
SERVICE-ORIENTED COMPUTING
Semantics, Processes, Agents

Munindar P. Singh
North Carolina State University, USA

Michael N. Huhns
University of South Carolina, USA





Innodata
0470091495.jpg





Service-Oriented Computing





SERVICE-ORIENTED COMPUTING
Semantics, Processes, Agents

Munindar P. Singh
North Carolina State University, USA

Michael N. Huhns
University of South Carolina, USA



Copyright c© 2005 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,

West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in

any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under

the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright

Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the

Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd,

The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or

faxed to (+44) 1243 770571.

This publication is designed to provide accurate and authoritative information in regard to the subject matter

covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If

professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-09148-7

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two

trees are planted for each one used for paper production.

http://www.wileyeurope.com
http://www.wiley.com


To the Singh and Huhns families, especially

To Mona on our fifteenth anniversary – Munindar

To Mary on our thirtieth anniversary – Mike





Contents

About the Authors xix

Preface xxi

Note to the Reader xxvii

Acknowledgments xxix

Figures xxx

Tables xxxv

Listings xxxvi

I Basics 1

1 Computing with Services 3
1.1 Visions for the Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Peer-to-Peer Computing . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Processes and Protocols . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Pragmatic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Precursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Open Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Autonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Dynamism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Services Introduced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Using Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 The Evolving Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vii



viii Contents

1.7 Standards Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.8 Overview of this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Basic Standards for Web Services 19
2.1 XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 SOAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Body and Header . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Message Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 WSDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Operation Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 Creating WSDL Models . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Directory Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 UDDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Conceptual Model . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.2 UDDI APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Programming Web Services 49
3.1 Representational State Transfer . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 A RESTful Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 SOAP and REST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Developing and Using Web Services . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Programming WSDL . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.2 Java for Web Services . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.3 .NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Web Services Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Enterprise Architectures 61
4.1 Enterprise Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 J2EE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 .NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Model-Driven Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Legacy Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



Contents ix

4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Principles of Service-Oriented Computing 71
5.1 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Intraenterprise Interoperation . . . . . . . . . . . . . . . . . . . . 72

5.1.2 Interenterprise Interoperation . . . . . . . . . . . . . . . . . . . . 73

5.1.3 Application Configuration . . . . . . . . . . . . . . . . . . . . . . 74

5.1.4 Dynamic Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.5 Software Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.6 Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.7 Utility Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.8 Software Development . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Service-Oriented Architectures . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Elements of Service-Oriented Architectures . . . . . . . . . . . . . 76

5.2.2 RPC versus Document Orientation . . . . . . . . . . . . . . . . . 77

5.3 Major Benefits of Service-Oriented Computing . . . . . . . . . . . . . . . . 78

5.4 Composing Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.1 Goals of Composition . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.2 Challenges for Composition . . . . . . . . . . . . . . . . . . . . . 80

5.5 Spirit of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

II Description 85

6 Modeling and Representation 87
6.1 Modeling to Enable Interoperation . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Integration versus Interoperation . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1 Declarative versus Procedural Representations . . . . . . . . . . . 89

6.2.2 Interoperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.3 Layered View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.4 Interoperation Trends . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Common Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.1 Ontologies: A Definition . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.2 A Shared Virtual World . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.3 Dimensions of Abstraction . . . . . . . . . . . . . . . . . . . . . . 96

6.3.4 Value Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Knowledge Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4.1 Relationships Represented . . . . . . . . . . . . . . . . . . . . . . 102

6.4.2 Frames versus Descriptions . . . . . . . . . . . . . . . . . . . . . 103

6.4.3 Ontology Language Features . . . . . . . . . . . . . . . . . . . . 104

6.5 Elementary Algebra: Relations . . . . . . . . . . . . . . . . . . . . . . . . 106

6.6 Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



x Contents

6.6.1 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.6.2 Meronomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.7 Modeling Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.7.1 Perspectives for Conceptualization . . . . . . . . . . . . . . . . . 109

