
validation. It is during post-silicon validation that full-chip interac-
tions are most readily verifiable, since all components are up and
running. In contrast to the pre-silicon phase, observability is low
on real hardware. The group of signals available for observation
is small, and the period of time over which they can be monitored
is limited by on-chip storage. Moreover, real silicon may execute
non-deterministically, making bug reproduction a challenge. Fi-
nally, slow off-chip data transfer rates perturb the execution of the
workload under test, further frustrating the debugging process.

Despite vast industry efforts, the challenges of verifying chips
with ever-increasing complexity lead to escaped bugs. The proto-
cols that define communication among blocks are particularly chal-
lenging, as they may contain bugs that escaped detailed block-level
verification. In our fault model, we address failures that occur
in the behavioral protocols governing the communication among a
system’s components via its interfaces. The root causes of the er-
rors that we strive to detect and diagnose can be functional bugs,
electrical failures and/or manufacturing faults.

1.1 Contributions
The goal of our work is to learn the correct behavior of a system’s

protocols during high-observability, low-speed pre-silicon verifi-
cation, and then detect violations of these protocols during high-
speed, low-observability post-silicon validation. To this end, we
propose BiPeD, named for the two legs of our approach. When an
error manifests, BiPeD provides the recent history of the protocol-
level activity leading up to the bug. BiPeD eases the debugging
process by:

• Locating the bug time and location, and tolerating noisy post-
silicon environments without requiring failure reproduction.

• Providing a rich set of debugging information, including crit-
ical signals involved, modules, transactions, and activity history.

• Incurring zero performance overhead during regular opera-
tion, and transferring data off-chip only for a bug occurrence.

• Bridging pre- and post-silicon validation through the abstrac-
tion of protocols.

Pre-silicon Post-silicon

testtest

tests

Protocol

Database

on-line hardware detection off-line software diagnosis

error!logic

simulator

protocol

extraction

transaction

extraction

occurrence

time

errant

transaction

simulation

values

protocol

test platform

protocol

detector

circular buffer

location

(signals)

transaction

history

Our Contribution

Figure 1: Methodology overview. During fully observable pre-silicon verification, BiPeD learns the protocols that define interfaces between
design blocks. These protocols are then programmed into reconfigurable hardware during post-silicon validation, and checked at high-speed
during high-coverage tests. When a bug is detected, a recent history of observed activity is transferred off-chip for analysis by a companion
software algorithm. The algorithm extracts intuitive transaction diagrams, and presents to the user a rich set of debugging information.

2. RELATED WORK
The verification process of a modern digital design encompasses

pre-silicon verification and post-silicon validation. While the pre-
silicon phase uses abstract models and the post-silicon phase runs
on prototype hardware, both provide an input workload to a sys-
tem and checking of its output. When a check fails, the debugging
process begins, a time-consuming, largely manual process.

Pre-silicon verification focuses on simulation, where any signal
in the design can be observed. Signals are typically analyzed man-
ually using a waveform viewer, and may require sifting through
millions of simulation cycles. Data mining [10] can be used to
create a high-level specification of the design, later used for verifi-
cation. Sharing similar goals, the authors of Inferno [5] propose a
higher level of abstraction used to understand RTL, using transac-
tions, displayed as graphs to present the activity observed in simu-
lation. Like Inferno, we leverage the abstraction of transactions to
identify potentially buggy transactions as those representing abnor-
mal behavior. While Inferno extracts transactions from complete
traces during pre-silicon verification, BiPeD operates with partial
information from post-silicon failures.

Formal tools, such as Murϕ [6], can be leveraged to verify ab-
stract models of protocols, but do not scale to full, chip-level im-
plementations. Other work aims to learn properties for the purpose
of formal verification [9,10]. In contrast, our solution leverages the
pre-silicon environment to learn correct activity, particularly inter-
block interfaces, and then enforces it in post-silicon validation.

Post-silicon validation operates at full speed on early silicon
prototypes, but is plagued by the difficulty of observing internal
signals. During this phase, on-chip logic analyzers and flexible
logging systems enable the observation of a few signals over a few
thousand cycles, after which execution is suspended and the data
slowly transferred off-chip. Thus, the pre-silicon techniques dis-
cussed above are not well-suited to post-silicon validation. There
is a need for techniques that operate at a high abstraction level, such
as [12], to support more effective post-silicon debugging. For ex-
ample, the authors of [14] propose hard-coding high-level checkers
on chip. Our flexible technique monitors targeted internal inter-
faces, requiring off-chip data transfer only when an error occurs.

