*Manuscript

Click here to view linked References

Incorporating Linear Discriminant Analysis in
Neural Tree for Multidimensional Splitting

Asha Rani', Sanjeev Kumar!, Christian Micheloni?, Gian Luca Foresti?

! Department of Mathematics, Indian Institute of Technology, Roorkee,
Roorkee-247667, Uttrakhand, India
2 Department of Mathematics and Computer Science, University of Udine, Via
Della Scienze-206, Udine-33100, Italy

Abstract

In this paper, a new hybrid classifier is proposed by combining neural network
and direct fractional-linear discriminant analysis (DF-LDA). The proposed hybrid
classifier, neural tree with linear discriminant analysis called NTLD, adopts a tree
structure containing either a simple perceptron or a linear discriminant at each
node. The weakly performing perceptron nodes are replaced with DF-LDA in an
automatic way. Taking the advantage of this node substitution, the tree building
process converges faster and avoids the over-fitting of complex training sets in train-
ing process resulting a shallower tree together with better classification performance.
The proposed NTLD algorithm is tested on various synthetic and real datasets. The
experimental results show that the proposed NTLD leads to very satisfactory results
in terms of tree depth reduction as well as classification accuracy.

Key words: Decision tree, Linear discriminant analysis, Neural network, Neural
tree, Pattern classification.

1 Introduction

The classification is a machine learning procedure in which individual items
are placed into groups based on the characteristics inherent in the items and a

* Corresponding Author: Sanjeev Kumar

Email: malikfma@iitr.ernet.in

Dept. of Mathematics, Indian Institute of Technology, Roorkee, Roorkee-247667,
Uttrakhand, India,

Phone: (+91)01332 285824

Preprint submitted to Elsevier 4 March 2013

http://ees.elsevier.com/asoc/viewRCResults.aspx?pdf=1&docID=5334&rev=2&fileID=168718&msid={91023A55-F2D0-4CB7-BFFE-8FBEAFBBF06F}

training set of previously labeled items. In general, decision trees (DT) (Quin-
lan, 1986a) and neural networks (NN) (Duda et al., 2001) are two powerful
tools for pattern recognition and attracted a lot of interest in last decades.
These techniques learn to classify instances by mapping points in the feature
space onto classes without explicitly characterizing data in terms of parame-
terized distributions. Decision trees are easy to understand, but sensitive to
noise in feature measurements. In particular, the threshold values used in tests
at internal nodes are critical and consequently the sequential hard splitting
classification process of a DT can lead to performance degradation. Several
neural network models have been successfully applied to various problems in
pattern classification, such as multilayer perceptrons (MLPs) using equalized
error backpropagation (Martens and Weymaere, 2002), radial basis functions
(RBFs) (Krzyzak and Linder, 1998), self-organizing maps (SOMs) (Hsu, 2006)
and a number of their variants. However, they suffer of difficult problems to
solve, such as the structure and the size of the network (number of neurons
and connections involved, number of hidden layers, etc.), computational com-
plexity and convergence analysis.

Neural trees were introduced to combine neural networks and decision trees in
order to take advantages of both and to overcome some limitations. According
to the existing literature, neural trees can be classified into two categories. The
first category uses decision trees to form the structure of the neural network.
The main idea is to construct a decision tree and then convert the tree into
a neural network. In (Seth, 1990), a three-layered neural network has been
proposed by extracting its hidden nodes from a decision tree. Some more de-
tails like complexity analysis and practical refinements about this idea have
been given in (Brent, 1991). An extension to this idea has been proposed in
(Park, 1994), where linear decision trees are used as the building blocks of a
network. In (Cios, 1992), a modification of the ID3 algorithm (Quinlan, 1986a)
called continuous ID3 algorithm has been proposed. A continuous ID3 algo-
rithm converts decision trees into hidden layers. In the learning process, new
hidden layers are added to the network until a learning task becomes linearly
separable at the output layer. Thus the algorithm allows self-generation of a
feedforward neural network architecture. Cauchy training is used to train the
resulting hybrid structure.

The second category uses neural networks as building blocks in decision trees.
In (Utgoff, 1989), a hybrid form has been proposed containing neural networks
at the leaf nodes and univariate decision nodes as the non-leaf nodes in the
tree. In (Sankar and Mammone, 1991), univariate decision nodes have been
replaced by single layer perceptrons, i.e., linear multivariate decision nodes at
the internal nodes. A new tree pruning algorithm has been proposed for this
model based on a Lagrangian cost function (Sankar and Mammone, 1993).
The nonlinear multivariate decision tree with MLPs at the internal nodes
has been proposed in (Guo and Gelfand, 1992). In (Foresti and Micheloni,

2002), a generalized neural tree (GNT) model has been proposed, where the
activation values of each node are normalized so that these can be interpreted
as a probability distribution. The main novelty of the GNT consists in the
definition of a new training rule that performs an overall optimization of the
tree. Each time the tree is increased by a new level, the whole tree is re-
evaluated. An adaptive high-order neural tree (AHNT) has been proposed in
(Foresti and Dolso, 2004) by composing high order perceptrons (HOP) instead
of simple perceptrons in a neural tree model. First-order nodes divide the input
space with hyperplanes, while HOPs divide the input space arbitrarily, but at
the expense of higher computational cost.

In (Song and Lee, 1998), a structural adaptive intelligent tree, called ‘SAINT’
has been proposed where the input feature space is hierarchically partitioned
by using a tree-structured network that preserves a lattice topology at each
subnetwork. Experimental results reveal that ‘SAINT’ is very effective for
the classification of large sets of real words, hand-written characters with
high variations, as well as multi-lingual, multi-font, and multi-size large-set
characters. In (Yildiz and Alpaydin, 2001), it has been observed that the
complexity of the nodes effect the size of tree. A tree with complex nodes
may be quite small, while a tree with simple nodes may grow very large.
They proposed a new class of DTs where decision nodes can be univariate,
linear or nonlinear depending on the outcome of comparative statistical tests.
The drawbacks of this method are the long training time and the need of
appropriately selecting the parameters for the MLPs.