6.7.2 Guidelines for Conceptualization . . . . . . . . . . . . . . . . . . 110

6.7.3 Modularity and Extensibility . . . . . . . . . . . . . . . . . . . . . 111

6.8 UML as an Ontology Language . . . . . . . . . . . . . . . . . . . . . . . . 112

6.9 Alternative Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.10 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Resource Description Framework 119
7.1 Motivation for RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2 RDF Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2.1 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2.2 Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2.4 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3 Key Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3.1 Containers and Collections . . . . . . . . . . . . . . . . . . . . . . 123

7.3.2 Reification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3.3 Information Model . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4 XML Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.5 The N-Triples Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.6 Storing RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.7 RDF Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.8 Vocabularies in RDF Schema . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8 Web Ontology Language 137
8.1 Getting Started with OWL . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.2 OWL Dialects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.3 OWL Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.3.1 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.3.3 Class Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.3.4 Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.4 OWL Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.4.1 Individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.4.2 Data Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.4.3 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.4.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150



Contents xi

8.4.5 Elementary Algebra: Functions . . . . . . . . . . . . . . . . . . . 151

8.5 OWL Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.6 OWL Dialects Compared . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.7 An OWL Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.8 Expressiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.8.1 Tree Model Definitions . . . . . . . . . . . . . . . . . . . . . . . 158

8.8.2 Constraints among Individuals . . . . . . . . . . . . . . . . . . . . 159

8.8.3 Specialized Properties . . . . . . . . . . . . . . . . . . . . . . . . 159

8.8.4 Defeasible Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9 Ontology Management 163
9.1 Language-Based Representations . . . . . . . . . . . . . . . . . . . . . . . 164

9.2 Standard Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.2.1 Universal Business Language . . . . . . . . . . . . . . . . . . . . 164

9.2.2 Cyc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.2.3 IEEE Standard Upper Ontology . . . . . . . . . . . . . . . . . . . 166

9.3 Standardization versus Semantic Reconciliation . . . . . . . . . . . . . . . 166

9.4 Consensus Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.4.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.4.2 Reconciling Ontologies . . . . . . . . . . . . . . . . . . . . . . . 168

9.4.3 Correctness versus Relevance . . . . . . . . . . . . . . . . . . . . 172

9.5 Ontology Imports and Versioning . . . . . . . . . . . . . . . . . . . . . . . 172

9.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

9.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

III Engagement 177

10 Execution Models 179
10.1 Basic Interaction Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

10.2 Messaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

10.3 CORBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

10.4 Peer-to-Peer Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

10.4.1 Going Beyond Client-Server . . . . . . . . . . . . . . . . . . . . . 187

10.4.2 Models of P2P Computing . . . . . . . . . . . . . . . . . . . . . . 187

10.5 Jini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

10.6 Grid Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

10.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

10.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



xii Contents

11 Transaction Concepts 193
11.1 Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

11.1.1 ACID Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

11.1.2 Schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

11.1.3 Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

11.1.4 Distributed Transactions . . . . . . . . . . . . . . . . . . . . . . . 202

11.2 Transactions over Composed Services . . . . . . . . . . . . . . . . . . . . 207

11.2.1 Architecture for Composed Services . . . . . . . . . . . . . . . . . 207

11.2.2 Properties of Composed Transactions . . . . . . . . . . . . . . . . 209

11.2.3 Difficulty with Compositional Serializability . . . . . . . . . . . . 210

11.2.4 Achieving Compositional Serializability . . . . . . . . . . . . . . 211

11.3 Limitations of Traditional Transactions . . . . . . . . . . . . . . . . . . . . 214

11.4 Relaxing Serializability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

11.5 Extended Transaction Models . . . . . . . . . . . . . . . . . . . . . . . . . 216

11.5.1 Sagas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

11.5.2 Flex Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

11.5.3 DOM Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . 219

11.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

11.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

12 Coordination Frameworks for Web Services 225
12.1 WSCL: Web Services Conversation Language . . . . . . . . . . . . . . . . 226

