SERVICE-ORIENTED COMPUTING
Semantics, Processes, Agents

Munindar P. Singh
North Carolina State University, USA

Michael N. Huhns
University of South Carolina, USA

John Wiley & Sons, Ltd






Innodata
0470091495.jpg





Service-Oriented Computing






SERVICE-ORIENTED COMPUTING
Semantics, Processes, Agents

Munindar P. Singh
North Carolina State University, USA

Michael N. Huhns
University of South Carolina, USA

John Wiley & Sons, Ltd



Copyright © 2005 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under
the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright
Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the
Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd,
The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or
faxed to (+44) 1243 770571.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada MOW 1L1

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-09148-7

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire
This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two
trees are planted for each one used for paper production.


http://www.wileyeurope.com
http://www.wiley.com

To the Singh and Huhns families, especially
To Mona on our fifteenth anniversary — Munindar
To Mary on our thirtieth anniversary — Mike






Contents

About the Authors xix
Preface xxi
Note to the Reader xxvii
Acknowledgments XXixX
Figures XXX
Tables XXXV
Listings XXXVi
I Basics 1
1 Computing with Services 3
1.1 VisionsfortheWeb . . . . . .. ... .. . ... ... . 3
1.1.1 SemanticWeb . . . ... ... L 4

1.1.2 Peer-to-Peer Computing . . . . . . ... ... ... ... ..... 4

1.1.3  Processes and Protocols . . . . ... ... ... ... ....... 5

1.1.4  PragmaticWeb . . . . . ... ... ... ... ... 5

1.2 PrecurSors . . . . . . . . e e e e e e 6
1.3 OpenEnvironments . . . . ... ... ... ... ... ... 7
1.3.1 AUONOmY . . . . .. e e e 8

1.3.2  Heterogeneity . . . . . . . ... . ... 9

1.33  Dynamism . . ... ... ... ... 10

1.3.4  Challenges . . . .. .. ... 10

1.4 ServicesIntroduced . . . ... ... ... ... ... ... 11
15 Using Services . . . . . . . . ..o e 12
1.6 TheEvolvingWeb . . . . . . . .. .. .. . ... 13

vii



viii

Contents

1.7  Standards Bodies . . . . .. .. ... ... ... ... 14
1.8 OverviewofthisBook . . . . ... ... ... ... .. ... ........ 15
1.9 Notes . . . . . . o e e e e 17
1.10 EXErCiSes . . . . . . v v i i i e e e e e e e e 17
Basic Standards for Web Services 19
2.1 XML . . . e 21
22 SOAP . . . e 21
22,1 Processing . . . ... ..o e e 23
222 BodyandHeader . .. .. ... ... .. ...... . . ...... 23
223 Faults . . . . . . . . . . . . 24
224 MessageExchange . . . . ... ... .. oL 25
225 Limitations . . . . . . . . ... e 25
23 WSDL . . . e e 26
231 Concepts . . ... e e 29
2.3.2 OperationTypes . . . . . .. ... .. ... ... ... 29
233 Creating WSDLModels . . . ... ... ... ... ........ 30
2.4 Directory SErviCes . . . . . . . o i e e e e e e 30
2.5 UDDI . . . . . e e e 31
25.1 Conceptual Model . . ... ... ... ... .. ... 31
252 UDDIAPIs. . . . .. . . . e 32
2.6 NOES . . . . . e e e e e 42
2.7  EXEICISES . . . . . . v i e e e e e e e 42
Programming Web Services 49
3.1  Representational State Transfer . . . . . .. ... ... ... .. ...... 49
32 ARESTfulExample . . . . . .. ... ... .. . 50
33 SOAPandREST . . . . . . . . . . . . . . . e 54
34  Developing and Using Web Services . . . . . .. ... ... .. ...... 54
34.1 ProgrammingWSDL . . ... ... ... .. ........ . ... 55
342 Javafor Web Services . . . . ... ... ... .. ... ... ... 55
343  NET . .. .. e 57
3.5  Web Services Interoperability . . . . ... ... ... ... ... ...... 57
3.6 NOES . . . . . o e 58
377  EXEICISeS . . . . . v o i e e e e 58
Enterprise Architectures 61
4.1  Enterprise Integration . . . . . . . .. .. ... ... .. 61
42 J2EE . . .. e 62
43  NET . . . . . e 64
4.4  Model-Driven Architecture . . . . . . . .. .. .. ... ... 66
45 Legacy Systems . . . . . . . .. e 67
4.6 NOES . . . . v i e e e e 68



Contents

ix

4.7

Exercises

5 Principles of Service-Oriented Computing

II

6

5.1 UseCases . . . . . v v v vt e e e e e e e e e e e e e
5.1.1  Intraenterprise Interoperation . . . . . ... ... ... .. ....
5.1.2  Interenterprise Interoperation . . . . . . ... ... ... .....
5.1.3  Application Configuration . . . . . .. ... ... ... ......
5.1.4  Dynamic Selection . . . . . . ... ... ... ...
5.1.5  Software Fault Tolerance . . . . . ... ... ............
506 Grid. . . . .. e
5.1.7  Utility Computing . . . . . . . . .. e
5.1.8  Software Development . . . . . . . ... ... ... ........
5.2 Service-Oriented Architectures . . . . . . . . . . . ... ... ... ...
5.2.1 Elements of Service-Oriented Architectures . . . . . . . .. .. ..
5.2.2  RPC versus Document Orientation . . . .. ... .........
5.3  Major Benefits of Service-Oriented Computing . . . . . . . ... ......
54  Composing ServiCes . . . . . . . . vt e
54.1 Goalsof Composition . . . . ... .. ... ... .........
5.4.2  Challenges for Composition . . . . . . . ... ... ... .....
5.5 Spiritofthe Approach . . . . . . . . ... .
5.6  EXxercises . . . . ... e e
Description
Modeling and Representation
6.1  Modeling to Enable Interoperation . . . . ... ... ... .........
6.2  Integration versus Interoperation . . . . . ... ... ... ... ......
6.2.1  Declarative versus Procedural Representations . . . . .. ... ..
6.2.2  Interoperation . . . . . . ... ...
6.23 Layered View . . . . . . . .. ...
6.2.4  Interoperation Trends . . . .. .. ... ... ... ... .....
6.3 CommonOntologies . . . . . . . . . . . . i i e e
6.3.1  Ontologies: A Definition . . . . . . . ... ... ... .......
6.3.2 A Shared Virtual World . . . ... ... ... ...........
6.3.3  Dimensions of Abstraction . . . . ... ... ... .........
634  ValueMaps . . . . . . .. e
6.4  Knowledge Representations . . . . . . . ... ... ... ... .. .. ...
6.4.1  Relationships Represented . . . . . . . ... ... ... ......
6.4.2  Frames versus Descriptions . . . . . . . ... ... ... .....
6.4.3  Ontology Language Features . . . .. ... ... .........
6.5 Elementary Algebra: Relations . . . . .. ... ... ... .. .......
6.6 Hierarchies . . . . . . . . . . . . .. e

69

71
71
72
73
74
74
75
75
75
76
76
76
77
78
79
80
80
83
83



Contents

6.6.1 Taxonomy . . . .. ... ... 107
6.6.2  Meronomy . . . . . ... e e e e 107
6.7 Modeling Fundamentals . . . . . . ... ... ... ... ... ... ... . 108
6.7.1  Perspectives for Conceptualization . . . ... ... ... ..... 109
6.7.2  Guidelines for Conceptualization . . . . ... ... ... ..... 110
6.7.3  Modularity and Extensibility . . . . . . ... ... ... L. 111
6.8 UML as an Ontology Language . . . . . . ... ... ... ......... 112
6.9  Alternative Terminology . . . . . . . . . .. ... ... ... 113
6.10 Notes . . . . . . . e 113
6.11 Exercises . . . . . . . . . 113
Resource Description Framework 119
7.1  MotivationforRDF . . . . .. ... ... ... ... .. 120
7.2 RDFBasics . . ... .. . . . e 121
7.2.1 Resources . . . .. .. .. .. .. ... 121
722  Literals . . . . . . .. 122
723  Properties. . . . . ... 122
724  Statements . . . . ... ... e e e e e e 122
7.3  KeyPrimitives . . . . . ... 123
7.3.1 Containers and Collections . . . . . . .. ... .. ... .. .... 123
7.3.2 Reification . . . . . ... 124
7.3.3 InformationModel . . . . . .. .. ... ... L. 125
74 XML Syntax . . . . ..o e e e 125
7.5 The N-Triples Notation . . . . .. .. ... ... ... ... ....... 127
7.6 StoringRDF . . . . . ... 128
777 RDFSchema. .. ...... ... ... . ... .. ... 128
7.8  Vocabularies in RDF Schema . . . . ... ... ... ... ......... 130
79O NOES . . . o o o e e 131
700 EBXercises . . . . . .o . i 131
Web Ontology Language 137
8.1  Getting Started withOWL . . . . .. . ... ... ... ... .. ..., 137
82 OWLDialects . . . . . ... . . . . 140
83 OWLConstructors . . . . . . . . . ..ot i i 140
83.1  Classes . . . . . . .. e 140
8.3.2 Properties . . . . . .. ... 141
8.3.3 ClassExpressions . . . . .. .. .. ... ... .. ........ 143
834 Collections . . . . . . ... ... e 148
84 OWLAXIOMS . . . . . . v ittt 148
84.1 Individuals . . . . ... ... ... 148
842 DataValues. . . . ... ... ... ... 149
843  Classes . . . . . . vt e 149

84.4  Properties . . . . . ... ..o 150



Contents

xi

8.5
8.6
8.7
8.8

8.9
8.10

8.4.5 Elementary Algebra: Functions . . . . ... ... ... ......
OWL Inference . . . . . . ... . ... ...
OWL Dialects Compared . . . . . ... ... ... ... .. .. .....
AnOWLExample . . . . . . . . . . ... e
Expressiveness . . . . . . . ... e e
8.8.1  Tree Model Definitions . . . . ... ... ... ... .......
8.8.2  Constraints among Individuals . . . . . ... ... ... ... ...
8.8.3  Specialized Properties . . . . . ... ... ... L.
8.84  Defeasible Concepts . . . . . . ... ... ... ... ...

9 Ontology Management

9.1
9.2

9.3
9.4

9.5
9.6
9.7

Language-Based Representations . . . . . . ... ... ... ........
Standard Ontologies . . . . . . . . . . . . . . e
9.2.1  Universal Business Language . . . .. ... ... ... ......
922 Cyc . .. e
9.2.3  IEEE Standard Upper Ontology . . . . . . .. ... ... .....
Standardization versus Semantic Reconciliation . . . . . . ... ... ...
Consensus Ontologies . . . . . . . . . . . . .. i
9.4.1  Analysis . . .. ... e
9.4.2  Reconciling Ontologies . . . ... ... ... ... ........
9.43  Correctness versus Relevance . . . . .. ... ... ... .....
Ontology Imports and Versioning . . . . . . ... ... ... .. ......
NOES . . . o o o e
Exercises . . . . . . . ..

III Engagement

10 Execution Models

10.1
10.2
10.3
10.4

10.5
10.6
10.7
10.8

Basic Interaction Models . . . . . .. .. ... L L
MesSaging . . . . ..o e e e
CORBA . . .
Peer-to-Peer Computing . . . . . . . . . .. ... o
10.4.1 Going Beyond Client-Server . . . . . . ... ... ... ......
10.4.2 Models of P2P Computing . . . . . . . . . ... ... ... ....
Jini . oL
Grid Computing . . . . . . . . . L
NOES . . . o o o e
Exercises . . . . . . ...

151
152
154
155
158
158
159
159
160
160
160

163
164
164
164
165
166
166
167
168
168
172
172
175
175



xii Contents
11 Transaction Concepts 193
11.1 Transactions . . . . . . . . . . . . i i i it e e e e 193
11.1.1 ACID Properties . . . . . .. ... ... ... ... .. ...... 195

11.1.2 Schedules. . . . . .. .. .. . ... . . .. 196

11.1.3 Locking. . . . . . . . . .. 200

11.1.4 Distributed Transactions . . . . . . .. ... ... ......... 202

11.2  Transactions over Composed Services . . . . . ... ... ... ...... 207
11.2.1 Architecture for Composed Services . . . . . . .. ... .. .... 207

11.2.2  Properties of Composed Transactions . . . . . . ... ... .... 209

11.2.3  Difficulty with Compositional Serializability . . . .. ... .. .. 210

11.2.4  Achieving Compositional Serializability . . .. ... .. ... .. 211

11.3 Limitations of Traditional Transactions . . . . . . . . ... ... ... ... 214
11.4 Relaxing Serializability . . . . . ... ... ... ... . ... .. 215
11.5 Extended TransactionModels . . . . . . .. ... ... ... .. ...... 216
1151 Sagas . . . . . . o e 218

11.5.2 Flex Transactions . . . . . . . . . . v v vt v v v v e i e oo 218

11.53 DOM Transactions . . . . . . . . v v v v v v v v v v e e 219

11.6 0 NOtes . . . . o v vttt e e e 219
117 EXErcises . . . . . . v v v i e e e e e e e e e e e 219
12 Coordination Frameworks for Web Services 225
12.1 WSCL: Web Services Conversation Language . . . ... ... ... .. .. 226
12.2  'WSCI: Web Service Choreography Interface . . . . . ... ... ... ... 231
12.3  WS-Coordination: Specifying Coordination . . . . ... ... ... .... 234
12.3.1 Coordination Service . . . . . . . . . . ... e 234

12.3.2  Activation Service . . . . . . . . . ..o 237

12.3.3 Registration Service . . . . . . . . . ... o 238

12.4  Web Service Transaction Types . . . . . . . . . . ... ... ... 240
12.5 BTP: Business Transaction Protocol . . . . . .. ... . ... ... .... 242
126 NOES . . . v o o e e e e e 244
127 EXEICiSes . . . v v v v v e e e e e e e e e e 244
13 Process Specifications 245
13,1 Processes . . . . . . o v i e e e 245
13.2 Describing Dynamics with UML . . . . .. ... ... ... ........ 247
13.3 Workflows . . . . . . . 247
13.3.1 Exceptions . . . . . . .. . .. 249

13.3.2  Workflow Interoperability . . . .. ... ... ... ........ 250

13.3.3 A Metamodel for Workflow . . . .. ... ... ... ....... 251

13.3.4 Interoperation . . . . . . . . . . ..o 252

13.3.5 Stateofthe Art . . . . . . . ... 255

13.3.6  Challenges Facing Workflow Technology . . . . . ... ... ... 255

13.4 Business Process Languages . . . . . . . . . ... ... ... ... ... 256



Contents

xiii

13.4.1 BPEL4WS . . . . . .
1342 BPML . . ... .. . e
1343 ebXML . . . . .. e
1344 RosettaNet . . . . . . ... .
13.5 The Process Specification Language . . . . .. ... ... ... ......
13.6 NOES . . . . o oo et e
137 EXErcises . . . . . . . o i i e e e
14 Formal Specification and Enactment
14.1 Scheduling with Dependencies . . . . .. . .. ... ... .. .......
14.2  Specifying Service Composition . . . . . . ... ... L.
14.2.1 Coordination Relationships . . . . . . ... ... ... ... ...
1422 Example Scenario . . . . . ... ...
143 Residuation . . . . . . . ... L
14.4  Symbolic Calculation of Residuals . . . . . .. ... ... ... ......
14.5 Distributed Scheduling . . . . . . . ... ... o
14.5.1 Temporal Logic for Internal Reasoning . . . . . . ... ... ...
14.5.2 Deriving Guards from Specifications . . . . . ... ... ... ..
14.5.3 Scheduling with Guards . . . . .. ... ... ... .. ......
14.6 Formalization . . . . . . .. . .. . ...
14.6.1 EvaluatingGuards . . . . . .. .. ... ... ...
14.6.2 Simplification . . . . ... ... Lo
14.6.3 Formalizing EventClasses . . . . . . . .. ... ... .......
147 Discussion . . . . . . . . it e e
14.8 NOtes . . . . . o v
149 EXercises . . . . . . v v v it i e e e
IV Collaboration
15 Agents
15.1 AgentsIntroduced . . . . . . ... ... o
152 AgentEnvironments . . . . . . .. ... oL
153 AgentDescriptions . . . . . . . . . ...
153.1 Reasoning . . . . ... . ... ...
15.3.2 Internal Architectures . . . . . . . . . . .. ... L.
15.4 Abstractions for Composition . . . . . . . . .. ... oL
15.5 Describing CompoSitions . . . . . . . . .o . e e e
15.5.1 Representing and Reasoning about Action . . . ... .. ... ..
1552 OWL-S . . . . e
15.6 Compositionas Planning . . . . . .. ... ... 0 0L
1577 Rules . . . . . o e

15.7.1 ApplyingRules . . . . . ... ... ... oo

256
261
262
272
274
277
278

281
282
283
286
287
288
289
291
291
293
295
295
296
297
298
300
301
301



xiv Contents

1572 KindsofRules . . . .. . ... ... ... ... .. ... 328

15.7.3  Jess . o v v o e 332

15.7.4 SWRL: Semantic Web Rule Language . . . . ... .. ... ... 333

15.7.5 Complexity and Expressiveness . . . . . . ... ... ... .... 334

15.7.6 Negation, Nonmonotonicity, Priorities . . . . . .. ... ... ... 335

I5.8 Notes . . . . . . . 336

159 EXercises . . . . . . . . . . e 337

16 Multiagent Systems 341

16.1 Applicability in Service-Based Systems . . . . . . . . ... ... ... ... 342

16.2 Multiagent Architecture . . . . . . . . .. ..o 343

163 AgentTypes . . . . . . . i i i 344
16.4 Life Cycle Management for Agents and Multiagent

SYSEMS . . . . . e e 347

16.5 Consistency Maintenance . . . . . . . . . . ... ... 349

16.5.1 Truth Maintenance Concepts . . . . . . . . . . . . .. ... ... 350

16.5.2 Multiagent Truth Maintenance . . . . . . . .. ... ... ..... 351

16.5.3 Consistency Maintenance for a Long-Lived Service . . . ... .. 352

16.5.4 Conflicts among Agents . . . . . . . . . . .. .. ... .. 352

16.6 Modeling Other Agents . . . . . . .. ... .. ... ... . ........ 354

16.7 Cognitive Concepts . . . . . . . . . .. 356

16.8 Applying the Cognitive Concepts . . . . . . . . ... ... .. ... .... 357

169 Notes . . . . . o o v it 357

16.10 EXercises . . . . . . . . ... 358

17 Organizations 361

17.1 Contracts . . . . . . . . e e e e 362

17.1.1 LegalConcepts . . . . . . . . . . v v ittt 362

17.1.2 DeonticLogic . . . .. . ... ... .. 363

17.1.3 Commitments . . . . . . . . . . it 364

17.2  Spheres of Commitment . . . . . . . . . .. ... ... 367

17.2.1 Teamsof Services . . . . . . . . . ... ... ... ... 368

17.2.2 Virtual Enterprisesas Teams . . . . . . ... ... ... ...... 368

17.3  Achieving Collaboration via Conventions . . . . . . . . ... .. ... ... 370

17.4 Policies . . . . . . . . . . e 371

17.5 Negotiation . . . . . . . . . . . . e 372

17.5.1 Negotiation Protocols . . . . ... ... ... ... . . ...... 372

17.5.2 Negotiation Fundamentals . . . . . . .. ... ... ... ..... 374

17.5.3 Requirements for a Negotiation Language . . . . . .. ... .. .. 377

17.6  EXEICISeS . . . . . o v i i e e e e 379



Contents

XV

18 Communication 381
18.1 Agent Communication Languages . . . . . ... ... ... ........ 381
18.1.1 Speech ActTheory . . . . . . . ... .. ... .. ... ...... 382