Recently, a pre-pruning strategy for MLP based tree has been proposed in
(Maji, 2008) by defining a uniformity index for modeling the degree of cor-
rectness at each node. Due to the uniformity index, it has been shown that
a significant reduction in the depth of the tree is achieved with a good clas-
sification accuracy. However, no rule has been given to define the values of
the parameters like the networks architecture (number of hidden layers and
number of nodes for each layer) and the uniformity index for different context
as well as each training set. In (Amasyal and Ersoy, 2008), a new algorithm
family, called ‘Cline’ has been proposed by incorporating a number of different
methods for building multivariate decision tree. Several algorithms are used
at each node and the best one is selected at the respective node. In this way,
it searches for the best fitting algorithm at each node/current subspace.

Use of a single layer perceptron is a good choice to avoid the problem of
selecting an optimal architecture for multilayer perceptron and the parameters
for exhaustive search in heuristic methods. However, a single layer perceptron
can get stuck into a local minima or it may keep on stalling in a flat region
since it does not have a strong nonlinear function approximation property as
in the case of MLPs. This fact generates a large depth tree or a non-converging
training process. A solution to this problem has been provided in (Foresti and

Pieroni, 1998) by introducing split nodes. In case of the above situation, the
split node simply divides the local training set into two parts by generating a
hyperplane passing through the barycenter of the local training set. Such kind
of split nodes ensure the convergence of the tree-building process but they are
not able to provide any solution in case of large depth trees.

The main novelty of the proposed work includes an implementation of the
direct fractional-step discriminant analysis (DF-LDA) (J. Lu, 2003) into the
neural tree for obtaining a multi-dimensional split in place of the above de-
scribed two-dimensional split (Foresti and Pieroni, 1998). The proposed NTLD
provides a good solution for convergence of the tree-building process as well
as a reduction in the tree-depth. Moreover, there is no need to define a num-
ber of parameters such as number of hidden layers, number of nodes for each
layer and the uniformity index as in (Maji, 2008), since we are using single
layer perceptrons. A regularized linear discriminant analysis is used to handle
the situation when the number of training vectors is smaller than the feature
dimensionality (i.e., when the with-in-class scatter matrix of the samples is
singular). The proposed hybrid classifier has been tested on various benchmark
data-sets as well as on synthetically generated four-class chessboard data-set.
A comparison study has been provided between the proposed NTLD, NT
(Foresti and Pieroni, 1998), DF-LDA , MLP (Hall et al., 2009) and Naive
Bayes classifier (Hall et al., 2009) for evaluating the performance over other
existing algorithms.

2 Preliminaries

In the proposed work a multi-dimensional split using DF-LDA is introduced
to overcome the disadvantages of existing Neural tree algorithms (Sankar and
Mammone, 1991),(Foresti and Pieroni, 1998). In this section a brief overview
of NT (Sankar and Mammone, 1991) algorithm, splitting nodes (Foresti and
Pieroni, 1998) and DF-LDA are given.

2.1 Neural Tree

A neural tree (NT) is a decision tree where each intermediate/non-terminal
node is a simple perceptron. Being supervised learning model, the NT accom-
plishes the task of classification in two phases: (a) training and (b) classifica-
tion.

Training phase

The NT is constructed by linearly partitioning the training set, consisting of
feature vectors and their corresponding class labels, for generating the tree in
a recursive manner. Such a procedure involves three steps: computing internal
nodes, determining and labeling leaf nodes. An intermediate node groups the
input patterns into different classes. When a child node becomes homogeneous
i.e., all the patterns in a group belong to the same class, the associated child
node to this group is made a leaf node. The related class is used as label
for the leaf node. Thus, NTs are class discriminators which recursively par-
tition the training set such that each generated path ends with a leaf node.
The training algorithm together with the computation of the tree structure
calculates the connection’s weights for each node. Connection’s weights are
adjusted by minimizing an objective function as mean square error or some
other error function. At each node the weights corresponding to the optimal
value of the objective function are used during the classification of test pat-
terns. The NT training phase is summarized in Algorithm 1. The descriptions
about the functions “Train Perceptron” and “Classify NT” mentioned in the
training algorithm are explained below:

Train Perceptron(v,T")

It trains a single layer perceptron at node v on the training set 7”. The per-
ceptron learns until the error is not reducing any more for a given number of
iterations. A trained perceptron generates (o1, ...0.) activation values.

Classify-NT(v,T")

It assigns the pattern to the class corresponding to the highest activation
value. In other words, it divides 77 into 7' = {T1,...,T.}, ¢ < C subsets and
generates next level of child nodes © = {vy,...v.}, ¢ < C corresponding to T.
Returns (9, 7).

