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Abstract. Estimating the pose of objects from range data is a problem
of considerable practical importance for many vision applications. This
paper presents an approach for accurate and efficient 3D pose estimation
from 2.5D range images. Initialized with an approximate pose estimate,
the proposed approach refines it so that it accurately accounts for an
acquired range image. This is achieved by using a hypothesize-and-test
scheme that combines Particle Swarm Optimization (PSO) and graphics-
based rendering to minimize a cost function of object pose that quantifies
the misalignment between the acquired and a hypothesized, rendered
range image. Extensive experimental results demonstrate the superior
performance of the approach compared to the Iterative Closest Point
(ICP) algorithm that is commonly used for pose refinement.

1 Introduction

Human-made environments abound with textureless objects and several appli-
cations demand knowledge of their position and orientation (i.e., pose) in 3D
space. Examples include household object manipulation in service robotics or
bin picking and intelligent assembly in industrial settings. In such scenarios, the
pose of textureless objects cannot be estimated with state of the art techniques
like [5,14] that capture object appearance via photometric local patch detectors
and descriptors.

When visual texture is not available, depth measurements provided by range
sensors become a natural choice of input for determining object pose. The recent
proliferation of low-cost RGB-D sensors such as the Kinect has renewed interest
in depth-based object recognition and localization. Pose estimation in range
images is often addressed as a final step in model-based object detection and
recognition pipelines [15]. Such approaches typically estimate pose in a geometric
verification step that is aimed to confirm the agreement of a certain model with
the depth data and thus eliminate false positives. Since an approximate pose is
often provided as a byproduct of object recognition, the ICP algorithm whose
initialization is requires such a pose is a highly popular choice for pose refinement
with 3D data.

This work deals with accurately estimating the pose of arbitrary rigid objects
for which a 3D model and an initial pose are available. Its contributions include
(a) an algorithm for model-based pose refinement, that is based on the simulta-
neous evaluation of many pose hypotheses and is shown to perform better than
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Fig. 1. Method overview; left to right: (a) input depth image and detected edges super-
imposed. Thumbnails show in magnification the depth values and edges (bottom) and
color-coded surface normals (top, see text). (b) visualization of the initial poses for an
electrical fuse and fusebox. (c) rendering of the fusebox, generated during hypothesis
formulation, and detected edges superimposed; the illustrated pose is also the refined,
output pose; thumbnails as in (a). (d) visualization of the refined poses (Color figure
online).

ICP, (b) a novel objective function for comparing the alignment of two range
images and (c) an efficient parallel implementation of the algorithm on the GPU.
The proposed approach employs a range image and an initial, possibly crude,
pose estimate which is assumed to originate from an object recognition algo-
rithm. The accuracy of this pose is improved using exclusively depth information
and making no assumptions regarding the presence of texture. Apart from the
provision of an initial pose, the approach is oblivious to the object recognition
algorithm, details of which shall not concern us in this paper.

An overview of the proposed approach is illustrated in Fig. 1. It employs a
hypothesize-and-test scheme that forms pose hypotheses and evaluates them by
generating synthetic depth images and measuring their affinity to the acquired
image. This measurement involves the depth values, the associated surface nor-
mals, and the edges of the two depth images. The evaluated pose that best
accounts for the observed data is kept. Candidate and final resulting poses are
visualized in Fig. 1 by overlaying upon intensity images renderings of the object
models at these poses, along with the depth edges detected at the corresponding
depth images. Intensity images are used solely for illustration.

Accurate pose estimation for small objects with consumer RGB-D sensors
is challenging due to the wide FOV and medium imaging detail of the latter,
resulting in noisy depth measurements of low precision and resolution [13]. The
proposed approach strives to maximize the number of pixels involved in a com-
parison. No correspondences need to be established between the depth image
and the 3D model. Furthermore, no assumptions are made regarding the rich-
ness of surface normal variations or surface texture, hence the approach has
no issues with large planar faces or densely textured objects. Missing data and
moderate occlusions are tolerated and the implementation greatly benefits from
the availability of modern GPU hardware. The approach employs a fully projec-
tive imaging formulation and can readily accommodate new objects of arbitrary
resolution without any parameter tuning.
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2 Previous Work