An on-chip debugging infrastructure was proposed by the com-
pany DAFCA [1], instrumenting a design with observability hard-
ware. In contrast, BiPeD learns protocols during pre-silicon veri-
fication, and checks them during post-silicon validation, providing
trace information only when a protocol is violated. Post-processing
connects the trace back to the high-level design. Complementary
DAFCA-like instrumentation can augment the BiPeDmethodology

by providing additional debug information.
Specialized approaches targeting specific families of components

have also been proposed, including speed paths [11]. IFRA/BLoG
[13] covers a processor core, as long as errors are detected within
approximately 1,000 cycles. Once a bug is detected, the responsi-
ble architectural block is identified. Blocks comprise about 10,000
gates, and the engineer must trace the bug’s root cause among them.
Our goal is to provide high-level, intuitive debugging information
that can be quickly understood and used to locate bugs.

Software verification engineers face similar problems to those
arising in hardware: generating checkers and validating correct be-
havior. For example, the Daikon tool [8] detects invariants and
then checks a set of test executions against the invariants. Another
approach [2] generates a specification for an API (application pro-
gram interface) by means of software analysis. Program correct-
ness is important to security concerns, and software verification
can use abstract models to discover vulnerabilities [3].

3. OVERVIEW
BiPeD bridges the gap between pre-silicon verification and post-

silicon validation: first, during pre-silicon verification, it learns
the semantics of a design’s protocols with protocol extraction soft-
ware. Next, these semantics are checked at-speed by flexible (pro-
grammable) protocol detection hardware during post-silicon vali-
dation. When a check fails, the history of the activity observed on
the failed interface is transferred off-chip for analysis by an off-line
software algorithm. The resulting debugging information includes
a trace of intuitive, high-level descriptions of the behavior leading
up to the failure. Figure 1 shows an overview of this process.

Our approach leverages the high-level transaction representation
of [5], which we generate using a slightly modified version of their
open source distribution [4]. Based on [5], protocols describe the
operation of a block or communication interface, and are repre-
sented by a graph with a vertex for each unique combination of
signal values observed on the interface. There is an edge from
vertex A to vertex B if there is at least one occurrence of signal
combination A immediately followed by B in the simulation trace.
Transaction diagrams represent the high-level semantic behavior of
the design and are obtained by partitioning the simulation trace into
multiple intervals, each corresponding to a transaction. Each dis-
tinct transaction typically repeats many times in a trace.

The protocols for a design’s interfaces are generated during pre-
silicon verification. First, interfaces are identified by designers, and
each is defined by a set of the design’s signals, usually control sig-
nals. Passing testcases are then run on the system, generating traces

SPARC core

TLU LSU

interface

01100

00000

00010

00100

00101

bit 0: protect

bit 1: thread sync

bit 2: TLB bypass

bit 3: ASI reload

bit 4: flush

TLU protocol diagram (subset)

eventLegend
00000

TLB bypass

TLB bypass with flushaddress reload

burst TLB Bypass w/ sync

transition

Figure 2: Protocol subset of the OpenSPARC T2 TLU/LSU in-

terface, which defines its valid behavior. Each vertex represents
an event, and each edge a transition. The bits in a vertex indicate
signal values. Transactions are a subgraphs of the protocol, and are
labeled.

for protocol extraction. The end result is a protocol representing the
expected behavior of the interface, saved to a “protocol database”
for use during post-silicon validation. This process is repeated for
each interface selected, and it is illustrated with an example in Fig-
ure 2. As an alternative to automatic protocol extraction, protocols
may also be specified by hand, for instance, using the designer’s
protocol description.

The example interface in Figure 2 is a subset of the OpenSPARC
trap logic unit (TLU) interface, which regulates the communica-
tion between the TLU and Load/Store unit. Each unique set of val-
ues observed on the interface’s signals constitute an event, that is a
vertex; edges connect subsequent events, as shown in the protocol
diagram at the bottom of the Figure.