Classification Phase

For the classification task, unknown patterns are presented to the root node.
The class is obtained by traversing the tree in a top-down way. At each node,
activation values are computed on the basis of connection’s weights. Starting
from the root, the activation values of the current node determine the next
node to consider until a leaf node is reached. Each node applies the winner-
takes-all rule so that

x € class i & o(wj,x) < o(w;,x) for all j # i (1)

Algorithm 1 : Training phase of NT
Set S, = {vwo} and Sy = {T'}
while (5,) do
v = Pop (S,) and T" = Pop (St)
Train Perceptron(v,T")
(S5, S7)=Classify_NT (v, T")
while S; do
if T = Pop (S;) is homogeneous then
0 = Pop (S;) is set to leaf
else
Push (S, Pop (S3)) and Push (Sp/,T)
end if
end while
end while

where ¢ is the sigmoidal activation function, w; is the vector of the weights
for the connections from the inputs to the i** output, and x is the input
pattern. This rule determines the class associated with a leaf node as well as
the next internal node to be considered on the path to reach a leaf node. The
classification phase is summarized in Algorithm 2. The symbols used in the

Algorithm 2 : Classification Phase of NT
Set v = vy
while (v) # leafnode do
Input x to v
Set v = v; corresponding to arg max i{o,...,0c}
end while
Assign x to ¢; corresponding to v

above Algorithms 1 and 2 are explained in the following table:

Table 1
Symbols used and their meaning.
symbols stands for
Vo root node of the tree
T training set (TS) at the root node
v an internal node which is being trained currently by the algorithm
T’ local training set (LTS)! at node v
Sy stack holding the nodes to be trained
St stack holding the LTSs corresponding to nodes in S,
0 next level of child nodes resulted by the split of node v
T next level of LTSs corresponding to
Sp local stack holding ©
S local stack holding T
c number of classes (output)
{01,...,0.} | probabilities of a pattern belonging to each class

TLTS is a subset of training set obtained by splitting at a node.

2.2 Split node

A single layer perceptron is simple to train but sometimes, when the TS is
non linearly separable, the training process falls into a local minimum or stalls
in a flat region. In such a case, the neural tree using single layer perceptron
to learn and split the training set may not generate a splitting rule and keep
on passing the same local training set to the successive child nodes hence
leading to non convergent tree building process. To handle such a situation
Foresti and Pieroni (Foresti and Pieroni, 1998) employed an univariate split
node when perceptron fails to split the training set. This particular splitting
rule at first computes the barycentres of two classes with higher cardinality
and the component k& which satisfy L; norm is identified. Then it computes
the splitting hyperplane orthogonal to the k axis and passing through the
median point between the two barycentres (see Fig. 1). This kind of split node
guarantees the convergence of tree building process but the two-dimensional
split may generate deeper tree resulting in overfitting and hence degraded
performance. A tree building process using split nodes has been demonstrated
in Fig. 2 for a five-class data-set. The split node each time chooses the two
dominating classes and classifies the patterns of other classes also as belonging
to these two classes. In this way the work done by perceptron is lost and the
tree building process may generate a large number of nodes before reaching
convergence.

A
o splitting
o0 27 Ryperplane
SN
a W ‘
i » »
>

C1l: barycentre ofclass 1

C2: barycentre of class 2

Fig. 1. Splitting hyperplane generated by split node (Foresti and Pieroni, 1998)

Fig. 2. A tree building process using split nodes for a five-class data-set. A large
number of nodes are required in order to make the data linearly separable.

2.8 Linear Discriminant Analysis

A LDA node searches for those vectors in the underlying space that best
discriminate among classes (rather than those that best describe the data).
Then the objective of LDA is to seek the direction ¥ not only maximizing
the between-class scatter of the projected samples, but also minimizing the
with-in-class scatter. These two objectives can be achieved simultaneously by

maximizing the following function:

0TS

J(U) = ST (2)

where the between-class scatter matrix Sg is defined as

c
Sp = ;n,(m, —m)(m; — m)” (3)

in which m is the k-dimensional sample mean for the whole set, while m; is
the sample mean for i*" class. The with-in-class scatter matrix Sy is defined

Sw= Y_S, (4)

where the scatter matrix S; corresponding to i class is defined by

Si= > (x-—my)(x-—m)", i=1,..C (5)

xeD;

However, the traditional LDA suffers two problems 1) the degenerated scatter
matrices caused by the so-called small sample size (SSS) problem, 2) the classi-
fication performance is often degraded by the fact that their separability crite-
ria are not directly related to their classification accuracy in the output space
(Lotlikar and Kothar, 2000). To avoid such problems a regularized version of
LDA i. e. “direct fractional-step linear discriminant analysis” (DF-LDA) is
used. The method DF-LDA uses variants of “direct-linear discriminant anal-
ysis” (D-LDA) (Chen et al., 2000) and fractional step- discriminant analysis
(F-LDA) (Lotlikar and Kothar, 2000). The traditional solution to the SSS
problem requires the incorporation of a principal component analysis (PCA)
step into the LDA framework, which may cause loss of significant discrimi-
natory information. In the D-LDA framework, data are processed directly in
the original high-dimensional input space avoiding the loss of significant dis-
criminatory information due to the PCA pre-processing step. A solution to
the second problem is introducing weight functions in LDA. Object classes
that are closer together in the output space, and thus can potentially result
in misclassification, should be more heavily weighted in the input space. This
idea has been framed in (Lotlikar and Kothar, 2000) with the introduction
of the fractional-step linear discriminant analysis algorithm (F-LDA), where
the dimensionality reduction is implemented in a few small fractional steps
allowing for the relevant distances to be more accurately weighted.

3 Neural Tree with Linear Discriminant Analysis (LDNT)

The proposed NTLD classifier is basically a decision tree whose nodes are
either single layer perceptrons without hidden nodes or split nodes using DF-
LDA. The adopted perceptron takes k inputs and generates C outputs, called
activation values. Winner-takes-all rule is applied and the class with the high-
est associated activation value is taken to be the winner class. Each perceptron
is characterized by a sigmoid activation function o(x) = 1/(1 + e™*) . Thus
the activation value o} of the ¢'* pattern corresponding to the class ¢; is given

by:

OZ 1 + €$p Z wzy (6)

where, w;; are the elements of the weight matrix W of the perceptron. A DF-
LDA node projects the patterns into a new space in order to bring the patterns
of same class nearer and of different classes farther. The FEuclidean distance of
a pattern is computed from the centroid of each class in the projected space.
A pattern is classified as belonging to the class whose centroid is closest to
the projected pattern. The detailed descriptions of the adopted training and
testing strategies are given in the following subsections.

