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Abstract. Motivated by the success of Deep Neural Networks in com-
puter vision, we propose a deep Regularized Reconstruction Independent
Component Analysis network (R*ICA) for RGB-D image classification.
In each layer of this network, we include a R*ICA as the basic building
block to determine the relationship between the gray-scale and depth im-
ages corresponding to the same object or scene. Implementing commonly
used local contrast normalization and spatial pooling, we gradually en-
hance our network to be resilient to local variance resulting in a robust
image representation for RGB-D image classification. Moreover, com-
pared with conventional handcrafted feature-based RGB-D image rep-
resentation, the proposed deep R?ICA is a feedforward network. Hence,
it is more efficient for image representation. Experimental results on
three publicly available RGB-D datasets demonstrate that the proposed
method consistently outperforms the state-of-the-art conventional, man-
ually designed RGB-D image representation confirming its effectiveness
for RGB-D image classification.

1 Introduction

Image classification is a fundamental problem in computer vision. It has many
potential applications for both robotic vision and social networking applications.
With recent advances and the popularity of sensing hardware in ranging devices,
e.g., RGB-D Kinect cameras, the acquisition of depth information has become
easier and provides effective support for the inference of objects or scenes beyond
traditional RGB information. Therefore, a method to effectively and efficiently
combine RGB information with depth information for robust image representa-
tion has become a core issue in RGB-D based image classification.

Significant research [3, 4, 6] has been undertaken and promising results have
been achieved in this field. However, almost all the previous work [2,4,5,8]
focus on handcrafted feature-based image representation for RGB-D image rep-
resentation, such as 3-dimensional (3D), Local Binary Patterns (3D-LBP) and
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Fig. 1. Illustration of the proposed method for image representation based on feature
extraction of basic building block with one layer deep neural network. We first randomly
sample some gray-scale patches and their corresponding depth patches to learn the
R2ICA filters. After learning the filters, we apply them on the gray-scale image and
depth image respectively. Then we apply the commonly used spatial pooling and local
contrast normalization (LCN) to enhance the robustness of the image representation.
The outputs is then used as the inputs to the next layer. Repeating these operations for
several layers, a deep RZ2ICA network can be built for the RGB-D image representation.
This figure is best viewed in color.

RGB-D kernel descriptor-based image representation [1, 3]. Although these fea-
tures boost the image classification accuracy on RGB-D images compared with
that based only on the RGB image, their design and application require strong
domain-specific knowledge. More importantly, the feature extraction stage of
these methods is extremely time consuming, limiting their application in real-
time robotic image classification [3,4].

Recently, with the development of machine learning techniques, Deep neural
networks (DNNs) have demonstrated success in many computer vision tasks [18,
22,28-30]. Compared to manually designing the features, deep neural networks
automatically extract the features from the raw pixels. Using layer-wise stack-
ing of the basic building blocks, for example, Restricted Boltzmann Machine
(RBM) and Convolutional Neural Nets (CNN), deep neural networks gradually
extract additional semantic meaningful features in the higher layers, including
object parts [18,19]. It is worth noting that deep neural network-based meth-
ods significant outperform the traditional manually designed features in terms
of classification accuracy on the extremely challenging ImageNet classification
task (22K categories) [11]. Another advantage of deep neural networks is that
they implement a feedforward network in the test stage for image representa-
tion. Therefore, they are efficient in terms of computational complexity for image
representation that is an important characteristic required by real-time RGB-D
image classification applications.
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Motivated by the success of multi-layer neural networks in computer vi-
sion [10,11,18], we propose to utilize the deep architecture to simultaneously
exploit the RGB and depth information for RGB-D image representation. Specif-
ically, in this paper, we propose a deep Regularized Reconstruction Independent
Component Analysis network (R?ICA) and include it as a basic building block
to build the multi-layer neural networks. R?2ICA jointly encodes the relationship
between the gray-scale and depth images and facilitates characterizing the ob-
ject or scene structure in the image representation. Because the proposed deep
R2ICA network is a feedforward neural network, it is efficient in terms of compu-
tational complexity in the test phase for image classification. Figure 1 illustrates
the proposed architecture model and an overview of the framework in one layer.