3.1 Failure Detection
Our in-hardware solution monitors a number of interfaces si-

multaneously, confirming that the observed events and transitions
conform to the protocol. During post-silicon validation, a number
of protocols are programmed into “detector” hardware blocks, one
block for each monitored interface. At runtime, the detector hard-
ware units monitor the interfaces’ activity to check that it conforms
to the known protocol.

Figure 3 shows a diagram of a detector block. The detector
checks all activity of its corresponding interface, by sampling all
its signals at each clock cycle. These signals must be available by
means of an on-chip debug infrastructure; frequently MUX selec-
tion trees are available that connect to many signals in the design.
The interface signals are first routed to a content addressable mem-
ory (CAM) that matches their sampled values against known proto-
col events. If a matching event is found, a priority encoder converts
it to an index value. Transitions are checked by consulting the tran-
sition CAM with a pair of indexes: the one from the current event
and the one from the previous event – which is stored in a local
register. The encodings of transitions are known by their indexes in
the event CAM when the transition CAM is programmed. If either
CAM fails to find a match, an error detection is flagged.

When a mismatch is detected by the hardware, execution is sus-
pended and the event histories stored in the detection hardware’s
circular buffer are transferred off-chip for software analysis. The
offline software analysis considers the event histories as well as the
protocols as input. Some debugging information is immediately
available: the time at which execution was suspended, and the in-

terface(s) that flagged the error. The time provided corresponds
to bug manifestation time. In addition, we can deduce the mod-
ules and signals involved in the bug by using the protocol database,
which contains the names of the signals included in each interface
and their connected modules.

The algorithm then processes the contents of the circular buffer
for each interface that flagged an error: events are first decoded and
then reconstituted into the interface signal values that they repre-
sent. The result is a partial trace of activity observed on the flagged
interface(s). At this point, BiPeD applies a transaction extraction
algorithm inspired by [5].

A number of observations make extraction on partial traces pos-
sible in our work. First, we noted that interfaces tend to return to
a “stand-by” state between transactions. An example of this is the
00000 boundary in the TLU interface of Figure 2. We found that
even with a partial trace, the stand-by event is typically the first re-
peated event. Thus, by using this event as stand-by we have been
successful in extracting transactions in our experimental evaluation.
We also explored other methods of identifying the best boundary
events to separate transactions in partial traces. We considered stor-
ing the boundary events found in pre-silicon analysis along with
their protocols in the protocol database. However, we found that
different testcases would occasionally highlight different boundary
events, and when using the union of all these events our transac-
tions would be too fragmented. This latter approach may be useful
during pre-silicon verification, when the design is changing fre-
quently while the same testcases are re-executed. However, during
post-silicon validation, many varied testcases lead to the extreme
fragmentation mentioned above.

In developing BiPeD, we tried other methods of identifying the
best boundary events to separate transactions. One possibility was
for the protocol database to store not only events and transitions,
but a set of boundary events as well. Transaction extraction would
then use this pre-determined set. The problem that arose with this
approach was that different testcases would sometimes yield differ-
ent boundary events. When the set of all boundary events was used
to extract transactions, they tended to be small and fragmented, due
to large number of boundary events. While this approach may be
useful during pre-silicon verification, when the design is chang-
ing, but the same testcases may be reused, it is not effective for
post-silicon validation. Post-silicon validation enables the execu-
tion of many tests not run during the pre-silicon stage. Thus, we

m
o

n
it
o

re
d

in
te

rf
a
c
e

...

event

CAM

...
p
rio

rity
 e

n
c

...

transition

CAM

...current event

previous

event

valid event

valid transition

error

out

... event history
history

out

Figure 3: Protocol detector hardware units validate protocols
during post-silicon validation. Each unit leverages two CAMs: one
for events and one for transitions. Both pre-programmed with data
collected during pre-silicon validation. The circular buffer main-
tains a history of events, transferred off-chip upon bug detection.

01100

00100

thread sync

cycle 3,694-3,732

00100

00000

01100

burst TLB bypass w/ thread sync

cycle 4,492-4,531

00000

00100

TLB bypass

cycle 4,539-4,543

00000

00100

TLB bypass

cycle 4,545-4,602

00100

00000

00101

buggy transition!

buggy transaction

cycle 4,609-10,017

00010

10100

Signals: {protect, thread sync, TLB bypass, ASI reload, flush}

TLB bypass TLB bypass with flush

address reload

...