3.1 Training Phase of NTLD Classifier

Let T = {(x5,¢)|7 = 1,...,n A ¢; € [1,C]} be the training set containing
n number of k-dimensional x; = {X1,X2,X3...,Xx} patterns, each of them
belonging to one of the C classes. The training phase of the NTLD is described
in the Algorithm 3.The notations used in Algorithm 3 have already been given
in Section 2. The algorithm starts with a simple perceptron at root node (vg)
and whole training set (7') as input to the root node. The stacks S, and Sz
initially holds only vy and T respectively. The last elements of S, and Sy
are popped into v and 7" and processed i.e. a perceptron is trained at the
node v with input as 7”. The trained perceptron at node v splits the LTS
T’ into further LTSs 7' = {T1,...,T.}, ¢ < C generating next level of child
nodes 0 = {vy,...v;}, ¢ < C which are held in the local stacks S; and S;
respectively. If the local stack |S;| = 1, i.e., the perceptron is unable to split
the LTS and passes it to the child node as it is, such perceptron is replaced
with DF-LDA at this node. A DF-LDA is trained at node v for LTS 7" to split
it into further LTSs 17" = {T1,...,T.}, ¢ < C and corresponding child nodes
0 = {vy, .. vc} ¢ < C. Each child node is popped into ¢ and corresponding
LTS into 7' from the local stacks S; and S and checked if T is homogeneous
i. e. all the patterns of T belongs to the same class. If yes then this node is

10

marked as leaf node and labeled with the class of related patterns if not the
node v is pushed into the stack S, and the corresponding LTS T is pushed
into the stack Sg.. The algorithm runs until the stack S, counts to 0, i.e., all
the nodes becomes leaf nodes. Descriptions about the functions “Train LDA”
and “Classify_LD” mentioned in Algorithm 3 are explained below:

Algorithm 3 : Training phase of NTLD classifier
Set S, = {w} and Sy = {T'}
while (5,) do
v = Pop (S,) and T" = Pop (S1)
Train Perceptron (v, T")
(S5, S4)=Classify_NT (v, T")
if |S;| =1 then
Train LDA(v, T")
(S5, S7)=Classify LD (v, T")
end if
while S; do
if T = Pop (S;) is homogeneous then
0 = Pop (S;) is set to leaf
else
Push (S,, Pop (S;) and Push (Sy+,T)
end if
end while
end while

Train LDA(v,T")

It employs DF-LDA to project the patterns into a new space such that the
ratio J(W¥) is maximized. After finding such a projection matrix, 7" is projected
into the new space and the centroid of the classes are computed.

Classify-LD (v, T")

Each pattern x; € 7" is projected in the new space. The Euclidean distances
(dy,...,d.) of the projected pattern with respect to classes centroid are com-
puted. The pattern x; is assigned to the class corresponding to the minimum
distance. Thus it divides 7" into T = {T1,...,T.}, ¢ < C subsets and gen-
erates next level of child nodes v = {vy,...v.}, ¢ < C corresponding to T.
Returns (9, 7).

11

3.2 Classification Phase of NTLD Classifier

The classification phase of NTLD is inherited from NT. The same top-down
traversal technique is adopted. The pattern moves through the tree starting
from the root node and adopting the path suggested by the classification
given by each node (maximum activation value in case of perceptron/minimum
Euclidean distance in case of DF-LDA) (see Fig. 3). When a leaf node is
reached, the pattern is classified corresponding to the label of this node. The
steps involved in the classification of a pattern x = (2!, 2%, ..., 2%) at the

current node v are given in the Algorithm 4.

—

X={ x,=-0.4, x,=-0.6 }

1 /%, CJ&
[> gﬁc ©05) |
>“ X3 02(0.8) J

N /
(__) Perceptron \\ /xl c, (.

), | C,(04) |
@® oF-Loa \x

Y
W e ! \\

Fig. 3. Classification example for a three class problem, the pattern to be classified
follows the path suggested by current node (perceptron/DF-LDA) to reach a leaf
node.

Algorithm 4 : Classification phase of NTLD classifier
Set v = vy
while (v) # leafnode do
Input x to v
if v=Perceptron node then
Set v = v; corresponding to arg max;—i,_..c 0;
end if
if v=LDA node then
Set v = v; corresponding to argmin;—; ¢ d;
end if
end while
Assign x to ¢; corresponding to v

Using the above described steps, all patterns from a testing set can be classified
into their corresponding classes.

12

4 Results and Discussions

The performance of the proposed NTLD classifier has been evaluated in the
classification of synthetic as well as various real benchmark datasets. The
achieved classification accuracy, the size of the tree and the time taken to
classify test set have been used as the measures for performance evaluation.
The classification accuracy has been measured in terms of the percentage
of correctly classified patterns, and the size of the tree has been measured
in terms of its depth and number of nodes. The selection of learning rate has
been done by validating the training data set on a number of runs. The weights
have been initialized randomly for a perceptron at each node in the tree. A
comparison study has been done of the proposed NTLD classifier with some
well known existing classification techniques in terms of correct classification
with statistical analysis.

U * <%+ 100
T . Tan s
:.a:‘ -.' :o.-. 80
2 ~.