12.2 WSCI: Web Service Choreography Interface . . . . . . . . . . . . . . . . . 231

12.3 WS-Coordination: Specifying Coordination . . . . . . . . . . . . . . . . . 234

12.3.1 Coordination Service . . . . . . . . . . . . . . . . . . . . . . . . . 234

12.3.2 Activation Service . . . . . . . . . . . . . . . . . . . . . . . . . . 237

12.3.3 Registration Service . . . . . . . . . . . . . . . . . . . . . . . . . 238

12.4 Web Service Transaction Types . . . . . . . . . . . . . . . . . . . . . . . . 240

12.5 BTP: Business Transaction Protocol . . . . . . . . . . . . . . . . . . . . . 242

12.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

12.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

13 Process Specifications 245
13.1 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

13.2 Describing Dynamics with UML . . . . . . . . . . . . . . . . . . . . . . . 247

13.3 Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

13.3.1 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

13.3.2 Workflow Interoperability . . . . . . . . . . . . . . . . . . . . . . 250

13.3.3 A Metamodel for Workflow . . . . . . . . . . . . . . . . . . . . . 251

13.3.4 Interoperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

13.3.5 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

13.3.6 Challenges Facing Workflow Technology . . . . . . . . . . . . . . 255

13.4 Business Process Languages . . . . . . . . . . . . . . . . . . . . . . . . . . 256



Contents xiii

13.4.1 BPEL4WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

13.4.2 BPML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

13.4.3 ebXML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

13.4.4 RosettaNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

13.5 The Process Specification Language . . . . . . . . . . . . . . . . . . . . . 274

13.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

13.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

14 Formal Specification and Enactment 281
14.1 Scheduling with Dependencies . . . . . . . . . . . . . . . . . . . . . . . . 282