The contribution of the proposed work can be summarized as follows: (1)
To our knowledge, this is the first attempt in the direction of discovering the
relationship between the gray-scale and depth images in building a deep neu-
ral network for RGB-D image classification.’ The resultant deep neural network
boosts both the accuracy and efficiency for RGB-D image classification; (2) we
propose the R?ICA algorithm and implement it as a new building block to
create the deep neural network. R2ICA encodes the relationships between the
gray-scale and depth images for building the deep neural networks; (3) the pro-
posed image representation outperforms manually designed feature-based image
representations in both accuracy and efficiency.

We organize the rest of the paper as follows: work related to deep neural
networks based image classification and RGB-D image classification will be dis-
cussed in Section 2. In Section 3, our R?ICA based deep neural networks struc-
ture will be explained in details, and it would be evaluated in Section 4. We
conclude our work in Section 5.

2 Related Work

2.1 'Work Related to Deep Neural Networks for Image Classification

Many building blocks have been proposed to develop deep neural networks for
image representation. These building blocks can generally be categorized as
global image representation-based and local image patch-based building blocks.
Global image representation-based building blocks include the Restricted Boltz-
mann Machine (RBM) [10], Auto-Encoder (AE), and other building blocks that
are extensions of RBM and AE, such as Deep Belief Machine (DBM), Denois-
ing Auto-Encoder [29], and Contractive Auto-encoder [24]. These global image
representation-based building blocks are trained on the entire image. There-
fore, they typically require more training samples for training the robust neural
networks. This seriously restricts the advantage of automatically learned fea-
tures from the raw data [19, 18]. On the other hand, local patch-based building

! [25] applies the DNNs on RGB and depth image representation separately, and
simply concatenates the resultant representations for the RGB-D image presentation.



4 Authors

blocks such as Convolutional Neural Nets (CNN) [20] and Deconvolutional Net-
works (DN) [32] usually operate on image patch levels to train a stable network.
Compared with global image representation-based building blocks, these local
image patch-based building blocks are more flexible to address cases where the
intra-class variance is more significant. Therefore, they frequently achieve bet-
ter performance on challenging image classification datasets, such as CIFAR-10,
CIFAR-100, and ImageNet. Further to the aforementioned single modality-based
deep neural networks; recently, multi-modal deep neural networks for multiple
modalities based on signal processing tasks have been proposed from both Sri-
vastava et al. [28] and Ngiam et al. [22]. As the aforementioned restriction, both
these architectures are global image-based representations with some drawbacks.
Moreover, these two architectures demand that the hidden states of the multiple
modalities be the same. This is unacceptable for real applications where different
modalities may, to some extent, be diverse.

2.2 Work Related to RGB-D Image Classification

In recent years, the growth of utilizing consumer RGB-D sensors has acceler-
ated in computer vision research [7, 13, 27]. With the popularity of depth-sensing
cameras, e.g. Microsoft Kinect, depth information can be readily accessed. These
depth information facilitates characterize the 3D structure of an object and pro-
vide effective support for the inference of objects beyond the traditional RGB
information. Significant effort has been made to effectively employ the depth in-
formation in the developed models. For example in scene understanding, Gupta
et al. [9] use gPb like machinery to obtain long range grouping in non-overlapping
superpixels to segmentation and recognition. Ren et al. [23] transform pixel-level
similarity into descriptors based on kernel descriptors and then adopt context
modeling to a hierarchical region based on a superpixel Markov Random Field
(MRF). Silberman et al. [27] infer the overall 3D structure and estimate the
supported relations based on jointly parsing images into separate objects. For
the robotic vision community, Bo et al. [4] developed a hierarchical matching
pursuit (HMP) based on sparse coding for new feature representations in an
unsupervised manner. There are numerous papers on instance and image clas-
sification using RGB-D perception, combining color and depth channels from
multiple scenes [3,4,15]. Motivated by the leading works, we develop a deep
R2ICA network by encoding the relationship between the gray-scale and depth
images and utilize it for image representation.