18.1.2 Semantics . . . . . . . ... 383

18.1.3 Interaction Patterns . . . . . . . . . ... ... ... ... 384

18.1.4 Combining ACLs with Web Services . . . . ... .. ... .... 384

18.2 Contract Net Protocol . . . . . .. . ... ... ... 385
183 BusinessProtocols . . . . . . .. ... L 388
18.3.1 Compiling Business Protocols . . . . . ... ... ... ...... 390

18.3.2 Compliance with Business Protocols . . . . ... ... ... ... 391

184 NOES . . . . o vt et 394
185 EXErcises . . . . . . . . i e 395

V  Selection 399
19 Semantic Service Selection 401
19.1 Semantic Matchmaking . . . . ... ... ... ... ... ......... 401
19.1.1 Applying Ontologies . . . . . . . . . . . ... .. ... ... 402

19.1.2 Requirements for an Advertising and Matchmaking Language . . . 404

19.1.3  Selecting Services . . . . . . . . ... oo 404

19.2 SoCom Matchmaking . . . . . ... ... ... ... ... .. ... ... 404
193 EXErcises . . . . . . o v v i i e e 406

20 Social Service Selection 409
20.1 Reputation Mechanisms . . . . . . . . ... ... 410
20.2 Recommender Techniques . . . . . . . . .. ... ... ... ... ... 411
20.2.1 Model-Based Approaches . . . . ... ... ... ... ... 411

20.2.2 Memory-Based Approaches . . . . . .. ... ... L. 411

20.2.3 Challenges for Recommender Approaches . . . ... .. ... .. 412

20.2.4 Products versus Service Recommendations . . . . ... .. .. .. 412

203 Referrals . . . . . ... 413
20.3.1 Adaptive Treatment of Referrals . . . . . . .. ... ... ..... 413

20.3.2 Advantagesof Referrals . . . . .. ... ... ... ... .. ... 414

20.3.3 Evaluation . . . . .. .. .. e 415

20.4 Social Mechanism for Trust . . . . . . ... ... ... ... 415
20.4.1 Empirical Basis . . .. ... ..o o oo 415

20.4.2 Local BeliefRatings . . . . ... ... ... ... ......... 416

20.4.3 Combining Evidence . . . . . . .. .. ... ... ... ... .. 417

20.4.4 Gathering Opinions . . . . . . . . . . . .. . 418

20.5 Identity . . . . . ... L 418
20.6 EXercises . . . . . . ... 418



xvi Contents
21 Economic Service Selection 421
21.1 Market Environments . . . . . . . . .. . ... ... e 422
21.2  Auctions for Services . . . . . .. ... e 424
21.2.1 AuctionTypes . . . . . . . . . e 424

21.2.2 Online Auctions . . . . . . . . . . . ... 424

21.2.3 Agent Economies . . . . .. .. ... ... ... ... 426

21.3 EXEICISes . . . . . . v i e e e e 428
VI Engineering 431
22 Building SOC Applications 433
22.1 Elements of SOCDesign . . . .. .. .. ... ... ... .. ..... 433
222 Qualityof Service . . . . . . . .. e e 435
223 HowtoCreatean Ontology . . . . . . . . . . . . . ... 436
22.3.1 Ontology Construction . . . . . . . . ... ... ... ....... 437

22.3.2  Ontology Guidelines and Conventions . . . . . . ... ....... 439

22.4 How to Create a ProcessModel . . . . . . ... ... ... ......... 441
22.5 How to Design Agent-Based Systems . . . . . .. .. ... ... .. .... 441
22.5.1 Engineering Cooperation. . . . . . . . . . . . ..., 442

22.5.2 Diversity versus Complexity . . . . . . . . ... ... ... 443

22.6 How to Construct Agent-Based Systems . . . . . ... ... ........ 445
227 How to Engineer Composed Services . . . . . . ... ... .. ... .... 445
22.8 ExceptionHandling . . .. ... ... ... ... ... ... ... 447
22.9 Knowledge Management Applications . . . . . . .. ... ... ... ... 450
22.9.1 Agent-Based Knowledge Network . . . . . ... ... ....... 451

22.9.2 IntranetPortals . . . . . . . ... ... .. .. .. .. .. ..., 452

22.9.3 Communities of Practice . . . . . . .. .. ... ... ....... 452

22.10 eBusiness Applications . . . . . . ... L o Lo 452
22.10.1 Business Models for eBusiness Applications . . . . ... ... .. 454

22.10.2 eMarketplace Architectural Requirements . . . . . . . . ... ... 455

22.11 Application to Supply-Chain Automation . . . . . . . . ... ... ..... 457
22.12 EXEICISES . . . . . . v i e e e e e 457

23 Service Management 463
23.1 Enterprise Resource Planning . . . . . . . ... ... ... ... ..., 463
23.2 WSMF: Web Services Management Framework . . . . . ... ... .. .. 465
23.3 WSDM: Web Services Distributed Management . . . . .. ... ...... 465
23.3.1 Contingency Plans for Service Failures . . . . .. ... ... ... 466

23.3.2 Security and Authentication . . . . . . . ... ... L. 467

23.3.3 Features and Benefits of WSDM Centralization . . . . . . . . . .. 467

234 Metadata Protocols . . . . . . .. ... 467
23.5 Scalability . . . . . .. 467



Contents xvii
23.5.1 Scalability in Practice . . . . ... ... ... ... ... ... .. 468
23.5.2 Scaling Infrastructure Services for Agents . . . . . ... ... ... 469
23.5.3 Scalability Experiments . . . . . ... ... ... 0oL 469
23.5.4 Long-Lived Adaptable Agents . . . . . . ... .. ... ...... 470
23.6 Robust Services via Agent-Based Redundancy . . . . ... ... ... ... 470
23.6.1 Architectureand Process . . . . . . .. ... ... .. ... ... 471
23.6.2 Experimental Results. . . . . .. ... ... ... ......... 472
2377 EXEICISES . . . . v v i i e e e e e e e e e 473
24 Security 475
24.1 Securing Web Services . . . . . . . ..o 475
24.1.1 Nonrepudiation . . . . . . . . . . ... 476
24.1.2 Endorsement . . . . . . ... ... 477
24.1.3 Certificates . . . . . . . . .. 477
242 SAML and WS-Security . . . . . . ... oL 477
243 WS-Trust. . . e e e 479
244 XACML . . . . . 479
24.5 Reasoning about Security Policies . . . . . . . .. .. ... ... ... ... 481
24.6 Privacy . . . . ... 481
2477 BXEICISES . .« v v v vt e e e e e e e 482
VII Directions 485
25 Challenges and Extensions 487
25.1 Trust . . ..o e 487
252 Ethics . . . . . . . L 488
25.2.1 MachineEthics . . . . . .. ... ... oo 490
2522 ApplyingEthics . . ... ... o oo 491
25.2.3 Ethical Violations . . . . . ... ... ... ... . ... 491
253 Coherence . . . . . . . ... 491
254 Benevolence . . . . . . . ... e e e e 492
25.5 Network Architecture . . . . . . . . ... oL 493
25.6 Managing Privacy . . . . . .. ... 494
25.7 Key Challenges and Recommendations . . . . . ... ... ......... 495
VIII Appendices 497
A XML and XML Schema 499
Al Why XML? . . . o 499
A2 XML . .. 501
A2.1 XML and Vocabularies . . . . ... ... ... ... ....... 502



xviii Contents

A.22 Transforming XML . . . .. ... ... ... ... 503

A23 Well-Formedness . . . . . .. ... ... ... .. .. ...... 504

A.2.4 Namespaces and Qualified Names . . . . . . ... ... ...... 505

A2.5 UsingEntities . . . ... ... .. ... ... 506

A2.6 XMLEXtensions . . . . . . .. . ..t 507

A3 XMLSchema ... ...... ... . ... ... 507
A4 Limitations . . . . . . . ... e e e e e e 510
A5 NOtes . . . . o o 510
A6 EBXercises . . . . . ... e 511

B URI, URN, URL, and UUID 515
C XML Namespace Abbreviations 517
Glossary 519
Bibliography 523

Index 533



About the Authors

Munindar P. Singh is a Professor of Computer Science at North Carolina State University.
From 1989 through 1995, he was with the Microelectronics and Computer Technology Cor-
poration (better known as MCC). Munindar’s research interests include multiagent systems
and Web services. He focuses on applications in e-commerce and personal technologies.
Munindar’s 1994 book Multiagent Systems, was published by Springer-Verlag. He coedited
Readings in Agents, which was published by Morgan Kaufmann in 1998. He has coedited
several other books and authored several technical articles. Munindar’s research has been rec-
ognized with awards and sponsorship from the National Science Foundation, DARPA, IBM,
Cisco Systems, and Ericsson.

Munindar was the editor-in-chief of IEEE Internet Computing from 1999 to 2002 and
continues to serve on its editorial board. He is a member of the editorial boards of the Journal
of Autonomous Agents and Multiagent Systems and the Journal of Web Semantics. He serves
on the steering committee for the IEEE Transactions on Mobile Computing.

Munindar received a B.Tech. in computer science and engineering from the Indian Insti-
tute of Technology, New Delhi, in 1986. He obtained a PhD in computer science from the
University of Texas at Austin in 1993.

Michael N. Huhns is the NCR Professor of Computer Science and Engineering at the Uni-
versity of South Carolina, where he also directs the Center for Information Technology. Pre-
viously he was a Senior Member of the Research Division at the Microelectronics and Com-
puter Technology Corporation. Prior to joining MCC in 1985, he was an Associate Professor
of Electrical and Computer Engineering at the University of South Carolina, where he also
directed the Center for Machine Intelligence.

Mike is a member of Sigma Xi, Tau Beta Pi, Eta Kappa Nu, ACM, IEEE, and AAAL
He is the author of over 180 technical papers in machine intelligence and an editor of the
books Distributed Artificial Intelligence, Volumes I and II, and, with Munindar, Readings in
Agents. His research interests are in the areas of multiagent systems, enterprise modeling and
integration, and software engineering. From 1997 to 2003, he wrote a column Agents on the
Web for IEEE Internet Computing.

Mike was an associate editor for IEEE Expert and the ACM Transactions on Information
Systems. He is an associate editor for the Journal of Autonomous Agents and Multiagent

Xix



XX

About the Authors

Systems. He is on the Editorial Boards of the International Journal on Intelligent and Coop-
erative Information Systems, the Journal of Intelligent Manufacturing, and IEEE Internet
Computing. He was an advisor for the First International Conference on Multiagent Systems,
1995, and has been on the advisory boards for the International Workshops on Distributed
Artificial Intelligence. He is a member of the board for the International Foundation for
Multiagent Systems and the International Foundation on Cooperative Information Systems.

Mike received the BSEE degree in 1969 from the University of Michigan, Ann Arbor,
and the MS and PhD degrees in electrical engineering in 1971 and 1975, respectively, from
the University of Southern California, Los Angeles.

Contact information

Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-7535, USA

http://www.csc.ncsu.edu/faculty/mpsingh/
singh@ncsu.edu

Michael N. Huhns

Department of Computer Science & Engineering
University of South Carolina

Columbia, SC 29208, USA

http://www.cse.sc.edu/"huhns/
huhns@sc.edu



Preface

The current World-Wide Web was intended to be used by people, but most experts, including
the founder of the WWW, Tim Berners-Lee, agree that the WWW will have to evolve to
include usage by computer systems. Moreover, the impact of computer usage will exceed that
of human usage. The evolution is expected to occur through the design and deployment of
Web services. The phrase Web services sometimes refers to services that employ a particular
set of basic standards. Since these standards are all but incidental to the key concepts of
services and services apply even in settings strictly different from the WWW, it is helpful to
think of service-oriented computing as a more general topic.

The objective of this book is to explain the principles and practice of service-oriented
computing, although most of its concepts are developed in the context of Web services. The
book presents the concepts, architectures, theories, techniques, standards, and infrastructure
necessary for employing services. It includes a comprehensive overview of the state of the
art in Web services and related disciplines.

Services are a means for building distributed applications more effectively than with pre-
vious software approaches. For this reason, it is not useful to talk about services without
talking about service-based applications, how they are built from services, and how services
should be designed so they can feature as parts of serious applications. Indeed, the raison
d’etre for services is that they be used for multiple purposes. And, services are used by
putting them together or composing them—the rare case where a service is used without
any contact with another service can be thought of as a trivial composition. For this reason,
every aspect of services is designed to help them be composed: specifically, so they can be
described, selected, engaged, collaborated with, and evaluated.

Many of the key techniques now being applied in building services and service-based
applications were developed in the areas of databases, distributed computing, artificial intel-
ligence, and multiagent systems. These are generally established bodies of work that can be
readily adapted for service composition. Some additional techniques, although inspired by
these areas, are being developed from scratch by practitioners and researchers in the con-
text of service-oriented computing. These new techniques address the essential openness and
scale of Web applications that previous work did not need to address. Both classes of key
techniques should be incorporated into our best practices. In most cases, they can be applied
on top of existing approaches.

xxi



xxii

Preface

Philosophy and Approach

The philosophical position taken by this book is that it is not possible for computer scientists
to develop an effective understanding of service-oriented computing by merely studying the
basic standards for Web services. Unless we take an impoverished view of the subject and
are content merely to run some canned examples, we must perforce examine several areas of
computer science that come together in connection with services, and from which services
derive their intellectual underpinnings.

All science, as the Nobel Laureate Ernest Rutherford once famously asserted, is either
physics or stamp collecting. By physics Rutherford meant clean, succinct principles that
apply to diverse phenomena and by stamp collecting he meant the cataloging and organization
of large sets and varieties of observations.

To develop complex services and service-based applications requires both physics and
stamp collecting. Almost reluctantly, the professional community has adopted some software
engineering approaches for services. Some of these are based on organizing knowledge as
“ontologies” and then agreeing upon the ontologies. In the end, they will require a lot of
organizing, but the right abstractions will go a long way in streamlining this task.

Most importantly, however, traditional software approaches are fundamentally not sen-
sitized to the challenges of an open environment. The physics, as it were, is designed for a
closed environment. The effect is analogous to applying traditional mechanics to quantum
mechanical problems. So, while we obviously need engineering methodologies to take care
of the stamp collecting, we also need elegant principles that would give us the new physics.

Audience

We have sought to make this book complete as a college textbook. However, because it also
includes many illustrations and examples, the book is eminently suitable for use by students
and practitioners to learn about service-oriented computing on their own. This book serves
the following main kinds of readers in the following ways.

Practitioners, who can supplement their knowledge of the details with an understanding of
the concepts that underlie the standards and tools that they use, and the best practices
based on those concepts. The book can help them leverage their practical experience
to build stronger service-oriented systems and applications.

Technologists, including advanced developers and architects, who need to get their arms
around service-oriented computing. They can better understand the key technologies
and their key strengths and limitations, so they can conceive and execute their new
major projects.

IT Strategists, who are concerned by the notorious business versus IT divide of modern
practice. Service-oriented computing, as understood in this book, provides a concep-
tual framework to bridge that divide.



Preface

xxiii

Researchers, who recognize the value of service-oriented computing as a source of major
research problems of practical import. They might be deeply knowledgeable in some
aspect of the subject, but might nevertheless wish to get a crash course on the remaining
aspects.

Students, both graduate and senior undergraduate, who need to know about service-oriented
computing simply to be adequately prepared for the expanding applications of services.
And especially if their university curriculum is out of date and does not include service-
oriented computing, they need to learn it on their own. The book can help them prepare
to participate in the workforce in any of the above roles.

We have given numerous tutorials at a number of leading conferences based on the materials
presented here. The attendees at those tutorials represented all of the above categories of
reader. Further, the manuscript has been used as a text for two graduate courses and an
advanced undergraduate course on Web services, and sections have been used within other
graduate courses in multiagent systems and cooperative information systems.

Service-oriented computing is a new and dynamic area. It has captured the attention of
numerous commercial interests, and many companies are introducing new techniques and
suggesting new standards on an almost daily basis. This book can only cover the state of
service-oriented computing at a single point in time, but it emphasizes the essential concepts
that will stand the test of time. It uses its associated website to cover changes and newer
developments.

This book includes the essential background for anyone planning to learn and develop the
principles and applications of service-oriented computing. It includes numerous theoretical
and programming exercises and some project ideas that all readers can use to solidify their
understanding. (Homework is not just for the students!) It has only a few prerequisites:
some experience with Web programming or the willingness to learn it. Slides and homework
solutions are available from http://www.csc.ncsu.edu/faculty/mpsingh/books/SOC/.

The Contents

This book is divided into the following major parts.

Basics. Part I describes the key trends and architectures in modern computing that motivate
why and how services are emerging. It also gives a crash course on current Web service
technologies so that readers can quickly begin to experiment with these technologies,
possibly beginning on a small project.

The key idea of an architecture based on Web services is that it identifies three main
components: a service provider, a service consumer, and a registry. Providers publish
their services on registries, and consumers find the service providers from registries
and then invoke them. Current standards and techniques support these steps and enable
many important use cases. However, to our way of thinking, they are unnecessarily lim-
ited in some respects. Yet the architecture of Web services provides a nice framework,



Xxiv

Preface

which can be fleshed out with more powerful representations and techniques. These
are established computer science approaches and serious practitioners are already using
them, although they are omitted from most expositions of Web services. The rest of
the book shows what these are and how they can be employed.

Description. Part IT addresses techniques and methodologies for describing services. These

techniques include ideas from conceptual modeling of database schemas and domain
knowledge, and cover both representation and reasoning approaches. They lead natu-
rally into some of the XML-based technologies gaining currency as the Semantic Web.
The idea is that when services are described with sufficient richness, it is easier for
providers to state what they offer and for consumers to specify what they need, leading
to meaning-based interactions.

Engagement. Part III deals with how services may be engaged or executed so as to facil-

itate the simpler kinds of composition. Often, when services are described, there is
an emphasis on invoking services as if they were no more than methods to be called
remotely. We prefer the term engagement, because it more accurately reflects the power
of the service metaphor for computing. Imagine going to a carpenter, a human service
provider, to have some bookshelves built in your home. You will typically not instruct
the carpenter in how to build the shelves. Instead, you will carry out a dialog with the
carpenter in which you will explain your wishes and your expectations; the carpenter
might take some measurements, check with some suppliers of hard-to-get materials
(maybe some exotic woods), and suggest a few options; based on your preferences and
your budgetary constraints, you might choose an option or get a second estimate from
another carpenter.

Likewise, in computing, instead of merely invoking a particular method, you would
engage a service. Here the relevant computational themes are peer-to-peer comput-
ing, messaging, transactions (traditional, nested, and extended or relaxed), workflow,
business processes, and exception handling. A number of standards for services are
emerging in these areas.

Collaboration. Part IV discusses advanced concepts that arise from a computational stand-

point in composing services, where it is helpful to think of the services as collaborating
with each other. Some of the key technologies that apply for collaboration include pro-
tocols, agents, contracts, service agreements, and negotiation techniques. The engage-
ment techniques in Part IIT give us the basis for engaging services while considering
various transactional properties. The techniques of collaboration in this part go several
steps further in characterizing the interactions among the consumers and the providers
of services, dealing with how they plan and enact service episodes, how they main-
tain consistency, negotiate, enter into and execute contracts and agreements, and carry
out specified protocols. This part includes a discussion of monitoring compliance with
contracts and service agreements.