Figure 4: Transaction history example with a bug in the OpenSPARC T2 TLU interface. The buggy transaction is shown at the right,
preceded by the four transactions that led to it. Bit vectors in each state represent signal values. The buggy transaction contains a transition
edge not included in the approved protocol diagram. Dotted ovals indicate behaviors that appear within the buggy transaction.

found that dynamically detecting boundary events was more effec-
tive than saving and restoring them from the protocol database.

The result of a transaction extraction on a partial trace is a se-
quence of high-level, intuitive transaction diagrams representing
the behavior of the interface preceding the failure. The last transac-
tion in the sequence is the erroneous transaction which caused the
protocol detector to suspend execution. BiPeD marks this transac-
tion and indicates the exact event or transition that caused the mis-
match. Thus, BiPeD is able to identify the erroneous transaction,
event and transition.

In order to identify candidate signals for further debugging, BiPeD
uses the errant event or transition. If it was a transition that caused
the mismatch, the exact signals within the interface are identified
by comparing the pair of events that the transition connects. On
the other hand, if an unknown event is flagged, BiPeD compares
this event to the other events in the interface (from the protocol
database), identifying those events which are most similar to the
errant event. Furthermore, these signals are used to identify the
hardware block responsible for the error.

3.2 Hardware Reuse
The hardware protocol detector has the advantage of flexibility:

not only can it be used for identifying and debugging failures dur-
ing post-silicon validation, but can be applied to a variety of ver-
ification, runtime and performance tasks. Other verification tasks
include tracking coverage: the detector hardware can be configured
to monitor an area of the design, measuring not only the occurrence
of a particular event, but a sequence of them. By augmenting the
detection hardware with a small set of counters, these complex in-
teractions could be measured. In the runtime verification sphere,
solutions such as Semantic Guardian [16] observe control signals to
check for invalid instantaneous combinations. This detection logic
might be replaced by a protocol detector, enabling more complex
interactions involving sequences of events over time to be checked.

In the context of a final product, a flexible protocol detector can
be used as the basis for a hardware watchpoint system. For example
Memtracker [15] uses bits of state added to each memory address
along with a programmable state transition table to perfom memory
access monitoring. BiPeD’s programmable protocol detector could
support this functionality with little modification.

3.3 Limitations
While BiPeD is effective in locating many types of hardware

bugs, it has a number of limitations. First, the signals selected dur-
ing pre-silicon verification for post-silicon observation have a crit-
ical impact on bug-finding capabilities. While we focus on control
signals because of their central role in the activity and sequenc-
ing of on-chip protocols, incorrect computation affecting data sig-
nals may be missed. The tests used to learn protocols also affect

BiPeD’s ability to find bugs. High-coverage tests provide the best
training and reduce false positives. However, in the event of a
false positive, the protocol database can be amended to include the
missed event or transition, and the hardware detectors can be up-
dated.

4. CASE STUDY
We illustrate BiPeD’s capabilities on the OpenSPARC T2 mi-

croprocessor. We identified 10 interfaces within the design, creat-
ing a protocol for each. In this case study, we focus on the TLU
interface (Figure 2), which monitors signals that connect the trap
logic unit (TLU) and the load store unit (LSU). The interface con-
tains 5 signals: protect, indicating protected memory; thread
sync occurs with high latency LSU operations, e.g., a D-cache
miss. TLB bypass indicates that the instruction in the bypass
stage bypassed the TLB. ASI reload indicates the ASI (address
space identifier) reload is enabled, and flush monitors whether
the instruction in the bypass stage is being flushed.

We first built the protocol database containing all 10 interfaces
by running all our test cases, each with 100 different random seeds.
More details on the protocols can be found in Section 5, Table 2.
We then ran a buggy version of the design, with hardware proto-
col detectors programmed to monitor each interface. The buggy
version contained an error in the LSU’s protect signal, injected
after 10,000 execution cycles.