Pose estimation from 3D data is often addressed in the broader context of object
detection and recognition. Existing approaches use either object-centered or
view-centered representations. In the first case, distinctive features of an object’s
shape are extracted and their properties are encoded in an object-centered coor-
dinate system to form a model that is independent of an observation view-
point. Given a depth image with an unknown object, the latter is recognized by
matching its features with those of a model. The pose of the object can be esti-
mated from the underlying geometries of corresponding features using standard
absolute orientation techniques [11]. Most approaches in the literature fall in
this category and a far from exhaustive list includes spin images [12], 3D shape
contexts [9], point histograms [19] and oriented point pairs [6]. It should be noted
that these approaches perform better on clean, high-resolution and complete 3D
scans rather than on noisy, low-resolution 2.5D range images. In recent years,
local point feature descriptors that combine texture and shape cues on a per
pixel basis have appeared, e.g. [8,23]. Nevertheless, such works focus primarily
on the aspect of description and do not address the issue of feature detection.

View-centered representations capture the appearance of an object using mul-
tiple descriptions, each dependent on the vantage point from which the object
is observed. Such approaches are trained with several images of an object at
different poses and distances from the viewer. Descriptions extracted from these
images are stored in an associative index along with the pose of the object. Recog-
nizing an object in an image then amounts to finding its best match among the
descriptions stored in the index. A rough estimate of object pose is readily pro-
vided by the pose associated with the best matching description. For example,
Hinterstoisser et al. devised an efficient template matching technique capable
of detecting textureless 3D objects [10]. They rely on depth edges and surface
normals to represent an object with a set of binary training templates. The pose
retrieved from the best matching template is used as a starting point for subse-
quent refinement with ICP. Tejani et al. [22] converted an early version of [10]
to a scale-invariant patch descriptor and combined it with a regression forest.
Park et al. [16] use rendering to construct a database of reference range images
from multiple viewpoints, identify in parallel the reference image among them
that best aligns with the input one and finally refine its pose with ICP. Wang
et al. [24] develop a descriptor which combines color and shape features. They
employ surface patches and describe them using color histograms and shape
features that depend upon the geometric relationship of patch points with the
patch centroid and the sensor viewpoint. Descriptors extracted from images of
unknown objects are used in a nearest neighbor search to determine the identity
of objects and their approximate 3D pose. Choi and Christensen [4] augment
oriented point pairs with color information and use them in a voting scheme to
generate clusters of pose hypotheses the most voted of which are refined with
ICP. Sun et al. [21] represent objects as collections of patch parts and propose
a generalized Hough voting scheme for object detection, succeeded by pose esti-
mation with ICP.
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In view-centered approaches, the pose retrieved via the best matching tem-
plate is approximate. This is due to the limited resolution of the pose sampling
process in training and potentially slightly wrong matches during recognition.
Therefore, the retrieved pose should be refined with an optimization step that
typically employs ICP [1,18]. It is well-known that ICP is sensitive to initializa-
tion, converging correctly only when sufficient overlap exists between two point
sets and no gross outliers are present. Otherwise, it can easily get stuck in local
minima. This has motivated the recent trend to regularize the ICP error met-
ric by using sparsity-inducing Lp norms for p ≤ 1. In this work, we propose to
substitute ICP with the optimization scheme described in Sect. 3. This scheme
is compared in Sect. 4 with a modern ICP variant based on Lp norms [2].

3 Proposed Method

The proposed method estimates the pose of an object whose position and orienta-
tion in space are assumed to be approximately known. Its input is a mesh model
of the object, an initial object pose {R0, t0}, the acquired depth image and the
depth sensor’s intrinsic parameters. The result is a refined pose {R, t}. Both
the initial and the refined poses refer to the sensor coordinate frame. Objects are
represented with arbitrary 3D triangle meshes, which can originate from CAD
drawings or digital scans. A mesh M is comprised of an ordered set of 3D vertex
points V and an ordered set G of triplet indices upon V that define the mesh
triangles. The 3D oriented bounding box B of each model is precomputed using
the eigenvectors of V ’s covariance matrix.