Selection. Part V introduces concepts of service discovery and selection, and distributed



Preface

XXV

trust. Service discovery in its simplest form involves registries where services can
be registered and looked up. However, selecting desirable services in practice also
involves accommodating notions of trust, endorsement, and reputation.

This part of the book also includes a discussion of how services can be evaluated by the
parties using them. This is essential to complete the cycle of locating services, engag-
ing the services, and then evaluating the services to determine if they were successful.
Fair and accurate evaluation can enable the various parties to find, select, and engage
the services that are superior in some way.

Engineering. Part VI focuses on the engineering of service-based applications. It discusses
methodologies and techniques for building services in the context of some important
classes of applications, especially knowledge management and e-business. This part
also discusses the best practices for the main kinds of techniques described in the pre-
vious parts.

Directions. Part VII discusses some of the key trends in services and in architectures. It
considers architectural policies, privacy, and personalization from the perspective of
how services fit into the larger world. It also discusses more advanced philosophical
notions, such as ethics and social mores, with a view to inspiring services that function
in a manner that improves the network at large, not just optimizing the results for
themselves.

Appendices. Part VIII has appendices on important background topics such as XML tech-
nologies and Web standards and protocols. The appendix on XML, in particular, is as
extensive as a chapter and includes description of all the key XML technologies that
you need to know in order to read this book. It also includes exercises for readers who
wish to test their knowledge.

The organization of the book is designed to encourage the building of a series of projects
beginning with the most basic applications of the most established standards, and ending
with areas where technologies are still gelling.

Munindar P. Singh Michael N. Huhns
Raleigh, North Carolina Columbia, South Carolina






Note to the Reader

This book brings together a lot of interesting concepts that apply in service-oriented comput-
ing. Where possible, we have sought to describe the techniques that these concepts support—
in other words, to make the concepts actionable. However, the concepts in many cases are
subtle; you must master the concepts before you can be effective with the techniques.

We recommend that you read the text carefully and work through several of the theoretical
exercises. If this book is successful, it will have piqued your interest about several topics.
If you have a theoretical bent, you will want to pursue deeper results. Virtually all topics
discussed here have a lot of depth, and a number of PhD problems lurk within. The book
cites the key work for each topic, which will give you excellent starting points.

For those with an interest in practical implementations (and we recommend that even
theoreticians work on a few, just to keep grounded), the book provides a fair amount of
detail about how various techniques can be realized. It discusses virtually all the key emerg-
ing standards for service-oriented computing, and concludes with a discussion of engineer-
ing challenges and the emerging methodologies and best practices to address them. In this
sense, it is a lot more practical than the typical advanced textbook. If you are reason-
ably experienced as a programmer, you can find the few necessary details to get started by
downloading the latest versions of the tools from the Internet. The book’s home page at
http://www.csc.ncsu.edu/faculty/mpsingh/books/SOC/ includes useful pointers.

However, as you can well imagine, each standard and tool has a lot of nitty-gritty details.
All too often these are not based on any theoretical concepts, but are accidents of history or
practical concerns of implementations. This book does not describe such idiosyncrasies. In
our own system development, we would learn such details by Internet searches or by trial and
error, and promptly forget them as soon as we could! For the bleeding edge standards and
tools, there may be no other way; for the older ones you can perhaps find detailed books. In
either case, this book will help you master the concepts that will last a long time, rather than
details that might be lost in the next release.

Lastly, please note that writing the first big book on a wide-ranging new topic is a daunting
task. In our combined four decades of post doctorate experience, this is the largest intellectual
venture that we have attempted. There will undoubtedly be lots of room for improvement.
We welcome your suggestions!

xxvii






Acknowledgments

A book such as this inevitably describes the work of others. Besides the authors cited within,
we are indebted to our colleagues, students, teaching and research assistants, and the audi-
ences of our tutorials at various conferences. In particular, we would like to thank Soydan
Bilgin, Michael Maximilien, Yathi Udupi for help with some of the programming assign-
ments, José Vidal for contributing several exercises and Paul Buhler for evaluating an early
version of the text in his class. Amit Chopra gave extensive comments on some chapters. Sev-
eral students, in particular Leena Wagle and Sameer Korrapati, gave useful suggestions on
previous drafts. We thank Mona Singh and Hilary Huhns for their creative talents in drawing
many figures.

We gratefully acknowledge support from the government and corporate sponsors of our
research, which enabled us to develop the understanding of service-oriented computing that is
described in this book. Munindar’s research sponsors include Cisco, DARPA, Ericsson, IBM,
and the National Science Foundation. Mike’s research sponsors include the National Science
Foundation, DARPA, the US Department of Agriculture, and NASA. Mike has greatly ben-
efited from his association with Ray Emami, Alok Nigam, and their research team at Global
Infotek, Inc.

As usual, we are deeply indebted to our families for their patience despite the onerous
demands made by our writing.

XXix






Figures

1.1

2.1
22
23
24
2.5
2.6

3.1

4.1
4.2

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2

8.1
8.2

9.1

Relationship of services standards and methodologies . . . . . . ... .. ..

The general architectural model for Web services . . . . . . ... ... ...
SOAP as RPC or message exchange . . . . . .. ... ... .........
UDDI yellow, green, and white pages . . . . . .. ... .. ... ......
The UML information model for a business entity in a UDDI registry

UDDI business entity . . . . . . . . . . v v it
AWSDL toUDDImapping . . . .. ... ... ... ...

A simple view of the WSDL datamodel . . . . . .. ... ... ... ... ..

The J2EE architecture . . . . . . . . . . . . . ... e
The Microsoft NET architecture . . . . . . . ... ... ... ........

Example business-to-consumer transaction . . . . . . . . . .. ... ...

Modeling the composition of services . . . . . . . . ... ... ... .. ..
Interoperation SCENArios . . . . . . . . . . ..o i e e
Ontologies and articulation axioms . . . . . . . ... .. ... ... .....
Example consistent and inconsistent valuemaps . . . . . . . ... ... ...
Unintuitive valuemap . . . . . . . . . . . ...
Binary relationasagraph . . . . . . . ... ... Lo
Using the Unified Modeling Language for ontologies . . . . . . . ... ...
Conceptual representations for rectangular objects . . . . . . . . . ... ...

RDF subPropertyOf Schematically . . . . ... ... ... .. ........
Example of RDF N-triples . . . . . . ... . ... ... ... ... .....

Main OWL entities and relationships . . . . . . . . . ... ... ... ...,
A schematic representation for the warehouse and shipping example . . . . .

An example UBL component for the common business concept of “tax” . . .

Xxxi



xxxii Figures
9.2 An example upper ontology. The links represent specialization . . . . . . .. 166
9.3 Example ontology for information aboutpeople . . . . . ... ... ... .. 169
9.4 Relating ontologies like a jigsaw puzzle . . . . ... ... ... ... .... 170
9.5 Ontology generated by merging independent ontologies . . . . . . . .. . .. 171
9.6 Consensusontology . . . . . . . . ... 173
10.1 Jiniservicemodel . . . . . . . . . . . . L 188
11.1 System architecture showing applications and database . . . ... ... ... 194
11.2 Example of a distributed, nested transaction . . . . . ... ... ... ... .. 204
11.3 Typical transactionskeleton. . . . . . . ... ... ... ... ... ... 205
11.4 Anexample executionof 2PC . . . . . . .. ... oL 205
11.5 A schematic architecture involving a TP monitor . . . . . . .. ... .. .. 206
11.6 Transactions over composed Services . . . . . . . . . . . . o oot 207
11.7 Typical task skeleton . . . . . . .. .. .. ... .. 208
12.1 Relationship of service standards and methodologies . . . .. ... ... .. 226
12.2 Conceptsin WSCL . . . . . . . . ... e 227
12.3 A WSCL definition for a conversation about on-line purchasing . . . . . . . . 230
12.4 A coordination service for Web services . . . . . . ... ... ... ... .. 235
12.5 Coordination between Web services with coordinators . . . . . . .. . .. .. 236
12.6 An atomic transaction in WS-Coordination . . . . . .. ... ... ..... 241
12.7 An example of the Business Transaction Protocol . . . . . . ... ... ... 243
13.1 Anexample UML activity diagram . . . . . . . .. .. ... ... .. ... 248
13.2 Telecommunications workflow example . . . . . ... ... ... ...... 249
13.3 Exceptions during workflow execution . . . . . . .. . ... ... ... ... 250
13.4 Exceptions as alternative flows of control . . . . . ... ... ... ... .. 251
13.5 Three primitive interoperability patterns . . . . . . . . . .. ... ... ... 252
13.6 Workflow metamodel . . . . . . ... ... ... 253
13.7 Workflow as a state-transition diagram . . . . . . . . . ... ... .. .... 253
13.8 Workflow architecture referencemodel . . . . . . ... ... ... ... ... 254
13.9 The BPELAWS metamodel . . . . . . . ... .. ... .. .. ........ 257
13.10 BPEL4WS process as a composite Web service . . . . . .. .. ... ... 259
13.11 Steps in the design of an ebXML system . . . . . . .. ... ... ..... 263
13.12 Discover partner information and negotiate . . . . . . .. .. ... ... .. 268
13.13 Business Service Interface . . . . . . . .. ... ... o oL 269
13.14 Creating a purchase order in accordance with a RosettaNet PIP . . . . . . . 273
13.15 PSLconceptual model . . . . . . . .. ... ... . 276
13.16 An example workflow for student registration . . . . ... ... ... ... 279
14.1 Scheduler states and transitions for D . . . . . .. ... ... ... .... 289
142 Guards withrespectto Do =€V fVe-f. ... 294



Figures

xxxiii

14.3 Guards from D assuming eisinevitable . . . . ... ... ... ... ... 299
14.4 Extreme example of an immediate event (e¢) . . . . . . . ... ... ... .. 300
15.1 BDI architecture foranagent . . . . . . . . ... ... ... .. ... .. 310
15.2 Typesof agentinputs . . . . . . . . . . . oLt 313
15.3 An architecture for areactiveagent . . . . . . . . . . . ... 314
15.4 A belief-desire-intention (BDI) agent architecture . . . . . . . ... ... .. 315
15.5 Anupper ontology forservices . . . . . . . ... ... ... L. 319
15.6 Applying OWL-S . . . . . . . . ... 321
15.7 Example composite service . . . . . . . . . . ... ..o 323
16.1 Mediated architecture showing standard agenttypes . . . . . . ... ... .. 345
16.2 The components of an agent management system . . . . . . . . .. ... .. 347
16.3 The architecture of a TMS-basedagent . . . . . . .. ... .. ... ..... 350
16.4 Initial state of knowledge bases of interacting agents . . . . . ... .. ... 353
16.5 Continued example of knowledge bases of interacting agents . . . . . . . . . 353
16.6 Final state of knowledge bases of interacting agents . . . . . . ... ... .. 354
17.1 Aselling virtual enterprise . . . . . . . . . . . .o e 369
172 Cakecutting . . . . . . . . v v it e e 374
18.1 Simple agent interaction patterns . . . . . . . . . . .. ... 384
18.2 Web Service Agent Gateway . . . . . . ... ... ... ... ... . ..., 385
18.3 The Contract Net Protocol . . . . . ... ... ... ... .. ........ 386
18.4 FSM representation of the NetBill protocol . . . . . ... ... ... ... .. 388
18.5 FSM representations of the Escrow protocol . . . . . ... ... ... .... 389
18.6 FSM representation of an enhanced versionof NetBill . . . . . . .. ... .. 391
18.7 Message patterns for operations on commitment . . . . . . . . ... ... .. 393
18.8 An example of the execution of a fish-market auction . . . . . ... ... .. 394
18.9 An example of the local models of a fish-market auction . . . ... ... .. 395
18.10 An example B2B scenario for customers and suppliers . . . . . . ... ... 397
18.11 An example subproblem decomposition solved by the Contract Net . . . . . 397
19.1 Applying SoComs . . . . . . . . o v i e 405
20.1 Querying and responding for referrals . . . . . .. .. ... .. ... .. .. 414
21.1 Example allocation of a Web service for financial portfolio analysis . . . . . 423
22.1 Examples of task decomposition based on spatial or functional criteria . . . . 444
22.2 A Jade model of the Contract Net initiator . . . . . . .. ... ... ... .. 446
22.3 Engineering an SOC system . . . . . . . . . . . . .o 448
22.4 Supply chains and the automotive industry . . . . . .. ... ... ... ... 456

22.5 A sequence diagram of an agent-based B2B scenario . . . ... ... .... 458



XXXiV

Figures

22.6
22.7
22.8

23.1
23.2
233

24.1

25.1

A.l
A2

Collaboration diagram showing the key roles for a supply-chain scenario . . . 459
Agent-based enactment of a supply chain . . . . .. ... ... 00, 460
State-machine behavior skeletons for enacting agents for a supply chain . . . 461
The Global Best Practices approach . . . . . . .. ... .. ... .. .... 464
The Multi-Industry Process Technology approach . . . . . . ... ... ... 464
Improving robustness by combining multiple implementations of a service . . 472
Using the eXtensible Access Control Markup Language (XACML) . . . . . . 480
Architecture for a philosophical agent . . . . . . ... ... ... ... . 492
Service-oriented computing: XML . . . . . ... ... L. 499

XML validation . . . . . . . . . ... e 510



Tables

1.1

6.1
6.2
6.3

10.1

11.1
11.2
11.3
11.4

13.1

14.1

15.1
15.2

16.1
16.2
16.3
16.4
16.5

18.1

A.l

A historical view of servicesovertheWeb . . . . . ... ... 000 13
A historical view of interoperationlevels . . . . . . ... ... ... ... 92
Insurance company ratings . . . . . . . ... ... e e 98
Modeling language features . . . . . . . . . . . ... Lo 105
CORBA Services . . . . . . .. oo o i ittt i 185
The ACID properties for traditional transactions . . . . . . . ... ...... 196
Conflict matrix for transaction operations . . . . . . . .. ... ....... 198
The ACID properties for closed nested distributed transactions . . . . . . . . 203
ACID Propertiesand SOA . . . . . . . . . .. ... 214
UML to BPELAWS mappings . . . . . . ... ... ... ... 262
Assimilating messages . . . . ... ... 296
OWL-S service profile comparedtoUDDI . . . . . . ... ... ....... 320
The IOPEs for an example bookstore service . . . . . . . .. ... ... ... 322
Dimensions of MAS: Agent . . . . . . ... ... ... ... 342
Dimensions of MAS: System . . . . . . . ... ... o 342
Knowledge integrity . . . . . . . . .. ... 351
Knowledge inconsistency . . . . . . . . . .. ... 351
Degrees of logical consistency . . . . . . . ... ... 352
Specifying business protocols . . . . . . . ..o oL 390
Rendering the temperature document . . . . . . . . . .. ... ... .. ... 502

XXXV






Listings

2.1
2.2
23
24
25
2.6
2.7
2.8
29
2.10
2.11
3.1
4.1
7.1
7.2
7.3
7.4
7.5
9.1
12.1
12.2
12.3

12.4

13.1
13.2
13.3
13.4
13.5
13.6

ASOAPTrequest . . . . . . . o i i e e 22
A SOAP response corresponding to the request of Listing 2.1 . . . . . . . .. 22
Example SOAPheader . . . . . . ... ... ... ... ... ... .. 24
AWSDLexample. . . . . . . ... e 26
SOAP body for example UDDI registration . . . . . ... ... ....... 35
Example tModel: 1 . . . . . . . . ... 38
Example tModel: 2 . . . . . . .. ... 38
Example tModel: 3 . . . . . . . ... 39
Example UDDIinquiry . . . . . . . . . ... . 40
Example UDDIresponse . . . . . . . . . . . i v v i i vi e 41
Example UDDI inquiry using a DUNS number . . . . . .. ... ... ... 41
RESTful SOAP: Example of HTTP GET binding . . . . . ... .... ... 54
A Cobol program for multiplication asaservice . . . . . . . . ... .. ... 65
An example purchase orderin XML . . . . . ... ... oL 120
An alternative XML representation of a purchase order . . . . . . ... ... 120
Anexample RDF snippet . . . . . . . ... ... ... ... ... ... 122
An RDF example represented in N-Triples notation . . . . . . .. ... ... 128
Examples of assertions . . . . . . . ... ... 134
An example of ontology importsinOWL . . . . . ... ... ........ 174
A WSCL specification for the conversation in Figure 12.3 . . . . . . . . . .. 229
A WSCL specification (cont.) . . . . . . . . .. ... 231
An example WSDL document for a stock-quotation Web service, enhanced

by WSCI . . . . 232
An example of WSCI specifying a transaction, its compensation, and a while-

loop . . . e 233
Example BPSSdocument . . . . . . ... ... . oL 263
An example of an ebXML Collaboration Protocol Profile . . . . . .. .. .. 265
Details to make CPP complete . . . . . . . ... ... ... ... .. ... 266
The general form of an ebXML Collaboration Protocol Agreement . . . . . . 268
PartyInfo field for eb XML CPA . . . . . . .. ... ... . ... .. 270

The CollaborationRole field for an ebXML Collaboration Protocol Agreement 270

XxXxvii



xxxviii

Listings

13.7 An example SOAP message header for sending a Purchase Order Request
document . . . . . ... 271
15.1 Pseudocode for voluntary multitasking in the BDI architecture . . . . . . . . 313
Al XMLexample . . . . . . . .. e e e 501
A2 Alternative XML example . . . . ... ... .. ... .. .. ... .. 501
A3 HTML versionof XML example . . . . . ... ... ... .......... 502
A4 Usingastylesheet . . . . . . . ... ... L 503
A5 Stylesheetexample . . . . . . .. ... L 503
A6 DTDexample . . . . . . . . . . e 505
A.7 Example of XML namespaces . . . . . . . ... ... ... 505
A8 Anexample of IENTITYin XML . .. ... .. ... ... ........ 506
A.9 An equivalent example to Listing A.8 without lENTITY . . ... ... ... 506
A.10 Example XML Schema . . . . . ... ... ... 508

A.11 XML document conforming to preceding XML Schema . . . . . .. ... .. 509



Part 1

Basics






Chapter 1

Computing with Services

When we browse the Web, fill a form, or make a purchase, we are participating in a distributed
computation, whose other components we may know very little about. Web services are
interesting, because they provide an approach for constructing and deploying such distributed
computations in a manner that enhances the productivity of programmers, administrators, and
users alike.

Most researchers and practitioners agree that today’s Web, although successful in many
ways, also has a number of limitations. Information on the Web is not organized. It can be
inaccurate and inconsistent and, worse, incomprehensible. Current techniques for locating
information offer low precision (including irrelevant results) and low recall (missing relevant
information). Most of the information is static and Web sites typically do not exhibit well-
structured programmatic behavior. The only kind of programmative behavior is when a form
is posted to a script running at a specified URL, but these scripts have rigid interfaces and
behaviors, and complicate the tasks of building and maintaining distributed applications.

This chapter reviews some key motivations for the emergence of Web services. The
motivations are guiding some of the emerging standards and technologies for Web services
and provide a basis for evaluating competing approaches.

1.1 Visions for the Web

Most plausible visions for the future of the Web are based on the following tenets, many of
which have already begun to come about. The Web is and will be ubiquitous, have no central
authority, and consist of “components” that are heterogeneous and autonomous. Today, the
components are primarily Web pages, but increasingly they will be programs in general. In
other words, the Web provides both content and services today, but there is an increasing
emphasis on the latter. The Web is dynamic today in terms of its components being able to
change arbitrarily. However, it is not fully dynamic in that the components can negotiate only
a few limited aspects of their interactions: typically, the visual aspects of a page or whether

3



Computing with Services

cookies can be set and retrieved via a browser. The Web will begin to support cooperative
peer-to-peer (P2P) interactions, while continuing to support client-server interactions.