3 Deep RZ2ICA Framework

The basic building blocks of the proposed deep R?ICA network consists of four
modules: i) data whitening, ii) filter learning with R2ICA and feature encoding,
iii) spatial pooling, and iv) local contrast normalization (LCN) [14]. We propose
stacking three such basic R?ICA layers to construct the deep architecture. In
the following subsections, we will explain each of these modules in detail.
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Fig. 2. Visualization of randomly sampled filters in layer 1 on RGB-D object bench-
mark [15]. Left: Filters learned with our proposed R*ICA method. Right: Filters learned
with RICA [17].

Before exploiting the deep R?ICA network-based image representation de-
tails, we need to mathematically define the variables that will be used in the
following sections. We use {zF}7_; € RP to index the unlabeled gray-scale or
depth image patches. The subscript i is used to index the number of patches
and the superscript k is used to index whether the patch is a gray-scale or depth
image patch. Specifically, z} corresponds to a gray-scale image patch; x? corre-
sponds to a depth image patch. The size of each patch is h x h. The gray-scale
and depth patch with the same subscript, i.e., x} and z?, correspond to the
patches collected from the same regions of a gray-scale and depth image pair. In
a deep R?ICA network, we learn the features from the raw pixels, i.e., we stack
all the pixels within each patch as the input to the network, the dimensionality
of the input p = h x h. We gather all the patches and organize them into a
matrix form: X = [z},... 2L, 2% ... 22] € RP*?". Here n is the total number
of gray-scale image patches or depth image patches. For the general gray-scale
image, each z;} is a feature corresponding to an image patch.

3.1 Data Preprocessing

Numerous studies in the machine learning community have shown that whitening
is an important preprocess to de-correlate the data and is commonly used in
building deep neural networks [6,19]. Therefore, we also whiten the input data
before unsurprised learning the image representation. Specifically, each feature
x¥ is normalized by subtracting the mean of all its entries and then consequently
dividing by their standard deviation. This whitening process is important for
ensuring the effective performance of the proposed deep R?ICA network. For
example, we have found that whitening boosts the accuracy by 0.7% on the
2D3D object recognition benchmark.
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3.2 Filter Learning and Feature Encoding

We first simply introduce the basic auto-encoder (AE) [24], the encoder is to
map each input? z to hidden representation with a mapping function

e = fu(@) = on(W 'z +bn), (1)

where ¢}, is a nonlinear activation function, i.e., a logistic sigmoid function, and
the encoder is parametrized by a weight matrix W, and b, is a bias function.
Then, the decoder function f, maps hidden representation back to a reconstruc-
tion r with the function f,(e) = ¢.(We) + b, where ¢, is nonlinear activation
function and a bias vector b,.. Following the single modality concept, given a
set of input data X corresponding to the features of all the patches, Indepen-
dent Components Analysis (ICA) [12] aims at learning filters in an unsupervised
fashion. Its objective can be written as follows:

m&niizw(W;mf), st WIW =1, (2)

i=1j=1 k

where 1 is a nonlinear convex function such that L; penalty: ¢(-) = (log cosh())
in [17], m is the number of filters (components) and W is the weight matrix W €
RP*™_ However, the method has difficulty learning overcomplete filters because
of the orthogonality constraint W TW = I. The hard orthogonal constraint in
ICA can be relaxed with a soft reconstruction cost. Then, we arrive at the
objective function that can be written as follows:

n m 1 n
min SO S0 (W) + = 3k - WW T R), (3)
ko i=1j=1 i=1
where W is the tied encoding and decoding weights. The smooth penalty in
Eq. (3) is called reconstruction cost and the unconstraint problem can resolve
the overcomplete problem in Eq. (2), meanwhile it can be optimized efficiently.
For improved image classification, recent advanced research in [3,4] utilizes
the advantages of the RGB-D images to learn from the 3D features for object
recognition. In this task, we propose a deep Regularized Reconstruction Inde-
pendent Component Analysis network (RZ2ICA) to discover the joint weights,
i.e., filters, from both of the unlabeled gray-scale and depth images. To effec-
tively construct the joint weights, we formulate the learning filter problem as
the following objective function:

min Y al|W e — W[5+ MW T fll3 + W Ta3) @
i=1
v = WW T3+ laf = WW T3,

where z} is a gray-scale image patch, z? is a depth image patch, A and 7 are

the parameters. For learning the joint weights W, 3 we adopt the L-BFGS al-
2 Here, we only discuss one modality data and z is to represent an input.

3 For simplification, we apply the same W to the gray-scale and depth patches. Ex-
perimental results show that the performance is promising.
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gorithm with line search to resolve the unconstraint problem. It is important to
note that the complexity of the proposed method is the same as [18,17]. There-
fore, the proposed R?ICA formulation can be optimized efficiently. Figure 2
shows the visualization of 400 learned filters from the RGB-D object recognition
dataset [15] from 20, 000 randomly selected patches and compared with the Le et
al method [17] based on whitening preprocessing. As can be seen, the proposed
R2?ICA method yields additional sharp filters. This is because we impose the
last term in Eq. (4). Many grayscale image patches (e.g., patches corresponding
to object boundaries) are closely related to their corresponding depth patches.
These boundaries represented by two maps should be similar for the same ob-
ject and are important for object recognition. By forcing the outputs of the
depth image and RGB image to be similar, the learned filters encode the edge
correspondence and therefore the sharpness.

3.3 Spatial Pooling and Normalization

Once we have obtained the filters with the RZICA algorithm in one layer, we can
simply map all the patches of an image to obtain a new image representation,
yf = WTxf. Then we subsequently use spatial maximum pooling [18] and lo-
cal contrast normalization (LCN) [14] for the subsequent image processing. The
spatial maximum pooling improves the robustness of the image representation to
local translation. LCN is a practice inspired by the computational neuroscience
models [21] and has demonstrated its effectiveness for DNN-based image repre-
sentation. After filter learning and encoding, spatial pooling, and LCN, we can
get a new sets of feature maps which corresponding to the gray-scale image and
depth image, respectively. These new feature maps will serve as the input to the
next layer or the image representation at the current layer.

3.4 Implementation Details

Because there are numerous training patches and these could cause memory
issues, it is not feasible to use all the patches to learn W. For simplification, we
randomly sample specific patches to learn the W in our deep neural networks.
Once the W is learned, we apply it to both the gray-scale and depth image for
image representation. We repeat the basic building block (R?ICA, Pooling, and
LCN) for three layers. Then a 1-vs.-all linear SVM is used to train the classifiers
for label prediction.