The method generates candidate poses {Ri, ti} and evaluates them with the
aid of depth images Si synthesized by rendering M at each {Ri, ti}. An objective
function yields score o(i), which quantifies the similarity between the acquired
depth image and each Si. The proposed objective function effectively compares
two depth images using depth, edge and orientation cues and is amenable to a
parallel implementation. Derivative-free particle swarm optimization is used to
efficiently explore the pose space and optimize the objective function. Finally,
the pose whose rendering is found to be the most similar to the acquired depth
image is selected. Details on the method follow next.

Initialization. The initial pose is used to bootstrap pose estimation and can
be quite crude. The projection of the model at the initial pose determines a
2D, axis-aligned bounding box b. To mitigate possible initial pose inaccuracies,
b is inflated proportionally to the initial camera-object distance. To suppress
sensor noise, the acquired depth image is median filtered (with a 5 × 5 kernel)
and the result is retained as image D. Depth shadows and other shortcomings
of consumer depth sensors manifest as invalid pixels in D. Surface normals for
valid depth pixels are estimated by local plane fitting and stored in N . A binary
image E is computed by Sobel edge detection on D. The distance transform
T of E [7] is also computed for later use. These operations are parallelized on
the GPU at pixel level, while T uses the parallel formulation of [3]. Only D is
uploaded to the GPU, which uses it to compute N and T .
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Pose Hypotheses Rendering. A rendering process simulates depth images
of the target object at a hypothesized pose against a blank background. The
simulated depth sensor shares the same intrinsic and extrinsic parameters with
the real sensor. A rendered image simulates the image that the latter would
acquire if it imaged the target object in isolation, at the hypothesized pose. Pose
rendering is formulated as follows. Transform {R0, t0} brings the model to an
approximate location and orientation, in the sensor’s reference frame. Candidate
poses are parametrized relative to this initial pose, using a relative translation ti
and an “in place” rotation Ri. This rotation is with respect to the centroid c of
points in V . Specifically, the model is first translated by −c to center it on the
coordinate axes origin, then rotated by Ri, and finally translated back in place
by c. Rotation Ri is thus the product of primitive rotations about the 3 axes:
Ri = Rx(θi) · Ry(φi) · Rz(ωi). The transformation model point x undergoes
is, thus, Ri · (x − c) + c + ti. To avoid repeated calculations, the initial and
candidate poses are combined into the following overall transformation:

Ri · R0 · x + Ri · (t0 − c) + c + ti. (1)

The model transformed according to Eq. (1) is rendered in depth image Si.
Depth edges and surface normals of Si are computed and stored in binary image
Ei and data structure Ni, respectively, for subsequent use.

Computation and storage of Si, Ei, and Ni is delegated to the GPU. The
process employs Z-buffering to respect visibility and realistically deal with self-
occlusions. Parallelization is performed at two levels of granularity. At a fine
level, rendering is parallelized upon the triangles of the rendered mesh. At a
coarser level, multiple hypotheses are rendered together, with a composite image
gathering all renderings (see Fig. 2). In this manner, multiple hypotheses are
evaluated in a single batch, resulting in better utilization of GPU resources and
reduced CPU communication. Edge detection is applied once, directly upon the
composite image.

Fig. 2. A composite depth image for 50 pose hypotheses, all rendered in one batch.
Each hypothesis is bounded by a rectangle and cropped when lying outside it, to avoid
interference with its neighbors. Brighter pixels are further away from the sensor.

Pose Hypotheses Evaluation. A candidate pose is evaluated with respect to
the extent to which it explains the acquired depth image. Ideally, rendering the
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object model at its true pose would produce an image identical to the acquired
one. Function o(·) avails a score o(i) by examining the similarity of depth values,
surface normals, as well as edges between D and Si. Two range images are
corresponded in terms of their coordinates and are compared as follows. Depth
values from D and Si are compared pixelwise. For n pixel pairs, depth differences
δk are computed and the cumulative depth cost term is given by Eq. (2), in which
|δk| is set to ∞ if greater than a threshold dT (20mm in our implementation)
to avoid comparing with background surfaces. For the same n pairs of pixels,
the cost due to surface normal differences is as in Eq. (3), where γk equals
the dot product of the two corresponding surface normals. Edge differences are
aggregated in an edge cost using E and Ei. Let m be the number of edgels of
Ei within bounding box b. For each such edgel j, let εj be the distance from its
closest edgel in D which is looked up from T . The corresponding edge cost term
is given by Eq. (4).