The protocol detector monitoring the TLU interface quickly iden-
tified an erroneous transition at cycle 10,016. A history of events
from the circular buffer in the protocol detector then underwent
transaction extraction, and 70 transactions were identified. Fig-
ure 4 shows a subset of these transactions: four correct, and one
buggy transaction. The transactions shown in the Figure begin with
a thread sync, where thread synchronization occurs after the TLB
is bypassed. Next, a burst TLB bypass with sync, was observed, a
sequence of two TLB bypasses: the first bypass triggers synchro-
nization and the second one without synchronization. The last two
correct transactions were TLB bypasses, single bypasses with no
synchronization.

The rightmost transaction in Figure 4 contains the errant transi-
tion, detected by a protocol detector mismatch. This transaction has
some similarity to previously observed correct transactions: first, it
contains a single TLB bypass (shown with dashed circle). Addi-
tional components in this complex transactions are a burst address
reload, a burst TLB bypass with flush, as well as a TLB bypass.
The transition from the single TLB bypass to data access protection
is not included in the approved protocol diagram, thus an error is
flagged. After detecting the bug, BiPeD provides accurate and intu-
itive debugging information: the relevant interface (TLU), modules
(load-store unit and trap logic unit), the exact buggy transaction, the
buggy signal (protect) and the detection cycle (10,016).

test case description length (cycles)

blimp_rand hypervisor test 251,480

fp_addsub floating point add/subt 913,093

fp_muldiv floating point mult/div 238,343

isa2_basic constrained-random 452,009

isa3_asr_pr constrained-random 1,178,151

isa3_window constrained-random 1,282,348

mpgen_smc constrained-random 135,251

ldst_sync thread sync. instrs. 64,570

n2_lsu_asi load/store unit test 62,523

tlu_rand trap logic unit test 591,434

Table 1: Workloads used for evaluation. The testcases are subset
of those that ship with OpenSPARC T2.

interface description signals bits transitions events

CPX cache to processor 5 33 188 18

branch EX branch logic 5 5 222 16

CCX cache Xbar 6 20 215 23

memory memory control unit 12 12 135 21

execute execute unit 5 7 107 16

FPU floating point unit 10 10 622 62

fetch fetch unit 6 6 101 16

perf performance monitor 3 5 23 6

TLU trap logic unit 5 5 161 16

PCX processor to cache 4 4 12 6

Table 2: Monitored interfaces. We instrumented the design to
monitor 10 interfaces during program execution.

5. EXPERIMENTAL RESULTS
We employed BiPeD to locate failures in two hardware designs:

a simple 5-stage pipeline, and the OpenSPARC T2 design. We sim-
ulated the OpenSPARC T2 design in its cmp1 configuration, which
included a SPARC core, cache, memory and crossbar. The 5-stage
in-order pipeline implemented a subset of the Alpha ISA, and com-
prised approximately 5,000 lines of Verilog HDL code. Each de-
sign was simulated in behavioral Verilog, and equipped to monitor
the protocols of 10 simultaneous interfaces. We observed similar
trends in both designs, and thus we report only OpenSPARC’s re-
sults in this section.

First, we ran the design free of bugs, training the protocol detec-
tor on 10 testcases (Table 1), ranging from 60,000 cycles to almost
12 million cycles in length. 100 variations of each testcase were
run, using different random seeds to introduce execution variations
with variable and random communication latencies. The number
of events and transitions observed is shown in Table 2, as well as
the number of signals and bits.

5.1 Protocol Detection
After building the protocol database with bug-free testcases, we

employed the protocol detection hardware to detect a set of 10 bugs
injected into the design, described in Table 3. Each buggy execu-
tion was simulated with different random variations (random seeds)

bug description

branch failure in branch to fetch communication

EX valid instr. execution unit error

cache-proc req erroneous cache-to-processor request

MEM read ack erroneous memory load acknowledgment

FPU exception floating point exception error

fetch thread id LD/ST to fetch communication error

LSU data access incorrect LSU access

table walk req page table walk request

PCX stall processor-to-cache communication stall

CCX/PCX req processor/cache communication error

Table 3: Bugs injected, one at a time, after 10,000 cycles.