4 Experiments

In this section, we evaluated the proposed method on two publicly available
RGB-D object recognition datasets (RGB-D object dataset [15] (RGBDO) and
2D & 3D object dataset (2D3D) [7]) and one indoor scene dataset (NYU Depth
V1 indoor scene segmentation dataset [13]). We also compared the proposed
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deep RZICA network with the following methods that are considered state-of-
the-art for image classification. (1) Spatial Pyramid Matching (SPM) [16]. We
adopted the spatial pyramid matching method with the standard experimental
settings of [16] to represent the RGB and depth images. The dictionary size was
set to 200. (2) RICA-based method [17]. We followed the standard experimental
setting of [12] to combine the RGB images with the depth images as input for
the unsupervised learning. (3) Hierarchical Matching Pursuit with sparse cod-
ing (HMP-S) [4]. This approach uses sparse coding to learn hierarchical feature
representation from raw RGB-D images. (4) We also compared our work with
CKM Desc [3], NIPS11 [6], and RICA [17] because of the close relationship be-
tween the proposed method and these approaches. In the proposed deep R2ICA
network, we set the depth of our network at 3 layers on all datasets and report
the performance based on using the combined image representation, i.e., each
filter has been extracted from different layers for image representation. In all of
the experiments, the images are resized to 200 x 200 pixels and each patch is
extracted using an overlapped patch size equal to 1 pixel, where the overlapped
patch size indicates the distance between two neighboring patches. We randomly
sampled 500,000 image patches for the unsupervised filter learning and set the
numbers of filters in W to 200, 400, and 400 for layerl, layer2, and layer3, re-
spectively. Furthermore, we preprocessed the input data before the unsupervised
learning?*. To determine the appropriate parameters, we varied the values of A
and 7 during the unsupervised learning and selected the optimal values based on
five random training/testing splits. For evaluation, we employed linear SVM to
train the classifiers for image classification. Moreover, we evaluated the perfor-
mance of the proposed deep R2ICA with different settings by varying the patch
and pooling sizes in each task.

4.1 RGB-D Object Recognition Benchmark [15]

We first tested our proposed method on the RGB-D object recognition bench-
mark [15] that contains 300 physically distinct objects with different viewpoints.
This dataset consists of 51 different object categories varying from fruits and
coffee mugs to scissors and soda cans under large changes in lighting conditions,
and the total number of RGB-D images is 41,877. Since the proposed method
can handle single and multiple layers feature representation, we also reported
the performance of our method with different layers.

Based on the experiment settings in [15], we evaluated the performance of
the different methods with two types of object recognition tasks, i.e., category
recognition and instance recognition. For the category recognition, we randomly
selected one object instance per category for testing and utilized the remaining
objects for training. We average the classification accuracies over 5 random trials
as the performance measure for the category classification. For the evaluation of

4 To de-correlate the input data, it was individually normalized by subtracting the
mean and dividing by the standard deviation of the high dimensional data before
our unsupervised filter learning.
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Table 1. Performance comparisons (%) with the baseline methods on the RGB-D object recognition

benchmark.
[ RGB-D | Compared Methods [Our Approach|
[ T [SPM [16][RICA [17]J[CKM Desc [3][[NIPS11 [6]JHMP-S [4]] Three Layers |
RGB [73.2 £2.6/84.1 £2.9 N/A 74.7+2.5(824+3.1| 85.65 2.7
Category||[ Depth [66.5 £ 3.6[79.7 & 3.1 N/A 70.3£2.2[81.2£2.3] 83.94 £ 2.8
RGB-D[79.1 £4.1[86.7 £ 2.7] 86.4 £2.3 82.1 £3.3[87.5+2.9] 89.59 £ 3.8
RGB 82.3 88.3 82.9 75.8 92.1 92.43
Instance || Depth 47.9 49.6 N/A 39.8 51.7 55.69
RGB-D 84.7 89.7 90.4 78.9 92.8 93.23

the instance recognition (leave-sequence-out [15]), we tested the images of 45°
angle using the training images captured from 30° and 60° elevation angles. In
this task, the patch size and spatial pooling size were 8 x 8 and 5 x 5, respectively.
The average classification accuracy over all 51 object categories in the test set
was used as the evaluation metric.

Category classification. Table 1 summarizes the performance of the different
methods for category classification. We also included the results from [3,4,6].
From Table 1, we can observe that:

The combination of RGB with depth achieves higher accuracy than that
based on the RGB image only for all methods, confirming the usefulness of
depth image information.

The proposed R?ICA approach significantly outperforms the Hierarchical
Matching Pursuit with sparse coding (HMP-S) [4] and RICA [17] methods,
verifying that the effectiveness of enforcing gray-scale and depth images to
have similar representation.

R2ICA with three layers outperforms RZICA with only one layer (see Fig-
ure 5) demonstrating the effectiveness of the deep architecture for image
representation.