7
” -
TN T, 60
A P
»
. -
K - po 40
M ay 'D'.
. . .
. ‘e ‘
¢ e 20
. « =
vt Teal®
e . S 0

s, 0 20 40 60 80 100 0 20 40 60 80 100
(a) (b) (c)

Fig. 4. (a) 336 random points distributed equally among 4 classes. (b) classification
done by NT (Foresti and Pieroni, 1998) (c) classification done by NTLD.

4.1 Description of datasets used in classification

The synthetic dataset named “four-class chessboard” has been used for the
classification. It consists with a geometric distribution of planar points among
four classes inside a square, where 336 randomly drawn points distributed
equally as shown in the Fig. 4(a). We have taken twelve different real datasets
from UCI machine learning repository (Frank and Asuncion , 2010) for eval-
uating the performance of the proposed classifier. All these datasets contain
real valued attributes and multiple output classes (varying from two to twenty
six) summarized in Table 2. A more detailed information of these real datasets
are available at UCI machine learning repository.

13

Table 2

Description of datasets taken from (Frank and Asuncion , 2010).

Dataset No. of patterns | Attributes per pattern | No. of classes | Type of attributes
Satellite 6435 36 7 numeric
Letter 20000 16 26 numeric
DNA 3186 60 3 nominal
Segment 2310 19 7 numeric
Waveform 5000 40 3 numeric
Breast-W 799 9 2 numeric
Diabetes 768 8 2 numeric
E.coli 314 7 8 numeric
Tonosphere 350 34 2 numeric

Dermatology 336 35 7 numeric/nominal
Heberman 306 3 2 numeric
Iris 150 4 3 numeric

Table 3

Mean Classification accuracy of different algorithms for ten fold cross validation for
datasets taken from (Frank and Asuncion , 2010). The mean classification accuracy
is simple classification accuracy for Satellite and Letter datasets.

Data set NTLD | NT | DF-LDA | Naive Bayes | MLP (1-h) | MLP (2-h) | MLP (3-h)
Satellite* 87.95 | 82.01 | 82.60 79.58 87.4 89.45! 88.75
Letter* 88.501 | 79.03 | 68.82 62.3 80.97 83.68 83.13
DNA 94.31 | 91.16 90.52 95.29! 91.4 91.88 93.82
Segment 94.76 | 90.47 80.51 80.21 96.06 96.75" 96.66
Waveform 82.79 | 79.11 81.4 80 83.561 83.74 83.34
Breast-W | 95.56! | 94.86 | 94.23 95.49 95.27 95.42 95.42
Diabetes 68.92 | 67.20 63.14 76.3 75.39! 75.13 73.82
E.coli 82.4 | 82.42 74.33 85.41 85.711 84.22 83.33
Tonosphere 91.16 | 91.16 62 82.62 91.16 91.73 91.79!
Dermatology | 94.44 | 87.02 | 84.94 97.06" 96.72 95.9 95.62
Heberman 62.58 | 60.61 68.9 76.14! 69 73 70.91

Iris 97.99' | 96.07 92.5 96 97.33 96.66 96

4.2 Classification accuracy

The qualitative results obtained with NTLD for the synthetically generated
four-classes chessboard dataset are shown in Fig. 4(c). A comparison has been
made with the result achieved with neural tree (NT) (Foresti and Pieroni,
1998) in Fig. 4(b), where a binary split along with single layer perceptron have
been used. For a quantitative evaluation, the patterns from the four-classes
chessboard dataset are generated five times randomly, and the tree building
and classification process is performed every time. The average classification
accuracies obtained with NT and NTLD was 92.12 and 95.29, respectively.

14

Table 4
Standard Deviation of the classification results obtained in ten-fold cross validation.

Datasets NTLD | SD NT | MLP (two hidden layers)
DNA 0.57 0.95 0.64
Segment 1.03 1.78 1.01
Waveform 0.81 1.95 0.75
Breast-W 0.73 2.04 0.75
Diabetes 0.96 1.07 0.89
E.coli 1.30 1.28 1.30
Tonosphere 1.09 1.09 1.01
Dermatology | 0.85 1.23 0.83
Heberman 2.10 2.21 1.96
Iris 0.76 1.09 0.89

The average size of the tree obtained with NT algorithm was 51 nodes with
depth 9, whereas it was 29 nodes with depth 6 with the proposed NTLD
algorithm. It is worth to notice that the proposed classifier performs better in
terms of classification accuracy as well as in size of the tree.

In classification of real datasets, the results obtained with NTLD have been
compared with other four different existing classification methods. These meth-
ods include a binary split based NT (Foresti and Pieroni, 1998), DF-LDA
(J. Lu, 2003), multilayer perceptron (MLP) (Hall et al., 2009) and Naive Bayes
(John and Langley, 1995). Here, Weka version-3.6 (Hall et al., 2009) software
has been used for obtaining results with MLP and Naive Bayes classifiers.
Three different network architectures of MLP have been used having one, two
and three hidden layers, respectively. In each hidden layer, the number of nodes
have been decided as the average of input and output’s dimensions. Learning
rate has been chosen 0.30 and the maximum number of epochs has been fixed
at 500 for all the experiments. A ten-fold cross validation has been adopted,
i.e, the data set is divided into ten equal parts and each time nine out of ten
have been used for training while the left out is used for testing. This ten-fold
cross validation has been done for all datasets except satellite and letter as the
training and testing data for these two datasets are available separately at the
UCI repository. The obtained results (mean classification accuracy) on these
datasets with the proposed NTLD, NT, DF-LDA, Naive Bayes and MLP have
been shown in Table 3. The standard deviation of the classification accuracies
obtained in ten runs have been listed in Table 4. Here, results of standard
deviation has been given with NTLD, NT and MLP classifiers only as these
three belong to same category. i.e., perceptron based classifier. A graphical
representation of standard deviation results has been shown in Fig. 5 in terms
of box-plot. In box-plot, horizontal axis represents the datasets (in the same
order as in Table 4). The bottom and top of each box represent the 25 and
75" percentiles (the lower and upper quartiles, respectively), and the band
near the middle of the box is the 507 percentile (the median).