14.2 Specifying Service Composition . . . . . . . . . . . . . . . . . . . . . . . 283

14.2.1 Coordination Relationships . . . . . . . . . . . . . . . . . . . . . 286

14.2.2 Example Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 287

14.3 Residuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

14.4 Symbolic Calculation of Residuals . . . . . . . . . . . . . . . . . . . . . . 289

14.5 Distributed Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

14.5.1 Temporal Logic for Internal Reasoning . . . . . . . . . . . . . . . 291

14.5.2 Deriving Guards from Specifications . . . . . . . . . . . . . . . . 293

14.5.3 Scheduling with Guards . . . . . . . . . . . . . . . . . . . . . . . 295

14.6 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

14.6.1 Evaluating Guards . . . . . . . . . . . . . . . . . . . . . . . . . . 296

14.6.2 Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

14.6.3 Formalizing Event Classes . . . . . . . . . . . . . . . . . . . . . . 298

14.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

14.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

14.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

IV Collaboration 305

15 Agents 307
15.1 Agents Introduced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

15.2 Agent Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

15.3 Agent Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

15.3.1 Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

15.3.2 Internal Architectures . . . . . . . . . . . . . . . . . . . . . . . . 312

15.4 Abstractions for Composition . . . . . . . . . . . . . . . . . . . . . . . . . 316

15.5 Describing Compositions . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

15.5.1 Representing and Reasoning about Action . . . . . . . . . . . . . 318

15.5.2 OWL-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

15.6 Composition as Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

15.7 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

15.7.1 Applying Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328



xiv Contents

15.7.2 Kinds of Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

15.7.3 Jess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

15.7.4 SWRL: Semantic Web Rule Language . . . . . . . . . . . . . . . 333

15.7.5 Complexity and Expressiveness . . . . . . . . . . . . . . . . . . . 334

15.7.6 Negation, Nonmonotonicity, Priorities . . . . . . . . . . . . . . . . 335

15.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

15.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

16 Multiagent Systems 341
16.1 Applicability in Service-Based Systems . . . . . . . . . . . . . . . . . . . . 342

16.2 Multiagent Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

16.3 Agent Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

16.4 Life Cycle Management for Agents and Multiagent

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

16.5 Consistency Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

16.5.1 Truth Maintenance Concepts . . . . . . . . . . . . . . . . . . . . . 350

16.5.2 Multiagent Truth Maintenance . . . . . . . . . . . . . . . . . . . . 351

16.5.3 Consistency Maintenance for a Long-Lived Service . . . . . . . . 352

16.5.4 Conflicts among Agents . . . . . . . . . . . . . . . . . . . . . . . 352

16.6 Modeling Other Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

16.7 Cognitive Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

16.8 Applying the Cognitive Concepts . . . . . . . . . . . . . . . . . . . . . . . 357

16.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

16.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

17 Organizations 361
17.1 Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

17.1.1 Legal Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

17.1.2 Deontic Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

17.1.3 Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

17.2 Spheres of Commitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

17.2.1 Teams of Services . . . . . . . . . . . . . . . . . . . . . . . . . . 368

17.2.2 Virtual Enterprises as Teams . . . . . . . . . . . . . . . . . . . . . 368

17.3 Achieving Collaboration via Conventions . . . . . . . . . . . . . . . . . . . 370

17.4 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

17.5 Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

17.5.1 Negotiation Protocols . . . . . . . . . . . . . . . . . . . . . . . . 372

17.5.2 Negotiation Fundamentals . . . . . . . . . . . . . . . . . . . . . . 374

17.5.3 Requirements for a Negotiation Language . . . . . . . . . . . . . . 377

17.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379



Contents xv

18 Communication 381
18.1 Agent Communication Languages . . . . . . . . . . . . . . . . . . . . . . 381

18.1.1 Speech Act Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 382

18.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

18.1.3 Interaction Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 384

18.1.4 Combining ACLs with Web Services . . . . . . . . . . . . . . . . 384

18.2 Contract Net Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

18.3 Business Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

18.3.1 Compiling Business Protocols . . . . . . . . . . . . . . . . . . . . 390

18.3.2 Compliance with Business Protocols . . . . . . . . . . . . . . . . 391

18.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

18.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

V Selection 399

19 Semantic Service Selection 401
19.1 Semantic Matchmaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

19.1.1 Applying Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . 402

19.1.2 Requirements for an Advertising and Matchmaking Language . . . 404

19.1.3 Selecting Services . . . . . . . . . . . . . . . . . . . . . . . . . . 404

19.2 SoCom Matchmaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

19.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

20 Social Service Selection 409
20.1 Reputation Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

20.2 Recommender Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

20.2.1 Model-Based Approaches . . . . . . . . . . . . . . . . . . . . . . 411

20.2.2 Memory-Based Approaches . . . . . . . . . . . . . . . . . . . . . 411

20.2.3 Challenges for Recommender Approaches . . . . . . . . . . . . . 412

20.2.4 Products versus Service Recommendations . . . . . . . . . . . . . 412

20.3 Referrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

20.3.1 Adaptive Treatment of Referrals . . . . . . . . . . . . . . . . . . . 413

20.3.2 Advantages of Referrals . . . . . . . . . . . . . . . . . . . . . . . 414

20.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

20.4 Social Mechanism for Trust . . . . . . . . . . . . . . . . . . . . . . . . . . 415

20.4.1 Empirical Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

20.4.2 Local Belief Ratings . . . . . . . . . . . . . . . . . . . . . . . . . 416

20.4.3 Combining Evidence . . . . . . . . . . . . . . . . . . . . . . . . . 417

