
Computer Networks xxx (2013) xxx–xxx
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Maturing of OpenFlow and Software-defined Networking
through deployments
1389-1286/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.bjp.2013.10.011

⇑ Corresponding author. Tel.: +1 650 335 4130.
E-mail address: seethara@cs.stanford.edu (S. Seetharaman).

1 Many people contributed to various aspects of OpenFlow and
the years that our deployments used and relied on. The deploymen
not have been possible without the help and contributions of thes
The section on acknowledgements provides a more complete
details.

Please cite this article in press as: M. Kobayashi et al., Maturing of OpenFlow and Software-defined Networking through deploy
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
Masayoshi Kobayashi a, Srini Seetharaman b,⇑, Guru Parulkar c, Guido Appenzeller d,
Joseph Little c, Johan van Reijendam c, Paul Weissmann b, Nick McKeown c

a NEC Corporation of America, United States
b Deutsche Telekom, United States
c Stanford University, United States
d Big Switch Networks, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Available online xxxx

Keywords:
OpenFlow
SDN
GENI
Deployments
Experience
Software-defined Networking (SDN) has emerged as a new paradigm of networking that
enables network operators, owners, vendors, and even third parties to innovate and create
new capabilities at a faster pace. The SDN paradigm shows potential for all domains of use,
including data centers, cellular providers, service providers, enterprises, and homes. Over a
three-year period, we deployed SDN technology at our campus and at several other cam-
puses nation-wide with the help of partners. These deployments included the first-ever
SDN prototype in a lab for a (small) global deployment. The four-phased deployments
and demonstration of new networking capabilities enabled by SDN played an important
role in maturing SDN and its ecosystem. We share our experiences and lessons learned that
have to do with demonstration of SDN’s potential; its influence on successive versions of
OpenFlow specification; evolution of SDN architecture; performance of SDN and various
components; and growing the ecosystem.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction SDN has been gaining momentum in both the research
Software-defined Networking (SDN) is a new approach to
networking that has the potential to enable ongoing network
innovation and enable the network as a programmable, plug-
gable component of the larger cloud infrastructure. Key as-
pects of SDN include separation of data and control planes;
a uniform vendor-agnostic interface, such as OpenFlow, be-
tween control and data planes; a logically centralized control
plane, realized using a network OS, that constructs and
presents a logical map of the entire network to services or net-
work control applications on top; and slicing and virtualization
of the underlying network. With SDN, a researcher, network
administrator, or third party can introduce a new capability
by writing a software program that simply manipulates the
logical map of a slice of the network.
community and industry. Most network operators and own-
ers are actively exploring SDN. For example, Google has
switched over to OpenFlow and SDN for its inter-datacenter
network [17], and NTT Communications has announced
OpenFlow-based Infrastructure as a Service (IaaS) [33]. Sim-
ilarly, many network vendors have announced OpenFlow-
enabled switches as products and have outlined their strat-
egies for SDN [38]. The research community has had several
workshops on SDN during the past two years, where diverse
SDN research topics have been covered.

In this paper we share our experiences with OpenFlow
and SDN deployments over the past three years in four
chronological phases.1 The deployments represent a spec-
SDN over
ts would
e people.
list and

ments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011
mailto:seethara@cs.stanford.edu
http://dx.doi.org/10.1016/j.bjp.2013.10.011
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet
http://dx.doi.org/10.1016/j.bjp.2013.10.011

2 This paper does not provide a HOWTO for deploying OpenFlow. Please
refer to [39,8] for an in-depth tutorial on using OpenFlow and for a tutorial
on deploying OpenFlow in a production network.

2 M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx
trum from the first-ever laboratory deployment to one that
carries both research and production traffic to deployments
across the globe, spanning many campuses and a few
national networks.

The deployments have demonstrated the key value
proposition of SDN and network slicing or virtualization.
Our experience shows that deployments that can support
both research and production traffic play a critical role in
the maturing of the technology and its ecosystem, espe-
cially if they also support innovative network experiments
or applications. Finally, the deployment experience pro-
vided valuable insights into various performance and sca-
lability tradeoffs and provided input to the OpenFlow
specifications and evolution of the overall SDN architec-
ture. The following are examples of outcomes and/or
insights the rest of the paper will elaborate.

1.1. Performance and trade-offs

For various deployments reported in this paper, a single
server of 2010 vintage was sufficient to host the SDN con-
trol plane, which includes the network OS and a set of net-
work control and management applications. This
confirmed the insight from the earlier Ethane [4] trial at
Stanford that a modern server can provide the necessary
performance for network control and management of the
whole campus.

The flow setup time quickly emerged as an important
performance metric for SDN networks, and the CPU sub-
system within a switch or router responsible for control
traffic is the determining factor until vendors can roll out
products with higher-performance CPU subsystems.

The larger national deployment as well as our produc-
tion deployment in the Stanford CIS building confirmed
that the number of flow table entries supported by most
commercial switches is a limitation in the short term. Fu-
ture OpenFlow switches would have to support a much lar-
ger number of flow table entries in hardware for
performance and scale.

1.2. SDN architecture and OpenFlow specification

Most of early SDN experiments and applications built
on NOX [32] would build their own network map and then
implement their applications functions as functions on the
network map. This pattern suggests that the network OS it-
self should offer a network map as the abstraction to appli-
cations, which represents an important step forward in the
evolution of SDN architecture [44].

Our deployment experience combined with various
experiments and applications provided valuable input to
the OpenFlow specification process in the areas of failover,
topology discovery, emergency flow cache, barrier com-
mand for synchronization, selective flow table entry expi-
ration, port enumeration, bandwidth limits, and isolated
queues for slices, query of individual port statistics, flow
cookies, flow duration resolution, and overall clarification
of many aspects of OpenFlow specification.

Our deployments also helped build a preliminary ver-
sion of SDN monitoring and troubleshooting infrastructure,
which we used to debug many problems over the years.
Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
For this debugging, we used two key architectural features
of SDN: (1) OpenFlow switch behavior is essentially
decided by its flow table and (2) SDN provides a central
vantage point with global visibility. This among other
insights shows a way to build an SDN-based automated
troubleshooting framework, which would represent a huge
step forward for networking [49,28,24,20].
1.3. Paper organization

It is important to note that the paper is about showing
how the deployments helped SDN and OpenFlow mature,
and it is not about the SDN architecture or how it is supe-
rior to other proposed future Internet architectures. The
early deployments reported in this paper as well as other
SDN developments showcase much of SDN’s potential.
However, SDN will require sustained research and more
diverse deployments to achieve its full potential. This
paper simply presents snapshots of the first few years of
deployments and by no means represents the final word.

The paper is organized as follows2: First, in Section 2, we
provide the context that led to OpenFlow and SDN and our
plans to take on a trial deployment. We, then, present four
phases of deployments: proof of concept (Section 3); slicing
for research and production (Section 4); end to end, that is,
campus to backbone to campus (Section 5); and production
use (Section 6). For each phase, we highlight goals, the state
of OpenFlow and SDN components used, infrastructure built,
key experiments and demonstrations and lessons learned.
We also present how deployments and associated applica-
tions influenced the OpenFlow specification, SDN architec-
ture evolution, and rapidly growing SDN ecosystem. We
then present how the deployments influenced OpenFlow
specifications (Section 7) and evolution of the SDN architec-
ture and components (Section 8) and led to a measurement
and debugging system (Section 9). We share our concluding
remarks in Section 10.
2. Origins and background

Internet architecture has been a topic of research and
exploration since its beginning. There have been govern-
ment programs and research projects that explored how
to make it better or even reinvent it, especially focusing
on network programmability. For example, the Defense
Advanced Research Projects Agency (DARPA) in the U.S.
launched a research program on active networking during
the mid-1990s to enable users and network operators to
‘‘program’’ the network elements in the data plane. Subse-
quently, the EU also launched the Future Active IP Net-
works (FAIN) program [47,14] with similar goals. Ten
years later, researchers proposed the Forwarding and Con-
trol Element Separation (ForCES) framework [9] to allow
flow-level network programmability using a flexible mod-
eling language for the flow tables and the flow logic. While
network programmability seems very appealing, none of
enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx 3
the ideas has received any kind of adoption in real
networks. The U.S. National Science Foundation launched
Future Internet Architecture (FIA) to explore next-genera-
tion architectures and their experimental evaluation on a
nation-wide infrastructure called Global Environment for
Network Innovation (GENI) in mid-2000s [19,11]. EU has
also launched similar programs such as Future Internet Re-
search and Experimentation (FIRE) [12].

OpenFlow and the larger SDN architecture took shape in
2007 and owe their inheritance to ForCES, SANE [5], Ethane
[4], and 4D [18], among others. These earlier projects had
also argued for separation of data and control planes and
logical centralization of the control and management
plane. Ethane demonstrated in 2006 how the approach
can be successfully applied to access control for a campus
enterprise network requiring sophisticated policies. The
SDN architecture generalizes Ethane beyond access control
for all control and management functions and aims to pro-
vide well-defined abstractions to enable creation of new
control and management applications3 and also help rea-
son about the network behavior in a rigorous way. The con-
trol plane is realized using what we call a network OS, which
constructs and presents a logical map of the entire network
to applications on top.

Early deployment plans for SDN were influenced by the
Ethane trial at Stanford University and NSF’s GENI. The
Ethane trial showed among other findings that experimen-
tation on a campus production network has many advanta-
ges. Researchers can more easily use their own campus
network and can include their friends as real users, leading
to credible results and impacts. Early GENI design and
planning argued for a sliceable and programmable net-
works and servers to enable multiple concurrent experi-
ments on the same physical infrastructure, based on
successful Planetlab experience [41]. Therefore, we set
the following goals for our SDN deployments:

� Demonstrate SDN architecture generality and its ability
to enable innovation.
� Enable at-scale experimentation on campus production

networks.
� Enable multiple concurrent experiments using slicing

and virtualization on the same physical SDN
infrastructure.

NSF’s GENI [15] and SDN have enjoyed a synergistic
relationship. The GENI initiative has been funding and en-
abling SDN deployments at Stanford and around the coun-
try. On the other hand, SDN deployments now form a
major part of GENI’s networking substrate and enable net-
work innovations.

SDN deployment for research as well as production use
meant that we required vendor-supported commercial
OpenFlow switches and robust SDN controllers to serve
as the ‘‘network operating system.’’ This early reliance on
and collaboration with vendors proved invaluable. The
3 Any reference to ‘‘application’’ in the rest of the paper corresponds to
network control and management applications implemented on an SDN
controller. They represent the network service and functions, not computer
applications.

Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
synergy with GENI led us to propose Enterprise-GENI as
an SDN deployment with slicing and programmability on
our campus for research and production use. We further
proposed to create an Enterprise-GENI kit to help other
campuses replicate SDN deployments in subsequent years,
and this helped us with SDN growth, especially in the
research and education community.4
2.1. SDN reference design

Fig. 1 shows an early SDN reference design wherein the
data plane and the control plane are decoupled. The data
plane (comprised of the simplified switches) is modeled
or abstracted as (1) a set of flow table entries that decide
how incoming packets matching one or more flow table
entries are forwarded and (2) an embedded control proces-
sor that interfaces to the control plane and manages the
flow table on the switch. The control plane uses the Open-
Flow protocol to program the data plane and learn about
the date plane state. The control plane is implemented
using an OpenFlow controller or a network OS and a set
of applications on top. In our design, the controller takes
as input the network policies that dictate which subset of
the resources is controlled by which control application.
This subsection describes the basics of SDN as background
for the rest of the paper.
2.1.1. Flow processing logic
When a packet arrives at a switch, the switch inspects

whether there is a flow entry (also called a rule in the rest
of the paper) in its flow table that matches the header
fields of the packet. If there is a match, the flow table entry
specifies how to forward the packet. If there is no match,
the switch generates a packet_in message that is sent using
the OpenFlow protocol to the controller. The controller
passes the packet_in event to the appropriate control appli-
cation(s) based on the policies programmed—which appli-
cations see which events. The applications process the
events using the network state and their application logic
and may send back a message with actions to undertake;
the action can involve a packet_out (sending out the packet
that caused the packet_in) or a flow_mod (adding or modi-
fying a flow entry), or both.
2.1.2. Control plane operation
The control plane can be reactive by handling new flows

only after they arrive or proactive by inserting flow entries
even before the flow arrives, or it can use a combination of
the approaches based on specific flows. OpenFlow protocol
allows a controller to query the switch through a stats_
request message and obtain greater visibility into the traffic
characteristics. The reactive mode, stats_request, and topol-
ogy-discovery algorithms can together provide the control
plane with unprecedented visibility and control over the
network dynamics.
4 Chip Elliott, Director of GPO, encouraged us to think about kits for other
campuses.

enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

Fig. 1. Early SDN reference design.

4 M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx
2.1.3. Topology discovery
The control plane can behave in a centralized manner

and manage a large collection of interconnected switches
that make up an OpenFlow island. In such a deployment,
the controller can use the packet_out message to instruct
the data plane to send out LLDP packets from switch ports
to network links. (Note that an incoming LLDP packet at a
switch port will be forwarded to the controller as a packe-
t_in message.) Based on these LLDP packet_ins, the control
plane can infer the connectivity within the island and con-
struct the network topology. This is the popular approach
where no additional support is needed from the switches
to infer the topology of the network.