15

4.8 Statistical analysis

A detailed statistical analysis has been performed to analyze whether the
results obtained with NTLD classifier are significantly better than other al-
gorithms. To analyze this, two tailed F-test and two tailed t-test have been
performed. Here these test have been performed for two different pairs of
algorithms. The NTLD and NT have been considered as first pair, while com-
bination of NTLD and MLP have been taken as the another pair.

Two tailed F-test has been performed at 5% level of significance for testing the
equality of variances of the results (in ten-fold cross validation) with these two
pairs of algorithms. The calculated value of F' — statistics have been listed
in the Table 5. It has been observed that all the calculated F' — statistics
values are in the range of two tailed F'— critical values except the two datasets
(Waveform and Breast-W). Hence, null hypothesis Hy of population variances,
i.e., of equal variances may be accepted in all cases apart from these two
datasets. In case of NTLD and MLP pair, all the calculated values of F' —
statistics have been found in the range of critical F-values. Hence, in this case
the hypothesis of equal variance are accepted for all the datasets.

Table 5
Statistical analysis (F-test) for pair of algorithms

Data set Comparison of NTLD and NT | Comparison of NTLD and MLP
H | F — stat DOF H | F — stat DOF
DNA 0 | 0.3600 9,9) 0 | 0.7932 9,9)
Segment | 0 | 0.3348 (9,9) 0 | 1.0400 (9,9)
Waveform 1] 0.1725 (9,9) 0 | 1.1604 (9,9)
Breast-W | 1 | 0.1281 (9,9) 0| 0.9474 (9,9)
Diabetes | 0 | 0.8050 (9,9) 0| 1.1635 (9,9)
E.coli 0 | 1.0315 (9,9) 0 | 1.0000 (9,9)
Ionosphere | 0 | 1.0000 (9,9) 0 | 1.1647 (9,9)
Dermatology | 0 | 0.4776 (9,9) 0 | 1.0488 (9,9)
Heberman | 0 | 0.9029 (9,9) 0 | 1.1480 (9,9)
Iris 0| 0.4862 (9,9) 0| 0.7202 (9,9)

F — critical=(0.2483, 4.02599)

Now a two tailed t-test with equal variances has been performed at 5% level of
significance. These results have been shown in Table 6. It can be observed that
absolute value of t-stat is much greater than the t-critical value in compari-
son of NTLD and NT for six datasets (DNA, Segment, Waveform, Diabetes,
Dermatology, Iris). Thus it is highly significant and null hypothesis, i.e., mean
of two algorithm are identical is rejected. Hence the two types of means dif-
fer significantly. Further, since the mean classification accuracy of NTLD is
higher than NT, we conclude that NTLD is definitely better than N'T and this
difference is statistically significant. Where, the null hypothesis is accepted at
5% level of significance, the mean classification accuracy is more, in general,

16

Table 6
Statistical analysis (t-test) for pair of algorithms

Data set Comparison of NTLD and NT | Comparison of NTLD and MLP
H | |t — stat| | DOF s> H | |t — stat| | DOF s

DNA 1 8.9912 18 0.6137 | 1 9.2245 18 0.3673
Segment 1 6.5966 18 2.1146 | 1 4.3623 18 1.0405
Waveform 1 5.5112 12 2.2293 | 1 2.7214 18 0.6093
Breast-W 0 1.0217 12 2.3473 | 0 0.4230 18 0.5477
Diabetes 1 3.7836 18 1.0333 | 1 | 15.0011 18 0.8569
E.coli 0 0.0173 18 1.6642 | 0 3.0789 18 1.6900
Tonosphere 0 0.0000 18 1.1881 | 1 1.2130 18 1.1041
Dermatology | 1 | 15.6937 18 1.1177 | O 3.8862 18 0.7057
Heberman 0 2.0434 18 4.6471 | 1 | 11.4709 18 4.1258
Iris 1 4.5692 18 0.8829 | 1 3.5937 18 0.6849

DOF: degree of freedom; Sg: pooled variance; t-critical=2.1009

we can conclude that the NTLD is better than NT algorithm.

In case of NTLD and MLP comparison, it can be seen from the table that
NTLD algorithm is better that MLP in classification of DNA and Iris datasets
at 5% level of significance. Whereas, The null hypothesis of equal mean can
be accepted in classification of three datasets (Breast-W, E.coli and Derma-
tology). In other cases, MLP is better than NTLD statistically. However, the
NTLD is having an advantage over MLLP that there is no need to select network
architecture for getting optimal performance.

100} L+ -
— = *

=<1 — — -

= & — =

g al — N

O

&

=%

'\% 85— —_ - 1

= = —

£ s — -

3]

S

1

=

5]

o

o 70k - .

o =

= +

© e _ 4
B0 Ii' —

1 2 3 4 5 5} 7 8 9 10

No. of Datasets in the order as in Table 3 (top to bottorm)

Fig. 5. Box plot for statistical analysis of the classification results obtained in ten—
fold cross validation.