The proposed method with three layers outperforms the baseline methods,
i.e., HMP-S, RICA, and NIPS11, by 2.09%, 2.89%, and 7.49%, respectively.
The improvement is significant confirming the effectiveness of the proposed
deep R?ICA network for RGB-D image representation.

Instance classification. In this test, we used the same evaluation settings as the
category classification. It is also worth noting that the performance gap between
the instance and category classification was not as significant as that in the work
[15](3.64% in our paper vs. 5.3% in [15]). The rationale may be that color in-
formation, which is more important for identifying the same object in instance
classification than the category classification, is not used in the proposed R2ICA
framework. Moreover, Figure 5 also indicates that the performance improve-
ment of 2-layer RZICA over 1-layer R?ICA is marginal. This may be because
the number of filters in the second layer is not sufficiently large, and as shown
in [29], additional filters usually improve the performance. In real applications,
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Table 2. Performance comparisons (%) with the baseline methods on the 2D3D object
recognition benchmark.

l RGB-D H Compared Methods [Our Approachl
| I [SPM [16][RICA [17]|Ev2D3D [7][HMP-S [4]] Three Layers |
RGB 60.7 85.1 66.6 83.7 87.9
Category|| Depth 75.2 87.3 74.6 87.6 89.2
RGB-D| 78.3 91.5 82.8 91.0 92.7

we can determine the number of filters based on the characteristics of the data
we are processing. Furthermore, we also determined that vegetables and fruits
were more frequently misclassified in our experiments because color information
is more important in this environment, however, not used in our setting. By ex-
cluding the instances from these two categories, the performance of the proposed
method can attain up to 97.2% for instance classification.

4.2 2D3D Object Dataset

We evaluated our approach on the 2D3D object dataset [7]. This dataset con-
tained 18 kinds of objects varying from bottles and coffee pots to cups, and all
the objects were highly textured. For each object in the dataset, images corre-
sponding to 36 views are recorded, with the angle between two different views
was 10 10° along the vertical axis. The total number of objects was 154 with
154 x 36 views. Then all these images were categorized into 14 different cat-
egories. It is worth noting this 2D3D dataset was very challenging for object
recognition due to the large variance of views. The image size in this dataset
was smaller than that in the RGB-D Object dataset, therefore we resized the
image size to 250 x 250 pixels. In the experiments, the patch size for extracting
features and size of spatial pooling were fixed to be 8 x 8 and 5 x 5, respectively.
In the experiment, 800,000 patches were randomly sampled to learn the filters.
Following the experimental setting in [7], we chose 18 views for training and use
the remaining views for testing.

We reported the average classification accuracy over the 14 categories of
different methods in Table 2. It can be seen that our proposed method RZ2ICA
yields 92.7% accuracy for category classification, which outperforms the HMP-
S [4] and Ev2D3D [7] by 1.7% and 9.9%, respectively.

We also evaluated the performance of the proposed deep RZICA network by
varying the patch size and overlapped patch size as illustrated in Figure 3 and
Figure 4. As can be seen in Figure 3, the classification accuracy of all layers
increased with the increase of patch size when the patch size was smaller than
8 x 8. When the patch size was equal to 16 x 16, the performance decreased. The
reason may be that the limited number of filters was not sufficient to preserve
the information in the larger patches resulting in information loss for the image
representation and a decline in the performance. Figure 4 confirms that the
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Table 3. Performance comparisons (%) with the baseline methods on the NYU Depth
V1 indoor scene dataset.

| RGB-D “ Compared Methods [Our Approach‘
| I [SPM [16] [RICA [17][ScSPM [31]] Three Layers |
RGB |52.8+3.2|74.5+29| 71.6+3.2| 75.9+£29
Category|| Depth |53.2 £ 2.7|164.7 +2.1| 64.5£2.7 | 65.8 2.7
RGB-D|63.4 £2.9|74.5+£3.5| 73.1£3.6| 76.2+3.2

performance decreases when we increase the size of the overlapped patch size.
This observation agrees with CNN concept that by using all the local patches
sampled at every pixel for an image representation, additional useful information
can be discovered and preserved, thus boosting the classification accuracy. In
addition, based on our observation, the number of filters should be determined
based on the content complexity of the patches. This content complexity is also
related to the patch size. A larger patch size increases the content complexity of
the patch, and therefore, more filters are required to characterize these patches.