OpenSPARC Bug

Interface b
ra
n
ch

E
X
v
al
id

in
st
r.

ca
ch
e-
p
ro
c
re
q

M
E
M

re
ad

ac
k

F
P
U
ex
ce
p
ti
o
n

fe
tc
h
th
re
ad

id

L
S
U
d
at
a
ac
ce
ss

ta
b
le
w
al
k
re
q

P
C
X
st
al
l

C
C
X
/P
C
X
re
q

CPX 1,719 16
branch 242
CCX 16k 39 16 742
memory 223
execute 16 f.n.
FPU f.p. 22k 48k 739 48k 22k
fetch 47
perf.
TLU 16
PCX 767 764

Table 4: Bug detection latency (cycles) from bug injection to de-
tection. Each bug was first detected after 22 cycles, on average,
in the 5-stage design, and after 281 cycles in OpenSPARC. Addi-
tionally, most bugs were detected by one interface earlier than the
others, demonstrating precise bug localization.

compared to protocol extraction: thus, no buggy execution matched
any training execution. Each contained one bug, which was in-
jected after 10,000 cycles. First, the detectors were programmed
with the protocols described in Table 2. Each bug/testcase combi-
nation was then run with protocol detection hardware monitoring
the 10 protocols, and the latency from bug injection to bug detec-
tion was recorded for each protocol.

Table 4 reports the latency (cycles) from bug injection to bug
detection for each bug/testcase combination. We note that BiPeD
reports the exact cycle of a protocol mismatch, while the table mea-
sures the time from bug injection to detection. For each bug in
OpenSPARC, the first interface to detect the error flagged it within
281 cycles, on average. The first interface to identify the bug is
marked in green (light shading). While most OpenSPARC bugs
were detected by one interface many cycles before all others, the
cache-proc req bug was detected by two interfaces simul-
taneously. In this case, two closely related interfaces caught the
bug: the cache-to-processor crossbar (CPX) and the cache crossbar
(CCX). We observed one false positive (red/dark shading, marked
“f.p.”) with the EX valid instr. bug, due to noise introduced
by the new random variations, which had not been observed during
training. One bug evaded detection (table walk req, which
resulted in false negatives (“f.n.”) marked with orange/medium
shading. In this case, the bug signal was not part of any interface
did not cause wider system effects detectable by other interfaces.

5.2 Protocol Extraction
We also evaluated the effectiveness of pre-silicon protocol de-

tection, using the 10 testcases each with 100 random variations,
for a total of 1,000 training tests. With each test execution, new
events and transitions were added to the protocol database. Figure
5 shows the number of events and transitions in each interface, on
average. We observed that, as the volume of training data increased,
the number of events and transitions increased too, quickly with the
first few tests, and then leveling off.

Training data impacts the number of false positives encountered
by the detection phase. We applied leave-one-out-cross-validation
to determine the effect of test data that differs from training data in
both the random variations (random seed) as well as the workload.
Here, 10 different protocol databases were used: each trained on 9
of the 10 available testcases. We found that leaving out a testcase
had the effect of increasing the number of false positives, as shown

0

5

10

15

20

25

0

40

80

120

160

200

C
u

m
u

la
ti

v
e

 e
v

e
n

ts

C
u

m
u

la
ti

v
e

 t
ra

n
s
it

io
n

s

Testcase and total number of test executions

transitions

events

Figure 5: Protocol extraction. The plot reports the number of
events and transitions in a protocol, on average. 10 testcases were
used with 100 random seeds each for a total of 1,000 training tests
per design, reflected on the X-axis. As the number of training tests
accumulates, the size of the protocol approaches a consistent value.
Steps in the graph represent the transition from one testcase to an-
other.

in Figure 6. We found that excluding the blimp_rand testcase
resulted in a 24% false positive rate among all bug/testcase combi-
nations, underscoring its importance as a training test.

5.3 Transaction Extraction
We then explored the effect of circular buffer size on the num-

ber of transactions extracted. Figure 7 reports the total number
of transactions, as well as unique transactions, for different buffer
sizes. We observed that the total transactions scaled with the size
of the buffer (on average), while unique transactions leveled off.
As more unique transactions are discovered, the observance of re-
peated transactions increases, indicating that high-quality transac-
tion are being extracted.

5.4 Area Overhead
We evaluated the area overhead of an implementation of the pro-

tocol detection hardware in Verilog HDL, synthesized with a 65nm
TSMC target library. We found that the storage dominates the area.