2.2. Performance and scalability

Though the key attributes of SDN architecture offer
many important advantages, they obviously have some
tradeoffs. For example, separation of the data plane and
the control plane suggests performance penalty in terms
of additional delay for control operations, especially for
flow setup, topology discovery, and failure recovery, and
(logical) centralization of the control plane suggests scala-
bility and concerns with a single point of failure. One of our
goals with deployments has been to study these perfor-
mance and scalability implications, and we share our expe-
riences and lessons learned in this regard.
5 At this time, we did not have a more general solution for slicing and
virtualization of SDN networks.
3. Phase 1: Proof of concept

We had simple yet ambitious goals for our proof-
of-concept phase, which lasted most of 2008. We wanted
to create a small SDN deployment using the first proto-
types of OpenFlow-enabled switches and controllers and
build sample experiments and applications to show the
potential of SDN. Our secondary goals included providing
useful input to the OpenFlow specification process and to
commercial vendors offering OpenFlow-enabled switches,
and getting more researchers, network operators, and
vendors to explore and deploy SDN.

One of the key building blocks for this phase of deploy-
ment was the first OpenFlow reference implementation,
Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
publicly released under the OpenFlow license in Spring
2008. This release enabled early vendors such as HP, NEC,
Cisco, and Juniper to build the first set of OpenFlow-
enabled hardware switches based on their commercial
products with OpenFlow features for only research and
experiments. The other key component was NOX [32]—the
only controller available at the time. NOX version 0.4 pro-
vided a basic platform for parsing the OpenFlow messages
and generating events to be handled by different applica-
tion modules. This version also had the following control
applications pre-bundled in the distribution: (1) shortest-
path L2 routing, (2) L2 MAC-learning, (3) LLDP-based
topology discovery, and (4) switch statistics collection.
This served as an ideal platform for experimenters.

In this section we present the infrastructure built,
experiments enabled, and key lessons learned in this
proof-of-concept phase of deployment.
3.1. Infrastructure built

We started with a small SDN/OpenFlow network test-
bed in our laboratory at Stanford University, as shown in
Fig. 2. The network consisted of prototype OpenFlow
switches from HP and Cisco, along with two Wi-Fi access
points that each ran an OpenFlow reference software
switch developed in our research group. HP and later
NEC implemented OpenFlow within the context of a VLAN,
i.e., OpenFlow traffic was assigned to pre-specified VLANs
and managed by the OpenFlow controller, while all legacy
traffic was assigned to other VLANs. We refer to this
approach of having OpenFlow VLANs and legacy VLANs
co-exist on a switch as a hybrid model.5 This proved to be
an important feature in the long run for deploying OpenFlow
alongside legacy networks on the same physical infrastruc-
ture. Each OpenFlow switch was associated with NOX. The
controller had additional modules included based on the
exact experiment undertaken in the control plane.

Phase 1 infrastructure grew quickly, as shown in Fig. 3.
The Stanford team reprogrammed a group of three
enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

Fig. 2. Phase 1 infrastructure (used for ACM SIGCOMM 2008 demo).

M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx 5
NetFPGA [30] boxes deployed in Internet2 [22] PoPs to be
OpenFlow switches and also helped deploy Juniper’s Open-
Flow-enabled MX switch to create a small SDN island with-
in the Internet2 network. Japan’s JGN2plus [23] also
deployed OpenFlow-enabled NEC switches and a Net-
FPGA-based OpenFlow switch in its own network to create
another SDN island in Japan. We interconnected these
OpenFlow islands by point-to-point tunnels, as shown in
Fig. 3, to create an OpenFlow network with a small global
footprint spanning Stanford, Internet2, and JGN2plus rela-
tively quickly for research and experimentation.
Fig. 3. Extended Phase

Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
3.2. Key milestone experiments

With any new technology, it is important to demon-
strate innovative applications. In the case of SDN, this
meant demonstrating something that is difficult to realize
without SDN and would show its overall power. We chose
to implement seamless mobility of Virtual Machines (VM)
across L2 and L3 network boundaries using SDN’s two key
features: layer independence of the OpenFlow, wherein a
flow can be defined using a combination of L2–L4 headers;
and OpenFlow controller’s visibility of the global network
map. This means when a VM moves, the controller can re-
1 infrastructure.

enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

6 M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx
route all its flows to its new location irrespective of its new
L2 and L3 locations. We demonstrated the VM mobility
capability for a multiplayer game application with mobile
VMs to support mobile players without ever interrupting
the game. The application was highly visual, and it show-
cased VM mobility supported by SDN. We were able to
provide the least latency between the gaming clients and
the backend server either by routing the gaming traffic
through routes with the least hop count or by moving
the VM hosting the game server closer to the client. This
functionality was built using Python scripting within the
NOX controller. We built two flavors of the demonstration:
one allowing mobility of VMs within Stanford (Fig. 2) and
another allowing mobility across the wide-area network
(WAN) between Stanford and Japan (Fig. 3) [7]. More
importantly, the SDN part of development was trivial to
the controller—a small and simple piece of code was
needed to reroute flows when a VM moved, demonstrating
the power of SDN.

The experiment also allowed using a graphical user
interface (GUI) to manage all the traffic in a network, even
to the extent that it enabled a network operator to drag
and drop flows in arbitrary ways; e.g., the operator could
create a flow for fun or demonstration that originates from
a client at Stanford, goes to Internet2 New York, goes to
Japan, and then ends at a Stanford server; then the opera-
tor could arbitrarily change the flow’s route by doing drag
and drop.

The first set of demonstrations convinced us and the
community of the power of SDN, especially to enable inno-
vation. This was the beginning of many organizations
wanting to build SDNs for their own research.

3.3. Lessons learned

We summarize a number of important lessons from this
phase of deployment. Many seem obvious, especially in
retrospect. Still, we had to learn them ourselves, and they
served us well in the subsequent years.

3.3.1. Performance and SDN design
Phase 1 infrastructure exposed flow setup time as a very

important performance metric, at least for the short term.
We define flow setup time as the time from when the (first)
packet (of a flow) arrives at the switch to when the action
of forwarding that packet is completed. In reactive control
mode, which is typically used in most academic experi-
ments, this indicates the duration each flow needs to wait
in an OpenFlow network before traffic can start flowing.6

This can be a significant overhead for short-lived flows.
We also learned that most current switches have lower

performance CPUs for control operations. Since these
switches were designed for MAC-learning or destination-
IP-based forwarding, their embedded control CPU does
not have enough performance to handle a large number
of OpenFlow messages. The stats_requests and reactive
mode of flow setup stress the CPU, leading to increased
6 Recall that in the case of proactive mode of operation, the rule is
already programmed in the flow table and thus the incoming packet does
not have to wait.

Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
flow setup times, overall poor response time to control
plane messages, and, at times, to network outages. In the
short term, the limitation can be mitigated by enforcing a
limit on the messages sent over the OpenFlow control
channel, aggregating rules, or proactively inserting rules.
In the long term, we expect OpenFlow switch vendors to
use higher performance CPUs and fine-tune the perfor-
mance for the OpenFlow use cases—relatively easy for ven-
dors to do going forward.

3.3.2. Living with legacy networks
In the real world legacy networks abound, and it is not

possible to have an OpenFlow-only network or a contigu-
ous OpenFlow network. To make OpenFlow and legacy net-
works interwork, we paid special attention to switch
implementations, tunneling mechanisms, LLDP-based
topology discovery, overlay routing, and TCP delays.

Through our deployments, we demonstrated the useful-
ness of the hybrid switch to support both legacy and Open-
Flow traffic on the same switch, which has now become
the most common model for OpenFlow switches. In the
mid to long term we expect the community to adopt Open-
Flow-only switches that provide all the necessary function-
ality for a production network and thus realize all the value
of OpenFlow and SDN, including simpler forwarding plane
and lower CapEx.

We used tunneling to interconnect the individual Open-
Flow islands. Using NetFPGA to encapsulate the dataplane
traffic as part of tunneling can at times cause the packet
size to exceed the Maximum Transmission Unit (MTU) size
at an intermediate router, thereby leading to packet drop.
We initially resolved this by tweaking the MTU value at
the end servers. We later resolved this by creating a soft-
ware-based tunneling mechanism that provided Ether-
net-over-IP encapsulation (using the Capsulator software
[3]) and used IP fragmentation to circumvent the MTU
issue. Note that software-based tunneling, however, incurs
a performance penalty.

For topology discovery of a network that transits non-
OpenFlow (i.e., legacy) switches, the controller has to be
aware of the relatively common possibility that intermedi-
ate legacy switches may drop LLDP packets used for dis-
covering links in the OpenFlow domain. This can be
mitigated by using a nonstandard LLDP destination address
within the OpenFlow domain.

When we used point-to-point VLANs (in Internet2) to
create a virtual link between OpenFlow islands, we had
to take caution that the overlay routing performed by the
control application did not cause a packet to traverse the
same L2 non-OpenFlow link in a different direction; such
traversing can cause the L2 learning table of the intermedi-
ate non-OpenFlow switch to flap. If the traffic volume is
high, the flapping can cause CPU overload and conse-
quently lead to a network outage. This can be resolved in
some legacy switches by turning off the MAC-learning fea-
ture and in others by re-engineering the topology.

We noticed that the TCP Nagle algorithm, which was
enabled by default, interfered with the message exchange
between the OpenFlow switch and controller, thereby cre-
ating instances when the flow setup time was large. We re-
solved this issue by disabling Nagle’s algorithm (using the
enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx 7
TCP socket option) for the OpenFlow control channel
because OpenFlow messages are typically only several
bytes long and are time critical, and it is not worthwhile
to queue packets until the maximum TCP segment size is
reached.

4. Phase 2: Slicing and scaling SDN deployment

With the SDN proof of concept and its potential demon-
strated, we decided to grow the deployment and add slic-
ing to it with the following goals:

1. to achieve concurrent experiments over the same phys-
ical infrastructure;

2. to coexist with production traffic so as to validate the
hypothesis that experimentation can occur in everyday
networks;

3. to evaluate performance of SDN architecture and com-
ponents in a real deployment setting; and

4. to improve the software stack and tools available for
SDN deployment.

To achieve the above goals, we expanded the topology,
added a virtualization layer, created and ran multiple con-
current experiments, and developed orchestration and
debugging tools for better analysis and manageability.

This phase of deployment used OpenFlow version 0.8.9,
released in December 2008, which included additional fea-
tures such as (1) vendor extensions to allow vendors to de-
fine new actions that are not necessarily standardized, (2)
hard timeout for flow rules in the cache, (3) allowing
replacement actions of previously inserted flow rules,
and (4) providing match capability for ICMP Type and Code
fields, and many other minor updates to the existing ac-
tions, messages, and protocol formats. The Stanford team
again built a reference implementation of OpenFlow ver-
sion 0.8.9, which helped vendors quickly release new
switch firmware and allowed for a more stable Open-
Flow-enabled switch ready for the next level of SDN
deployments and experimentation.
Fig. 4. Slicing-enabled SD

Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
One of the main requirements for GENI and for our own
deployment has been to support multiple concurrent
experiments as well as production traffic on the same
physical infrastructure. This is achieved by introducing a
network virtualization layer in the control plane that cre-
ates virtual networks called slices; each slice is typically
managed by a different OpenFlow controller. The slicing
implies that actions in one slice do not affect other slices.
We implemented SDN network slicing using FlowVisor
[45], a special purpose OpenFlow controller that acts as a
semi-transparent proxy between OpenFlow switches and
multiple OpenFlow controllers, as shown in Fig. 4. The
FlowVisor isolates the slices based on flowspace, a collec-
tion of rules that identify the subset of flows managed by
a particular slice. With FlowVisor inserted in the middle,
all control communication from the switch is classified
based on the flowspace, and forwarded to the appropriate
controller. In the reverse direction, any message from the
controller is validated based on flowspace ownership rules
and then forwarded to the switches. With slicing and Flow-
Visor, we can assign all production traffic to a slice and
each experiment to a separate slice. Our deployment in this
phase used FlowVisor version 0.3 initially, and then up-
graded to version 0.4. In these early versions of FlowVisor,
the slice specification and policies governing slice arbitra-
tion were specified manually, and remained static through
out the complete run.

The rest of the SDN software stack included two types
of controllers: NOX version 0.4 for experimentation/re-
search, and SNAC [46] version 0.4 for production Open-
Flow traffic. SNAC is a special-purpose open-source
controller based on NOX that Nicira [31] released to
make it simple for network administrators to specify ac-
cess-control policies for production OpenFlow traffic.
(We defer the discussion of production traffic to Sec-
tion 6.) Between Phases 1 and 2, the controllers were up-
graded to include support for OpenFlow version 0.8.9, as
well as fixes to various bugs.

The rest of the section presents the infrastructure built,
key experiments enabled, and lessons learned.
N reference design.

enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

Fig. 5. Phase 2 infrastructure (logical view) in Stanford Gates building.