Figure 6 presents the classification performance under different values of A
and 7 for recognition, where we set the number of filters and patch size to 400,
and 8 x 8 pixels, respectively. As can be seen, we obtained the highest accuracy
when the A and n were equal to 0.1. Furthermore, even though the A parameter
had a larger performance variation than 7, the maximum difference was within
1.1%. Therefore, in our case, the parameters may not have been an influencing
factor.

4.3 NYU Depth V1 Indoor Scene Benchmark

We evaluated our method on indoor scene segmentation on NYU Depth V1 [26].
This dataset was composed of 108,617 unlabeled frames, including 64 different
indoor environment and 7 scene types such as living room, bedroom, and kitchen,
etc. Each scene consisted of 41 to 781 images, and the image size was 640 by
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480. Following the image classification protocol in [26], we removed the “Cafe”
scene images in our experiment. We randomly split each scene into disjoint train-
ing/testing sets of equal size. It is worth noting that the indoor segmentation
scene dataset contains various objects in one scene, this makes the dataset very
challenging to scene classification.

For the scene classification on this dataset, to reduce the computational cost,
we resized the image to 150 x 150 and respectively set patch size, spatial pooling
size by 8 x 8 and 3 x 3. The number of patches chosen for learning the filters was
500, 000. For the baseline methods, i.e., SPM method, we followed the setting
in [16] for SIFT descriptor extraction in both RGB and depth images. The sizes
of maximum pooling in a 3-level spatial pyramid were partitioned into 1 x 1,
2 x 2, 4 x 4 sub-regions and dictionary size was set to 200. The representation of
the RGB-D image was concatenated RGB image and depth image to one feature
vector. For sparse coding SPM (ScSPM), we utilized the experimental setting
from Yang et al. [31] and set the vocabulary size of the codebook to 1024.

Table 3 indicates the performance of different methods on this dataset. As
can be seen, the proposed method RZ2ICA achieves 76.2% classification accu-
racy, which outperformed the baseline methods, i.e., RICA [17], ScSPM [31] and
HMP-S [4] by 1.7%, 3.1% and 3.4%, respectively. To verify the contribution of lo-
cal contrast normalization (LCN), we trained the network by removing the LCN
process. The performance presented that the classification accuracy decreased
to 75.1%. We had the consistent observation with previous important studying
of local contrast normalization [14]. Figure 5 showed the performance of each
layer on the three datasets. As we can see, the combined 3 layers representation
obtained better performance than using each individual layer. This makes sense
intuitively due to the representation taking the advantage of layerl, layer2 and
layer3, simultaneously. The experimental results in NYU Depth V1 have only
around 76% classification accuracy, since the dataset originally designed for in-
door scene segmentation, which contained various objects in one category rather
than a single object for each category.
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5 Conclusion

In this paper, we proposed a deep R2ICA network and applied it as the build-
ing block to construct deep neural networks for RGB-D image classification.
The primary concept of R?2ICA is to simultaneously determine the relationships
between the gray-scale and depth images corresponding to the same object or
scene. Employing R?ICA, spatial pooling, and local contrast normalization, fea-
tures learned from these deep neural networks were robust to common variances
and facilitated the enhancement of the RGB-D image representation. Extensive
experimental results on publicly available RGB-D image classification bench-
marks confirmed that the proposed method outperformed all existing hand-
crafted feature-based image representation and baseline deep neural network-
based methods. These encouraging results demonstrated the effectiveness of the
proposed deep neural network structure for RGB-D image classification.
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