Despite the complexity of the OpenSPARC T2 design, its pro-
tocols were limited in size. A detector sized to handle the largest
OpenSPARC T2 interface can handle 62 events, each 33 bits wide,
and 622 transitions. With this configuration, the resulting protocol
detector required 15.3KB of storage and comprised 0.251 mm2 in

0%

10%

20%

30%

Fa
ls

e
 p

o
si

ti
v

e
s

(p
e

rc
e

n
t)

Omitted testcase

Figure 6: Effect of leave-one-out-cross-validation. The percent-
age of false positives with 9 training testcases and 1 testing in the
OpenSPARC T2 design.

0

40

80

120

160

200

240

32 64 128 256 512 1024N
u

m
b

e
r

o
f

tr
a

n
sa

ct
io

n
s

Circular buffer size (entries)

Total transactions

Unique transactions

Figure 7: Transactions extracted from the circular buffer as
the number of buffer entries changes. The plot shows both total, as
well as the number of unique transactions. While the total increases
with buffer size, unique transactions approach a constant.

our 65nm library. When compared to the total area of the Open-
SPARC T2 chip (342 mm2 [7]), the area overhead of 10 detectors
(one for each monitored interfaces), is 0.7%.

6. CONCLUSIONS
We have presented a verification methodology that bridges pre-

silicon verification with post-silicon validation. By leveraging high-
level, compact, intuitive transactions and protocols, BiPeD is able
to learn the behavior of a design’s interfaces during pre-silicon ver-
ification and enforce it during post-silicon validation. Our system
is capable of detecting bugs in the industrial-size OpenSPARC T2
design and able to accelerate post-silicon validation with intuitive
debugging information,

7. REFERENCES
[1] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and

D. Miller. A reconfigurable design-for-debug infrastructure for SoCs. In Proc.

DAC, 2006.

[2] G. Ammons, R. Bodik, and J. Larus. Mining specifications. In Proc. POPL,
2002.

[3] C. Y. Cho, D. Babi, P. Poosankam, K. Z. Chen, E. X. Wu, and D. Song. Mace:
Model-inference-assisted concolic exploration for protocol and vulnerability
discovery. In Proc. USENIX, 2011.

[4] A. DeOrio, A. Bauserman, V. Bertacco, and B. Isaksen. INFERNO: An
automatic semantic information extractor. http://www.eecs.umich.edu/inferno.

[5] A. DeOrio, A. B. Bauserman, V. Bertacco, and B. C. Isaksen. Inferno:
streamlining verification with inferred semantics. IEEE Trans. Computer-Aided

Design of Integrated Circuits and Systems, 28, 2009.

[6] D. Dill, A. Drexler, A. Hu, and C. Yang. Protocol verification as a hardware
design aid. In Proc. ICCD, 1992.

[7] X. Dong and Y. Xie. System-level cost analysis and design exploration for
three-dimensional integrated circuits (3D ICs). In Proc. ASPDAC, 2009.

[8] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The daikon system for dynamic detection of likely
invariants. Science of Computer Programing, 69(1-3), 2007.

[9] S. Hangal, N. Chandra, S. Narayanan, and S. Chakravorty. IODINE: a tool to
automatically infer dynamic invariants for hardware designs. In Proc. DAC,
2005.

[10] W. Li, A. Forin, and S. A. Seshia. Scalable specification mining for verification
and diagnosis. In Proc. DAC, 2010.

[11] R. McLaughlin, S. Venkataraman, and C. Lim. Automated debug of speed path
failures using functional tests. In Proc. VTS, 2009.

[12] N. Nicolici and H. F. Ko. Design-for-debug for post-silicon validation: Can
high-level descriptions help? In Proc. HLDVT, 2009.

[13] S.-B. Park, A. Bracy, H. Wang, and S. Mitra. BLoG: Post-silicon bug
localization in processors using bug localization graphs. In Proc. DAC, 2010.

[14] E. Singerman, Y. Abarbanel, and S. Baartmans. Transaction based pre-to-post
silicon validation. In Proc. DAC, 2011.

[15] G. Venkataramani and B. Roemer. Memtracker: Efficient and programmable
support for memory access monitoring and debugging. In Proc. HPCA, 2007.

[16] I. Wagner and V. Bertacco. Engineering trust with semantic guardians. In Proc.
DATE, 2007.