1.1.1 Semantic Web

Tim Berners-Lee, the originator of the World-Wide Web, has described one such vision called
the Semantic Web. Today’s Web is geared for use by people. In other words, information is
generally marked up for presentation and is displayed accordingly by a browser. Humans can
usually interpret the content of the information because they have the necessary background
knowledge, which they share with the creators of the given page. Unless programs are cre-
ated to represent and exploit such knowledge, they are limited to processing in a hard-coded
manner, which does not suit a dynamic setting where the details can easily change.

For example, we can write a so-called screen-scraping program that extracts the price of
a book from a search-results page on amazon.com. This program would, of course, rely upon
the syntax of the Web page being encoded in some sort of a formal grammar. Intuitively, such
a program may be instructed to read the price from the results page by parsing it appropriately.
Depending on the structure of the page at the given site, these instructions could be heavily
ad hoc, for example, get the seventh cell from the third row of the second table in the fifth
frame. Although tools exist to simplify such parsing and extraction, this task still requires
painstaking effort by programmers. Moreover, the program would fail or behave erroneously
when some seemingly irrelevant change is made to the structure of any of the Web pages that
it reads.

In the Semantic Web, the page would be marked up not only with presentation details,
but also with a separate representation of the meaning of its contents. In other words, the
results page of our example would say what the price was. A program instructed to extract
the price would find the price even if the layout of the page was changed. In other words, the
markup on the Web would progress from the merely syntactic—capturing just the structure
of the information, to the semantic—capturing the meaning of the information.

1.1.2 Peer-to-Peer Computing

Another important trend relevant to our topic is peer-to-peer computing (P2P). The Web
today is used for interactions in which most of the information resides on one side (server)
and most of the intelligence on the other (client). The asymmetry between the interacting
parties means that the information tends to be aggregated in large servers, which become
significant to the functioning of the entire system. If the servers fail, then the whole system is
adversely affected; if they are compromised, then security in the system may be violated. The
key idea behind P2P is that the different components are peers or equals of each other. Each
has aspects of being a server and a client—for this reason, the peers are sometimes termed
“servents.”

Under P2P, the Web would consist not of passive pages to be accessed by programs,
but of active programs that can communicate with one another. In principle, such programs
may carry out negotiations with one another and proactively offer suggestions to one another.



1.1 Visions for the Web

However, current P2P approaches lack semantics, meaning that the applications must hard-
code how they interact, precluding flexible negotiation. For this reason, they have been instan-
tiated in simple applications, such as file sharing, where humans provide the semantics.

1.1.3 Processes and Protocols

The Web today is by and large static and passive, although, as noted above, it is possible to
invoke programs (e.g., servlets) over it. However, the challenge is to find and correctly invoke
the programs. This challenge is addressed by first-generation service approaches, which
provide a means by which the parameters and outputs of programs can be specified, usually
in a notation based on the eXtensible Markup Language (XML). Further, these standards
provide a means to locate the services one might wish to invoke and provide support for how
to invoke those services over the Web, using the Hypertext Transfer Protocol (HTTP), the
same protocol as used by Web browsers.

Services are invoked to carry out business processes, which also involve high-level inter-
actions among various parties. In contrast to service invocations, which are single-shot
two-party interactions, processes are typically long-lived multiparty interactions. Except for
toy examples such as looking up the weather or converting currencies, services are usually
employed as parts of larger processes. For this reason, a process-oriented view of services is
gaining prominence. Standards for modeling business processes are being developed as close
extensions of standards for Web services.

1.1.4 Pragmatic Web

When we put the above together, we get what may be termed the Pragmatic Web. The term
pragmatic here means that the Web is understood as being used for processes in context. The
ramifications of this term are made clear by the rest of this book. Because this book describes
the technologies of Web services from the perspective of how they could be used to build
large, open information systems, it may be thought of as describing the emerging Pragmatic
Web.

What is important about the Pragmatic Web is that it begins to put together the enabling
technologies for negotiation. Negotiation is common in real life. Yet, in today’s computer
applications, most negotiations are handled ahead of time by humans; only the most trivial
negotiations are carried out automatically. This is changing with the emergence of online
markets that support bidding and bartering. Market algorithms and strategies for optimal
bidding are not central to service-oriented computing.

However, participating successfully in a negotiation depends upon modeling the seman-
tics of what is being negotiated, interacting as a peer, and carrying out long-lived interactions
as part of realistic business processes. These aspects are central to the thesis of this book.
This book does not seek to solve the problems of negotiation that arise in various applica-
tions, because the specific techniques would depend on the application in question. However,
it seeks to provide the concepts and techniques of Web services that would be an integral part
of the solutions in those applications.



Computing with Services

In our vision, the Web will become usable by machines as well as by people, and will
become active rather than passive. The following summarizes the main trends regarding the
Web:

e Automation. Homan = Machine.

o Richer markup. The move from HTML to XML has regularized the syntax of docu-
ments and data structures found over the Web. However, XML is not adequate for cap-
turing the semantics or formal meaning of these documents and data structures. Richer
representations are needed. These are distinct layers above XML, although they might
be given an XML syntax as well.

e Richer activities. Passive = Active; Services = Processes.
o Greater interaction. Client-Server = P2P = Cooperative.
o Accommodating context. Semantics = Mutual Understanding = Pragmatics.

The above trends bring us well beyond the Semantic Web as currently understood, and
add pragmatics to the picture. For this reason, it is best to term these the Pragmatic Web.

1.2 Precursors

Let us quickly review the history of information technology from the perspectives of dis-
tributed computing and information modeling. As is well known, computing has evolved
from centralized systems to time-shared ones, to client-server computing, and now on to
peer-to-peer computing:

e First-generation information systems provide centralized processing that is controlled
and accessed from simple terminals that have no data-processing capabilities of their
own.

e Second-generation information systems are organized into servers that provide general-
purpose processing, data, files, and applications and clients that interact with the servers
and provide special-purpose processing, inputs, and outputs.

e Third-generation information systems, which include those termed peer-to-peer, enable
each node of a distributed set of processors to behave as both a client and a server; they
may still use some servers.

e Emerging next-generation information systems are cooperative, where autonomous,
active, heterogeneous components enable the components collectively to provide solu-
tions.



1.3 Open Environments

Already, systems are emerging that include aspects of cooperation wherein the components
not only can deal with each other as peers, but also can understand each other at a higher level.
Here we take the term cooperative to include both cases of intelligent help and intelligent
competition.

In the early days of computing, data and applications were inextricably intertwined, lead-
ing to poor maintainability and upgradeability. By separating the data from the applications,
database management systems enabled each to exist independently of the other. The hope
was that data could be used for applications other than those for which it was intended and
that applications could access databases other than those they were designed to access. This
hope was partially realized in that, with sufficient effort, one could build new applications
that access old data and feed new data into old applications. However, in its fullest form, this
hope was dashed, because although access methods became standardized on the Structured
Query Language (SQL) for relational databases, the semantics of the data remained as ad hoc
as ever. For example, two relations with the column employee may or may not refer to the
same concept.

The same problem occurred for the Internet. In the early days, applications and data
formats were ad hoc. The standardization on HTML enabled the advent of browsers through
which people could access information anywhere on the Web. This is fine as long as humans
are engaged in understanding and processing the information, but does not lend itself well to
automation. So it is natural that semantics will draw increasing attention on the Web as well.

The Web is simply the culmination of this trend to heterogeneity. There is an interesting
dilemma here: the more distributed and independently managed that resources on the Web
become, the greater is their potential value, but the harder it is to extract that value. Web
services, by being usable across independently designed systems, facilitate creating systems
of high value whose value can be extracted with greater ease than previously.

1.3 Open Environments

The above trends in information systems toward increasing distribution, decoupling, local
intelligence, and collaboration have been accompanied by a similar evolution in networking,
from proprietary local networks to wide-area private networks, such as extranets and virtual
private networks (VPNs), to the public Internet. The result is that information systems have
components that cross organizational boundaries, i.e., are open. The term open implies that
the components involved are autonomous and heterogeneous, and system configurations can
change dynamically.

Often, we would want to constrain the design and behavior of components, thus limiting
the openness of the information system. However, the system would still have to deal with
the rest of the world, which would remain open. For example, a company might develop an
enterprise integration system that is wholly within the enterprise. Yet, this system would have
to deal with external parties, e.g., to handle supply and production chains. In other words, the
system would still need to function in an open environment. For this reason, it is helpful to
think in terms of such environments. We now review some of the key characteristics of open



Computing with Services

information environments.

Let’s begin with a review of the concepts of autonomy, heterogeneity, and dynamism as
they relate to open information environments. A simple way to understand and distinguish
these concepts is to associate them with the independence of users, designers, and adminis-
trators, respectively.

1.3.1 Autonomy

Autonomy means that the components in an environment function solely under their own
control. Imagine dealing with an e-commerce site. It may or may not remove some items
from its catalog. It may or may not even deliver the goods it promised. Of course, one might
seek legal recourse if a contract is violated! In fact, the autonomy of the components is the
reason that contracts and compliance are so important for open environments. We will return
to these topics in Chapters 15 and 18.

Simply put, software components are autonomous because they reflect the autonomy of
the human and corporate interests that they represent on the Web. In other words, there are
sociopolitical reasons for autonomy. Resources are owned and controlled by autonomous
entities and that is why they behave autonomously.

There are also a couple of technical reasons for autonomy. The simplest one is that a
component that behaves unexpectedly might be doing so because of error, i.e., a mistaken
requirement or a faulty implementation. If we can handle such components, then our system
will be robust. A more subtle reason is that sometimes components are designed so as to
be externally opaque in certain respects. For example, a well-encapsulated data type imple-
mentation hides its internal structures; therefore, the behavior of instances of this data type
would not be controllable with respect to the hidden aspects. Consider a dictionary data type
implemented as a hash table, with supported methods for inserting elements to the dictionary
and iterating over all elements of the dictionary. The size of the hash table and the hash
function are not revealed. To a programmer using this implementation, the ordering of the
elements in the iteration would appear as uncontrollable. This ordering could even change
across successive invocations if, in the interim, the hash table is resized because of internal
considerations, perhaps motivated by space and efficiency.

A major practical example of this occurs in legacy enterprise systems wherein database
management systems might be designed or configured to decide unilaterally (based on inter-
nal considerations) whether to allow a transaction to complete. To other components, their
decision on whether a transaction may complete or not appears as purely autonomous. Lastly,
certain instances of autonomy reflect the possibility of errors. For example, if a file system
can fail, a Web site on which you submit a form may fail to record your changes, thus appear-
ing to have unilaterally decided to discard your submission.

A consequence of autonomy is that updates can occur only under local control. In other
words, you can request another party to do something, but you cannot force them to do it. This
simple point illustrates a limitation of object-oriented computing. We can invoke methods on
objects and, if we have the handle for an object, the object performs the method so invoked.



1.3 Open Environments

By contrast, for open environments, there is another layer of reasoning so that a component
that is requested to perform a method may decide whether or not to accept the request. An
advantage of service-oriented computing over object-oriented computing is that it respects
autonomy.

1.3.2 Heterogeneity

Heterogeneity means that the various components of a given system are different in their
design and construction. Just as for autonomy, there are both sociopolitical and technical
reasons for heterogeneity. Component designers and architects might wish to construct their
components in different ways, e.g., to satisfy different performance requirements. Often, the
reasons are historical: components fielded today may have arisen out of legacy systems that
were initially constructed for different narrow uses, but eventually expanded in their scopes
to participate in the same system.

Heterogeneity can arise at a variety of levels in a system, such as networking protocols,
encodings of information, and data formats. Clearly, standardization at each level reduces
heterogeneity and can improve productivity through enhanced interoperability. This is the
reason that standards such as the Internet Protocol (IP), HTTP, Universal Character Set
(UCS), UCS Transformation Format (UTF-8), and XML have gained currency. Standards
always evolve and different software components may lag behind or overtake standards in
various respects. In general, it is easier to establish and comply with lower-level standards.

Heterogeneity also arises at the level of semantics and usage, where it may be hardest
to resolve and sometimes even to detect. For example, a payroll system and a benefits sys-
tem might both deal with employees. Yet, the payroll system might treat employees as those
being paid on a regular basis, whereas the benefits system might treat employees as those
receiving health benefits on a regular basis. Under some cases, the systems might happen to
work correctly and be mutually consistent. A manager may obtain information aggregated
from the two systems and meaningfully calculate, for instance, the average monthly expenses
per employee. But a real-world event might cause their inherent heterogeneity to lead to dif-
ferences in the behavior. Consider what happens when Anne, a paid employee with benefits,
retires. If the organization continues to pay benefits for its retirees for the first year of their
retirement, Anne would appear to be an employee in the benefits system but not in the payroll
system. The aggregated data would not quite be as meaningful any more.

Heterogeneity can cause complications for the functioning of a component, because it
means that less can be assumed about the other components. However, there is an excellent
reason why heterogeneity emerges and should be allowed to persist. To remove heterogeneity
would involve redesigning and reimplementing the various components. Even if the different
designers are willing to bear the associated costs, removing heterogeneity is difficult, because
doing so assumes that we can come up with a conceptually integrated design. However,
integration is not easy and is fragile. This means that the conceptually integrated system,
if one can be built, would tend to be unreliable. Most importantly, such a system would be
fragile: as the components evolve because of changing local requirements, we would have to



10

Computing with Services

keep reintegrating them.

Therefore, it is more pragmatic to let the components be heterogeneous, but to impose
various kinds of weak requirements on their interactions. After all, this is the reason why we
have standardized protocols, such as TCP/IP and HTTP.

1.3.3 Dynamism

An open environment can exhibit dynamism in two main respects. First, because of auton-
omy, its participants can behave arbitrarily. In particular, they can change their behavior
because of how they happen to be configured. Second, they may also join or leave an open
environment at whim. It is worth separating out this aspect as a reflection of the independence
of the system administrators. A large-scale open system would of necessity be designed so
as to accommodate the arrival, departure, temporary absence, modification, and substitution
of its components.

With regard to the first type of dynamism, individual components can change dynamically
in their behavior, architecture and implementation, and interactions. That is, there might be
changes in their externally observed behavior, how they achieve or produce their behavior,
and how they interact with other components.

1.3.4 Challenges

Open environments pose significant technical challenges. In particular, we must develop
approaches that can cope with the scale of the number of participants and respect the auton-
omy and accommodate the heterogeneity of the various participants, while maintaining coor-
dination. Specifically, because of the scale, we cannot count on knowing all the available
resources in terms of their functionality, reliability, trustworthiness, and so on. This means
that discovering the required resources, deciding how to use them, engaging them, and check-
ing their compliance are all significant challenges.

As a consequence of their autonomy and heterogeneity, the components must be treated
in a local manner. In other words, each component must locally decide how to proceed in its
interactions with others. This is in tension with assembling global information. Some level of
global information is essential for ensuring that the different parties are coordinated. Yet, the
presence of global information creates the possibilities of inconsistencies and causes potential
difficulty for maintenance. Whereas the components in an open environment may often have
some interdependencies in practice, they would have only a few such interdependencies if
they are designed in a correct manner that preserves the autonomy and heterogeneity of the
components.

An argument for preserving the autonomy and heterogeneity of the components is that it
forces us to design simple or narrow interaction protocols, thereby eliminating any unneces-
sary dependencies among the components.

An argument for dynamism is that, if assumed, it greatly simplifies the challenge of con-
figuring and administering a system. Moreover, it makes the system resilient to certain kinds
of failures and enables the exploitation of certain emerging opportunities. For example, if a



1.4 Services Introduced

11

component fails, a system that was designed with dynamism in mind would take the failure in
its stride: it could easily patch in a replacement component. Likewise, if a better component
than one being used becomes available or a better deal comes along, such a system could
switch components to better meet the overall business objectives.

Also, in practical settings, it is often appropriate to relax the constraints among the var-
ious components. Thus, global information is obtained or aggregated only when needed.
More importantly, it is often OK to let inconsistencies emerge provided they can be corrected
quickly enough (depending, of course, on the specific application at hand). The corrective
actions in many cases will have a global basis, but can be applied locally. For example, an e-
commerce transaction can complete correctly only if the goods are received by the purchaser
and the payment is received by the vendor. It would be nearly impossible to synchronize these
events perfectly, but it is possible to use a reliable payment mechanism, such as a credit card
and a reliable delivery service. If the vendor fails to ship because of an unexpected shortfall,
it can cancel the debit to the credit card. Section 5.4.2 considers a more detailed example. In
general, there are many good examples of relaxed constraints in the way people have done
business before the advent of computers. Some of these examples can be readily adapted for
online settings.

1.4 Services Introduced

Just like objects a generation ago, services is now the killer buzzword of our era. And wher-
ever you turn, some vendor or analyst is promoting services. They are like motherhood and
apple-pie in modern computing. But unlike motherhood, services mean different things to
different people. Web services have been defined as:

e A piece of business logic accessible via the Internet using open standards (Microsoft).

e Encapsulated, loosely coupled, contracted software functions, offered via standard pro-
tocols over the Web (DestiCorp).

e Loosely coupled software components that interact with one another dynamically via
standard Internet technologies (Gartner).

e A software application identified by a URI, whose interfaces and binding are capable of
being defined, described, and discovered by XML artifacts and supports direct interac-
tions with other software applications using XML-based messages via Internet-based
protocols (W3C).

Although our emphasis is on Web services, it is instructive to review how different commu-
nities conceive of services, reflecting their backgrounds and concerns.

e Networking: a service is characterized by bandwidth, availability, error rate, and simi-
lar properties.



12

Computing with Services

o Telecommunications: a service is considered to be either a specific telephony feature,
such as caller ID or call forwarding, or a basic connection service, such as narrowband
versus broadband (itself of a few varieties).

e Systems: a service is for billing, storage, and other key operational functions. These
functions are often parceled up into the so-called operation-support systems.

o Web applications: a service corresponds to Web pages, especially those with forms or
a programmatic interface thereto.

o Wireless: in wireless versions of the Web, a service includes messaging, as in the
popular short message service (SMS).

If there is agreement here, it is that a service is a capability that is provided and exploited,
often but not always remotely. Accordingly, our working definition of a Web service is that
it is functionality that can be engaged over the Web. Later sections explain the ramifications
of engagement fully, but the essence is that engagement goes beyond mere invocation of
services. However, the above answers provide a litmus test for judging what role one expects
a “service” to play in a distributed system.

1.5 Using Services

Services provide a programming metaphor that supports the right kinds of programming mod-
els for open, distributed systems. Service architectures are modular, because each service
inherently offers a certain provider—subscriber interface. This interface enables much flexi-
bility, for instance, by allowing proxy agents transparently to provide new services based on
old services and to compose services as appropriate. In general, composability is a power-
ful property for engineering software and more than sufficient justification for all the current
interest in services.

Although services must be invoked, their invocations will often be implicit. For example,
many of the networking and telecom services are not invoked as such; they are merely variants
of other, more basic services that are invoked. That is, you might invoke a packet delivery
service to send a series of packets over a network; with the same programming interface and
depending on what underlying service is provisioned, you might obtain different guarantees
as to the packet delivery in terms of, say, jitter. In telecom, the definition of a service is
of regulatory (and hence economic) interest. For example, looking up a phone number is a
standalone service, whereas call forwarding is a feature of telephony. To get a feel for these
distinctions, see the Federal Communications Commission’s ruling on reverse phone number
lookup [FCC, 1996]. Telecom might not be of direct interest to Web specialists, but similar
considerations and even regulations might begin to apply to Web services, either because they
involve telephony or because the increasing economic importance of Web services attracts the
attention of legislators.