di =
n∑

k=1

1
|δk| + 1

(2) ui =
n∑

k=1

1
|γk| + 1

(3) ei =
m∑

j=1

1
εj + 1

(4)

Each of the cost terms in Eqs. (2)–(4) involves two ordered pixel sets, one from
each image D and Si, that contain the pixel locations to be compared. As di,
ui, and ei have different numeric ranges, the combined cost is defined by their
cubed geometric mean, i.e. o(i) = −di · ei · ui. The minus sign is used to ensure
that optimal values correspond to minima, since di, ei and ui are non-negative.
Summing the reciprocals of partial differences |δk|, |γk| and εj rewards poses
that maximize the support (i.e., spatial overlap) between the compared regions
of D and Si: these partial sums are positive, thus the more pixels, the lower
(better) the overall score becomes. The larger a difference, the smaller its induced
decrease in the score. Hence, the objective function improves when more pixels
in the rendered depth map overlap with the surfaces captured in the acquired
image, whereas pose hypotheses based on little support do not yield good scores.
Computation of o(i) is parallelized per pixel on the GPU with minimal CPU
communication. The scores of multiple pose hypotheses, evaluated together, are
grouped and sent to the host CPU in a single message.

As no segmentation procedure is employed, during the evaluation of inaccu-
rate pose hypotheses, the rendered object may be compared against pixels that
correspond to background or occluding surfaces. To counter this effect, only pix-
els located within b are considered. Hypotheses that correspond to renderings
partially outside b obtain a poor similarity score and thus the solution does
not drift towards an irrelevant surface. Moreover, during the evaluation of each
hypothesis, the oriented bounding box Bi that corresponds to hypothesis i is
computed by transforming B according to Eq. (1). By so doing, depth pixels
within b but corresponding to 3D points outside Bi are not considered, as they
are irrelevant to the evaluated hypothesis.
Pose Optimization. The search space for pose estimation is constrained in a 6D
neighborhood of the initial pose estimate {R0, t0}. As the cost of an exhaustive
grid-based search is prohibitive, a numerical optimization approach is adopted
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to optimize objective function o(·) and find the pose that yields the highest sim-
ilarity between the rendered and acquired image. Minimization of o(·) is based
on PSO [17], which has proven to be an effective and efficient computational
method for solving other vision optimization problems [25]. PSO stochastically
evolves a population of candidate solutions dubbed particles that explore the
parameter space in runs called generations. PSO does not require knowledge of
the derivatives of the objective function, depends on very few parameters and
requires a relatively small number of objective function evaluations until con-
vergence. Compared to gradient-based optimization methods, PSO has a wider
basin of convergence, exhibiting better robustness to local minima. Furthermore,
as particles evolve independently at each generation, it is amenable to an efficient
parallel implementation.

The rotational component of candidate poses is parameterized using Euler
angles while translation is parameterized with Euclidean coordinates.
Each dimension of the pose search space is bounded, defining a search hyper-
rectangle centered on the initial pose estimate. Particles are initialized with
the aid of a 6D Sobol sequence [20], which ensures a good spatial distribution.
PSO updates the state of each particle after the completion of each genera-
tion, whereas particles evolve independently within a generation. This observa-
tion suggests that the rendering and evaluation of particles representing pose
hypotheses can be parallelized at every generation. As confirmed experimen-
tally (see Sect. 4), such an optimization results into considerable computational
savings.

4 Experiments

The proposed method was implemented in C++ and CUDA on a PC with
an NVIDIA GTX580 programmable GPU. The Kinect 1 RGB-D sensor was
employed for data acquisition in the experiments, thus D’s resolution was 480×
640 pixels and its field of view 57◦ × 43◦. All experiments employed a PSO with
parallelized hypotheses rendering. This PSO with 50 particles and 50 generations
requires ≈ 0.1 s per frame to estimate the pose of a model with ≈ 7K triangles.
Compared to the 1.2 s required when hypotheses are evaluated sequentially, this
time constitutes a 12-fold speedup.