8 M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx
4.1. Infrastructure built

We expanded our Stanford deployment from the labo-
ratory to within the basement and third floor wiring clos-
ets of the Gates building using NEC, HP, and NetFPGA
switches running the new firmware for OpenFlow version
0.8.9. The infrastructure had 4 NEC, 2 NetFPGA, and 1 HP
OpenFlow-enabled switches. We supported both produc-
tion network and experimentation network on this infra-
structure. Fig. 5 illustrates the interconnection of the
network that we deployed. With NEC and HP switches,
we used VLANs to create multiple instances of each Open-
Flow switch. That is, with one physical switch, we could
create multiple VLANs and associate each VLAN with a
controller such that the controller thought it was con-
nected to multiple, distinct switches. This was an easy
way to emulate a much larger topology than the physical
one. All experiments and production traffic used this logi-
cal network.

4.2. Key milestone experiments

The most important capability we experimented with
was how SDN infrastructure with slicing can support mul-
tiple concurrent slices; each slice can support a research
experiment, carry production OpenFlow traffic, or carry
legacy production traffic. Furthermore, within a slice,
SDN retained its core value proposition of making it easy
to write innovative applications on top of a controller. In
our deployment, the FlowVisor was used to virtualize the
infrastructure to support the following experiments within
isolated slices, each managed by a different NOX-based
controller [43]:

� The Plug-N-Serve research project explored the hypoth-
esis that web load-balancing is nothing but smart rout-
ing. That is, web requests can be load-balanced across
various servers by a smart routing mechanism within
Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
the network by routing each request to an appropriate
server, taking into account load on each server and con-
gestion on various paths leading to the server. The Plug-
N-Serve experiment’s slice tested various algorithms for
load-balancing web requests in unstructured networks
[29]. In this experiment, web queries arriving at a con-
figurable rate were load-balanced by the controller
(using its knowledge of the global network state), tak-
ing into account both path characteristics and server
load. This slice used the flowspace comprised of all
HTTP traffic that uses TCP port number 80.
� The OpenRoads research project explored the hypothesis

that we can create a much better user experience on a
mobile device if it can utilize multiple cellular and
Wi-Fi networks around it under user/application con-
trol. The project used a slice to experiment with and
demonstrate loss-less handover between the WiMAX
and Wi-Fi wireless nodes [50] for a demanding video
streaming application. The OpenRoads slice took con-
trol of all traffic generated to or from the Wi-Fi access
points.
� The Aggregation experiment showcased OpenFlow’s

ability to define a flow in a very flexible and dynamic
way based on a combination of L2, L3, and L4 headers.
Furthermore, a set of flows can be easily aggregated as
a single flow by reprogramming a flow definition in a
table, as sub-flows travel deeper into the network. The
specific experiment demonstrated how hundreds of
TCP flows are ‘‘bundled’’ into a single flow by re-pro-
gramming a flow table entry as component flows tra-
verse the network. The aggregation experiment’s slice
policy was defined based on the MAC address of the
hosts dedicated to this experiment.
� The OpenPipes demonstrated how hardware designs can

be partitions over a physical network. In this experi-
ment, the traffic consisting of video frames was encap-
sulated in raw ethernet packets and were piped through
various video filters running on nodes distributed
enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx 9
across the network [13]. Furthermore, the individual
functions could be dynamically moved around in the
network. The slice policy was defined based on the
ethertype specified in the L2 header.
� The Production slice carried all non-experimental traffic

and provides the default routing for all users’ produc-
tion traffic.

As in the case of Phase 1, all research experiments in
different slices required minimal effort to develop. The
SDN part was a simple software application that essen-
tially created the network map in a local data structure,
manipulated it for its control logic, and sent flow update
events to the NOX. This further validated the power of
SDN by enabling innovation and making it easy to create
new network capabilities. The successful demonstration
of network slicing also proved the viability of SDN to serve
as the networking substrate for GENI.
4.3. Lessons learned

By running concurrent experiments, we learned that
slicing based on flowspace provides sufficient flexibility
to delegate control to different experiments or administra-
tive entities. FlowVisor version 0.3, however, initially did
not provide sufficient isolation of the control plane work-
load across the different control applications. Thus, any
increase in flow ingress rate for a particular experiment,
such as Plug-N-Serve, caused poor response to flows in
the flowspace of a different experiment, such as Aggrega-
tion. This was addressed in the next release of FlowVisor—
version 0.4—by adding a software rate limit per slice.
Despite this feature, it was tricky to enforce the data plane
and control plane isolation across slices, especially when
the number of slices exceeded the number of data plane
queues available.

We also learned that overlapping flowspace is a tricky
concept that is poorly understood. The FlowVisor (both
version 0.4 and 0.6) allowed overlaps in the flowspace that
belonged to each slice. This could be a feature in some
cases, and a pitfall in others. FlowVisor version 0.6 pro-
vided the possibility of associating priority to slices, so as
to specify which controller gets precedence in receiving
switch events pertaining to a particular flow. This feature,
however, could not prevent two controllers that owned the
same flowspace from performing conflicting actions. This
was a caveat we tried to share with all experimenters,
and still they ended up misusing it and thus getting into
trouble.

We obtained a deeper understanding of the perfor-
mance implications of using SDN: The key metric we
tracked was the flow setup time. Our experience suggests
5–10 ms flow setup time for a LAN environment is typical
and acceptable. However, our Phase 2 deployments
showed flow setup time can be at times greater than
100 ms, too high to have good user experience. Our in-
depth analysis revealed that higher flow setup time was of-
ten due to the high load in the CPU subsystem at the switch
when the SDN deployment was operating in reactive
mode. The true reason for this issue, however, was that
Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
most switch-embedded CPUs did not have enough power
to handle increased load due to OpenFlow.
5. Phase 3: End-to-end deployment with a national
footprint

Our Phase 2 deployment and the demonstrations led to
significant interest from other universities, especially in
the United States and Europe that wanted to deploy and
experiment with SDN on their campuses. This led to SDN
deployments at eight universities (Clemson University,
Georgia Institute of Technology, Indiana University, Prince-
ton University, Rutger University, Stanford University, Uni-
versity of Washington, and University of Wisconsin) with a
strong SDN research agenda and willing network adminis-
trators and GPO and using Internet2 and NLR as the na-
tional backbone networks. We also worked with T-Labs
(Deutsche Telekom) and a set of universities in Europe to
help them organize a similar project, called OFELIA, with
the goal of deploying an end-to-end SDN infrastructure
in Europe [26]. These collaborative projects and the
increasing interest in SDN led us to the following goals
for the next phase of SDN deployments:

� help campuses, GPO, NLR, and Internet2 deploy SDN
without requiring heroic effort,
� create a functioning end-to-end SDN infrastructure

with slicing and with GENI interface so multiple concur-
rent slices can be hosted on the same physical infra-
structure for experimentation,
� help researchers on campuses to do experimentation

and demonstration of their ideas on the local and
national SDN infrastructure,
� help mature OpenFlow and SDN components,
� help grow the SDN ecosystem.

For all deployments in this phase, we used the newly
released OpenFlow version 1.0 as the default. The main
feature added to this version was queue-based slicing,
which is a simple QoS mechanism to isolate traffic in Open-
Flow networks. Other features added include matching IP
addresses in ARP packets, flow cookies to identify flows,
selective port statistics, and matching on the ToS bits in
the IP header.

Fig. 4 shows the complete SDN stack that was deployed
in this phase. The stack comprised OpenFlow-enabled
switches running version 1.0 firmware, FlowVisor version
0.6 for slicing individual OpenFlow islands, and NOX ver-
sion 0.4 for controllers. To scale up experiments and to
work with the GENI control framework, we added a policy
management framework that was implemented using two
additional components, Expedient and Opt-in Manager.

Expedient [10] is a centralized control framework
designed for GENI-like facilities with diverse resources. It
centralizes the management of slices and experiments, as
well as the authentication and authorization of users. It
is designed to support each resource as a pluggable compo-
nent of the framework and to give each resource its own
API for resource allocation and control. This simplifies the
addition of new resources into the framework and their
enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

10 M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx
management, as each resource can have its own API. For
our deployments, Expedient supported PlanetLab API, GENI
API, and Opt-in Manager API for OpenFlow networks. Expe-
dient is implemented as a traditional three-tier web server
(with a relational database as the backend).

Opt-in Manager [40] is a database and web user inter-
face (UI) that holds information about the flowspace that
each user owns and the list of experiments that are run-
ning in a network along with the flowspaces that they
are interested in controlling. The web UI allows users to
opt their traffic into individual experiments. When a user
opts into an experiment, the Opt-In manager finds the
intersection of that user’s flowspace and the experiment’s
flowspace and pushes it down to FlowVisor, causing the
packets matching the intersection to be controlled by the
requested experiment’s controller. We used version
0.2.4.2.

To support the growing number of SDN deployments
around the world, we created several recipes for SDN
deployments and posted them on our deployment website
[8]. These recipes allowed a group to quickly create an SDN
network in software and gain useful experience; deploy a
small SDN in a lab; or deploy a network in a building for
research and production use with real hardware switches
and an SDN software stack. We also tried to create pro-
cesses for the release and support of SDN components such
as NOX, SNAC, FlowVisor, and others.7

In the rest of the section, we present the end-to-end
infrastructure we built with our collaborators, the key
experiments enabled, and the lessons learned.
5.1. Infrastructure built

The nationwide SDN infrastructure comprised 11 indi-
vidual islands (i.e., 9 campuses, GPO, and NLR)8 intercon-
nected with each other, as shown in Fig. 7. The
infrastructure interconnected virtualizable computing nodes
to create a single sliceable and programmable computing
and networking facility. Each island deployed an OpenFlow
network as well as a few PlanetLab nodes as compute serv-
ers to create a local GENI substrate. Fig. 6 presents an illus-
tration of how substrates are stitched to form a large-scale
slice using SDN stack (FlowVisor, Opt-in Manager, Expedi-
ent, Controller), MyPLC for PlanetLab, and GENI control
(Expedient, Omni).

Initially we interconnected the different campus SDN
deployments in a star topology, using point-to-point
VLANs over the NLR, with the Stanford deployment at the
root. For instance, VLAN 3707 was used to interconnect
Stanford and Clemson Universities at Layer-2 such that
the two islands seemed like just one by routing traffic
through MAC-level switching. In a similar manner, we cre-
ated dedicated VLAN links to each deployment and trun-
ked the traffic at our basement NEC switch, thereby
creating a star topology for the national OpenFlow net-
7 GPO encouraged us to specify the processes and a release plan and it
helped.

8 Internet2 at the time did not have OpenFlow-enabled switches and
provided point-to-point VLANs to interconnect OpenFlow island. Internet2
OpenFlow island was built later [42].

Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
work. Once the NLR SDN deployment became ready for
use, each campus deployment set up an additional VLAN
connection (VLAN 3716) to the NLR deployment. Most
experiments started using this NLR network as the back-
bone (instead of the Stanford deployment), and it contin-
ues to be so even today. Since Princeton University does
not directly connect to the NLR, we created a software
L3-in-L2 tunnel (using the Capsulator) from a server in
the Stanford network to a server at Princeton University.
Note that Rutgers University connected to the NLR island
through Internet2.

The interconnection among OpenFlow islands was care-
fully stitched to ensure that the overall infrastructure
looked like a single, flat Layer-2 island to the experimenter.
In other words, all GENI traffic was carried on a set of
VLANs that spanned different segments (including a cam-
pus segment, NLR segment, and Internet2 segment) that
connected to each other. Although the traffic within each
OpenFlow island was processed using flow table entries
that included L2–L4 headers as installed by appropriate
application controllers (i.e., forwarding within OpenFlow
was layer independent and not confined to a single layer
such as L2), the interconnects used legacy switches, and
we had no control over them.

Experimenters using this global OpenFlow island cre-
ated a slice of their specification (comprising a list of com-
puting nodes along with the interconnecting network
elements) using either a centralized Expedient running at
Stanford or a software tool called Omni [36]. Both Expedi-
ent and Omni interacted with the Expedient Aggregate
Manager at each campus to create the slice. Once the slice
was created, the local administrator at each campus in-
spected the slice requirements within the Opt-in Manager
and ‘‘opted in’’ the local resources to the experiment. Once
opted in, the rules were created in the FlowVisor, thereby
mapping the flowspace requested to the experimenter’s
slice controller. Once a slice was created and flowspace
was mapped, the slice (even one that spanned all islands
around the country) had one controller to manage it.

5.2. Key milestone experiments

On the large-scale testbed, we conducted the following
experiments to showcase the potential of SDN and the
capabilities of the nation-wide infrastructure9:

� Aster*x: A wide-area experiment, based on the earlier
Plug-N-Serve system [29], to investigate different algo-
rithms for load-aware server and path selection. The
infrastructure used spanned servers and clients located
at all SDN/OpenFlow islands (except Rutgers
University).
� Pathlet: This experiment showcased a highly flexible

routing architecture that enabled policy-compliant,
scalable, source-controlled routing [16]. This feature
was implemented over the OpenFlow controller. Specif-
ically, the experiment demonstrated how edge devices
9 The experiments were publicly demonstrated at the GENI Engineering
Conference (GEC) 9 in Washington DC in 2010.

enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

Fig. 6. Wide-area SDN network showing the different software components at each island. A slice request from an experiment was processed by individual
island components to form a large-scale stitched slice (with networking and computing).

Fig. 7. Phase 3 infrastructure.