1.6 The Evolving Web

13

1.6 The Evolving Web

The Web is, at first look, ubiquitous and so uniformly accessible that it is easy to begin
thinking of it as a single large system. Its single distinguishing purpose seems to be the
exchange of marked-up documents and its single distinguishing characteristic seems to be
the hyperlinks among those documents.

However, the Web truly is many things to many people. Although the Web’s many uses
have similarities, we would be best off understanding their main variants so we can program
accordingly. To this end, it is helpful to review a classification proposed by Bill Joy, former
Chief Scientist of Sun Microsystems. Joy’s classification consists of four main kinds of
“Web,” which he distinguishes based on the modalities of the interface as experienced by a
user [Joy, 2000]:

e Near Web: conventional mouse-keyboard-monitor interaction with a personal com-
puter, typically for purposes such as surfing the Web.

e Far Web: interaction with a computer from across a room as with a TV remote control,
typically for entertainment, such as listening to music or viewing a movie.

e Here Web: interaction with a mobile device, with narrow bandwidths for input and
output.

o Weird Web: interaction through emerging interface technologies, such as voice and
wearable computing.

Joy defined two additional webs where there are no direct user interactions. These are the
business-to-business (B2B) Web, dealing with the supply networks of business-to-business
electronic commerce, and the pervasive Web, dealing with device-to-device interactions.

It is helpful to place the characteristics of services over the Web into a historical perspec-
tive, as shown in Table 1.1.

Table 1.1: A historical view of services over the Web

Generation Scope Technology Example
First All Browser Any HTML page
Second Programmatic =~ Screen Systematically
scraper generated HTML
content
Third Standardized  Web Formally described
services service
Fourth Semantic Semantic Semantically described ser-
Web vice

services




14

Computing with Services

Systematically generated HTML content refers to data-driven Web sites that have a well-
defined visual structure. Commercial Web sites such as amazon.com are examples. These can
be automatically parsed, although the grammar through which they are parsed may be ad hoc
and difficult to maintain as the structure of the content is not explicit and reflects the visual
structure of a page. Formally described services are those that are described via current Web
services standards (as introduced in Chapter 2). In current practice, these are being released
with specialized toolkits by leading vendors. Exercises 1.1, 1.2, and 1.3 ask you to review
three of these toolkits. Semantically described services are those that go beyond current Web
services to explicitly encode the meanings of the services.

1.7 Standards Bodies

Since services involve serious work and interactions among the implementations and systems
of diverse entities, it is only natural that several technologies related to services would be
standardized. As in much of computer science, standardization in services often proceeds in
a de facto manner where a standard is established merely by fact of being adopted by a large
number of vendors and users. However, standards bodies play an important role. Sometimes
they take the lead in coming up with de jure standards. At other times, they clean up and
formalize emerging de facto standards, and lend some semblance of order to the marketplace.

The following are the most important standards bodies and initiatives for services. This
book will refer to their specific contributions numerous times.

IETF. The Internet Engineering Task Force is charged with the creation and dissemination
of standards dealing with Internet technologies. Besides the TCP/IP suite and URIs,
the IETF is also responsible for HTTP and other protocols of interest to services, such
as Session Initiation Protocol (SIP) and SMTP.

OMG. The Object Management Group has been developing standards for modeling, interop-
erating, and enacting distributed object systems. Its most popular standards include the
Unified Modeling Language (UML) and Common Object Request Broker Architecture
(CORBA). OMG has recently proposed the Model-Driven Architecture (MDA).

W3C. The World-Wide Web Consortium is an organization that promotes standards dealing
with Web technologies. The W3C has mostly emphasized the representational aspects
of the Web, deferring to other bodies for networking and other computational standards,
e.g., those involving transactions. The W3C’s main standards of interest for services
include XML, XML Schema, WSDL, SOAP, and WSCI.

OASIS. The Organization for the Advancement of Structured Information Standards stan-
dardizes a number of protocols and methodologies relevant to Web services, includ-
ing the Universal Business Language (UBL), UDDI, the Business Process Execution
Language for Web Services (BPEL4WS), and, in collaboration with UN/CEFACT,
ebXML.



1.8 Overview of this Book

15

UN/CEFACT. The United Nations Center for Trade Facilitation and Electronic Business
focuses on the facilitation of international transactions, through the simplification and
harmonization of procedures and information flows. Its mission is to improve the abil-
ity of business, trade, and administrative organizations, from developed and develop-
ing economies, to exchange products and services effectively, and so contribute to the
growth of global commerce. One of UN/CEFACT’s most important developments is
the specification for the Electronic Business eXtensible Mark-up Language (ebXML),
which is a framework for the global use of electronic business information.

WS-1. The Web Services Interoperability Organization is an open, industry organization
chartered to promote the interoperability of Web services across platforms, operating
systems, and programming languages. It creates and supports generic protocols for
the interoperable exchange of messages between services. Its primary contribution to
date is Basic Profile version 1.0 (BP 1.0). BP 1.0 is a consistent specification for basic
Web services comprising SOAP 1.1, HTTP 1.1, XML 1.0, XML Schema Parts 1 and
2, UDDI Version 2, and WSDL 1.1.

BPMI.org. The Business Process Management Initiative is working to standardize the man-
agement of business processes that span multiple applications, corporate departments,
and business partners. Microsoft based XLANG on the pi calculus, IBM used Petri
Nets for WSFL, and BPMI.org unified the two approaches with the Business Process
Modeling Language (BPML). In this regard, BPML 1.0 is similar to BPEL4WS.

WEMC. The Workflow Management Coalition develops standardized models for workflows
and workflow engines, as well as protocols for monitoring and controlling workflows.

FIPA. The Foundation for Intelligent Physical Agents promotes technologies and specifica-
tions that facilitate the end-to-end interoperation of intelligent agent systems for indus-
trial applications [FIPA]. FIPA’s standards include agent management technologies and
agent communication languages.

1.8 Overview of this Book

This book is organized according to two different, but complementary schemes. The first
organization scheme is based on the major levels of abstraction for service-oriented comput-
ing, ranging from raw messages to individual services to conversations to choreography to
sophisticated forms of orchestration supported by high-level contracts among teams of inter-
acting, autonomous participants. This scheme is depicted in Figure 1.1, which illustrates the
levels of abstraction, their relationships, and the aspects of Web services and service-oriented
computing being addressed. The second scheme tracks the development of Web services and
service-oriented computing from their heritage to their current incarnation, and where they
either are heading or ought to head. The general themes of this organization cover basic
connection, quality of service (QoS), and enterprise interoperation.



16

Computing with Services

There have been several major efforts to standardize services and service protocols, par-
ticularly for electronic business. One of these is electronic business XML (ebXML), which
has produced the rightmost stack shown in Figure 1.1. The leftmost stack is the result of
development efforts by the Semantic Web research community in conjunction with the W3C.
The central stack is primarily the result of standards efforts led by IBM, Microsoft, BEA, HP,
and Sun Microsystems. By and large, these have been separate from standards bodies, but
will be ratified eventually by one or more appropriate such bodies.

ebXML
tleio) Registries | Discovery
ebXML Contracts and
CPA agreements
OWL-S Service BPELAWS BPML Process ahd workflow
Model orchestrations
et el S BTP QoS: Transactions
BusinessActivity
OWL-S Service | WS-Reliable ] At :
Proflle Messaging WS-Coordination wsel SbXML QoS: Choreography
OWL-S Service | WS-Security WSCL HFee QoS: Conversations
Grounding
: ebXML | QoS: Service
WS-Polic! WSDL
OowWL PSL Y CPP descriptions and bindings
ebXML
RDF SOAP messaging | Messaging
XML, DTD, and XML Schema Encoding
HTTP, FTP, SMTP, SIP, etc. Transport

Figure 1.1: The relationship of the different proposed standards and methodologies for
automating electronic business

Each stack makes use of the following abstraction levels:

The transport layer provides the fundamental protocols for communicating information
among the components in a distributed system of services.

The eXtensible Markup Language, XML, is the foundation for interoperation among
enterprises and for the envisioned Semantic Web. Standards at this level describe the
grammars for syntactically well formed data and documents, and how the well formed-
ness can be validated.

The messaging layer describes the formats using which documents and service invoca-
tions are communicated.

The service descriptions and bindings layer describes the functionality of Web services
in terms of their implementations, interfaces, and results.

A Conversation is an instance of a protocol of interactions among services, describing
the sequences of documents and invocations exchanged by an individual service.



1.9 Notes

17

Choreography protocols coordinate collections of Web services into patterns that pro-
vide a desired outcome. Choreography is used across a domain of control to ensure
harmony and interoperability.

Transaction protocols specify not only the behavioral commitments of the autonomous
components, but also the means to rectify the problems that arise when exceptions and
commitment failures occur.

The orchestration layer has protocols for workflows and business processes, which are
composed out of more primitive services and components. They specify the control
flows and data flows needed for the processes to be executed correctly. Orchestration
implies a centralized control mechanism (e.g., the conductor in an orchestra), whereas
choreography does not (e.g., the dancers on a stage). Orchestration is typically used
within a domain of control.

Contracts and agreements formalize commitments among autonomous components in
order to automate electronic business and provide outcomes that have legal force and
consequences.

The discovery layer specifies the protocols and languages needed for services to adver-
tise their capabilities and for clients that need such capabilities to locate and use the
services.

1.9 Notes

XMethods provides a number of services for simple tasks such as currency conversion, and

SO on.

Microsoft MapPoint (http://www.microsoft.com/mappoint/webservice/) is a Web service
for searching city maps (it is based on the old mapblast.com technology that was acquired by
Microsoft).

1.10 Exercises

I.1.

1.2.
1.3.
1.4.

Study the amazon.com Web service toolkit licensing and evaluate their offering (with
examples) in terms of the concepts of autonomy, heterogeneity, and dynamism. Next,
imagine what additional forms of autonomy, heterogeneity, and dynamism you might
experience from this toolkit, even if they are not explicitly documented.

Repeat Exercise 1.1 but for the Google Web service toolkit.
Repeat Exercise 1.1 but with respect to the Microsoft MapPoint Web service toolkit.

Which (zero or more) of the following techniques would preserve autonomy among
the participating components:



18

Computing with Services

e Message-passing via TCP/IP sockets between component A and component B?

Remote procedure call (RPC) between component A and component B?

Remote method invocation (such as Java RMI) between component A and com-
ponent B?

Email using SMTP between component A and component B?

1.5. Using a Web programming approach such as Java Server Pages (JSP) or Active Server
Pages (ASP), build a Web page that lets a user search a local database. Consider the
bookstore domain, where information is stored about authors, titles, publishers, years
of publication, and prices. For simplicity, the database may be implemented as a flat
file. This exercise is a precursor to implementing a Web service, thus helping you to
learn the nuances of your local installation.



Chapter 2

Basic Standards for Web Services

Although Web services in the sense of current standards are only now emerging, the idea of
providing services over the Web is quite old. If we checked, most of us would probably find
that we have been providing and using Web services for years. For example, mail reflectors
and their associated mailing lists are services to which we can subscribe. There are even
on-line catalogs of the mailing lists and the particular topics to which they are devoted. The
primary difference between older service offerings and contemporary Web services is that
human intervention was previously required.

The modern view of services goes beyond the above, however, in terms of accommodating
the openness of Web systems. This means describing services in a standard manner, arranging
for them to be discovered in a standard manner, and invoking them, also in a standard manner.
The general architectural model for Web services is shown in Figure 2.1. It consists of three
types of participants:

1. Service providers, who create Web services and advertise them to potential users by
registering the Web services with service brokers.

2. Service brokers, who maintain a registry of advertised (published) services and might
introduce service providers to service requesters.

3. Service requesters, who search the registries of service brokers for suitable service
providers, and then contact a service provider to use its services.

The architecture for Web services is founded on principles and standards for connection,
communication, description, and discovery. For providers and requesters of services to be
connected and exchange information, there must be a common language. This is provided
by the eXtensible Markup Language (XML). A common protocol is required for systems to
communicate with each other, so that they can request services, such as to schedule appoint-
ments, order parts, and deliver information. The Simple Object Access Protocol (now known
just by its acronym, SOAP) [Box et al., 2000] currently provides the common communication

19



20

Basic Standards for Web Services

Service
Broker
Publish Find
(WSDL) (UDDI)
Bind
Service (Soap/HTTP) Service
Provider Requestor

Figure 2.1: The general architectural model for Web services

protocol. The services must be described in a machine-readable form, where the names of
functions, their required parameters, and their results can be specified. This is provided by the
Web Services Description Language (WSDL), sometimes pronounced “whiz-dull.” Finally,
clients—users and businesses—need a way to find the services they need. This is provided
by Universal Description, Discovery, and Integration (UDDI), which specifies a registry or
“yellow pages” of services. Besides standards for XML, SOAP, WSDL, and UDDI, there
is a need for broad agreement on the semantics of specific domains. In fact, that is where
the deeper challenges lie. Chapter 6 introduces approaches for representing the semantics of
services.

This chapter next introduces the key elements of the three main standards for Web ser-
vices. Many of the details of these standards are of greatest interest to those implementing
tools, not those implementing applications and systems using the tools. That is, applica-
tion programmers will rarely need to operate at the level of the standards themselves. Just
as they do not commonly use HTTP (much less TCP/IP) directly but through programming
interfaces, they will use programming interfaces and tools that provide a layer of abstraction
above the standards. Still, it is useful to develop an understanding of the standards them-
selves.



2.1 XML

21

21 XML

The most fundamental of the above languages is XML. XML tags convey information about
the meaning of data, not just how the data should appear, as is the case for HTML. XML
regularizes the syntax of HTML, so that it is easier to parse and process. Either of these can
provide definitions of tag structures and syntaxes that could be industry-wide and standard,
or idiosyncratic and local. XML has the advantages in that, first, it can be extended for new
applications and, second, it supports both documents (unstructured data) and structured data
(e.g., from databases). Third, XML enables structure-sensitive queries, meaning that we can
query an XML document based on its structure and its values in specific places or fields.
Fourth, XML-tagged data can be mechanically validated.

XML provides a data format for documents and structured data, but does not specify the
semantics of the format. To share information and knowledge among different applications
(i.e., for interoperability), a shared set of terms describing the application domain with a
common understanding is needed. Chapter 8 introduces a formal language for describing the
application domain, which is also expressible in XML, but is conceptually at a higher level
than XML. Appendix A provides a further description of XML and some relevant techniques.

2.2 SOAP

SOAP was originally intended to provide networked computers with remote-procedure call
(RPC) services written in XML. It has since become a simple and lightweight protocol for
exchanging XML messages over the Web using HTTP, SMTP, and SIP—the Session Initia-
tion Protocol for Internet telephony and other peer-to-peer applications [Schulzrinne, 2004].
In practice, however, HTTP is the most common transport for SOAP and is the option that is
included in interoperability standards, such as BP 1.0. Chapter 3 returns to this point.

Customer Supplier.
| Submit PO |
1 N
| |
catalogService | |
E 0 I Ack PO I
invoke e I
- catalog | |
- | |
purchasing() - o I Submit ASN I
~\ confirmation# ) . . )
) L Submit Invoice |
invoke | I

Submit Payment

order() e =

Figure 2.2: A customer can order goods from a supplier directly by method invocation (left)
or indirectly by sending a purchase order message (right)



22

Basic Standards for Web Services

Figure 2.2 shows examples of SOAP interactions modeled as methods and as messages,
respectively. In these examples, a manufacturing company (say, Dell) might directly invoke a
supplier’s (say, Intel’s) catalog and order functions, or might send a purchase order message
to the supplier. When services are modeled as methods, then service composition is achieved
via scripts that invoke methods.

SOAP defines an envelope for transmitting messages and rules for representing remote-
procedure calls. Listing 2.1 shows an example SOAP message packaged in an HTTP POST.
HTTP POST is used rather than HTTP GET due to its ability to carry a payload. The message,
sent to www.socweather.com, requests that the Web service perform the GetTemp procedure
using “Honolulu” as the value of the City parameter and “now” as the value of the When
parameter. The SOAP response message carries the resultant temperature as the parameter
DegreesCelsius with a value of “30”.

Listing 2.1: A SOAP request

(POST /temp HTTP/1.1

Host: www.socweather.com

Content—Type: text/xml; charset="utf-g"
Content—Length: xxx

SOAPAction: "http://www.socweather.com/temp"

<!— The above are HTIP header fields —>
<?7xml version="1.0"7>
<env:Envelope
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
env:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"/>
<env:Body>
<m:GetTemp
xmlns:m="http://www.socweather.com/temp.xsd">
<m:City >Honolulu </m:City >
<m:When>now </m:When>
</m:GetTemp>
</env:Body>
</env:Envelope>

-

Listing 2.2: A SOAP response corresponding to the request of Listing 2.1

HTTP/1.1 200 OK

Content—Type: text/xml; charset="utf-8"
Content—Length: xxx

SOAPAction: "http://www.socweather.com/temp"

<Mxml version="1.0"?>
<env:Envelope

xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"




2.2 SOAP

23

env:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"/>

<env:Body>
<m:GetTempResponse

xmlns:m="http://www.socweather.com/temp.xsd">
<DegreesCelcius>30</DegreesCelcius>

</m:GetTempResponse>

</env:Body>

</env:Envelope>

N

The SOAP body, i.e., for SOAP RPC (see Section 5.2.2), describes method calls and
responses. It must contain the target object’s URI, the method name, and the parameters
of the message. The parameters are specified in a struct that contains an accessor for each
parameter in the method’s invocation and an accessor for the return value. Note that the types
of the parameters are not specified—this is left for WSDL, which is described in Section 2.3.
The EncodingStyle attribute specifies rules for deserializing the SOAP message.

2.2.1 Processing

SOAP messages are assumed to be routed from one recipient to the next until they arrive
at the final recipient. Thus SOAP is understood in terms of three kinds of nodes: sender,
intermediary, or ultimate recipient. The SOAP model involves two main roles: next and
ultimateReceiver, and the trivial role none. The role of next is played by any intermediary and
by the final recipient; the role of ultimateReceiver may only be played by the final recipient.
No participant can play the role none. In effect, each participant must play the role of next,
unless someone sends a message and never wishes to receive a reply. Each of these roles
is defined via a URI to ensure its uniqueness. However, the semantics of the roles is not
formally expressed.

2.2.2 Body and Header

Each SOAP message must include a body, which is generally interpreted by the ultimateRe-
ceiver. However, an intermediate node may also interpret the body. Such behavior is consid-
ered to be against the spirit of the specification, although there is no way to ensure compli-
ance. The processing semantics is left to the application, meaning that it must be negotiated
through some out-of-band communication.

Both Listings 2.1 and 2.2 demonstrate simple SOAP messages. The main element of a
message is the envelope, whose contents are processed as appropriate by the application, i.e.,
the interpretation of the contents is not part of the SOAP specification.

As shown in Listings 2.1 and 2.2, an envelope contains a mandatory body. In addition,
a SOAP envelope may optionally contain a header. The header provides a control channel
for passing additional directives and information that would influence a recipient’s treatment
of the body. A SOAP message may travel from a sender to a receiver by passing different



24

Basic Standards for Web Services

endpoints along the message path. SOAP header blocks contain information that might be
intended for SOAP intermediate endpoints, as well as the ultimate endpoint. The SOAP actor
attribute is used to address a header element to a particular endpoint. A header partitions into
blocks, which have their own namespace and describe some logically and computationally
related aspect of the processing of the body. As for the body, the semantics of the header
blocks is left to the application.