17

< Satellite e—o— P Letter - DNA
= I s S o £
[=% |8 Q
@ I's o) @
=) ° T 3
£ / £ = =
S
o © @© 0|
O so0f f D 2500 @
8 s T o
@ / 9 F
E E g
C 300] / C 1500 1=
S / S G *
5 o 5 o 5
2 / a a
E) E . £,
2 =g 2 s=n ==
0/0 —%— NTLD) NTLD| NTLD
—o @
s 3 3 g O TR S i 5 % E R B S S R !
Depth of tree Depth of tree Depth of tree
Segment Iris
= = Waveform -
=4 £ £
@ = S = T
< ° °
S =
S S G
5 o S 0] T o
- o @
© ® =
Q= D g
H 3 g
< w < <
5 5 i 5 ¢
o 5 o)
o
£ 2« £ -
E] E E
—6—nT —e—nT —e—nT
2 =hd| 2 =ad| 2 E=d
2 “ 6 @ 10 2 1 16 2 a 6 8 10 12 14 16 2 3 4 5 6 7
Depth of tree Depth of tree Depth of tree
s Dermatology < E.coli = Inosphere
g " 2 =
o T % 38
£ 60 =
S 5 5
© © [
D g o (o}
® T " s
o
g a0 D $ 2|
I<1 ° °
e O 1 =]
= 30 c <
° s 5
5 e 2
o o)
€ k] 8 .
S £ £
E S ——wr 5 ——wr
z —— o = ey
I 2 4 6 8 10 12 14 is 2 b 1 s “ 48 5 s 12 16 18 2 22 2. 26 28
Depth of tree Depth of tree Depth of tree
= Diabet £ Breast-W E Heberman
k= 53 T
) @ [}
L = T °
= =
5 S S
& 3 b4
< ® T =
@ 0
@ 8 @
S k=t =
3 S 1 <}
2 < S
5w s B
5 9] @
2 o 9 =1
2 = =
3 = 3 —— S ——
2 e = —— | Z —— o
1 h b g 7 o R — CRE T

s i s g B O
Depth of tree Depth of tree Depth of tree

Fig. 6. Graphs drawn between depth of tree and number of nodes till respective
depth

4.4 Complexity analysis

To discuss the complexity of NTLD and NT classification algorithms, a com-
parison study in terms of tree size has been done (See Table 7). The size, i.e,
number of nodes and depth of tree is averaged for ten runs. It is observed that
NTLD converges at shorter depths than NT with lower number of nodes. The
graphs shown in Fig. 6 are drawn to highlight the fast converging behavior of
NTLD over NT. These graphs are drawn between depth of tree and number
of nodes generated till each depth. It is clear from the graphs that NTLD
grows rapidly i.e., it grows with more number of nodes at each depth due
to multidimensional split. Also it converges faster due to good discrimination
properties of DF-LDA and Perceptron. On the other hand graph of NT is

18

Table 7

Comparison of depth, number of nodes and number of DF-LDA /Split nodes for

NTLD and NT (Foresti and Pieroni, 1998).

Data set NTLD NT
Satellite 9,386,338 17,752,704
Letter 11,1281,1100 | 24,3435,3310
DNA 4.1,14.4,4 11,42/6
Segment |10,169.6,135.3| 16,260,215.3
Waveform [12.6,177.5,50.8(17.1,220.4,59.9
Breast-W | 8.4,22.1,8.9 | 8.9,23.8,9.2
Diabetes [15.1,246.2,66.715.4,252.6,71.8
E.coli 6,23,0 6,23,0
Tonosphere 3,4,0 3,4,0
Dermatology| 6.3,32.3,23.5 [12.3,68.2,56.7
Heberman | 10,102.5,66.4 | 11,106.3,74
Iris 5.6,9.1,3.8 7.5,11.7,4.5

flatter as compared to NTLD i.e, it grows with less number of nodes at each
depth and converges at more depth as the work done by perceptron is lost
when it is replaced by a split node.

The graphs of NTLD for multi-class data-sets like Satellite data-set, Letter
data-set, DNA data-set, Segment data-set, Waveform data-set, Iris data-set
and Dermatology data-set grows rapidly than NT, as a result of exploiting
the multidimensional split done by DF-LDA and perceptron. Whereas graphs
of NTLD for two-class data-sets like Diabetes data-set, Breast-w data-set and
Heberman data-set are almost same like NT as the tree remains binary in
both algorithms. Moreover for a two class problem DF-LDA can choose only
one discriminating feature as the number of discriminating features chosen by
DF-LDA is C'—1, as like split rule (Foresti and Pieroni, 1998) does. The NTLD
and NT grows only with perceptron nodes for E.coli data-set and Ionosphere
data-set i.e., a perceptron is always able to separate the training set so a need
for DF-LDA /split node does not arise. Hence the graphs of NTLD and NT
for these two data-sets are similar.

A comparison of time taken by the trained NTLD and NT classifier to classify
the test patterns is also made. Since the classification time may depend on var-
ious parameters (processor speed, memory size and efficiency of code written
to implement the algorithm), to avoid all these factors the classification time
has been modeled in terms of the number of nodes a pattern has to traverse to
be classified. In this way, the classification time is directly proportional to the
tree depth. More deep the tree is, more time a pattern takes to be classified
(reach leaf node). The path length (number of nodes to reach a leaf node) has
been computed for each pattern and then the average path length of all the
patterns has been used as a parameter for the comparison between NTLD and
NT (see Table 8). The average path length is defined as: Avg path length=
sum of path lengths traversed by each pattern/total number of patterns. From
Table 8 it is apparent that most of the time average path length of NTLD is

19

smaller than N'T. It is more significant in case of complex and larger datasets
such as letter, satellite, DNA, segment and waveform as it may reduce the
classification time by good amount if each pattern traverse smaller number of
nodes.

Table 8
Comparison of average path length (average number of nodes taken by each pattern
to reach a leaf node) for NTLD and NT.