M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx 11
can effectively use multi-path routing flexibility in the
face of network dynamics via end-to-end performance
observations.
� OpenRoads: This experiment built on the earlier Open-

Roads system and involved a live video stream from a
golf cart driving around at 5–10 mph. The experiment
showed great user experience for live video if the
device is allowed to use multiple wireless networks
around it and SDN made it easy to implement handoff
between APs and WiMAX base station and tri-casting
video stream over both Wi-Fi and WiMAX networks
[50].
Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
� SmartRE: This demonstration showed how the SmartRE
framework allowed both the service and the network
capacities to scale by removing redundant content in
transmission [1]. The traffic was generated by a popular
on-demand video service, and the system used a net-
work-wide coordinated approach to eliminate redun-
dancy in network transfers. The OpenFlow controller
and the application made it easy to manage routers
with the redundancy elimination feature.

The simultaneous running of all of the above experi-
ments over the same infrastructure yet again confirmed
enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

10 After GEC-9, we decided that we could not continue development,
deployment, and support of SDN tools and platforms from the university.
Instead, we established a separate non-profit organization called Open
Networking Laboratory (ON.Lab) that would be responsible for open source
SDN tools and platforms and their deployment and support [37].

12 M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx
that building new applications and capabilities on SDN is
relatively easy even if the network spans multiple Open-
Flow islands around the country. However, the underlying
SDN infrastructure was not as stable or robust. To achieve
more stability and predictability, the GPO created an
experiment, called the Plastic Slices project, that involved
running 10 GENI slices continuously for multiple months
and monitoring the state. Within each plastic slice, the
hypothetical experimenter performed a file transfer be-
tween pairs of virtual computers in a varying schedule
[42]. This experiment helped mature the SDN-based net-
work substrate of GENI.

5.3. Lessons learned

This was at the time when interest in OpenFlow and
SDN was growing quickly and many groups around the
globe wanted to create their own SDN infrastructure for re-
search and experimentation. Our informal non-scientific
estimate based on downloads and email traces suggests
there were close to 200 SDN deployments by mid-2011.
We supported them in a variety of ways, including offering
help and advice on the design of the network; selection of
SDN components; and debugging of problems with config-
uration and deployments; as well as overall hand-holding.
Working with these groups around the globe provided
invaluable experience and lessons that we summarize in
this subsection.

5.3.1. Nation-wide SDN experiments and demonstrations
Creating a single large-scale network by stitching

together individual islands is a challenging task for technical
and non-technical reasons. Most of the OpenFlow islands
were part of CS and EE departments, and they needed to
be connected to the campus backbone and then to Inter-
net2 and NLR backbones, which was nontrivial. This
involved creating a complete inventory of available net-
work resources, creating figures with network topologies,
identifying VLANs available end to end, allocating the
VLAN numbers, verifying the connectivity, and coordina-
tion with tens of people. GPO did most of this ground work,
and without that the nation-wide infrastructure would not
have come together.

Our group at Stanford mostly coordinated with the net-
work researchers and administrators directly involved in
SDN deployments. Still, the coordination was a balancing
act in that we provided SDN tools, support, a blueprint
for deployment and guidance to each campus, yet at the
same time we wanted each campus to have enough flexi-
bility to be creative and serve its own research and opera-
tion goals.

When it came to updating and maintaining the latest
software on all campuses, each campus selected a different
approach. In some cases, the campuses trusted us (i.e., the
deployment team at Stanford University) to configure
components such as the MyPLC and the Expedient/Opt-in
Manager and upgrade them as necessary. In other cases,
each campus assigned a local person. Flexibility and trust
on the part of individuals were key to success.

Each of the 11 independent OpenFlow/GENI islands
used prototype OpenFlow-enabled switches from different
Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
vendors and several prototype software systems that were
not tested together. Using this infrastructure to conduct
several diverse experiments was an arduous task because
the infrastructure was not as stable or predictable. We
learned from our experience that conducting the Plastic
Slices project first to debug the issues and increase stability
should precede any attempts to use the testbed for the
large-scale experiments.

Our software release process was complicated because
we wanted to ensure that all islands ran the same version
of the software stack, and three key software components
(FlowVisor, Expedient, and Opt-in manager) were being re-
leased for the first time. These components were undergo-
ing active development, debugging, and deployment at the
same time, which is not recommended. This required too
much of coordination among developers, deployment
teams, and campus support staff. While the experiments
worked, our experience suggests the university-based
developers (students and post docs) and deployment engi-
neers were not well prepared for the challenge, and we
cannot recommend doing it again.10
5.3.2. Network operation
Through the experimentation and demonstrations, we

learned of several issues related to scaling of the infra-
structure, controller placement, IP-subnet-based flowspace
definition, cross-island interconnection, and network
loops.

This phase of the deployment was the largest at the
time in terms of the number of OpenFlow islands, switches
deployed, slices supported, flow table entries needed, and
users. As expected, running over 10 experiments, each hav-
ing on the order of 1000 rules, stressed the software stack
and early versions of OpenFlow switches. For example, the
FlowVisor would crash often, and flow setup time was too
high in many cases. It took several iterations for the Flow-
Visor software to mature and become stable. Similarly, the
switches were seriously stressed by certain experiments
and provided further evidence that their CPU subsystem
did not have enough performance for OpenFlow use case.
Until switch vendors could provide a higher performance
CPU subsystem, we enforced an OpenFlow message rate
limit at the switch and a strict usage policy for the data
plane workload, so as to keep the load of the switch CPU
subsystem below an acceptable threshold.

We learned that a single server hosting a controller for a
nation-wide slice spanning 11 islands is sufficient with re-
gards to the load, and the server never became a bottle-
neck. However, for latency-sensitive experiments (like
Aster*x load-balancing), reactive setup of flows in Prince-
ton by a controller in Stanford was sub-optimal. The place-
ment of the controller, thus, became an important
consideration for both performance and reliability [21].

We learned that we cannot let each experimenter spec-
ify her own flowspace, as this led to flowspace overlap and
enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx 13
to flowspace explosion. We learned that it was best to
associate experiments with a particular internal IP subnet
that spanned the wide-area substrate and allow the exper-
imenter to only control traffic within that subnet (e.g., the
subnet 10.42.111.0/24 was dedicated to the Aster*x exper-
iment that stretched to all islands) and all compute servers
used by Aster*x sent traffic within that subnet, which was
managed by Aster*x’s controller. This avoided overlap in
flowspace across experiments.

Since the world does not have ubiquitous OpenFlow
support, we had to cross legacy switches and networks.
This could be tricky because of (1) MAC learning in the leg-
acy network where traffic was overlay routed by OpenFlow
switches or where a network uses Q-in-Q could cause per-
petual learning and CPU overload and (2) topology discov-
ery errors could potentially arise in the controller when an
OpenFlow network was connected at two locations to a
legacy network. The first issue is also discussed in the les-
sons of Phase 1. The second issue was a problem because it
caused the controller MAC learning to oscillate and be
inconsistent with choosing uplinks for the flows.

Most experimenters wish to have a network topology
with loops so as to provide multiple paths to handle their
traffic. Having a loop within the OpenFlow network that
interconnects with the legacy network is risky because a
broadcast storm caused within the OpenFlow network will
cause meltdown of even the legacy network. Since the
OpenFlow network does not support STP, the legacy net-
work will be unable to identify and block any disruptive
loops. In the early GENI network, broadcast storm occurred
two times and caused outage in the legacy network: (1)
when a loop at BBN was enabled by the experimenter
starting their controller before the administrators added
safeguards and (2) when a loop across backbones was
caused by connecting a campus over both NLR and Inter-
net2 to Stanford. GENI’s Emergency Stop was required to re-
cover from such a failure when an experiment became
disruptive.
6. Phase 4: Production deployment

We had two complementary goals with SDN deploy-
ments for production use: to bring OpenFlow and SDN as
close to production ready (with network vendors and uni-
versity network administrators) as a university-based re-
search group can and to demonstrate that SDN with
slicing can support both research and production use.
The production phase actually overlapped with Phases 2
and 3, and we demonstrated the feasibility of using SDN
with slicing for research and production use (for our group)
during these phases, as we briefly explained in the previ-
ous sections.

As much as our network administrators believed in
SDN, they did not want to deploy it for production use un-
til: (1) they could see a production SDN network in opera-
tion for 3–6 months with consistent results and (2) they
could get SDN components, such as OpenFlow-enabled
switches, controllers, and a few core applications, with
support from trusted vendors. To meet these expectations
we decided on the following plan;
Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
� create an OpenFlow Wi-Fi network that anyone regis-
tered with Stanford official Wi-Fi can use as an alterna-
tive Wi-Fi for ‘‘almost production use’’,
� create a production SDN infrastructure for our group of

approximately 20 people to use,
� create a comprehensive measurement and debugging

infrastructure so we can understand and demonstrate
performance and stability of our group’s production
infrastructure on a continuous basis,
� work with hardware and software vendors to achieve

the goals listed above.

We had an understanding with our network adminis-
trators that if we were able to achieve the goals above, they
would deploy SDN in their buildings. In the rest of this sec-
tion, we present our experiences with the tasks outlined
above and how this led our EE department network admin-
istrators to do a limited production deployment in two
buildings. Though much of the EE production deployment
is still ongoing, we present the current snapshot.
6.1. OpenFlow Wi-Fi network

We first built an OpenFlow-based Wi-Fi network (called
ofwifi) in the Gates building and made it available for any
registered user of the Stanford official Wi-Fi network. The
OpenFlow Wi-Fi network allowed us to offer ‘‘a semi-pro-
duction service’’ to guests who do not demand the same le-
vel of service as regular users.

As part of Phase 2 deployment, we had deployed 31
OpenFlow-enabled Wi-Fi access points (APs) throughout
the 6 floors (including the basement) of the Gates building
[51]. Because we have OpenFlow switches in limited wir-
ing closets (1 in the basement and 2 on the third floor),
only 4 APs had a direct connection to the OpenFlow
switches, and the rest were connected over a software tun-
nel to one of our OpenFlow-enabled switches.

We opened up the ofwifi network for guests, and it
quickly attracted many users (approximately 20 users dur-
ing the busy hour) for their public Internet access. Since
users always had the option to switch back to the Stanford
Wi-Fi by changing the SSID, extremely high availability
was not a critical requirement for the ofwifi network.
Therefore, we used this network as a place to first deploy
new releases of SDN components after testing them in
the laboratory. As expected, the network was unstable at
the beginning and would suffer many outages. However,
by the time we were done with Phase 3 deployment and
had conducted several cycles of component improvements
and debugging, the ofwifi network became quite stable ex-
cept during the frequent planned outages to upgrade soft-
ware. Guests used it without realizing that the network
was not meant to be production quality.
6.2. Group production network

We, as a group of approximately 20 people spanning 7
rooms in Gates building, decided to use wired SDN for
our day-to-day production use with the intent to live the
SDN experience ourselves and also use the production net-
enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

Fig. 8. Phase 4 infrastructure.

14 M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx
work to study and demonstrate performance and stability
to our network administrators.

Our production SDN network used NEC, HP, NetFPGA,
and Pronto (with Indigo firmware and Pica8 firmware)
switches with support for OpenFlow version 1.0.0. We ini-
tially used SNAC version 0.4 as the controller, and later re-
placed it with the BigSwitch commercial controller. Two
switches in two different wiring closets on the third floor
had direct connections to our 7 office rooms, and both
switches were connected to the aggregation switch in the
basement. This infrastructure was built as part of Phase 2
deployment, shown in Fig. 5. We deployed various SDN
components in this wired production SDN network only
after testing them in the lab and in the ofwifi network. Thus
the wired production network had relatively higher
availability.

Both the ofwifi and the wired group production net-
works were instrumented and measured on a continuous
basis since 2009, as explained in Section 9. We shared
highlights from weekly measurements and analysis with
our network administrators. On one hand, the network
administrators helped us debug problems, and on the
other, they got to see firsthand how the production net-
work was maturing. The section on measurement and
debugging elaborates on examples of issues and problems
we had to deal with before the network became stable and
met all performance metrics.

6.3. Limited production deployment in EE

After two years of close monitoring of SDN evolution in
our group’s production network, the network administra-
tors of CIS building started enabling OpenFlow capability
Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
in their production network with a firmware upgrade from
HP switches that had already been deployed. This was an
important milestone for SDN deployment, both at Stanford,
and in general.

Fig. 8 illustrates the production deployment in the CIS
and Packard buildings. We placed 30 OpenFlow capable
Wi-Fi access points in each building. At the time of writing
this paper, all 6 production switches in the CIS building are
OpenFlow-enabled, and they are controlled by a single
controller, together with 30 OpenFlow capable APs. The
switches in the Packard building are not yet running Open-
Flow, and thus the OpenFlow APs in the Packard building
are not directly connected to the OpenFlow switches. How-
ever, the commercial controller we now use supports mul-
tiple OpenFlow islands, and thus, we do not need to create
tunnels as we did in the ofwifi network.

6.4. Lessons learned

Most Layer-2 switches in a legacy deployment run the
Spanning Tree Protocol (STP) to avoid packet broadcast
storms due to loops in the network. Since most Open-
Flow-enabled switches (e.g., NEC and HP switches) also
have an inbuilt legacy stack, it is tempting for some pro-
duction deployments to use both STP and OpenFlow,
wherein STP will prevent any downsides of the loop, and
OpenFlow will provide control of all traffic within the safe
environment. However, enabling STP on an OpenFlow-en-
abled VLAN can lead to unpredictable outcomes because
the OpenFlow stack has no awareness that a port is
‘‘blocked’’ by STP (port status is ‘‘up’’). Although this issue
is mentioned in OpenFlow specification version 1.1, it has
yet to be fully addressed by the hybrid working group of
enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx 15
the Open Networking Foundation (ONF). Our deployment
does not use STP at this point for this and other reasons.