Listing 2.3: Example SOAP header

<!ENTITY SOAPENV
http: //www.w3.0rg/2003/05/soap—envelope>
<env:Header>
<c:converse
xmlns:c='http://www.socweather.com/conversation.xsd’
env:role=’ &« SOAPENV; /role/next’'>
<c:msgID>
uuid:0123456789 —0123456789—-0123456789
</c:msgID>
</c:converse >
</env:Header>

The intended role for processing a header block can be identified via the role attribute; by
default, it means that the ultimateReceiver should process the given block. A header block that
is marked with a true value for the mustUnderstand attribute means that any node processing
the message must process the given block or throw a fault. The header may incorporate
information for transaction management and authentication, without an a priori agreement
between the interacting parties.

2.2.3 Faults

Exceptions are inevitable in computations in open environments. To accommodate excep-
tions, SOAP supports an element known as fault. A SOAP body may include up to one fault
element. The fault element would have the subelements faultcode, faultstring, faultactor, and
detail. Of these, faultcode is most precisely defined in the standard. The following are the
legal values of fault code:

o Client. The fault claims that the client formulated its request incorrectly. The server
will not be able to entertain this request again and so the client should not repeat it.

e Server. The fault indicates that the server encountered internal problems. It may be
able to entertain the same request later, and the client is free to retry.

o VersionMismatch. The fault asserts a mismatch between the server and the request.
The request should use the soapenv namespace (as explained in Appendix C).

o MustUnderstand. The fault claims that a SOAP role failed to process a header that was
marked mustUnderstand for that role.




2.2 SOAP

2.2.4 Message Exchange

SOAP provides a means for communicating information (specified as XML) from a sender
to a receiver. Just a single transfer of information would rarely be adequate. Therefore, richer
message exchange patterns are essential. One simple and well-known pattern is the remote
procedure call (RPC). A SOAP RPC is based on the following information:

o the address of the target SOAP node, which will be ultimateReceiver;
e the name of the method to be invoked;

e the arguments and return value, if any;

e additional header blocks.

One way to achieve the effect of richer message exchanges in SOAP is to use a header
block to carry some sort of a conversation identifier possibly along with a message identifier.
These would give the application sufficient information to correlate different messages, i.e.,
to recognize them as part of the same conversation. Further, the message identifiers can be
used to encode other information such as a replyTo attribute.

SOAP intermediaries can be of two kinds. A forwarding intermediary can modify the
header blocks of a SOAP message and decide where to forward it. The modifications and
forwarding decision are made based on the contents of the given message as well as poten-
tially the ongoing message exchange pattern. An active intermediary that can process an
incoming SOAP message could act in a manner that need not be specified in the message.
Examples are policy actions such as encryption or adding a new header with a timestamp or
creating an audit trail. Thus SOAP intermediaries can be used to implement process flows.

Although the above approach seems quite powerful, it throws the burden of programming
the right decisions upon the application designers. Consequently, this approach is fraught
with risk from the standpoint of productivity and correctness. However, if tools were available
to generate the correct intermediaries, then the ability to retrofit or modify a process would
enable great flexibility.

2.2.5 Limitations

Like HTTP, SOAP is a character-based, rather than a binary protocol, making it easier to
secure, i.e., encrypt and decrypt. Programmers can easily examine and comprehend the con-
tents of SOAP messages and tools are easier to build. SOAP is also popular because, as a
consequence of its riding on established protocols such as HTTP, it readily works through
firewalls, and thus is able to form the basis for e-commerce over the Web. However, SOAP is
inefficient for many applications, because data are transmitted in character, not binary form.
Moreover, SOAP headers are large and in some cases the header size overshadows the pay-
load size.

Since the original work on SOAP predates the XML Schema standard, SOAP has ended
up with two syntaxes for representing the data. One is the so-called Section 5 Encoding,



26

Basic Standards for Web Services

described in the eponymous section of the SOAP 1.1 specification; the other is XML Schema.
The latter is the preferred approach.

In conceptual terms, SOAP is a stateless protocol. Although you can, of course, add
and interpret conversation identifiers to lend some statefulness to the interaction, each SOAP
message is unrelated to any other message. Hence, SOAP does not describe bidirectional
or multiparty interactions. One can use conversation identifiers at the application level to
build a conversation with an appropriate message pattern. However, this is not supported
by the protocol itself. Thus, SOAP implementations would provide no support for any such
enhanced message patterns and any standardization would have to be through a separate
process. Conversations relate to business protocols and are an important theme, however,
that are revisited in Chapter 13 and Chapter 18.

The SOAP specification is continuing to be revised. It does not yet describe bidirectional
or multiparty communication, which would be useful for composing Web services from mul-
tiple providers. Also, there is no way to transfer transaction semantics across a SOAP call.
At the present time, there is no standardized way to pass security credentials, although this
problem should be solved soon due to the work on security standards that is currently under-
way. SOAP is effective for simple interoperability between single clients and servers, but for
more complex interoperability among heterogeneous systems a message-queuing component
should be used by each participant to provide transaction and security support.

Exercises 2.11 and 2.12 ask you to propose enhancements to SOAP to address some of
the main shortcomings of its current incarnation.

23 WSDL

The architectural model for Web services presupposes that services can be found and used.
This in turn presupposes accurate descriptions of services. The Web Services Description
Language (WSDL) is an XML language for describing a programmatic interface to a Web
service [Christensen et al., 2001]. The description includes definitions of data types, input and
output message formats, the operations provided by the service (such as GetTemp), network
addresses, and protocol bindings. WSDL can best be understood in terms of an example, as
described via the code shown in Listing 2.4.

Listing 2.4: A WSDL example

g
<?xml version="1.0"7>

<!— the root element , wsdl:definitions , defines a set of —>
<!— related services —>

<wsdl:definitions name="Temperature"
targetNamespace="http://www.socweather.com/schema"
xmlns:ts="http://www.socweather.com/TempSvc.wsdl"
xmlns:tsxsd="http://schemas.socweather.com/TempSvc.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">




2.3 WSDL

27

<!— wsdl:types encapsulates schema definitions of —>
<!— communication types; here using xsd —>
<wsdl:types>

<!— all type declarations are expressed in xsd —>

<xsd:schema
targetNamespace="http://namespaces.socweather.com"
xmlns:xsd="http://www.w3.0rg/1999/XMLSchema">

<\— xsd def: GetTemp [ City string , When string] —>

<xsd:element name="GetTemp">

<xsd:complexType>

<xsd:sequence >
<xsd:element name="City" type="string"/>
<xsd:element name="When" type="string"/>
</xsd:sequence >

</xsd:complexType>

</xsd:element>

<!— xsd def: GetTempResponse [ DegreesCelsius integer] —>
<xsd:element name="GetTempResponse">
<!— XML Schema entry as above —>
</xsd:element>

<!— xsd def: GetTempFault [ errorMessage string | —>
<xsd:element name="GetTempFault">
<!— XML Schema entry as above —>
</xsd:element>
</xsd:schema>

</wsdl:types>

<!— wsdl:message elements describe potential transactions —>
<!— Most messages , as here, have only one part. Multiple —>
<!\— parts provide a way to aggregate complex messages —>

<!— request GetTempRequest is of type GetTemp —>
<wsdl:message name="GetTempRequest ">

<wsdl:part name="body" element="tsxsd:GetTemp"/>
</wsdl:message >

<!— response GetTempResponse is of type GetTempResponse —>
<wsdl:message name="GetTempResponse">

<wsdl:part name="body" element="tsxsd:GetTempResponse"/>
</wsdl:message>

<\— wsdl:portType describes messages in an operation —>




28

Basic Standards for Web Services

<wsdl:portType name="GetTempPortType">

<!— wsdl:operation describes the entire protocol from —>
<\— input to output or fault —>

<wsdl:operation name="GetTemp">
<!— The order input preceding output indicates the —>
<!— request—response operation type —>

<wsdl:input message="ts:GetTempRequest"/>
<wsdl:output message="ts:GetTempResponse"/>
<wsdl:fault message="ts:GetTempFault"/>
</wsdl:operation >

</wsdl:portType >

<!— wsdl:binding specifies a serialization protocol —>
<wsdl:binding name="TempSvcSoapBinding"
type="ts:GetTempPortType">

<!— leverage off soap:binding document style —>
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<!\— semi—opaque container of network transport details —>
<!— classed by soap:binding above @@@ —>
<wsdl:operation name="GetTemp">
<soap:operation
soapAction="http://www.socweather.com/TempSvc"/>
<!— further specify that the messages in the —>
<!— wsdl:operation "GetTemp" use SOAP? @@@ —>
<wsdl:input>
<soap:body use="literal"
namespace="http://schemas.socweather.com/TempSvc.xsd"/>
</wsdl:input>

<l— As above for wsdl:output and wsdl:fault —>

</wsdl:operation>
</wsdl:binding >

<!— wsdl:service names a new service "TemperatureService" >
<wsdl:service name="TemperatureService">
<wsdl:documentation >socweather.com temperature service
</wsdl:documentation >
<!— connect it to the binding "TempSvcSoapBinding" above —>

<wsdl:port name="GetTempPort" binding="ts:TempSvcSoapBinding">




2.3 WSDL

<\— give the binding a network address —>
<soap:address location="http://www.socweather.com/TempSvc"/>
</wsdl:port>

</wsdl:service >

</wsdl:definitions >

WSDL specifies the name of the service, such as GetTemp, the types of the input param-
eters, such as (String, String), the types of the output parameters, such as (Integer), the struc-
tures for the inputs and outputs in terms of XML Schema definitions (from the xsd names-
pace), the operations provided by the service, such as GetTemp, the protocol sequence of
each operation from inputs to either outputs or faults, a serialization protocol to be followed
for communication, such as SOAP, and the network address where the service can be found,
in the form of a URL.

2.3.1 Concepts

Operation. Like a method in an imperative programming language, an atom of functionality.

Message. A representation of typed data that is input to or output from an operation. WSDL
defines three kinds of messages: IN, OUT, and INOUT. The first two are obvious; INOUT
messages describe data that can function both as input and as output.

Type. A data type as defined using XML Schema (introduced in Appendix A). SOAP Sec-
tion 5 Encoding can also be used if desired. The data types can be mapped to and from
the types of conventional programming languages.

Port Type. Like a Java interface, a collection of operations.

Binding. Associates a port type to a protocol and data format. An example is binding to
SOAP and further identifying its style (“RPC” or “document”), encoding (“encoded”
meaning SOAP Section 5 or “literal” meaning XML Schema), and transport (e.g.,
HTTP). An alternative binding is to use HTTP with a verb of GET or POST. This
binding does not involve SOAP.

Port. An endpoint where operations reside: defined by a network address and binding.

Service. A collection of ports.

2.3.2 Operation Types

WSDL introduces four operation types, which characterize the behavior of an endpoint. That
is, they are defined from the perspective of the ultimate implementation of the Web service.

e One-way. Receive a message.

e Notification. Send a message.



30

Basic Standards for Web Services

® Request-response. Receive a request and emit a correlated response.
e Solicit-response. Emit a request and receive a correlated response.

The paired operation types could be based on the unidirectional types, but they are kept
because they identify important design patterns. For example, being the server in RPC cor-
responds to request-response and being the client in RPC corresponds to solicit-response.
These operation types, thus, anticipate SOAP’s message exchange patterns. Of the above
types, one-way and request-response are the only ones that are commonly employed. These
are readily supported by HTTP and by common object-oriented programming approaches.

WSDL 2.0 offers a richer set of primitives than the above. These primitives include
receiving or sending multiple responses to a single query. The details are not of great sig-
nificance to the overall goals of this chapter. Richer message patterns are discussed in the
context of conversation modeling later.

2.3.3 Creating WSDL Models

It helps to separate out a WSDL specification into two main components: the interface and the
implementation. Splitting the WSDL specification in this manner improves modularity and
separates the service interface, which is reusable, and may have multiple implementations.

The WSDL interface is the more abstract component. It describes a service by flesh-
ing out the definition element in terms of the types, import, message, portType, and binding
subelements. An interface may import other interfaces.

The WSDL service implementation considers the specifics of binding a service. Its defini-
tion element must include an import element to import at least one WSDL interface document
and includes a service element, which includes port elements. The import element specifies
an identifier for the namespace being imported as well as its location.

2.4 Directory Services

The purpose of a directory service is for components and participants to be able to locate
each other, where the components and participants might be applications, agents, Web service
providers, Web service requesters, people, objects, and procedures. Directories collect and
organize location and description information and make it available to any clients that might
need it. Directories also function as the primary supporting mechanism for dynamism, as
defined in Section 1.3, because they are the repository for information about changes that
have occurred to their entries.

There are two general types of directories, determined by how entries are located in the
directory: (1) name servers or “white pages,” where entries are found by their name, and (2)
“yellow pages,” where entries are found by their characteristics and capabilities.

The implementation of a basic directory is a simple database-like mechanism that allows
participants to insert descriptions of the services they offer and query for services offered
by other participants. A more advanced directory might be more active than others, in that



2.5 UDDI

31

it might provide not only a search service, but also a brokering or facilitating service. For
example, a participant might request a brokerage service to recruit one or more agents who
can answer a query. The brokerage service would use knowledge about the requirements and
capabilities of registered service providers to determine the appropriate providers to which
a query could be forwarded. It would then send the query to those providers, relay their
answers back to the original requester, and learn about the properties of the responses it
passes on (e.g., the brokerage service might determine that advertised results from provider
X are incomplete, and so seek out a substitute for provider X).

Two major standards for directories are emerging: ebXML registries and UDDI registries.
Unfortunately, neither supports semantic descriptions, and thus neither supports semantic
searching on functionality. Searches, as a result, can only be based on keywords, such as a
service’s name, provider, location, or business category. ebXML registries have an advantage
over UDDI registries in that they allow SQL-based queries on keywords. As described in the
next section, UDDI provides white-pages, yellow-pages, and green-pages services.

2.5 UDDI

The Universal Description, Discovery, and Integration (UDDI) specification [UDDI, 2000]
describes a mechanism for registering and locating Web services. It defines an online registry
where organizations, i.e., service providers, can describe their organization and register their
Web services. The registry can then be used by service requesters and users to locate the
services they need. For our purposes, UDDI makes it possible for providers to relate their
services to each other and for a requester to discover services, a prerequisite for composing
them.

2.5.1 Conceptual Model

UDDI white pages consist of the following information fields:
e Business name.
o Text description: a list of multilanguage text strings.
e Contact information: names, phone numbers, fax numbers, and Web sites.

o Identifiers that a business may be known by, such as D-U-N-S (also known as the
“DUNS number”) and Thomas Register.

The yellow pages consist of business categories organized as the following three major
taxonomies:

e Industry: North American Industry Classification System (NAICS), a six-digit code
maintained by the US Government for classifying companies.



32

Basic Standards for Web Services

e Products and services: Ecma International (for classifying information and communi-
cation technology systems) and United Nations Standard Products and Services Code
(UNSPSC).

e Geographical location: ISO 3166 for country and region codes.

The yellow pages are implemented as name—value pairs to allow any valid taxonomy iden-
tifier to be attached to the white page for a business. Searches of a yellow pages can be
performed to locate businesses that service a particular industry or product category, or are
located in a particular geographic region.

The green pages consist of the information businesses use to describe how other busi-
nesses can conduct electronic commerce with them. Green-page information is a nested
model comprising business processes, service descriptions, and binding information. The
information is neutral as to language, platform, and implementation. The services can also
be categorized.

UDDI is itself a Web service that is based on XML and SOAP. For example, a busi-
ness registration is an XML document. A client uses a set of predefined SOAP interfaces
to search the registry for a desired Web service. Providers use SOAP interfaces to register
two types of information: (1) fechnical models (tModel), which are abstract service protocols
that describe an individual Web service’s behavior, and (2) business entities (businessEntity),
which describe a service implementation and provide descriptions of the specifications of
multiple tModels. Note that each distinct specification, transport, protocol, or namespace is
represented by a tModel. However, a UDDI registry does not actually store the specification
and such details. A UDDI tModel simply contains the addresses (URLs) where those tech-
nical documents can be found, metadata about the documents, and a key that identifies that
tModel.

Figure 2.3 shows the yellow, white, and green pages for a business. A businessEntity is
the top-level structure for all of the information related to a business. This is shown more
formally in Figure 2.4. The core components of a UDDI businessEntity and the relationships
among them are shown in Figure 2.5.

For our purposes, we will be interested mostly in registering Web services, so we will
want to map WSDL descriptions of Web services to UDDI service descriptions. Figure 2.6
shows the correspondence between the fields of a WSDL description and the fields of a UDDI
businessService.

2.5.2 UDDI APIs

UDDI specifies two APIs for programmatic access to a UDDI registry: the Inquiry API for
retrieving information from a registry and the Publish API for storing information there. The
Publish API requires authenticated access—which is particular to a registry and not specified
by UDDI—but the Inquiry API does not. The APIs currently support 28 SOAP messages,
the most important of which are the following:

e Inquiry API



2.5 UDDI

businessEntity

-businessKey : string(idl) :_I
-name : string(idl)

-description : string(idl) contact
-URL : string(idl)

-contacts : contact
-businessServices : businessService
-identifierBag : keyedReference
-categoryBag : keyedReference 4

-phone : string(idl)
f -address : string(idl) White pages

businessService

-serviceKey : string(idl)
- tModelKey : string(idl) | Green pages
] -name : string(idl)
-description : string(idl)
-bindingTemplates

keyedReference

-tModelKey : string(idl)
-keyName : string(idl)
Yellow pages -keyValue : string(idl)

Figure 2.3: The yellow, green, and white pages representing a business entity in a UDDI
registry

— Finding a business or its service and their characteristics

+ find_business, returns (businessList)
* find_service, returns (serviceList)
+ find_binding, returns (bindingDetail)
* find_tModel, returns (tModelList)

— Retrieving the details needed to interact with a business

get_businessDetail, returns (businessDetail)
get_serviceDetail, returns (serviceDetail)
get_bindingDetail, returns (bindingDetail)
get_tModelDetail, returns (tModelDetail)

O SR S

e Publishing API

— Saving information about a business or its services

save_business, returns (businessDetail)
save_service, returns (serviceDetail)

* ¥ ¥

save_binding, returns (bindingDetail)
* save_tModel, returns (tModelDetail)

— Delete things

* delete_business, returns (dispositionReport)



34

Basic Standards for Web Services

businessEntity
-businessKey tModel
-name -name
-description o | identifierBag -description
-businessServices 1 [’—overviewDoc
-categoryBag -categoryBag
-identifierBag ® -identifierBag
NTA
o
I I
! I
businessService | categoryBag | 4 | (
-serviceKey o—— : ]
-businessKey |
Fe—— L_|keyedReference 1
-description -keyName |
-bindingTemplates -keyValue l
-categoryBag :
|
|
I
I —
bindingTemplate tModellnstancelnfo
-bindingKey -description
-serviceKey P -overviewDoc
-description
-accessPoint

Figure 2.4: The UML information model for a business entity in a UDDI registry

+ delete_service, returns (dispositionReport)
* delete_binding, returns (dispositionReport)
* delete_tModel, returns (dispositionReport)

— Security

* get_authToken, returns (authToken)
* discard_authToken, returns (dispositionReport)

2.5.2.1 Registering and Publishing a Service

Now that we understand the basic components of a UDDI entry, let’s look at an example
registration from WeatherService, Inc. and how its service for reporting current temperatures
might be discovered and then used by a client. WeatherService, Inc. would first exchange
two SOAP messages with a UDDI registry (possibly the registry maintained by IBM at
https://uddi.ibm.com/ubr). The first SOAP message would invoke the operation get_authToken
to establish authentication. The second, shown in Listing 2.5, would register WeatherService,
Inc. as a business entity.