20.4.4 Gathering Opinions . . . . . . . . . . . . . . . . . . . . . . . . . 418

20.5 Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

20.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418



xvi Contents

21 Economic Service Selection 421
21.1 Market Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

21.2 Auctions for Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

21.2.1 Auction Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

21.2.2 Online Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

21.2.3 Agent Economies . . . . . . . . . . . . . . . . . . . . . . . . . . 426

21.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

VI Engineering 431

22 Building SOC Applications 433
22.1 Elements of SOC Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

22.2 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

22.3 How to Create an Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . 436

22.3.1 Ontology Construction . . . . . . . . . . . . . . . . . . . . . . . . 437

22.3.2 Ontology Guidelines and Conventions . . . . . . . . . . . . . . . . 439

22.4 How to Create a Process Model . . . . . . . . . . . . . . . . . . . . . . . . 441

22.5 How to Design Agent-Based Systems . . . . . . . . . . . . . . . . . . . . . 441

22.5.1 Engineering Cooperation . . . . . . . . . . . . . . . . . . . . . . . 442

22.5.2 Diversity versus Complexity . . . . . . . . . . . . . . . . . . . . . 443

22.6 How to Construct Agent-Based Systems . . . . . . . . . . . . . . . . . . . 445

22.7 How to Engineer Composed Services . . . . . . . . . . . . . . . . . . . . . 445

22.8 Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

22.9 Knowledge Management Applications . . . . . . . . . . . . . . . . . . . . 450

22.9.1 Agent-Based Knowledge Network . . . . . . . . . . . . . . . . . . 451

22.9.2 Intranet Portals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

22.9.3 Communities of Practice . . . . . . . . . . . . . . . . . . . . . . . 452

22.10 eBusiness Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

22.10.1 Business Models for eBusiness Applications . . . . . . . . . . . . 454

22.10.2 eMarketplace Architectural Requirements . . . . . . . . . . . . . . 455

22.11 Application to Supply-Chain Automation . . . . . . . . . . . . . . . . . . . 457

22.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

23 Service Management 463
23.1 Enterprise Resource Planning . . . . . . . . . . . . . . . . . . . . . . . . . 463

23.2 WSMF: Web Services Management Framework . . . . . . . . . . . . . . . 465

23.3 WSDM: Web Services Distributed Management . . . . . . . . . . . . . . . 465

23.3.1 Contingency Plans for Service Failures . . . . . . . . . . . . . . . 466

23.3.2 Security and Authentication . . . . . . . . . . . . . . . . . . . . . 467

23.3.3 Features and Benefits of WSDM Centralization . . . . . . . . . . . 467

23.4 Metadata Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

23.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467



Contents xvii

23.5.1 Scalability in Practice . . . . . . . . . . . . . . . . . . . . . . . . 468

23.5.2 Scaling Infrastructure Services for Agents . . . . . . . . . . . . . . 469

23.5.3 Scalability Experiments . . . . . . . . . . . . . . . . . . . . . . . 469

23.5.4 Long-Lived Adaptable Agents . . . . . . . . . . . . . . . . . . . . 470

23.6 Robust Services via Agent-Based Redundancy . . . . . . . . . . . . . . . . 470

23.6.1 Architecture and Process . . . . . . . . . . . . . . . . . . . . . . . 471

23.6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 472

23.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

24 Security 475
24.1 Securing Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

24.1.1 Nonrepudiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

24.1.2 Endorsement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

24.1.3 Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

24.2 SAML and WS-Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

24.3 WS-Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

24.4 XACML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

24.5 Reasoning about Security Policies . . . . . . . . . . . . . . . . . . . . . . . 481

24.6 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

24.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

VII Directions 485

25 Challenges and Extensions 487
25.1 Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

25.2 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

25.2.1 Machine Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

25.2.2 Applying Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

25.2.3 Ethical Violations . . . . . . . . . . . . . . . . . . . . . . . . . . 491

25.3 Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

25.4 Benevolence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

25.5 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

25.6 Managing Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

25.7 Key Challenges and Recommendations . . . . . . . . . . . . . . . . . . . . 495

VIII Appendices 497

A XML and XML Schema 499
A.1 Why XML? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

A.2 XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

A.2.1 XML and Vocabularies . . . . . . . . . . . . . . . . . . . . . . . . 502



xviii Contents

A.2.2 Transforming XML . . . . . . . . . . . . . . . . . . . . . . . . . 503

A.2.3 Well-Formedness . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

A.2.4 Namespaces and Qualified Names . . . . . . . . . . . . . . . . . . 505

A.2.5 Using Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

A.2.6 XML Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

A.3 XML Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

A.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

A.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

A.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

B URI, URN, URL, and UUID 515

C XML Namespace Abbreviations 517

Glossary 519

Bibliography 523

Index 533



About the Authors

Munindar P. Singh is a Professor of Computer Science at North Carolina State University.

From 1989 through 1995, he was with the Microelectronics and Computer Technology Cor-

poration (better known as MCC). Munindar’s research interests include multiagent systems

and Web services. He focuses on applications in e-commerce and personal technologies.

Munindar’s 1994 book Multiagent Systems, was published by Springer-Verlag. He coedited

Readings in Agents, which was published by Morgan Kaufmann in 1998. He has coedited

several other books and authored several technical articles. Munindar’s research has been rec-

ognized with awards and sponsorship from the National Science Foundation, DARPA, IBM,

Cisco Systems, and Ericsson.

Munindar was the editor-in-chief of IEEE Internet Computing from 1999 to 2002 and

continues to serve on its editorial board. He is a member of the editorial boards of the Journal
of Autonomous Agents and Multiagent Systems and the Journal of Web Semantics. He serves

on the steering committee for the IEEE Transactions on Mobile Computing.