Even for a small production deployment, OpenFlow
switch hardware limitations can be an issue. The first lim-
itation is the flow table size that typically supports a max-
imum of �1500 flow table entries, not large enough for a
core switch of a production VLAN within a single building.
To mitigate this, controller vendors (e.g., BigSwitch) are
using workarounds, such as aggregation of flows through
wildcarding of flow-match header fields (e.g., wildcarding
the TCP and UDP port numbers). Also, some switch vendors
have started to augment the hardware flow table size by a
factor of 100. This proved sufficient for our deployment.

The second limitation is the poor upper-limit of the
flow-ingress rate (i.e., rate of handing packet_in) that made
an OpenFlow-enabled switch incapable of being deployed
in the core part of the network. This is an artifact of the
poor CPU power. This limitation is circumvented in pro-
duction deployments by breaking a larger network into
multiple OpenFlow islands that are physically connected.
Controller vendors are offering controllers that can support
multiple OpenFlow islands as a default feature for this
reason.

7. Input to OpenFlow specification

Our deployment experience provided important input
to the OpenFlow specification process, especially early
on.11 As expected, deployments and experimentations ex-
posed a number of ambiguous points and some bugs in
the specification, and made the case for a number of new
features. In this section, we describe how deployments and
experimentation, in part, helped shape the OpenFlow
specification.

7.1. Deployment based feedback

Our deployments and demonstrations motivated the
inclusion of the following features in the OpenFlow
specification:

� Flow modification: allowing quicker (replacement and)
modification of existing flow table rules without having
to delete and add. This was particularly needed for the
handoff of mobile devices from one AP to another, and
was included in OpenFlow version 0.8.9.
� ICMP code matching: allowing match of ICMP packets

generated by ping. This allows the control application
to treat the ICMP request differently than the ICMP
reply. This was included in OpenFlow version 0.8.9.
� Controller failover: allowing an OpenFlow network to

switch the controller if the primary one were to fail,
or become unreachable. This has been an important
requirement for SDN since the beginning, and became
more evident as we got more experience with deploy-
11 The specification process has been receiving input from many sources,
especially as more vendors and providers got involved in SDN. All of this
input shapes OpenFlow specifications, and not just our input.

Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
ments. This was included in OpenFlow version 0.9,
added to the reference implementation, and was picked
up by the vendors.
� Emergency flow cache: Our deployment showed the

need for managing the dataplane in the event that the
switches lose connection to the controller(s) altogether.
OpenFlow version 0.9 included the possibility of insert-
ing rules that are to be used, instead of the normal rules,
when such a control connectivity outage occurs. Some
switch vendors implemented this by having two flow
tables: normal and emergency.
� Queue-based slicing: Our early deployments showed a

broadcast storm in a slice caused disruption to other
slices. To provide better isolation in the dataplane, we
asked for queue-based slicing of the network, wherein
each slice could be mapped to a different queue in the
network. This feature was added in OpenFlow version
1.0.

Aspects experienced during our deployment that are
yet to be resolved in the OpenFlow specification still exist.
One such prominent is that of inband control. In several
deployment scenarios, it is not possible to create an out-
of-band network for the control plane communication.
This was particularly the case for the early OpenFlow Wi-
Fi deployment, where some early commercial products
did not allow OpenFlow VLAN and non-OpenFlow VLAN
on the same physical port using VLAN tagging. When the
only network connectivity available is already part of the
dataplane, then the switch needs to provide inband control,
wherein the switch has to make a special classification as
to whether a packet is part of control or general data.
Although we requested this feature, the OpenFlow specifi-
cation team was not able to achieve a consensus on the ac-
tual mechanism, and deferred it for later versions.
7.2. Experimentation based feedback

We, along with the experimenters that created interest-
ing SDN applications, provided feedback that also helped
shape OpenFlow specifications. The following are some of
the main features requested, and added, to OpenFlow ver-
sion 0.9: (1) Barrier command to notify the controller when
an OpenFlow message has finished executing on the
switch, and is useful to sync the state between controller
and the switches; (2) capability to match on the VLAN
PCP priority bit field; (3) sending flow expiration (flow_exp)
message even for controller-requested flow deletions; (4)
rewriting IP ToS field with custom value to change prioriti-
zation of packets in legacy network; and (5) signaling a
switch to check for overlaps when inserting new rules that
may possibly conflict with a pre-cached rule. The following
are other features requested, and added, to OpenFlow ver-
sion 1.0: (1) ability to specify a flow cookie identifier for
each flow to enable the controller to easily track per-flow
state; (2) ability to match IP fields in the ARP packets;
and (3) switch owner specifiable description of an Open-
Flow switch, thus making it easier for the programmer to
use it.
enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

16 M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx
8. Input to SDN architecture and components

Our deployments and experimentation also provided
useful input to the evolution of the SDN architecture and
its components. For example, each experiments or applica-
tion on NOX typically first builds a network map of its own,
and then writes an application logic to work on this map.
This insight (among others) led to the realization that it
is better for the network operating system to offer the net-
work map as the abstraction as opposed to network events,
and that is how the SDN architecture is currently evolving.
12 Note that the negation rule was discontinued in FlowVisor version 0.6
because expanding to match all other values consumes too much rule table
space, e.g., a rule that matches all traffic with TCP dst port! = 80 may expand
to 65,534 rules.
8.1. Input to FlowVisor design and implementation

One of the goals of the deployment has been to support
multiple concurrent experiments and production traffic on
the same physical infrastructure. This led to the concept of
slicing and the design of FlowVisor. There are other busi-
ness motivations for network virtualization, and FlowVisor
helps with them, but its original design, and how it fits
within the SDN stack, were influenced more by the short
term deployment goals. For example, FlowVisor serves as
a semi-transparent proxy between the controller and the
switches so as to implement slicing. Any control message
sent from a slice controller to the switch is intercepted
and tweaked to ensure that the slice only manages the
flowspace that it controls. This tweaking process may in-
volve replacing the output ports (outports), rewriting
match header fields, and altering the actions performed.
In the reverse direction, any control message sent from
the switch may be routed to the appropriate controller(s)
based on the match headers and the input port (inport).
This allows each experimenter to own a slice of the flow-
space and slice of the network resources, and an end user
can opt-into the flowspace.

FlowVisor was conceived, designed, and prototyped in
our group at Stanford, and it became a critical component
of SDN deployments. As expected deployments and exper-
imentation helped quickly identify bugs, including mem-
ory leaks and design limitations of FlowVisor, leading to
new versions.

Specifically, we discovered the following bugs: First, we
uncovered cases where the FlowVisor translated a FLOOD
action from the slice controller into an OUTPUT action
among an incorrect list of switch ports [49]—this bug
caused the control message to be dropped by the switch;
Secondly, we noticed cases when the FlowVisor performed
an incorrect demultiplexing of the LLDP packet_ins being
received, thereby causing the slice controllers to not see
the right topology; Lastly, the FlowVisor did not pay atten-
tion to topology or port changes, thereby keeping an incor-
rect list of active ports—this bug caused an incorrect port
translation and caused control messages to be dropped
by the switch. All of these issues were fixed in the subse-
quent release of FlowVisor version 0.6.

Based on experimentation, we requested two features:
(1) need for a per-slice monitoring system that tracks the
rate and number of control plane messages per slice—this
will allow us to verify the slice isolation at real-time and
(2) need for building safeguards in the FlowVisor to push
Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
a default drop rule (for the flowspace) to the switch when
the slice’s controller is unavailable. They were included in
a later release of FlowVisor 0.4.

To make FlowVisor easier to use, we asked for two other
features: (1) dynamic rule creation and (2) better user
interface. These issues were addressed in a Java-based
FlowVisor version 0.6, thereby making it ready for the
GENI deployment. Second, this version featured a new set
of fvctl commands that operated on the state store and pro-
vided good visibility into the rule set. Examples of the com-
mands include createSlice, addFlowSpace, deleteFlowSpace,
deleteSlice, getSliceInfo, and listSlices. Thirdly, the FlowVisor
was built with a new abstraction that made it easier to al-
low multiple ways to input policies to the FlowVisor, and
manage its rule set (e.g., A slice can be created both by
the FlowVisor fvctl commands, as well as the Opt-in
Manager).

Additionally, we provided feedback to solve the Flow-
Visor rule explosion issue. This explosion occurs when
the flowspace requested by an experimenter is expanded
into a set of individual internal rules based on the ranges
of all the fields, as well as the list of switches and ports.
This cross-product can lead to the number of rules of the
order 1000 for many experiments.12 The matter is further
complicated when two experiments request an overlapping
flowspace (e.g., If slice A requests IP = any, TCP port = 80, and
slice B requests IP = 1.1.1.1, TCP port = any, then the switch
will have to be programmed even before the packets arrive
to prevent conflicts, thereby causing an increase in the
switch rule set). In some cases, the rule explosion caused
the FlowVisor commands to be less responsive because it
took too long to install (or delete) all the expanded rules
in (or from) FlowVisor memory. During operation, we ob-
served cases where the opt-in step takes as much as a few
minutes, which is too long for interactive slice creation.
Although this does not affect the management of the flows
in the data plane, it proved to be a serious bottleneck for cre-
ating slices. This issue continues to be an open issue, as there
is no real fix though there are short-term deployment spe-
cific optimizations that we, and others, have been using.

8.2. Input to other software components

During the course of the nation-wide GENI deployment,
we discovered several issues that had to deal with the con-
sistent state across the full vertical stack, i.e., consistent
state of the slice among Expedient, Opt-in Manager and
FlowVisor. As each software tool/system was developed
by a separate team, inconsistencies should not have been
a surprise. Examples include: (1) a slice was instantiated
in the Opt-in Manager, but not in the FlowVisor; (2) a slice
was deleted at Expedient, but still available in the FlowVis-
or; and (3) a slice was opted-in at the Opt-in Manager, but
the rules were not yet pushed to the FlowVisor. The issues
were gradually resolved with deployment and testing, and
finally verified by the Plastic Slices project.
enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

Fig. 9. Measurement infrastructure.

M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx 17
Lastly, our deployment helped provide constant feed-
back to the controller developers. For instance, we ob-
served that the HP switch in our deployment could not
be virtualized based on VLAN to create multiple OpenFlow
instances from the same physical switch. We discovered
the problem to be with the NOX controller version 0.4,
which inaccurately was implemented to only retain the
most significant 48 bits of the datapathid (i.e., the switch
instance identifier). This caused 2 logical OpenFlow
instances within a single HP switch to seem like 1 instance.
Similarly, we encountered a bug where the controller (both
SNAC [46] and NOX) was not accurately detecting links in
the presence of a HP switch. After extensive debugging, we
uncovered the issue to be that the LLDP packets generated
by the controller’s discovery module had a multicast ad-
dress in the source MAC field. The HP switch, however, is
pre-programmed to drop such packets, thereby causing
some links to not be discovered. Such issues often mani-
fested as switch problems, and it took significant effort to
identify the root case. Based on our feedback, the controller
developers resolved the issues in subsequent releases.
9. Monitoring and debugging

As we scaled our SDN deployments, especially produc-
tion deployments, we had to develop a comprehensive
measurement infrastructure to collect, display, and chro-
nologically archive the important network operation met-
rics. Furthermore, we developed approaches to using this
data to monitor and debug the network, as well as to share
the performance and stability details with others. In this
section, we first describe the measurement infrastructure,
and then we present approaches that we adopted for per-
formance analysis and the debugging of SDN deployments.
Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
9.1. Measurement infrastructure and performance metrics

Our objective for the measurement infrastructure was
to obtain dataplane measurements to profile the perfor-
mance as seen by an end-user, as well as to identify issues
that are not necessarily visible from the SDN control plane.
We deployed several measurement probes in the network
that actively measure different metrics to help understand
the user experience. Fig. 9 illustrates the measurement
infrastructure that we built. As shown, we collected three
different data sets, and stored them in a central repository
for analysis: (1) control channel dump, passively collected
using tcpdump of the communication between the switch
and the controller; (2) end-to-end performance actively
measured by the probes; and (3) switch status metrics ac-
tively collected from the controller and switches. The fol-
lowing is a list of end-to-end performance metrics that
we use for measuring the end user experience:

Flow setup time. We measure the flow setup time
using simple 10-s interval pings between a pair of
probes attached to a switch. We use a 10-s interval
(which is greater than the typical idle timeout of
rules—5 s—inserted by NOX version 0.4) to allow the
flow table entry to expire, causing each new ICMP
packet to generate a packet_in message at the OpenFlow
controller. The flow setup delay plot shows the bi-direc-
tional flow setup time experienced by the ping traffic.
Round-trip time. We measure the roundtrip ping

delay from the measurement probe to the target host
located outside of our OpenFlow network.
Recursive wget delay. We measure the delay to down-
load a pre-determined single web page, including its
embedded images and links, using the recursive option
of the wget command. This mimics the web browsing
enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

13 Previous analyses showed that most controllers (viz., NOX [32],
Maestro [27], Beacon [2]) are capable of reactively handling over 40,000
new flows ingressing per sec [48,6]. Thus, for most enterprise deployments,
the switch bottlenecks overshadow the controller limitations.