Experiments employed data from the public dataset1 of [10]. This dataset
consists of 15 RGB-D sequences of textureless objects captured with a Kinect
sensor that scanned a mostly static scene from various viewpoints. Occlusions,
background clutter and sensor noise contribute to the emergence of significant
amounts of outliers in the depth data. A subset of 11 sequences were used in
the experiments reported here, which were selected depending on whether a
triangle mesh model for the corresponding object was included in the dataset.
Thus, the selected sequences are the ‘duck’, ‘cat’, ‘ape’, ‘benchviseblue’, ‘can’,
‘driller’, ‘glue’, ‘holepuncher’, ‘iron’, ‘lamp’ and ‘phone’, comprised of approxi-
mately 1200 RGB-D frames each. The corresponding models have between 11.6 K
1 http://campar.in.tum.de/Main/StefanHinterstoisser.

http://campar.in.tum.de/Main/StefanHinterstoisser
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Fig. 3. Sample results from the experiments, for the ‘duck’, ‘cat’, and ‘ape’ sequences
(left to right). For each result, shown is the RGB image on the left and a zoomed-in
visualization of the estimated pose to its right (Color figure online).

and 467.5 K triangle faces. Objects measure from 5 to 15 cm in each dimension
and are between 0.8 to 1.2 m away from the sensor. Figure 3 shows indicative
pose estimation results with the proposed method.

Ground truth sensor poses obtained via marker-based extrinsic calibration
from the RGB images are included in the dataset. To make the experiments
independent of a particular object recognition method, the initial pose esti-
mates required by our method were obtained by Monte Carlo-type simulations
as random perturbations of the ground truth poses. More specifically, the ground
truth pose for each frame was additively perturbed by a random vector following
a multivariate uniform distribution. The marginal distributions of this vector
were uniform in the interval [−τ mm, τ mm] for the translational components
and [−α◦, α◦] for the rotational ones; this perturbation is henceforth denoted
as U{τ mm, α◦}. Perturbations were applied independently to each pose para-
meter. This was repeated 10 times for each frame, estimating the pose for each
perturbation and averaging the obtained pose estimation errors. Pose error was
quantified by the misalignment between the true and estimated pose, as in [10]:
for a ground truth pose {Rg, tg} and an estimated one {Re, te}, the error is
e = (

∑
i |gi − ei|)/ν, where gi = Rgxi + tg, ei = Rexi + te, and i enumerates

the ν vertices of V .

Impact of PSO Parameters. These experiments investigate the impact of key
PSO parameters on the accuracy and speed performance of the proposed method.
Its computational cost is determined by the number of objective function evalu-
ations, which relates directly to the number of model renderings. PSO involves p
particles that evolve for g generations, amounting to a total of p · g renderings.
This product represents a tradeoff between accuracy and speed of execution and
we refer to it as the “budget” of an optimization. A small budget will lead to pre-
mature termination and poor pose estimate, while a large budget will prolong exe-
cution without noticeable improvements in accuracy. An application of PSO with
p particles and g generations is referred to as configuration p/g.

A set of exponentially decreasing budgets, namely configurations 200/200,
100/100, 50/50 and 25/25, examine the performance of the method with dif-
ferent settings. For each frame and configuration, the true pose was perturbed
10 times with U{20mm, 20◦}, then used to bootstrap the proposed method and
finally the obtained pose estimation errors were averaged. Figure 4(left) summa-
rizes the average execution time, whereas Fig. 4(right) illustrates the correspond-
ing mean errors for the estimated poses. Sequences are enumerated in the order



3D Object Pose Refinement in Range Images 271

referenced in Sect. 4. As rendering time depends on the number of model trian-
gles, pose estimation time was different for each object. From those figures, it is
observed that configuration 50/50, amounting in 2500 renderings, constitutes a
good tradeoff between accuracy and execution time.

Fig. 4. Results from the decreasing budgets experiment from 533880 pose estimations.
Left: execution times for the 4 configurations and all 11 sequences used. The vertical
axis is limited to 5 s. The execution time for configuration #1 for sequence 8 is 15 s
(its model has 467.5 K faces) and is off the chart. Right: accuracy obtained with the
different configurations, shown by the mean error for each sequence.