2.5 UDDI

35

businessEntity: Information about the
party who publishes information about
a service

tModel: Descriptions of specifications
for services or value sets. Basis for
technical fingerprints

businessEntities contain
businessServices

bindingTemplates contain references
to tModels. These references
designate the interface specifications
for a service

businessService: Descriptive
information about a particular family of
technical services

businessServices contain
bindingTemplates

bindingTemplate: Technical
information about a service entry point
and implementation specs

Figure 2.5: The core data structures and the relationships among them for a UDDI business
entity

Listing 2.5: SOAP body of an example UDDI registration of a business entity

(POST / HTTP/1.1

Host: www.socweather.com

Content—Type: text/xml; charset="utf-g"
Content—Length: nnnn

SOAPAction: ""

<?xml version="1.0" encoding="UTF-8" 7>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Body>
<save_business xmlns="urn:uddi-org:api_v3">
<businessDetail truncated="false">
<businessEntity businessKey="...K1...">
<discoveryURLs>
<discoveryURL useType="homepage">
http: //www.socweather.com/ WeatherService . html
</discoveryURL >




36

Basic Standards for Web Services

</discoveryURLs>
<name xml:lang="en">WeatherService Inc.</name>
<description xml:lang="en">Provider of temperature services
</description>
<contacts>
<contact>
<description xml:lang="en">President</description>
<personName>Hot N. Cold </personName>
<phone useType="vVoice">803-555—1234</phone>
</contact>
</contacts >
<identifierBag>
<keyedReference
tModelKey="uddi:uddi.org:ubr:identifier:dnb.com:d-u-n-s"
keyName="DUNS: _WS_Inc." keyValue="12-123-1234"/>
</identifierBag>
<categoryBag>
<!— NAICS Classification —>
<keyedReference tModelKey="uuid:K6"
keyName="Meterological _services" keyValue="541990"/>
<!— ISO 3166 Geographic Taxonomy —>
<keyedReference tModelKey="uuid:K7"
keyName="North_Carolina, USA" keyValue="us-nc"/>
</categoryBag>
<businessServices >

<businessService serviceKey="...K2..." businessKey="...K1...

<name xml:lang="en">Temperature Service </name>
<description xml:lang="en">

Given a time and city , it returns a temperature
</description>

<bindingTemplates >

<bindingTemplate bindingKey="...x3..." serviceKey="...K2...

<description xml:lang="en">
This service uses a SOAP/RPC encoded endpoint
</description >
<accessPoint URLType="http">
http: //www.socweather .com/TempSvc
</accessPoint>
<tModellnstanceDetails >
<tModellnstancelnfo tModelKey="uuid:...K4..."/>
</tModellnstanceDetails >
</bindingTemplate >
</bindingTemplates >
</businessService >
</businessServices >
</businessEntity >

LS

"~




2.5 UDDI

37

</businessDetail >

</description>
<overviewDoc>

</overviewURL>
</overviewDoc>
<categoryBag>

</categoryBag>
</tModel>
</tModelDetail >
</save_business >
</env:Body>
</env:Envelope>

-

<tModelDetail truncated="false">
<tModel tModelKey="uuid:...K4...">
<name>TempSvc Specification </name>
<description xml:lang="en">tModel for

<keyedReference tModelKey="uuid:...K6...."
keyName="uddi-org:types" keyValue="wsdlsSpec"/>

service interface definition

<overviewURL>http: //www.socweather .com/TempSvc. wsdl

WSDL UDDI
Service Implementation
i BusinessEntity
<import>
<service> ==
L BusinessService
| <port> L
| el T~L b BindingTemplate
\\\\\
BindingTemplate
Service Interface
<types>
<message> T
> F-fF-————— ode
<portType>
<binding>

Figure 2.6: Correspondences between a WSDL document and a UDDI registration document




38

Basic Standards for Web Services

Let’s consider some of the fields in this registration for WeatherService, Inc. First, we
are sending to the registry the command save_business, whose attribute specifies that we
are using version 3 of UDDI. A save_business message contains a businessDetail and any
number of tModels. The businessDetail states where we can find the homepage for Weath-
erService, Inc., how we could call its president, what its D-U-N-S number is, and how Weath-
erService, Inc. is classified according to NAICS and ISO 3166 (that is, what sort of business
it is and where it is located).

Continuing with our description of the registration, only one of the services provided by
WeatherService, Inc. is listed: TemperatureService. Its details are given in a bindingTemplate
that has two essential parts: (1) the precise URL where the service can be accessed and (2)
the tModel that provides the access information. The tModel in this case has an identification
key pointing to the tModel that is given as part of the registration, but the tModel might have
been provided in a separate message to the registry or might even be part of another business’s
registration. tModels in this regard are like global user-definable and reusable data types.

The tModel in our registration message specifies that our TempSvc is defined in WSDL
and provides a pointer to the appropriate WSDL document.

Next, WeatherService, Inc. sends three SOAP messages to the UDDI registry to register
the following three tModels describing the behavior of its temperature services. The behavior
is described in terms of the portType for the service and its protocol bindings. The overview-
Doc element in the first two messages (Listings 2.6 and 2.7) contains an overviewURL ele-
ment, which contains the URI for the WSDL interface of the service being published. These
listings describe the registration of tModels that can be used as part of other services, not
just the ones for WeatherService, Inc. Note again that the registry does not store the WSDL
document, just a pointer to it.

Listing 2.6: The first of three tModels for WeatherService, Inc. specifying its port information

<save tModel xmlns="urn:uddi-org:api_v3">

<tModel tModelKey="uuid:...KA..." >
<name>GetTempPortType </name>
<overviewDoc>

<overviewURL>http: //www. socweather .com/TempSvc. wsdl </overviewURL>
</overviewDoc>
<categoryBag>
<keyedReference tModelKey="uuid:...KB..."
keyNamE::"portTypeunamespace”
keyValue="http://www.socweather.com/TempSvc"/>

<keyedReference tModelKey="uuid: KC..."
keyName="wsDL_type" keyValue="portType"/>
</categoryBag>
</tModel>

</save_tModel >

Listing 2.7: The second of three tModels for WeatherService, Inc. specifying its protocol bindings




2.5 UDDI

39

(<save,tModel xmlns="urn:uddi-org:api_v3">
<tModel tModelKey="uuid:...KD...">
<name>TempSvcSoapBinding </name>
<overviewDoc>
<overviewURL>http: //www. socweather .com/TempSvc. wsdl </overviewURL>
</overviewDoc>
<categoryBag>
<keyedReference tModelKey="uuid:...KE..."

keyName="binding _namespace"
keyValue="http://www.socweather.com/TempSvc"/>

<keyedReference tModelKey="uuid:...KF..."
keyName="wsDL_type" keyValue:"blndlng"/>

<keyedReference tModelKey="uuid:...KG...
keyName="portType, reference" keyValue="uuid:...KH..."/>

<keyedReference tModelKey="uuid:...KI..."
keyName="350AP _protocol" keyValue="uuid:...KJ..."/>

<keyedReference tModelKey="uuid: KK..."
keyName="HTTP_transport" keyValuez“uuld LKL..."/>

<keyedReference tModelKey="uuid:...KM..."
keyName="uddi-org:types™ keyVa]ue:”wsdlSpec"/>

</categoryBag>

</tModel>

</save_tModel >

Listing 2.8 is an additional description of WeatherService, Inc.’s businessService, con-
taining further details about the port for the Temperature Service.

Listing 2.8: The third of three tModels for WeatherService, Inc. updating the service it provides

r

<save_service xmlns="urn:uddi-org:api_v3">

<businessService serviceKey="...x2..." businessKey="...Kl1...">
<name>Temperature Service </name>

<bindingTemplates >
<bindingTemplate bindingKey="...KP..." serviceKey="...KN...">

<accessPoint URLType="http"> http: //www.socweather.com/TempSvc

</accessPoint>

<tModellnstanceDetails >

<tModellnstancelnfo tModelKey="uuid:...KQ...">
<description xml:lang="en">The wsdl:binding the wsdl:port

implements ; instanceParms specifies the port local name.

</description>

<instanceDetails >
<instanceParms >GetTempPort</instanceParms>
</instanceDetails >

</tModellnstancelnfo >

<tModellnstancelnfo tModelKey="uuid:...KR...">




40

Basic Standards for Web Services

<description xml:lang="en">
The wsdl:portType that this wsdl:port implements.
</description >

</tModellnstancelnfo >

</tModellnstanceDetails >

</bindingTemplate >
</bindingTemplates>
<categoryBag>
<keyedReference tModelKey="uuid: KS..."
keyName="wsDL_type" keyValue—"serv1ce"/>
<keyedReference tModelKey="uuid:...KT..."

keyName="service_namespace"
keyValue="http://www.socweather.com"/>

<keyedReference tModelKey="uuid:...KU..."
keyName="service_local _name" keyValue:"TemperatureServ1ce"/>
</categoryBag>

</businessService >
</save_service >

As can be seen from the above examples, UDDI entries are XML documents that complement
WSDL by specifying the ports, interfaces, and protocol bindings of a service. Also note that
UDDI is open to the registration of any type of service, not just WSDL-based Web services.

2.5.2.2 Finding a Service

Once it is registered, the services of WeatherService, Inc. could be found by a client appli-
cation by sending the XML document in Listing 2.9 to the registry as the content of a SOAP
message. Note that inquiries do not have to be authenticated.

Listing 2.9: An example inquiry from a client to locate the information about WeatherService, Inc. that
is stored at a UDDI registry

(<?xml version="1.0" encoding="UTF-8"7>
<find_business xmlns="urn:uddi-org:api_v3">
<findQualifiers >
<findQualifier >uddi:uddi.org:findqualifier:exactmatch
</findQualifier >
</findQualifiers >
<!—find info about all businesses named "WeatherService_Inc." —>
<name>WeatherService Inc.</name>
</find_business >

-

The resultant information returned about WeatherService, Inc. is shown in Listing 2.10.
The important part of this listing is the businessKey and the serviceKey, which can be used
in subsequent inquiries to find additional information about the service.




2.5 UDDI

41

Listing 2.10: The result of an inquiry to locate information about WeatherService, Inc.

(<?xml version="1.0" encoding="UTF-8"7>
<businessList>
<businessInfos >
<businessInfo businessKey="...K0...">
<name>WeatherService , Inc.</name>
<servicelnfos>
<servicelnfo serviceKey="...KN..." businessKey="...Kl...">
<name>Temperature Service </name>
</servicelnfo >
</servicelnfos >
</businessInfo >
</businessInfos >
</businessList>

As another example to show some of the flexibility allowed in accessing a UDDI registry,
a client could send the following find_business inquiry to a registry to find all businesses
classified using the D-U-N-S number system (the “%” entry for keyValue in this example is
a “wildcard” indicating a match with any string):

Listing 2.11: An example UDDI inquiry to locate businesses identified by a D-U-N-S number

(<?xml version="1.0" encoding="UTF-8"7>
<find_business xmlns="urn:uddi-org:api_v3"
xmlns:Xxsi="http://www.w3.0rg/2001/XMLSchema-instance">
<findQualifiers >
<findQualifier >uddi:uddi. org:findqualifier:approximatematch
</findQualifier >
</findQualifiers >
<!—find all businesses classified by D-U-N-S —>
<identifierBag >
<keyedReference keyValue="s"
tModelKey="uddi:uddi.org:ubr:identifier:dnb.com:d-u-n-s"/>
</identifierBag >
</find_business >

.

Because UDDI’s Inquiry API allows substring matching on a name or a keyValue, and
because businesses can register several different keyValues as part of a categoryBag structure
using the Publish API, a UDDI registry supports relatively flexible and powerful syntactic
searching. There are efforts underway to provide semantic searching for UDDI, such as by
associating an RDF or OWL taxonomy (as introduced in Chapters 6 and 8) with a registry.
Then, a search based on a keyValue of “AutomobileRepair” would return businesses that spe-
cialized in, and were registered as “SportsCarRepair” (assuming, of course, that “SportsCar-
Repair” is a specialization of “AutomobileRepair”).



42

Basic Standards for Web Services

2.6 Notes

The subject of this book is the development of open information systems. It therefore deals
with abstractions for applying services. Consequently, our emphasis is on studying the asso-
ciated standards from the perspective of how they can be used, rather than how they can
be implemented over the infrastructure. This is, in particular, the case with SOAP, whose
implementation involves considerations of encoding and of the functioning of the underlying
protocols. SOAP supports MIME attachments, which enables SOAP to be used for exchang-
ing binary data of arbitrary form. Similarly, implementing UDDI involves considerations of
databases and directory services, which are outside the scope of this book.
ISO 11179 is a standard for registering data elements.

2.7 Exercises

2.1. Providing the temperature using the World Wide Web is a service. What is the essential
difference between a Web site such as www.weather.com where one can type in a zip
code and find out the temperature at that location, and a GetTemperature Web service
such as discussed in this chapter?

2.2. The “Object” in SOAP refers to which one of the following?

e Nothing
e The communication object
e The objects instantiated by both ends of the conversation
e The object to be accessed at the server, for which the client receives a reference
e The delivery object
2.3. Which one of the following would be the value of the actor attribute in a SOAP mes-
sage?
e Arole
e An agent name
e A URIto a WSDL file
e The URI of an agent’s SOAP binding

e An unconstrained xsd:string
2.4. SOAP handles exceptions via which one of the following?

o The fault element
e The exception element

e The throws element



2.7 Exercises 43

e Nothing, because SOAP does not handle exceptions
e A “500” return code

2.5. When a node receives a SOAP message, which of the following should it do first?

e Process all header blocks that are targeted to the node.

e Process the body.

e Process the body, but only if the node is the final recipient.
e Create an instance of the SOAP object.

e Find and obey the mustUnderstand attributes.

2.6. True or False? A node must understand only those blocks in a SOAP message that
have their actor set to a role the node can play.

2.7. The following SOAP envelope:

r<!ENTITY SOAPENC
"http://www.w3.0rg/2001/06/socap-encoding">
<s:Envelope xmlns:s="...">
<s:Body>
<order xmlns="..."
s:encodingStyle=&SOAPENC;>
<partName xsi:type="string">valve </partName>
<quantity xsi:type="string">12</quantity>
</order>
</s:Body>
</s:Envelope>

-

corresponds to which Java method signature(s)?

e String order(String partName, String quantity)
e void order(String quantity, String partName)

void order(String quantity, Integer partName)

void partName(String s); void quantity(Integer n)

None of the above; in this case, specify whatever parts you can of a correct sig-
nature.

2.8. Develop a WSDL document describing a stock quote service. Define the following
message types: loginRequest, logReply, stockQuoteRequest, stockQuoteResponse,
and logoutRequest, and the following operations: QuoteToUser, Logln, ProvideQuote,
LogOut, and QueryNYSE.



44

Basic Standards for Web Services

2.9.

2.10.

2.12.

2.13.

2.14.

2.15.

Consider two main kinds of message exchange patterns in SOAP (and operation types
in WSDL): (1) request-response and (2) one-way. How would you implement one-
way messages over HTTP, which is a request-response protocol? How would you
implement request-response messages over SMTP, which is a one-way protocol (do
not assume any special receipt notification functionality, which some mailers support)?

Extend your solution to Exercise 2.9 to accommodate the other two of the WSDL
operation types: (1) solicit-response and (2) notification. How would you implement
these over HTTP? How would you implement these over SMTP?

. How would you enhance SOAP so that its payload could be compressed? The idea is

not simply to propose a new syntax but to show how the processing would be affected.
A design requirement is to work over the existing infrastructure without any changes.
For example, you cannot reasonably assume that you will be able to design and launch
successfully a new version of HTTP, which would make your task much easier. Ensure
the feasibility of the processing required in your proposed approach.

How would you enhance SOAP to accommodate some elements of security? Specifi-
cally, how would you accommodate authenticating the sender of a SOAP request from
the perspective of a recipient and authenticating the responder from the perspective of
the requester. Consider the use of simple credentials such as digital certificates or a
login ID and password.

In a WSDL file, which one of the following most closely corresponds to a method or
function name in an imperative programming language?

e operation

e portType

e message

e service
e type
Map the others to their closest analogs in such programming languages.

A WSDL message consists of parts that:

e cach have a type from some type system;
e have a sender and receiver;

e are free-form;

e can themselves be messages;

e must be declared in the SOAP header.

Which one of the following is a WSDL transmission primitive that cannot be supported
by an endpoint?



2.7 Exercises 45

multicast
one-way
request-response
solicit-response

notification

2.16. Which one of the following lists the top-level elements of a WSDL document?

types, message, portType, binding, service
portType, binding, service

types, message, operator, portType, binding, service
binding, service

header, body

2.17. Produce the WSDL description for a phone book service that supports the operations
GetPhoneNumber and SetPhoneNumber. The operation GetPhoneNumber accepts a
name parameter of type String and returns a phone number of type String, whereas Sez-
PhoneNumber accepts a name parameter of type String and a phone number parameter
of type String and returns nothing.

2.18. The UDDI protocol is used for which one of the following?

Finding SOAP services that implement a given interface.
Describing the interface of a SOAP service.
Communicating between SOAP and .NET.

Describing the communication protocol SOAP service.

Describing how a SOAP service is deployed on a Web server.

2.19. A UDDI registry holds descriptions of (choose one):

the business, service, and bindings;

the UDDI clients;

the interfaces implemented by the registered Web services;
the encoding mechanism;

the users’ preferences.

2.20. A UDDI tModel is:

A way of describing the various business, service, and template structures stored
within the UDDI registry.



46

Basic Standards for Web Services

2.21.

2.22.

2.23.

2.24.

2.25.

A technical description of the Web services represented by the business service
structure.

The English description of the business.

A request-response message pattern definition.

e A transitional model.
A set of related UDDI registries are deployed using:

e a federated model;

e a hierarchical model;
e a master-slave model,
e an n-tier model;

e a centralized model.
A UDDI registry can be accessed using which SOAP interface(s)?

e InquireSOAP and PublishSOAP.
o UDDISOAPInterface.

SOAP with HTTP.

Publish and Query.

uddiSOAP.

The first step in translating a WSDL file to be used with UDDI is to:

e split it into an interface file and an implementation description file.
o register the WSDL file as a UDDI tModel.

e change all the types from XML Schema to UDDI Schema.

e send it to a UDDI registry and gather the error messages.

e rewrite it using the UDDI Schema.

Imagine that the Web services described in Exercise 2.17 are offered by NSCU Phone,
Inc. Using the UDDI Publish API, write the XML files that would be sent to a registry
to register NSCU Phone, Inc. and its services.

Using the UDDI files you developed as part of Exercise 2.24, register your business at
the UDDI test registry maintained by IBM at
https://uddi.ibm.com/testregistry/registry.ntml. To do this, first obtain a username and
password for the test registry. Second, download and install a tool such as UDDI4J
available at http://uddi4j.org/. Third, if you choose the UDDI4]J tool, recompile it with
an appropriate SOAP transport implementation, such as Apache Axis or SOAP 2.2,
which can be found at xml.apache.org, or HP SOAP, which can be found at
http://hp.com/go/webservices. Fourth, create and run your Java application.



2.7 Exercises

47

2.26.

2.27.

Imagine you are in charge of a UDDI registry, named MyUDDI.com and located
at http://www.MyUDDI.com. When someone, for example, sends a find_tModel in
a SOAP message, your registry responds with the appropriate tModel in a SOAP
response. Your registry is providing a service, which can be described by a WSDL
document. Write the WSDL description of the find_tModel service for your registry.