14 If the legacy network is behaving normally, then the communication
delay between the switch and the controller cannot be the root cause.

18 M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx
delay that the end user perceives; the target web page
was http://www.stanford.edu/.

The following is a list of switch performance metrics
that we collect to understand the overall network
behavior:

Switch CPU usage. As we found in the beginning of
OpenFlow deployment in Phase 1, when the switch
CPU shows a high load, the network is not functional.
Since most OpenFlow-enabled switches today use a
weak CPU that can be overloaded, we monitor the usage
carefully.
Flow table entries used. Today’s OpenFlow-enabled
switches are often limited by the size of their flow table,
making it important to monitor the usage of the flow
table. This information also gives an idea of the network
usage in the production setup.
Flow arrival rate. Today’s OpenFlow-enabled switches,
owing to the weak CPU, are not capable of processing a
large burst of new flows (in reactive mode, each new
flow arrival corresponds to 3 control plane messages).
Thus, we track the arrival rate of new flows (i.e.,
packet_in).

9.2. Example performance snapshot

Barring any network problems, we observe that the SDN
deployment behaves the same as the legacy one, except for
the flow setup time because once the flow actions are ca-
ched, packet forwarding works the same with OpenFlow
as it does with legacy operation. In Fig. 10, we present a
week’s snapshot of the performance metrics for the
deployment in CIS building. We observe that the metrics
are stable, and are within expected limits:

1. Less than 100-ms flow setup time: We observe that flow
setup time takes approximately 10 ms in our deploy-
ment, and most users do not perceive this delay in their
network use.

2. Sub-millisecond round-trip time as observed from the
RTT progression plot .

3. 0% packet loss in network, as observed from the fact that
the CDF of the RTT values reaches 1.

4. Less than 1 s total delay for 80% of wget requests to
www.stanford.edu webpage with over 50 objects, as
observed from the wget delay plot.

5. No CPU overload as observed from the SNMP-based CPU
usage statistics, where the CPU utilization is bound
within 70%.

Besides our active monitoring using probes, we also
measure and present in Fig. 10 the number of flows and
flow setup rates seen by the controller by querying it. We
observe an upper-bound of 320 flows that arrive at a max-
imum rate of 60 flows/s. This is well within the limits of
what the HP switch can handle. Lastly, we measure the
number of Wi-Fi users by contacting the hostapd daemon
on the Wi-Fi APs; the count of users exhibits a diurnal pat-
tern, and reaches a maximum of 18 during the busy hours.
Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
Besides the network performance, we also conducted
active tests to understand the behavior of the switches.13

As described in the SDN reference design of Section 2, the
flow setup process in SDN deployments is limited by the
performance of switch CPU subsystem and suffers from flow
setup time overhead. To better understand this aspect, we
used a tool similar to oflops [34] to evaluate the limita-
tions of switch hardware. The general idea of the tool is to
generate new short-lived mice flows (with flow size of just
1 packet), and observing the controller communications as
well as the output of the switch. Our evaluation showed that
there are several limitations in today’s hardware. To illus-
trate this, we present the behavior of a Broadcom-based
OpenFlow switch in Fig. 11. The figure shows that the switch
starts dropping new flows after the flow ingress rate crosses
110 flows/s. Once the switch load becomes too high, the
flow setup time, packet transmission and flow expiry mes-
sage generation becomes unpredictable and poor.
9.3. Network performance diagnosis process

In addition to revealing user experience, the time-series
plots can be correlated to infer the root cause of the issues
for some quick diagnosis of network problems. Here we
present some insights or rules-of-thumb to aid future
SDN network administrators. Table 1 summarizes how
we narrow down the root cause.

If we observe large flow setup times for a prolonged per-
iod of time, we first check the RTT plot for the non-OpenFlow
network to see if this is really an issue with the OpenFlow
network. If RTT of non-OpenFlow network part is normal,
then the root cause must be in the OpenFlow part, i.e., pro-
cessing delay in switch, or the controller processing delay.14

To identify the exact issues requires looking at the other met-
rics. For example, as shown in Table 1, if both the switch CPU
usage and flow setup rate are low, while the flow setup time is
too high, it is likely that the root cause is the slow processing
time in the controller (Case #1 in the table).

If the switch CPU is high in spite of the low flow setup
rate (Case #2), the switch CPU is overloaded for some pro-
cessing other than packet_in. The root cause can be that the
controller is sending too many message to the switch or
the switch is busy doing some other job. We need to look
into the control channel dump to distinguish these two,
but at least we can narrow down the cause and warrant
further debugging.

If both the switch CPU and the flow setup rate are high
(Case #3), the root cause is likely the high flow setup rate.
To see the packet that caused this issue, we look for the
packet_in message in the control channel dump to see what
packets caused the burst of packet_ins.

We sometimes observed periods of large round-trip de-
lays while all other metrics were good (Case #6). This indi-
cates that the flow rule is not installed in the switch flow
enFlow and Software-defined Networking through deployments,

http://www.stanford.edu/
http://www.stanford.edu
http://dx.doi.org/10.1016/j.bjp.2013.10.011

 0.1

 1

 10

 100

 1000

10/18(Tue) 10/19(Wed) 10/20(Thu) 10/21(Fri) 10/22(Sat) 10/23(Sun) 10/24(Mon)

de
la

y
[m

se
c]

flow setup delay (10/18-10/24 2012)

cis-11
cis-22

cisx-11

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100 1000 10000

C
D

F

delay [ms]

Flow setup delay CDF

cis-11
cis-22

cisx-11

 0.1

 1

 10

 100

10/18(Tue) 10/19(Wed) 10/20(Thu) 10/21(Fri) 10/22(Sat) 10/23(Sun) 10/24(Mon)

de
la

y
[m

se
c]

RTT to a host (10/18-10/24, 2011)

cis-11
cis-22

cisx-11

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01 0.1 1 10 100 1000 10000

C
D

F

delay [ms]

RTT CDF

cis-11
cis-22

cisx-11

 0

 20

 40

 60

 80

 100

 120

10/18(Tue) 10/19(Wed) 10/20(Thu) 10/21(Fri) 10/22(Sat) 10/23(Sun) 10/24(Mon)

de
la

y
[s

ec
]

Recursive wget delay (10/18-10/24, 2011)

cis-11
cis-22

cisx-11

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.01 0.1 1 10 100 1000

C
D

F

delay [sec]

wget delay CDF

cis-11
cis-22

cisx-11

 0

 20

 40

 60

 80

 100

10/18(Tue) 10/19(Wed) 10/20(Thu) 10/21(Fri) 10/22(Sat) 10/23(Sun) 10/24(Mon)

C
PU

 u
sa

ge
 [%

]

Switch CPU usage (10/18-10/24 2012)

cis-11
cis-22

cisx-01
cisx-11
cisx-21
cisx-31

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70

C
D

F

CPU usage [%]

Switch CPU usage CDF

cis-11
cis-22

cisx-01
cisx-11
cisx-21
cisx-31

 0

 50

 100

 150

 200

 250

 300

 350

10/18(Tue) 10/19(Wed) 10/20(Thu) 10/21(Fri) 10/22(Sat) 10/23(Sun) 10/24(Mon)

flo
w

s

number of flows per switch (10/18-10/24, 2011)

cis-11
cis-22

cisx-01
cisx-11
cisx-21
cisx-31

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100 1000

C
D

F

flows

Number of Flow CDF

cis-11
cis-22

cisx-01
cisx-11
cisx-21
cisx-31

 0
 10
 20
 30
 40
 50
 60
 70
 80

10/18(Tue) 10/19(Wed) 10/20(Thu) 10/21(Fri) 10/22(Sat) 10/23(Sun) 10/24(Mon)

flo
w

/s
ec

flow setup rate (10/18 - 10/24, 2011)

cis-11
cis-22

cisx-01
cisx-11
cisx-21
cisx-31

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100 1000

C
D

F

flow setup rate

Flow rate CDF

cis-11
cis-22

cisx-01
cisx-11
cisx-21
cisx-31

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

10/18(Tue) 10/19(Wed) 10/20(Thu) 10/21(Fri) 10/22(Sat) 10/23(Sun) 10/24(Mon)

wcli 20111018

users

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18

C
D

F

Active Users

cis

Fig. 10. Measurement data plot for a week (10/18–10/24, 2011). Flow setup time, RTT delay, wget delay, CPU usage, number of active flows, flow arrival
rate, and number of users are shown (in this order). The left column shows time series, and the right column shows the CDF.

M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx 19
table, or the switch is forwarding packet in software. To
distinguish this, we look further into the control channel
Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
dump to see whether flow_mod (flow table installation) is
properly done or not.
enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

(a) # of packet in messages re-
 ceived by controller

(b) # of packets that were trans-
mitted from buffer

(c) Average flow setup time

Fig. 11. Summary of the behavior of a Broadcom-based OpenFlow switch for different ingress flow rates. Comparing the different characteristics of the data
plane and the control plane shows where the switch becomes too loaded to handle reactive flow handling. In the above example, the flow setup time grows
greater than 100 ms when the flow ingress rate exceeds 110 flows/s. Thus, we recommend using this switch only within that flow ingress rate.

Table 1
Typical symptom and possible root cause.

Case Symptom Possible root cause

FST RTT CPU #Flow Flow rate

1 High � Low � Low Controller
2 High Low High � Low Switch is overloaded
3 High Low High � High Burst flow arrival
4 High Low Low � � Switch software
5 High High � High High Flow table overflow
6 Low High � � � Switch software or the controller

20 M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx
Another possible scenario (which is not shown in the
table) is when the wget delay is too high, while all other
metrics are normal. After eliminating the possibility of
web server issues (by inspecting the wget delay on the
non-OpenFlow network), we guessed the reason to be the
switch being unable to handle the high flow arrival rate,
despite processing pre-cached entries being fine.

In all above examples, though we need to inspect the
control channel dump to accurately identify the root cause,
correlating the time-series plots helps in shortlisting the
possible root causes, and reducing the amount of work in
network performance debugging.

9.4. Network debugging

The SDN architecture, with its centralized vantage
points, allows for easier debugging and troubleshooting
of network problems. The main information that SDN pro-
vides, beyond what legacy networks provide, are: (1) the
flow-table routing information, (2) the flow-level traffic
statistics using stats_request command, (3) the sequence
of events that occurred in the network based on the control
message exchange, and (4) the complete network topol-
ogy. To make the most of this information, we developed
several tools to assist in network debugging [35], such as
the OpenFlow plugin for wireshark. The tools either col-
lected data through the API that controllers provided, or
processed packet dump trace of the communication be-
tween the controller and the switches.

The most effective approach for debugging network
problems was inspecting the control channel traffic
between the controller and the switch using wireshark,
Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
and correlating this with the observations from the data
plane servers or monitors. This debugging approach is
well-suited to identify bugs in the control applications,
e.g., an incorrect rule that never gets matched, as well as
non-OpenFlow issues in the end-device, e.g., an IP address
conflict caused by an Apple laptop with state-caching
issues.

Since all OpenFlow-enabled commercial switches used
in Phase 1 deployment were based on Stanford reference
code, interoperability among them did not turn out to be
a big issue. Still there were bugs or vendor-dependent
behavior, such as the logic behind inserting flow-table en-
tries, that were exposed in a multi-vendor network after
extensive use. Our deployment played a significant role
in finding these bugs or interoperability issues, and we
worked closely with vendors to fix them. We present 2 is-
sues (1 for controller and 1 for switch) that were uncov-
ered by our deployment:

� Incomplete handover: When a Wi-Fi Terminal B moved
from one Wi-Fi AP to another AP while running ping

to Terminal A, the ICMP reply stopped being received
by the Wi-Fi Terminal B. To debug this issue, we
inspected the flow-table of all the involved switches,
as well as the control communication between the
involved switches and the controller. Fig. 12 illustrates
the root cause that we found: After handover to the
new AP, the flow table entry in switch X and Y were
not updated for the ICMP reply flow, causing the ICMP
reply packet to be sent to the old location of the Wi-Fi
Terminal B. We fixed this bug by changing the control-
ler logic such that when the controller detected the
enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

Fig. 12. Debugging packet loss after handover. The left figure illustrates the flow tables before handover, and the right figure shows after handover.
Although all switches updated the entries for the ICMP request from Terminal B, they did not have the right entry for the ICMP reply from Terminal A. The
first entry cached in Switch X’s flow-table is, thus, the root cause of the loss.

Fig. 13. Debugging non-deterministic loss of TCP SYN/SYN-ACK packets.

M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx 21
change in location of a terminal (through packet_in from
a new Wi-Fi AP Z) it flushed the flow entries related to
the reverse direction traffic, and reprogrammed the
switches en route.
� Race condition bug in a switch: We observed poor web

browsing experience in our production network. We
debugged that by dumping the TCP SYN and SYN-ACK
packets of the HTTP session, at the client-side and ser-
ver-side, using tcpdump, and correlated them with
the control plane events observed using wireshark.
We observed an increased drop rate for the TCP session
handshake packets. The correlation, further, revealed
that the control plane events were as expected, but
the packets were not properly forwarded by the data
plane, even though the flow-table of each switch in
the network was accurate—this is very intriguing of
course. This loss of the TCP handshake packet explained
poor user experience for browsing, because the TCP
session waits for a prolonged TCP timeout (in the order
of seconds). However, the handshake packet loss behav-
ior was not consistent with everything else. So we
hypothesized that there was a race condition, as shown
Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
in Fig. 13. With this race condition, a packet (the TCP
SYN packet) arriving at the second hop switch, while
the switch is in the middle of processing a flow_mod
operation (to insert a new rule), is sometimes dropped.
To confirm this, we placed a delay box between the 1st
and 2nd switch, and found that the packet is not
dropped. That is, if we delay the packet enough (so as
to give time to the second switch to finish processing
the flow_mod message), everything works just fine.