Munindar received a B.Tech. in computer science and engineering from the Indian Insti-

tute of Technology, New Delhi, in 1986. He obtained a PhD in computer science from the

University of Texas at Austin in 1993.

Michael N. Huhns is the NCR Professor of Computer Science and Engineering at the Uni-

versity of South Carolina, where he also directs the Center for Information Technology. Pre-

viously he was a Senior Member of the Research Division at the Microelectronics and Com-

puter Technology Corporation. Prior to joining MCC in 1985, he was an Associate Professor

of Electrical and Computer Engineering at the University of South Carolina, where he also

directed the Center for Machine Intelligence.

Mike is a member of Sigma Xi, Tau Beta Pi, Eta Kappa Nu, ACM, IEEE, and AAAI.

He is the author of over 180 technical papers in machine intelligence and an editor of the

books Distributed Artificial Intelligence, Volumes I and II, and, with Munindar, Readings in
Agents. His research interests are in the areas of multiagent systems, enterprise modeling and

integration, and software engineering. From 1997 to 2003, he wrote a column Agents on the
Web for IEEE Internet Computing.

Mike was an associate editor for IEEE Expert and the ACM Transactions on Information
Systems. He is an associate editor for the Journal of Autonomous Agents and Multiagent

xix



xx About the Authors

Systems. He is on the Editorial Boards of the International Journal on Intelligent and Coop-
erative Information Systems, the Journal of Intelligent Manufacturing, and IEEE Internet
Computing. He was an advisor for the First International Conference on Multiagent Systems,

1995, and has been on the advisory boards for the International Workshops on Distributed

Artificial Intelligence. He is a member of the board for the International Foundation for

Multiagent Systems and the International Foundation on Cooperative Information Systems.

Mike received the BSEE degree in 1969 from the University of Michigan, Ann Arbor,

and the MS and PhD degrees in electrical engineering in 1971 and 1975, respectively, from

the University of Southern California, Los Angeles.

Contact information

Munindar P. Singh
Department of Computer Science

North Carolina State University

Raleigh, NC 27695-7535, USA

http://www.csc.ncsu.edu/faculty/mpsingh/
singh@ncsu.edu

Michael N. Huhns
Department of Computer Science & Engineering

University of South Carolina

Columbia, SC 29208, USA

http://www.cse.sc.edu/˜huhns/
huhns@sc.edu



Preface

The current World-Wide Web was intended to be used by people, but most experts, including

the founder of the WWW, Tim Berners-Lee, agree that the WWW will have to evolve to

include usage by computer systems. Moreover, the impact of computer usage will exceed that

of human usage. The evolution is expected to occur through the design and deployment of

Web services. The phrase Web services sometimes refers to services that employ a particular

set of basic standards. Since these standards are all but incidental to the key concepts of

services and services apply even in settings strictly different from the WWW, it is helpful to

think of service-oriented computing as a more general topic.

The objective of this book is to explain the principles and practice of service-oriented

computing, although most of its concepts are developed in the context of Web services. The

book presents the concepts, architectures, theories, techniques, standards, and infrastructure

necessary for employing services. It includes a comprehensive overview of the state of the

art in Web services and related disciplines.

Services are a means for building distributed applications more effectively than with pre-

vious software approaches. For this reason, it is not useful to talk about services without

talking about service-based applications, how they are built from services, and how services

should be designed so they can feature as parts of serious applications. Indeed, the raison
d’etre for services is that they be used for multiple purposes. And, services are used by

putting them together or composing them—the rare case where a service is used without

any contact with another service can be thought of as a trivial composition. For this reason,

every aspect of services is designed to help them be composed: specifically, so they can be

described, selected, engaged, collaborated with, and evaluated.