Web services, as currently implemented by using WSDL and SOAP, work well when a
requestor wants a single instance of a service that can be had via one interaction. That
is, there is a single request and a single response. Often, however, the interaction is
more complicated, as when a buyer (requestor) is purchasing a service from a seller
(provider). In this case, the buyer will ask the seller for a price quote. After receiving a
quote, the buyer will issue a purchase order. The seller will acknowledge the purchase
order. The buyer can then access the service from the seller. The interactions form
an extended conversation. How can the UDDI, WSDL, SOAP, and XML-based Web
service infrastructure be used or changed or adapted to support interactions of this sort?






Chapter 3

Programming Web Services

Chapter 2 introduced the key standards for Web services. However, just as for conven-
tional protocols such as HTTP, we would like to approach the standards through higher-
level abstractions, e.g., those reflected in programming interfaces. As Web services have
expanded, a number of programming interfaces have come about. This chapter decribes the
leading practical approaches for programming to the above standards and how to apply the
approaches in developing standard Web services.

3.1 Representational State Transfer

Representational State Transfer (REST), developed by Roy Fielding and others [Fielding and
Taylor, 2002; Fielding, 2000], is an architectural style for networked systems. It focuses on
the constraints that must be placed on connector semantics, where other styles have focused
on the constraints on component semantics. (Note that REST constrains, but does not spec-
ify.) REST considers the Web to comprise hyperlinked resources, which can be any items of
interest that are identified by URIs. For example, the fictitious NorthSouth Carolina Univer-
sity (NSCU) might define a resource for its offering for the first course in computer science,
CS1. A client application could access that resource at the following URL,

[http://www.nscu.edu/courses/CSl.html ]

and a suitable representation of the resource, perhaps the course syllabus, would be returned
(e.g., the contents of CS1.html). The representation places the client application in a certain
state. The result of the client traversing any hyperlink in the CS1.html resource is to access
another resource, whose representation places the client application into its next state. The
client application changes state with each new resource representation that it accesses.

With Representational State Transfer, a well-designed Web application appears to be a
network of Web pages (a virtual state-machine), where a user progresses through the appli-

49



50

Programming Web Services

cation by selecting links (state transitions), resulting in the next page (representing the next
state of the application) being transferred to the user’s browser and rendered appropriately.

REST is an architectural style for designing Web services, not a standard. It attempts to
capture the characteristics that have made the Web successful and are guiding its evolution.
While not a standard, REST does use the standards for HTTP, URI, resource representations
such as XML, HTML, GIF, and JPEG, and MIME types such as text/xml, text/html, image/gif,
and image/jpeg.

Familiar Web services, such as those for ordering books or for searching catalogs, are
typically REST-based, even if they were not explicitly constructed with REST in mind. How-
ever, let’s use REST to construct an example Web service.

3.2 A RESTful Example

The NorthSouth Carolina University has deployed a Web service to enable its students to:
e get a list of courses;
e get detailed information about a particular course;
e register for a course.

By making the following URL available, this Web service enables a client application to get
the course list:

(http://Www.nscu.edu/courses ]

Note that how the Web service generates the course list is not apparent to a client. All
the client knows is that if it submits the above URL, then a document containing the list
of courses is returned. NorthSouth Carolina University is thus free to modify the underly-
ing implementation of this resource (provided of course that it preserves their meaning and
behavior) without affecting the functioning of its clients, which is an extremely convenient
characteristic to have.

Here is the document that the client application receives, assuming that the application
can handle XML:

(<?xml version="1.0"7>

<!ENTITY NSCU ’http://www.nscu.edu’>

<p:Courses xmlns:p="&NSCU; "

xmlns:xlink="http://www.w3.0rg/1999/x1ink">

<Course id="cs101" xlink:href="&NSCU;/courses/CS1"/>
<Course id="cs102" xlink:href="&NSCU;/courses/CS2"/>
<Course id="cs201" xlink:href="&NSCU;/courses/DataStruc"/>
<Course id="cs202" xlink:href="&NScU;/courses/ProgLang"/>

</p:Courses>




3.2 A RESTful Example

51

Note that the document incorporates links that can be used by the client to obtain detailed
information about each course. This is a key feature of REST. The client transfers from one
state to the next by examining and choosing from among the alternative URISs in the response
document. For example, the client could get detailed information about the ProgLang course
by issuing the request

[http: //www.nscu.edu/courses/ProglLang ]

This results in the following document being sent to the client:

(<?Xml version="1.0"?7>

<!ENTITY NSCU ’nhttp://www.nscu.edu’>

<p:Course xmlns:p="&NSCU;"

xmlns:xlink="http://www.w3.0rg/1999/x1link">

<Course —Num>CS202 </Course —Num>

<Name>Programming Languages </Name>
<Requirement>Required for CS majors </Requirement>
<Syllabus xlink:href="&NSCU;/courses/Proglang/syllabus"/>
<CreditHours type="semester">3</CreditHours>
<Prerequisite xlink:href="s¢NSCU;/courses/DataStruc"/>
</p:Course>

Observe how this document is linked to still more documents—the syllabus for this course
may be found by traversing the hyperlink. Each response document allows the client to get
more detailed or related information.

The Web service makes available a URL for course registration. The client creates a regis-
tration instance document, Reg.xml, that conforms to the registration schema that NorthSouth
Carolina University has provided in a WSDL document and published in a UDDI registry.
The client submits Reg.xml as the payload of an HTTP POST.

The registration service responds to the HTTP POST with a URL to the submitted Reg.xml
document. The client can retrieve this document any time thereafter to update or edit it.
Reg.xml has become an item of information that is shared between the client and the server.
By giving Reg.xml a URI, the server has, in essence, exposed it as a Web service (although
not necessarily a standard Web service in the sense of Chapter 2 or BP 1.0). A resource is
a conceptual entity, which is given a representation, i.e., a concrete manifestation, in REST.
REST does not generally place constraints on resources, e.g., the following URL

[http: //www.nscu.edu/courses/ProglLang j

is a logical one, not a physical one. Thus there does not need to be, for example, a static
HTML page for this course. In fact, if there were a thousand courses, then a thousand static
HTML pages would not be a very good design. As a better design, NorthSouth Carolina
University could implement the service that returns detailed data about a particular course by
(as an example approach) carrying out the following steps:



52

Programming Web Services

e cmploying an application server that parses the string after the host name and invokes
an appropriate servlet based on one or more tokens;

o having the servlet parse the argument string;

e using the course number to query a course database;

e formulating the database tuples as an XML document;

e returning the XML document as the payload of the HTTP response.

As a matter of style URLs should not reveal the implementation technique used. Servers
need to be free to change their implementation without affecting clients. URLSs that infor-
mally refer to the implementation would either restrict the server or be misleading.

To summarize, here are the main characteristics of REST:

Client-Server. By assuming client-server interactions, REST separates interface concerns
from data-storage concerns, enabling them to evolve independently.

Statelessness. Each request from a client to a server must contain all the information neces-
sary to understand the request, and cannot take advantage of any stored context on the
Server.

Caching. To improve network efficiency, responses can be labeled as cacheable, enabling a
client to store and reuse a cacheable response rather than requesting it again later.

Uniform interface. All resources are accessed via a uniform interface based on the follow-
ing four constraints:

1. Identification of resources through URIs, where a resource corresponds to the
semantics of what the author intends to identify, rather than the value correspond-
ing to those semantics at the time the reference is created.

2. Manipulation of resources through their representations, where the representa-
tions of the resources are interconnected via URLs, thereby enabling a client to
progress from one state to another.

3. Self-descriptive messages, which include their own metadata, but maintain the
uniformity of the interface by limiting the scope to one of an evolving set of
standard data types selected dynamically.

4. Hypermedia as the engine for the application state.
Layered components. Intermediaries, such as proxy servers, cache servers, and gateways,

can be inserted between clients and resources to support additional properties such as
performance and security.

Code-on-demand. Optionally, clients can be extended dynamically by downloading and
executing code in the form of applets or scripts.



3.2 A RESTful Example 53

The following are the basic principles of REST Web service design:

1. The key to creating services in a REST network (i.e., the Web) is to identify all of the
conceptual entities that you wish to expose. Above are some examples of resources: a
course list, detailed information about a course, and a registration document.

2. Create a URL for each resource. The resources should correspond to nouns, not verbs.
For example, do not use this:

[http: //www.nscu.edu/courses/getCourse?id=CS101 j

Note the verb, getCourse, which indicates a particular process for the implementation.
Instead, use a noun:

[http://www‘nscu.edu/courses/CSI ]

3. Categorize your resources according to whether clients can just receive a representa-
tion of the resource, or can modify (add to) the resource. For the former, make those
resources accessible using an HTTP GET. For the latter, make those resources acces-
sible using HTTP POST, HTTP PUT, or HTTP DELETE.

4. Make all resources that are accessible via HTTP GET free of side effects, so that invok-
ing the resource does not modify it.

5. Include hyperlinks in your resource representations that enable clients to obtain more
detailed or related information. Do not try to put all information in a single response
document.

6. Specify the format of response data using a schema.

7. Describe how your services are to be invoked using either a WSDL document or, sim-
ply, an HTML document.

REST is a set of architectural constraints that attempts to minimize latency and network
communication, while at the same time maximizing the independence and scalability of com-
ponent implementations. This is achieved by placing constraints on connector semantics,
instead of on component semantics, which has been the focus of other architectural styles.
REST enables the caching and reuse of interactions, dynamic substitutability of components,
and processing of actions by intermediaries, thereby supporting a world-wide hypermedia
system.

REST is the architectural style of the Web, and describes what makes the Web work well.
Adhering to REST principles will make your services work well in the context of the Web.



54

Programming Web Services

3.3 SOAP and REST

SOAP has received some criticism because of its apparent violation of some of the principles
that REST espouses. In particular, SOAP 1.1 required an HTTP POST binding and thus hid
the identity of the Web resource being accessed within the body of the message. Recall from
the above that REST requires Web resources to be identified in a manner that clearly separates
the identification information from any data and control information. REST advocates the use
of HTTP GET for accessing resources. In other words, it advocates that methods that satisfy
the following two properties be specified as HTTP GETs, where the URI completely specifies
the target object to be retrieved:

Safety. This holds for methods that are free of side effects on the given object. Query meth-
ods would be the canonical safe methods.

Idempotency. Loosely following the database transaction terminology, idempotent methods
are those whose repeated occurrences have no additional side-effects beyond the first
occurrence. In the database sense, an idempotent method would be resilient to restarts
(or, in the Web context) reloads. That is, if the method were not completed when it
had to be aborted and restarted, then assuming it eventually completed successfully,
its ultimate effect would be the same as if it had completed successfully on the first
attempt.

The association of GET with safe and idempotent methods is recorded in the HTTP protocol
specification. Notice, however, that the protocol can offer no means of ensuring compliance
with these guidelines. However, the specification does claim that when a GET is executed,
it can be presumed that the user acting through the user agent (browser) is interested in
retrieving information but not in changing it.

In acknowledgment of the above objections to SOAP 1.1, SOAP 1.2 supports a HTTP
binding, which uses HTTP GET and places the resource URI in the HTTP header—the same
as any other HTTP GET. Listing 3.1 illustrates this usage.

Listing 3.1: RESTful SOAP: Example of HTTP GET binding

GET /www.socweather.com/temp?city=Honolulu&when=now HTTP/1.1
Host: www.socweather.com
Accept: text/html, application/soap+xml

Notice that the HTTP GET formulation does not allow a request body. This means there
can be no SOAP content in the request: that is, no headers and no arguments.

3.4 Developing and Using Web Services

Services do not exist in a vacuum. Often the business logic that a service presents would
exist in some application programs, possibly already deployed. Therefore, a popular way to
go about developing services is as follows.



3.4 Developing and Using Web Services

55

On the server-side, programmers can take the internal code implementing the given busi-
ness logic and generate service descriptions from that business logic. WSDL specifications
can be readily generated from popular languages such as Java and C#, but also from other
languages. The service can be made available for invocation via SOAP. At the same time, the
WSDL specifications can be made available to prospective clients.

On the client-side, programmers would take the service descriptions and apply generic
tools to map WSDL into interfaces of their desired programming language. They would then
create their application using these interfaces and finally execute the application using SOAP
to invoke the services provided by the server.

To enable dynamic binding, the server would use a programming interface to publish
services just as the client would use a programming interface to find the services it needs.

3.4.1 Programming WSDL

WSDL appears complex, but is conceptually simple. A simple overview of the components
in a WSDL file is shown in Figure 3.1. It is designed neither for readability nor succinctness,
but for computers to process. As a result, it is straightforward for tools to generate WSDL
automatically from source code, especially if it is object-oriented. It is easiest if the source
code is in an object-oriented language, although even languages such as Cobol can be used.
Tools such as Microsoft’s Visual Studio .NET and Oracle Developer provide this functional-
ity. As programmers implement or modify their implementations, they can generate WSDL
specifications automatically. Clearly the efficiency helps or seems to.

However, there is a point of caution. The above kinds of tools end up exposing the imple-
mentation details of the underlying object-oriented framework, which would prove misguided
in many settings [Vinoski, 2002]. In particular, automatically exposing business objects exter-
nally is risky, because those objects would generally have been designed and previously
employed for limited internal purposes. Exposing such interfaces outside of the organiza-
tion in which they were designed to function means that their behavior might not be adequate
and may interfere in strange ways with their internal functioning. Also, the moment internal
details are exposed externally we end up with dependencies that limit the evolution of the
software components. Sometimes there can be mismatches caused by the differences in how
the objects are interpreted by service consumers and providers. For example, session-based
or stateful objects may not cohere with a pure invocation-based approach. It would be safer
from the professional software engineering standpoint to formulate the service interface care-
fully and then to develop systems to implement it, and not to expose any more details than
are explicitly called for by the interface.

3.4.2 Java for Web Services

Several tools for Web services now exist. The open-source Apache eXtensible Interaction
System (Axis) tool from the Apache Project is a SOAP engine, which includes important
functionality for WSDL as well.



56

Programming Web Services

definitions
targetNamespace=thisNamespace
xmins:tns=thisNamespace
Types contains data type definitions
P types Messages consist of one or more parts
message name=in
message name=out

> portType name=foo A portType describes an abstract set
operation of operations

input message=tns:in
output message=tns:out

binding name=foobar A binding describes a concrete set of
type=tns:foo formats and protocols for the foo
— [binding information] portTypes

service name=foobar Service

Port name=foobarPort A port describes an implementation
binding=tns:foobar of the foobar binding
[endpoint information]

Figure 3.1: A simple view of the WSDL data model

34.2.1 JAX-RPC and SAAJ

The Java API for XML-Based RPC (JAX-RPC) and SOAP with Attachments API for Java
(SAAJ) provide Java application programmer interfaces for processing SOAP messages.
JAX-RPC is the higher-level of the two and builds on top of SAAJ. JAX-RPC handles conver-
sions between Java objects and XML and performs type-checking on the conversion. JAX-
RPC also includes tools to generate WSDL documents from Java code and Java code from
WSDL documents.

For SOAP, SAAJ itself builds on JAXP and provides a simpler API geared toward SOAP.
For instance, the API includes methods for managing SOAP connections, composing SOAP
messages, extracting appropriate contents (headers, body) from them, and handling responses.

The Java API for XML Messaging (JAXM) provides APIs for creating and processing
SOAP messages. JAXM is lower level than JAX-RPC and has been superseded by SAAIJ.



3.5 Web Services Interoperability

57

3.4.2.2 Web Services Invocation Framework

The Apache Project’s Web Services Invocation Framework (WSIF) is an approach for invok-
ing WSDL-based services. WSIF takes a client perspective. However, it is based on WSDL
descriptions of services and, in principle, is independent of the binding. Naturally enough,
a binding for SOAP is available and is an important one, but a WSIF client could easily be
ported to another binding.

3423 JAXR

The Java API for XML Registries (JAXR) is a Java-based approach for accessing many dif-
ferent kinds of registries, including ISO 11179, OASIS, ebXML, and UDDI. It is most useful
for accessing a UDDI or ebXML registry (discussed in Section 2.4) to advertise or discover
a service.

3.4.24 JAXP

JAXP is an API for processing XML documents. One of JAXP’s components is a parser based
on the Document Object Model (DOM), which views a well-formed XML document in terms
of the parse tree to which it corresponds. DOM provides a conceptually simple means to
traverse the parse tree of a document via recursive-descent processing. An alternative parser
based on the Simple API for XML (SAX) is also included. Further, JAXP has support for the
XSL Transformations (XSLT).

343 .NET

Microsoft’s .NET has tools that support essentially the same functionality as the Java family
of tools. For instance, .NET includes wsdl.exe, which generates stubs from WSDL documents
and generates WSDL documents from code.

3.5 Web Services Interoperability

The Web Services Interoperability Organization (WS-I) is an industry group that promotes
interoperability at a level that is above the standards proper [WSI, 2004]. WS-I members
include some of the leading Web service vendors, such as IBM, Microsoft, BEA, and Sun.
WS-I makes recommendations about standards that in essence package the standards into
compatible sets. These recommendations are termed profiles.

Currently, the WS-I has developed a profile known as the Basic Profile 1.0. This profile
bundles SOAP 1.1, WSDL 1.1, XML 1.0, XML Schema, and HTTP 1.1. Further, the WS-I
Basic Profile 1.0 imposes the following restrictions:

e SOAP should be used only with its HTTP POST binding.
e The SOAPAction header in the HTTP POST should be a quoted string.



58

Programming Web Services

A SOAP recipient should return an HTTP response immediately upon receiving an
HTTP request, and this response should be an HTTP success code (200 or 202) or an
HTTP error code. A success code does not mean that the request was processed or even
that it was well-formed (as a SOAP request). The HTTP response must not contain a
SOAP envelope.

o A SOAP requestor must ignore any SOAP envelope that may be returned by a SOAP
recipient (which would be in violation of the above restriction anyway).

The WSDL message patterns are limited to request-response and one-way.

Only XML Schema encodings are recognized, not SOAP Section 5.

WS-I identifies several other points of potential disagreement or ambiguity and seeks to
resolve them, so that it can guarantee that if the various parties obey its recommendations,
they will be able to interoperate. As explained above, application programmers should not be
dealing with the raw protocols; instead, they should be exercising Web services through suit-
able tool suites and programmer interfaces. Consequently, standards such as WS-I’s Basic
Profile 1.0 are of greatest direct interest to tool developers.

3.6 Notes

Leading vendors such as HP, IBM, and Microsoft provide public UDDI registries for pro-
grammers to deploy their Web services. If you wish to provide your own UDDI registry,
jUDDI found at http://www.juddi.org/, is an open source Java-based implementation of a
UDDI registry. It includes a toolkit that enables developers to build access to UDDI registries
within their own applications. jJUDDI can act as the UDDI front-end on top of existing direc-
tories and databases. jUDDI-enabled applications can look up services in the UDDI registry
and then proceed to invoke those services directly. Similar to jUDDI, UDDI4J (available at
http://uddidj.org/) is a Java class library that provides an API to interact with a UDDI registry.

3.7 Exercises

3.1. Consider a leading e-commerce Web site such as amazon.com from the consumer per-
spective (in the case of amazon.com, this would offer more functionality than their
explicit Web service interfaces). Consider the basic steps of registering, signing in,
searching a catalog, selecting some goods for purchase, providing shipping and pay-
ment information, and paying to conclude the deal.

e Produce a state transition diagram corresponding to the various steps, possibly
showing the various screens that you encounter during your interactions. Label
the states with the choices available and the transitions with the choices taken by
the client.



3.7 Exercises

e Evaluate the above de