These examples confirm that SDN enables debugging of
network problems by inspecting the control channel traffic
between the controller and the switch, and correlating this
with the observations from the data plane servers or mon-
itors. This approach shows large potential for future auto-
mated troubleshooting.
10. Concluding remarks

Software Defined Networking (SDN) has captured the
imagination of the network industry and research commu-
enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

22 M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx
nity. Leading network owners and operators such as Goo-
gle, Verizon, NTT Communications, Deutsche Telekom,
Microsoft, Yahoo!, and others, argue that SDN will help
them build networks that would be simpler, easy to cus-
tomize and program, and also easier to manage. They ex-
pect that these attributes of SDN will lead to networks
with reduced capital and operational expenses and in-
creased revenues due to new services enabled. They also
believe SDN with virtualization would allow the network
to be a programmable pluggable component of the emerg-
ing cloud infrastructure for multi-tenancy operation. Most
network equipment and software vendors are embracing
SDN to create products and solutions to meet the expecta-
tions of the network owners and operators, and bring new
innovations to the market place. The network research
community considers SDN an opportunity to help shape
the future of networking, and bring new innovations to
the market place. In short, SDN has emerged as the new
paradigm of networking.

In this paper, we report on early deployments of SDN on
university campuses. The deployments, combined with the
applications and experimentation, played an important
role in demonstrating the SDN potential, and gain the com-
munity’s mindshare. They also demonstrated the key value
proposition of SDN; proved that the physical infrastructure
can support multiple concurrent virtual networks for
research and production use; revealed a number of perfor-
mance tradeoffs; provided valuable input to the OpenFlow
specification process; and helped vendors and help grow
the larger ecosystem. The following is a list of our highlevel
takeaways from this experience:

� One of our goals has been to show how SDN infrastruc-
ture, with slicing and virtualization, can support both
research and production traffic on the same physical
infrastructure. We demonstrated feasibility of support-
ing both research and production traffic on our group’s
operational infrastructure. However it is not easy to do
in the short term. SDN is evolving very rapidly and
much effort is required just to create a production
deployment. If it has to also support research and
experimentation, then getting the whole infrastructure
to be stable and useable represents a big challenge.
The next round of commercial SDN products, with sup-
port for network virtualization, will make it much eas-
ier to achieve this important capability.
� The SDN deployments required a new set of measure-

ment and debugging tools and processes. On the other
hand, SDN architecture helps in network measurement
and debugging because it provides the flow table as an
abstraction of a switch, and the controller as a central
vantage point for all flow table modifications. We took
advantage of these architecture features to debug a
few important and difficult network issues, and this
shows an important direction for network trouble-
shooting that is enabled by SDN.
� Visually compelling experiments and demonstrations

were critical to showing the power of SDN, and that
is, with SDN, a relatively simple software program can
create a new network control and management capabil-
ity. These demonstrations helped win people over
Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
including skeptics. Although the value of good demon-
strations is well known, it is not easy to practice and
many ignore it.
� Deployments and good demonstrations require signifi-

cant sustained effort over a few years to achieve the
impact that is possible. Experimentation on a real
deployment with users has several benefits. However,
it has limitations: A researcher cannot create arbitrary
topologies, cannot scale the network or the number of
end users, and cannot experiment with arbitrary traffic
mix. Furthermore, a real deployment is time and
resource intensive. This led some of our colleagues to
develop Mininet to help researchers and developers to
quickly emulate SDN of an arbitrary topology, scale,
and traffic mix. On this emulated network, one can
develop and experiment with real SDN control stack
that can subsequently be deployed on a physical infra-
structure without any changes [25]. We expect the
mix of Mininet and real deployments to cover a broader
spectrum for research and development.
� These deployments helped create a collaborative and

productive relationship between researchers and net-
work administrators on campuses, and between the
university and network vendor community. We pro-
vided OpenFlow software reference implementations
to the vendors, offered to test, profile, use OpenFlow
enabled switches and controllers, provided bug reports,
and suggested new features to make the products bet-
ter. For example the universities worked with switch
vendors such as Cisco, HP, Juniper, NEC, and Pronto,
and controller vendors such as Nicira, NEC, and Big-
Switch. HP has been a vendor of choice for the legacy
network at Stanford, and it provided OpenFlow-enabled
switches very early to be used in our production setting.
NEC offered high performance OpenFlow-enabled
switches and controllers for our research and experi-
mentation. Pronto provided a very low-cost OpenFlow
switch that universities found very attractive for
research and experimentation. Nicira participated in
all aspects of SDN, and provided open-source SDN con-
trollers, including NOX and SNAC, that played a very
important role in early deployments and early success
of SDN. Subsequently, BigSwitch provided a controller
for the production use. This kind of collaboration
between universities and networking vendors has been
missing for many years and has been a drag on the field.
It is important for both the vendor and university com-
munities to build on the success of SDN deployments,
and together help move networking and SDN forward.

Despite all the successes of SDN so far, it is still in an
early stage of development. We as a community have com-
pleted the first stage of SDN development to demonstrate
its potential and articulate an exciting research agenda to
realize its full potential for various domains of use, includ-
ing data centers, service providers, enterprises, and homes.
As we, and others, pursue this research agenda for the next
several years, we will require many more deployments and
much experimentation. The three-year, four-phased
deployment effort reported in this paper is just the
beginning.
enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx 23
Acknowledgements

Many individuals from vendor organizations, university
IT departments, GENI Project Office (GPO), and researchers
and experimenters from various universities supported
various deployments reported in this paper. We want to
thank the following people based on their primary contri-
bution to this work:

OpenFlow specification and reference implementa-
tions. Martin Casado, Ben Pfaff, Justin Petit, Dan
Talayco, Glen Gibb, Brandon Heller, Yiannis Yiakoumis,
David Erickson, Rob Sherwood, Mikio Hara, Kyriakos
Zarifis, James Murphy McCauley, Nick Bastin.
Commercial OpenFlow implementations. Jean
Tourrilhes, Sujata Banerjee, Praveen Yalagandula,
Charles Clark, Rick McGeer, Atsushi Iwata, Masanori
Takashima, Yasunobu Chiba, Tatsuya Yabe, Sailesh
Kumar, Valentina Alaria, Pere Monclus, Flavio Bonomi,
Lin Du, James Liao, Oscar Ham, Adam Covington.
Stanford CS network deployment. Charles M. Orgish,
Miles Davis.
Demonstrations. Larry Peterson, Sapan Bhatia,
Brighten Godfrey, Aaron Rosen, Vjeko Brajkovic, Mario
Flajslik, Nikhil Handigol, Te-Yuan Huang, Peyman
Kazemian, Jad Naous, David Underhill, Kok-Kiong Yap,
Yiannis Yiakoumis, Hongyi Zeng, Michael Chan.
GENI Project Office, NLR, Internet2. Joshua Smift,
Heidi Picher Dempsey, Chaos Golubitsky, Aaron
Helsinger, Niky Riga, Chris Small, Matthew Davy, Ron
Milford.
GENI campus deployments. Aditya Akella, Nick
Feamster, Russ Clark, Ivan Seskar, Dipankar Raychaudhuri,
Arvind Krishnamurthy, Tom Anderson, Kuang-Ching
Wang, Dan Schmiedt, Christopher Tengi, Scott Karlin,
Jennifer Rexford, Mike Freedman, Glenn Evans, Sajindra
Pradhananga, Bradley Collins, Shridatt Sugrim, Ayaka
Koshibe, Theophilus A. Benson, Aaron Gember, Hyojoon
Kim, Tim Upthegrove, Ali Sydney.
References

[1] A. Anand, V. Sekar, A. Akella, Smartre: an architecture for
coordinated network-wide redundancy elimination, in: ACM
Sigcomm, 2009.

[2] Beacon Controller. <http://www.openflowhub.org/display/Beacon>.
[3] Tunneling Capsulator. <http://www.openflow.org/wk/index.php/

Tunneling_-_Capsulator>.
[4] M. Casado, M.J. Freedman, J. Pettit, J. Luo, N. McKeown, S. Shenker,

Ethane: taking control of the enterprise, in: ACM Sigcomm, 2007.
[5] M. Casado, T. Garfinkel, A. Akella, M.J. Freedman, D. Boneh, N.

McKeown, S. Shenker, Sane: a protection architecture for enterprise
networks, in: Proceedings of the 15th Conference on USENIX
Security Symposium, vol. 15, 2006.

[6] Controller Performance Comparisons. <http://www.openflow.org/
wk/index.php/Controller_Performance_Comparisons>.

[7] David Erickson et al., A demonstration of virtual machine mobility in
an OpenFlow network, in: Proc. of ACM SIGCOMM (Demo), 2008.

[8] Deploying OpenFlow. <http://www.openflow.org/wp/deploy-
openflow>.

[9] A. Doria, J. Hadi Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, R.
Gopal, J. Halpern, Forwarding and Control Element Separation
(ForCES) Protocol Specification, 2010.

[10] Expedient Clearinghouse. <http://www.openflow.org/wk/index.php/
Expedient>.
Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
[11] NSF Future Internet Architecture (FIA) Project. <http://www.nets-
fia.net>.

[12] EU FP7 Future Internet Research and Experimentation (FIRE).
<http://cordis.europa.eu/fp7/ict/fire>.

[13] G. Gibb, D. Underhill, A. Covington, T. Yabe, N. McKeown, OpenPipes:
prototyping high-speed networking systems, in: Proc. of ACM
SIGCOMM (Demo), 2009.

[14] A. Galis, B. Plattner, J.M. Smith, S.G. Denazis, E. Moeller, H. Guo, C.
Klein, J. Serrat, J. Laarhuis, G.T. Karetsos, C. Todd, A flexible IP active
networks architecture, in: IWAN, Lecture Notes in Computer Science,
vol. 1942, Springer, 2000.

[15] GENI: Global Environment for Network Innovations. <http://
www.geni.net>.

[16] P.B. Godfrey, I. Ganichev, S. Shenker, I. Stoica, Pathlet routing, in:
ACM Sigcomm, 2009.

[17] Going With the Flow: Google’s Secret Switch to the Next Wave of
Networking, April 2012. <http://www.wired.com/wiredenterprise/
2012/04/going-with-the-flow-google>.

[18] A. Greenberg, G. Hjalmtysson, D.A. Maltz, A. Myers, J. Rexford, G. Xie,
H. Yan, J. Zhan, H. Zhang, A clean slate 4d approach to network
control and management, SIGCOMM Computer Communication
Review 35 (5) (2005).

[19] G.P. Group, Geni design principles, Computer 39 (2006) 102–105.
[20] N. Handigol, B. Heller, V. Jeyakumar, D. Mazires, N. McKeown, Where

is the debugger for my software-defined network? in: Proceedings of
Hot Topics in Software Defined Networking (HotSDN), 2012.

[21] B. Heller, R. Sherwood, N. McKeown, The controller placement
problem, in: Proceedings of Hot Topics in Software Defined
Networking (HotSDN), 2012.

[22] Internet2 Network. <http://www.internet2.edu>.
[23] New Generation Network testbed jgn-x. <http://www.jgn.nict.go.jp/

jgn2plus_archive/english/index.html>.
[24] P. Kazemian, G. Varghese, N. McKeown, Header space analysis: static

checking for networks, in: Proceedings of 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2012.

[25] B. Lantz, B. Heller, N. McKeown, A network in a laptop: rapid
prototyping for software-defined networks, in: Proceedings of the
Ninth ACM SIGCOMM Workshop on Hot Topics in Networks, 2010.

[26] M.S. Clos et al., Design and implementation of the OFELIA FP7
facility: the European OpenFlow testbed, Computer Networks
Journal, Special Issue on Future Internet Testbeds.

[27] Maestro Platform. <http://code.google.com/p/maestro-platform>.
[28] N. McKeown, Making sdns work, Keynote talk at Open Networking

Summit, 2012. <http://opennetsummit.org/talks/ONS2012/
mckeown-wed-keynote.ppt>.

[29] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, R. Johari, Plug-
n-Serve: Load-balancing web traffic using OpenFlow, in: Proc. of
ACM SIGCOMM (Demo), 2009.

[30] Netfpga Platform. <http://netfpga.org>.
[31] Nicira, Inc. <http://www.nicira.com>.
[32] NOX – An OpenFlow Controller. <http://www.noxrepo.org>.
[33] NTT COM Announces First Carrier-based OpenFlow Service, June

2012. <http://www.nttcom.tv/2012/06/13/ntt-com-announces-
first-carrier-based-openflow-service>.

[34] OFlops and CBench for OpenFlow Benchmarking. <http://
www.openflowswitch.org/wk/index.php/Oflops>.