Given a suitable budget, its allocation between particles and generations is
investigated next. Towards this end, 7 configurations of particles and generations
were considered, all with approximately the same budget of 2500 renderings:
125/20, 20/125, 100/25, 25/100, 63/40, 40/63, and 50/50. The same random
perturbation U{20mm, 20◦} of the true pose was employed for the initial poses.
Figure 5 shows the mean pose errors for the 7 configurations and all models. It is
observed that for a given budget, a large number of particles is more beneficial
than a large number of generations. This is because more particles avail a better
coverage of pose space, reducing the possibility that the global minimum is
missed for a local one. Besides, more particles entail increased parallelism among
rendering calculations. For the configurations tested, it was also observed that
PSO typically converged to a minimum in fewer than 50 generations, yielding
more generations redundant. The most accurate configuration was 100/25 and,
since it is also one of the most efficient, it is adopted when execution time is of
primary concern.

Comparison with ICP. The accuracy of the proposed method was compared
against a state-of-the-art ICP variant, chosen for its increased robustness to
outliers. Specifically, the sparse ICP of [2] with the point-to-plane metric, referred
to as “SICP” in the following, was employed for the comparison. The input to
SICP was oriented 3D points produced by rendering models at the initial poses.
Compared with the alternative of directly matching the range sensor data against
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Fig. 5. Results from the experiment with the fixed budget, summarizing 934290 pose
estimations. Left: execution times for the 7 configurations and all 11 sequences. Right:
mean error for 7 configurations, grouped per each of the 11 employed sequences.

the complete 3D models, this choice enables a more fair comparison with the
proposed method. The reason is that it prevents SICP from matching the input
with self-occluded parts of the model and, at the same time, ensures that the
point clouds being matched are of similar densities. PSO was applied with the
configuration 100/100 as this was found in the previous experiment to yield
accurate results within a moderate amount of time.

For each frame, ground truth poses were perturbed 10 times using
U{20mm, 20◦}, U{30mm, 30◦} and U{40mm, 40◦}. For the larger of these per-
turbations, the corresponding initial poses differ considerably from the true ones.
The pose for each perturbation was estimated with both the proposed method
and SICP and the means of the pose estimate errors were computed. The results
in Fig. 6, illustrate that the proposed method is more accurate than SICP.
It is also more robust as indicated by the standard deviations of the errors
(not included due to lack of space), which are much smaller for the proposed
method.

We further report a wider basin of convergence for the proposed method.
As the inaccuracy of the initial poses increases, SICP yields large errors, but
this has only a marginal effect on the magnitude of the estimation errors for
the proposed method which exhibits a graceful degradation: perturbations rising
up to U{40mm, 40◦} still yield small errors for the proposed method, while SICP
yields considerably larger errors that are comparable to the size of the objects
and, therefore, can be regarded as pose estimation failures. In a view-centered
pipeline (cf. Sect. 2), this facilitates a coarser sampling of training poses for the
recognition step, while preserving pose estimation accuracy.

A direct comparison with [10] is not possible as its authors did not pub-
lish similarly detailed pose errors for these data. This is because they were only
interested in comparing the pose errors against a threshold defined relative to
the diameter of a model in order to determine whether a detected object corre-
sponded to a true positive. It is noted that the performance of SICP constitutes
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Fig. 6. Mean errors in mm for the PSO and SICP methods for perturbations
U{20mm, 20◦} (left), U{30mm, 30◦} (middle), and U{40 mm, 40◦} (right). Each pair
of vertical bars summarizes errors from 800160 pose estimations.

an upper bound on the performance of standard ICP variants, which would per-
form considerably worse due to their sensitivity to outliers, clutter and occlu-
sions. As a result, the performance of SICP is a good indication of what can at
best be achieved with ICP-based approaches.

5 Conclusions

This paper has presented an approach for accurately localizing 3D objects in
range images. Bootstrapped with an initial pose estimate, the proposed approach
refines it using a scheme that combines population-based randomized optimiza-
tion with rendering-based synthesis. Extensive experiments on publicly available
data have demonstrated that it can successfully cope with the limitations of cur-
rent consumer RGB-D sensors, while delivering superior accuracy, robustness
and speed compared to the commonly used ICP algorithm.
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