Data set NTLD (Avg. path length) | NT (Avg. path length)
Satellite 4.49 8.77
Letter 4.16 13.10
DNA 3.11 4.65
Segment 3.92 7.73
Waveform 5.81 6.31
Breast-W 2.80 2.82
Diabetes 8.21 8.26
E.coli 2.78 2.78
Tonosphere 1.87 1.87
Dermatology 2.67 4.06
Heberman 5.05 5.15
Iris 2.90 3.06

5 Conclusions

We have presented a hybrid classifier composed by simple perceptrons and
linear discriminant classifiers in a tree structure. The main novelty in the
proposed classifier is the adoption of multi-dimensional split using DF-LDA
when perceptron is not efficient in classifying patterns. We have tested the
proposed classifier on various data-sets and derived the following remarks:

(1) The proposed NTLD classifier gives a good classification accuracy in case
of multi-class problem (almost always the best except MLP in case of few
data-sets). It performs almost similar to NT in case of two-class problems.

(2) NTLD generates shallower tree than NT in case of multi-class problem
resulting in a faster classification.

(3) NTLD does not require the ad-hoc parameters like details about network
architecture (number of hidden layers and nodes in each layer) as in case
of MLP. Only one parameter i.e., learning rate is chosen using validation
set.

The proposed classifier is easy to implement and adopts the good properties

of neural network as well as linear discriminant classifiers. It is more accurate
in case of complex classification problems where number of classes is large.

20

Acknowledgement

This work was partially supported by the Italian Ministry of University and
Scientific Research (MIUR). The second author gratefully acknowledges the
support of II'T Roorkee for carrying out this work.

References

Amasyal, M. F., Ersoy, O., Feb 2008. Cline: A new decision-tree family. IEEE
Transactions on Neural Networks 19 (2), 356-363.

Frank, A. and Asuncion, 2010. UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. School of Information and Computer Sci-
ence, University of California, Irvine, CA.

Brent, R. P.; 1991. Fast training algorithms for multilayer neural nets. IEEE
Transactions on Neural Networks 2, 346-354.

Chen, L. F., Liao, H. Y. M., Ko, M., Lin, J. C., Yu, G. J., 2000. A new
lda-based face recognition system which can solve the small sample size
problem. Pattern Recognition 33, 1713-1726.

Cios, K. J., 1992. A machine learning method for generation of a neural-
network architecture: A continuous id3 algorithm. IEEE Transaction on
Neural Networks 3, 280-291.

Duda, R. O., Hart, P. E., Stork, D. G., 2001. Pattern Classification. New York:
John Wiley & Sons.

Foresti, G. L., Dolso, T., 2004. An adaptive high-order neural tree for pattern
recognition. IEEE Transactions on Systemas, Man, Cybernatics- part B:
Cybernatics 34(2), 988-996.

Foresti, G. L., Micheloni, C., Nov. 2002. Generalized neural trees for pattern
classification. IEEE Transactions on Neural Networks 13, 1540-1547.

Foresti, G. L., Pieroni, G., 1998. Exploiting neural trees in range image un-
derstanding. Pattern Recognition Letters 19, 869-878.

Guo, H., Gelfand, S. B., 1992. Classification trees with neural-network feature
extraction. IEEE Transactions on Neural Networks 3, 923-933.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., H, 1., 2009.
The WEKA Data Mining Software: An Update. Vol. 11 of 1. SIGKDD
Explorations.

Hsu, C. C., 2006. Generalizing self-organizing map for categorical data. IEEE
Transactions on Neural Networks 17 (2), 294-304.

Lu, J., Plataniotis, K. N., Venetsanopoulos, A. N., 2003. Face recognition
using lda-based algorithms. IEEE Transactions on Neural Networks 14(1),
195-200.

John, G. H., Langley, P., 1995. Estimating continuous distributions in bayesian

21

classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence.
Morgan Kaufmann, San Mateo, pp. 338-345.

Krzyzak, A., Linder, T., 1998. Radial basis function networks and complexity
regularization in function learning,. IEEE Transactions on Neural Networks
9, 247-256.

Lotlikar, R., Kothar, R., 2000. Fractional-step dimensionality reduction. IEEE
Transactions on Pattern Analysis and Machine Intelligence 22, 623-627.
Maji, P., 2008. Efficient design of neural network tree using a single spilitting

criterion. Nerocomputing 71, 787-800.

Martens, J. P., Weymaere, N., 2002. An equalized error backpropagation algo-
rithm for the on-line training of multilayer perceptrons. IEEE Transactions
on Neural Networks 13(3), 532-541.

Park, Y., 1994. A comparison of neural-net classifiers and linear tree classifiers:
Their similarities and differences. Pattern Recognition 27, 14931503.

Quinlan, J. R., 1986. Induction of decision trees. In: Mach. Learn. Vol. 1. p.
81-106.

Sankar, A., Mammone, R. J., July 1991. Optimal pruning of neural tree net-
works for improved generalization. In: In Proc. Int. Joint Conf. Neural Net-
works. Seattle, WA, p. 219-224.

Sankar, A., Mammone, R. J., 1993. Growing and pruning neural tree networks.
IEEE Transactions on Computers 42, 291-299.

Seth, I. K., 1990. Entropy nets: From decision trees to neural networks. In:
IEEE. Vol. 78. p. 1605-1613.

Song, H. H., Lee, S., May 1998. A self-organizing neural tree for large set
pattern classification. IEEE Transactions on Neural Networks 9, 369-380.
Utgoft, P. E., 1989. Perceptron trees: A case study in hybrid concept repre-

sentations. Connection Sci. 1, 377-391.

Yildiz, O. T., Alpaydin, E., Nov. 2001. Omnivariate decision trees. IEEE

Transactions on Neural Networks 12, 1539-1546.

22