[35] Monitoring and Debugging Tools for OpenFlow-enabled Networks.
<http://www.openflow.org/foswiki/bin/view/OpenFlow/
Deployment/HOWTO/ProductionSetup/Debugging>.

[36] Omni Client. <http://trac.gpolab.bbn.com/gcf/wiki/Omni>.
[37] ON.Lab. <http://www.onlab.us>.
[38] Open Networking Summit. <http://www.opennetsummit.org>.
[39] OpenFlow Tutorial. <http://www.openflow.org/wk/index.php/

OpenFlow_Tutorial>.
[40] Opt-in Manager. <http://www.openflow.org/wk/index.php/

OptIn_Manager>.
[41] L. Peterson, A. Bavier, M.E. Fiuczynski, S. Muir, Experiences building

planetlab, in: Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), 2006.

[42] Plastic Slices Project Plan. <http://groups.geni.net/geni/wiki/
GEC11PlasticSlices>.

[43] R. Sherwood et al., Carving research slices out of your production
networks with openflow, SIGCOMM Computer Communication
Review 40 (1) (2010).

[44] The Future of Networking, and the Past of Protocols. <http://
www.opennetsummit.org/talks/shenker-tue.pdf>.

[45] R. Sherwood, G. Gibb, K. kiong Yap, M. Casado, N. Mckeown, G.
Parulkar, Can the production network be the testbed, in: USENIX
OSDI, 2010.
enFlow and Software-defined Networking through deployments,

http://www.openflowhub.org/display/Beacon
http://www.openflow.org/wk/index.php/Tunneling_-_Capsulator
http://www.openflow.org/wk/index.php/Tunneling_-_Capsulator
http://www.openflow.org/wk/index.php/Controller_Performance_Comparisons
http://www.openflow.org/wk/index.php/Controller_Performance_Comparisons
http://www.openflow.org/wp/deploy-openflow
http://www.openflow.org/wp/deploy-openflow
http://www.openflow.org/wk/index.php/Expedient
http://www.openflow.org/wk/index.php/Expedient
http://www.nets-fia.net
http://www.nets-fia.net
http://cordis.europa.eu/fp7/ict/fire
http://refhub.elsevier.com/S1389-1286(13)00371-X/h0005
http://refhub.elsevier.com/S1389-1286(13)00371-X/h0005
http://refhub.elsevier.com/S1389-1286(13)00371-X/h0005
http://refhub.elsevier.com/S1389-1286(13)00371-X/h0005
http://refhub.elsevier.com/S1389-1286(13)00371-X/h0005
http://www.geni.net
http://www.geni.net
http://www.wired.com/wiredenterprise/2012/04/going-with-the-flow-google
http://www.wired.com/wiredenterprise/2012/04/going-with-the-flow-google
http://refhub.elsevier.com/S1389-1286(13)00371-X/h0010
http://refhub.elsevier.com/S1389-1286(13)00371-X/h0010
http://refhub.elsevier.com/S1389-1286(13)00371-X/h0010
http://refhub.elsevier.com/S1389-1286(13)00371-X/h0010
http://refhub.elsevier.com/S1389-1286(13)00371-X/h0015
http://www.internet2.edu
http://www.jgn.nict.go.jp/jgn2plus_archive/english/index.html
http://www.jgn.nict.go.jp/jgn2plus_archive/english/index.html
http://code.google.com/p/maestro-platform
http://opennetsummit.org/talks/ONS2012/mckeown-wed-keynote.ppt
http://opennetsummit.org/talks/ONS2012/mckeown-wed-keynote.ppt
http://netfpga.org
http://www.nicira.com
http://www.noxrepo.org
http://www.nttcom.tv/2012/06/13/ntt-com-announces-first-carrier-based-openflow-service
http://www.nttcom.tv/2012/06/13/ntt-com-announces-first-carrier-based-openflow-service
http://www.openflowswitch.org/wk/index.php/Oflops
http://www.openflowswitch.org/wk/index.php/Oflops
http://www.openflow.org/foswiki/bin/view/OpenFlow/Deployment/HOWTO/ProductionSetup/Debugging
http://www.openflow.org/foswiki/bin/view/OpenFlow/Deployment/HOWTO/ProductionSetup/Debugging
http://trac.gpolab.bbn.com/gcf/wiki/Omni
http://www.onlab.us
http://www.opennetsummit.org
http://www.openflow.org/wk/index.php/OpenFlow_Tutorial
http://www.openflow.org/wk/index.php/OpenFlow_Tutorial
http://www.openflow.org/wk/index.php/OptIn_Manager
http://www.openflow.org/wk/index.php/OptIn_Manager
http://groups.geni.net/geni/wiki/GEC11PlasticSlices
http://groups.geni.net/geni/wiki/GEC11PlasticSlices
http://refhub.elsevier.com/S1389-1286(13)00371-X/h0020
http://refhub.elsevier.com/S1389-1286(13)00371-X/h0020
http://refhub.elsevier.com/S1389-1286(13)00371-X/h0020
http://www.opennetsummit.org/talks/shenker-tue.pdf
http://www.opennetsummit.org/talks/shenker-tue.pdf
http://dx.doi.org/10.1016/j.bjp.2013.10.011

24 M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx
[46] Simple Network Access Control (SNAC). <http://www.openflow.org/
wp/snac>.

[47] D.L. Tennenhouse, D. Wetherall, Towards an active network
architecture, ACM Computer Communication Review 37 (5) (2007)
81–94.

[48] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, R. Sherwood, On
controller performance in software-defined networks, in: 2nd
USENIX Workshop on Hot Topics in Management of Internet,
Cloud, and Enterprise Networks and Services (Hot-ICE), 2012.

[49] A. Wundsam, D. Levin, S. Seetharaman, A. Feldmann, OFRewind:
enabling record and replay troubleshooting for networks, in: Proc.
USENIX ATC, 2011.

[50] K.-K. Yap, S. Katti, G. Parulkar, N. McKeown, Delivering capacity for
the mobile internet by stitching together networks, in: Proceedings
of the 2010 ACM Workshop on Wireless of the Students, by the
Students, for the Students (S3), 2010.

[51] K.-K. Yap, M. Kobayashi, D. Underhill, S. Seetharaman, P. Kazemian,
N. McKeown, The stanford OpenRoads deployment, in: Proceedings
of the 4th ACM International Workshop on Experimental Evaluation
and Characterization (WINTECH), 2009.

Masayoshi Kobayashi joined NEC in 1997 and
has been a Principal Researcher since 2010.
He is also a member of the Open Networking
Laboratory since it was established in 2011.
Previously, he was a visiting scholar at Stan-
ford University (2007–2012) and started the
first ever OpenFlow deployments and also
lead the OpenFlow Wi-Fi deployments across
several buildings of Stanford University. He
received his B.E. degree in Applied Mathe-
matics and Physics and his M.E. degree in
Applied Systems Science from Kyoto Univer-

sity in 1995 and 1997, respectively.
Srini Seetharaman is the Technical Lead for
Software-defined Networking (SDN) at Deut-
sche Telekom Innovation Center. Previously
he was a member of the OpenFlow/SDN team
at Stanford University, between 2008 and
2011, where he lead the SDN deployments in
several nation-wide campus enterprise net-
works, including Stanford. He is a recipient of
the Future Internet Design grant from the US
National Science Foundation (NSF) for his
proposal on Service Virtualization. He holds a
Ph.D. in Computer Science from the Georgia

Institute of Technology.
Guru Parulkar is the Executive Director of
Open Networking Research Center and a
Consulting Professor of Electrical Engineering
at Stanford University. He is also the Execu-
tive Director of Open Networking Lab. Previ-
ously, he served as Executive Director of the
Clean Slate Internet Design Program at Stan-
ford where OpenFlow and SDN were con-
ceived and developed. Guru has been in the
field of networking for over 25 years and has
worked in academia (Washington University
in St. Louis and now Stanford), startups

(Growth Networks and others), a large company (Cisco), a top tier venture
capital firm (NEA), and a federal funding agency (NSF). Guru received PhD
in Computer Science from the University of Delaware in 1987. He is a

recipient of Alumni Outstanding Achievement award and Frank A. Pehr-
son Graduate Student Achievement award from the University of Dela-
ware.
Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
Guido Appenzeller is the Co-Founder and
CEO of Big Switch Networks. Before co-
founding Big Switch Networks, he was a
Consulting Assistant Professor at Stanford
University and head of the Clean Slate Lab
where he led the team that developed the
OpenFlow v1.0 standard and the reference
implementations. Guido previously was CTO
of Voltage Security, an enterprise software
company that he co-founded. He was named a
Technology Pioneer by the World Economic
Forum and holds a PhD in Computer Science

from Stanford University and a MS in Physics from the Karlsruhe Institute
of Technology.
Joseph Little is a Principal Systems Architect
in the Electrical Engineering department at
Stanford University, where he has helped with
first time implementation and integration of
many Stanford and externally designed tech-
nologies over the last two decades.
Johan van Reijendam is a Network Security
Engineer at Stanford University where he
supports the core network infrastructure.
Most of his time he is spent on researching,
implementing, and integrating new technol-
ogies for the campus. Most recently he has
been focused on building out Stanford’s SDN/
OpenFlow campus core network.
Paul Weissmann is currently a Manager at
KPMG Security Consulting after serving the
Deutsche Telekom group for nearly 10 years.
Between 2009 to 2011, he was a visiting
scholar at the Clean Slate Laboratory of Stan-
ford University and a researcher of Deutsche
Telekom Laboratories in Berlin. He holds a
MBA from HTW Berlin and has extensive
hands-on experience in network management
and security auditing.
enFlow and Software-defined Networking through deployments,

http://www.openflow.org/wp/snac
http://www.openflow.org/wp/snac
http://refhub.elsevier.com/S1389-1286(13)00371-X/h0025
http://refhub.elsevier.com/S1389-1286(13)00371-X/h0025
http://refhub.elsevier.com/S1389-1286(13)00371-X/h0025
http://dx.doi.org/10.1016/j.bjp.2013.10.011

M. Kobayashi et al. / Computer Networks xxx (2013) xxx–xxx 25
Nick McKeown (PhD/MS UC Berkeley ’95/’92;
B.E Univ. of Leeds, ’86) is the Kleiner Perkins,
Mayfield and Sequoia Professor of Electrical
Engineering and Computer Science at Stan-
ford University, and Faculty Director of the
Open Networking Research Center. In 1995,
he helped architect Cisco’s GSR 12000 router.
In 1997, Nick co-founded Abrizio Inc.
(acquired by PMC-Sierra), where he was CTO.
He was co-founder and CEO of Nemo (‘‘Net-
work Memory’’), which is now part of Cisco. In
2007 he co-founded Nicira (acquired by

VMware) with Martin Casado and Scott Shenker. In 2011, he co-founded
the Open Networking Foundation (ONF) with Scott Shenker. Nick is a
Please cite this article in press as: M. Kobayashi et al., Maturing of Op
Comput. Netw. (2013), http://dx.doi.org/10.1016/j.bjp.2013.10.011
member of the US National Academy of Engineering (NAE), a Fellow of the
Royal Academy of Engineering (UK), Fellow of the IEEE and the ACM. In
2005, he was awarded the British Computer Society Lovelace Medal, in
2009 the IEEE Kobayashi Computer and Communications Award and in
2012 the ACM Sigcomm Lifetime Achievement Award. Nick is the STMi-
croelectronics Faculty Scholar, the Robert Noyce Faculty Fellow, a Fellow
of the Powell Foundation and the Alfred P. Sloan Foundation, and reci-
pient of a CAREER award from the National Science Foundation. In 2000,
he received the IEEE Rice Award for the best paper in communications
theory.
enFlow and Software-defined Networking through deployments,

http://dx.doi.org/10.1016/j.bjp.2013.10.011

	Maturing of OpenFlow and Software-defined Networking through deployments
	1 Introduction
	1.1 Performance and trade-offs
	1.2 SDN architecture and OpenFlow specification
	1.3 Paper organization

	2 Origins and background
	2.1 SDN reference design
	2.1.1 Flow processing logic
	2.1.2 Control plane operation
	2.1.3 Topology discovery

	2.2 Performance and scalability

	3 Phase 1: Proof of concept
	3.1 Infrastructure built
	3.2 Key milestone experiments
	3.3 Lessons learned
	3.3.1 Performance and SDN design
	3.3.2 Living with legacy networks

	4 Phase 2: Slicing and scaling SDN deployment
	4.1 Infrastructure built
	4.2 Key milestone experiments
	4.3 Lessons learned

	5 Phase 3: End-to-end deployment with a national footprint
	5.1 Infrastructure built
	5.2 Key milestone experiments
	5.3 Lessons learned
	5.3.1 Nation-wide SDN experiments and demonstrations
	5.3.2 Network operation

	6 Phase 4: Production deployment
	6.1 OpenFlow Wi-Fi network
	6.2 Group production network
	6.3 Limited production deployment in EE
	6.4 Lessons learned

	7 Input to OpenFlow specification
	7.1 Deployment based feedback
	7.2 Experimentation based feedback

	8 Input to SDN architecture and components
	8.1 Input to FlowVisor design and implementation
	8.2 Input to other software components

	9 Monitoring and debugging
	9.1 Measurement infrastructure and performance metrics
	9.2 Example performance snapshot
	9.3 Network performance diagnosis process
	9.4 Network debugging

	10 Concluding remarks
	Acknowledgements
	References