Many of the key techniques now being applied in building services and service-based

applications were developed in the areas of databases, distributed computing, artificial intel-

ligence, and multiagent systems. These are generally established bodies of work that can be

readily adapted for service composition. Some additional techniques, although inspired by

these areas, are being developed from scratch by practitioners and researchers in the con-

text of service-oriented computing. These new techniques address the essential openness and

scale of Web applications that previous work did not need to address. Both classes of key

techniques should be incorporated into our best practices. In most cases, they can be applied

on top of existing approaches.

xxi



xxii Preface

Philosophy and Approach
The philosophical position taken by this book is that it is not possible for computer scientists

to develop an effective understanding of service-oriented computing by merely studying the

basic standards for Web services. Unless we take an impoverished view of the subject and

are content merely to run some canned examples, we must perforce examine several areas of

computer science that come together in connection with services, and from which services

derive their intellectual underpinnings.

All science, as the Nobel Laureate Ernest Rutherford once famously asserted, is either

physics or stamp collecting. By physics Rutherford meant clean, succinct principles that

apply to diverse phenomena and by stamp collecting he meant the cataloging and organization

of large sets and varieties of observations.

To develop complex services and service-based applications requires both physics and

stamp collecting. Almost reluctantly, the professional community has adopted some software

engineering approaches for services. Some of these are based on organizing knowledge as

“ontologies” and then agreeing upon the ontologies. In the end, they will require a lot of

organizing, but the right abstractions will go a long way in streamlining this task.

Most importantly, however, traditional software approaches are fundamentally not sen-

sitized to the challenges of an open environment. The physics, as it were, is designed for a

closed environment. The effect is analogous to applying traditional mechanics to quantum

mechanical problems. So, while we obviously need engineering methodologies to take care

of the stamp collecting, we also need elegant principles that would give us the new physics.

Audience
We have sought to make this book complete as a college textbook. However, because it also

includes many illustrations and examples, the book is eminently suitable for use by students

and practitioners to learn about service-oriented computing on their own. This book serves

the following main kinds of readers in the following ways.

Practitioners, who can supplement their knowledge of the details with an understanding of

the concepts that underlie the standards and tools that they use, and the best practices

based on those concepts. The book can help them leverage their practical experience

to build stronger service-oriented systems and applications.

Technologists, including advanced developers and architects, who need to get their arms

around service-oriented computing. They can better understand the key technologies

and their key strengths and limitations, so they can conceive and execute their new

major projects.

IT Strategists, who are concerned by the notorious business versus IT divide of modern

practice. Service-oriented computing, as understood in this book, provides a concep-

tual framework to bridge that divide.



Preface xxiii

Researchers, who recognize the value of service-oriented computing as a source of major

research problems of practical import. They might be deeply knowledgeable in some

aspect of the subject, but might nevertheless wish to get a crash course on the remaining

aspects.

Students, both graduate and senior undergraduate, who need to know about service-oriented

computing simply to be adequately prepared for the expanding applications of services.

And especially if their university curriculum is out of date and does not include service-

oriented computing, they need to learn it on their own. The book can help them prepare

to participate in the workforce in any of the above roles.

We have given numerous tutorials at a number of leading conferences based on the materials

presented here. The attendees at those tutorials represented all of the above categories of

reader. Further, the manuscript has been used as a text for two graduate courses and an

advanced undergraduate course on Web services, and sections have been used within other

graduate courses in multiagent systems and cooperative information systems.

Service-oriented computing is a new and dynamic area. It has captured the attention of

numerous commercial interests, and many companies are introducing new techniques and

suggesting new standards on an almost daily basis. This book can only cover the state of

service-oriented computing at a single point in time, but it emphasizes the essential concepts

that will stand the test of time. It uses its associated website to cover changes and newer

developments.

This book includes the essential background for anyone planning to learn and develop the

principles and applications of service-oriented computing. It includes numerous theoretical

and programming exercises and some project ideas that all readers can use to solidify their

understanding. (Homework is not just for the students!) It has only a few prerequisites:

some experience with Web programming or the willingness to learn it. Slides and homework

solutions are available from http://www.csc.ncsu.edu/faculty/mpsingh/books/SOC/.

The Contents
This book is divided into the following major parts.

Basics. Part I describes the key trends and architectures in modern computing that motivate

why and how services are emerging. It also gives a crash course on current Web service

technologies so that readers can quickly begin to experiment with these technologies,

possibly beginning on a small project.

The key idea of an architecture based on Web services is that it identifies three main

components: a service provider, a service consumer, and a registry. Providers publish

their services on registries, and consumers find the service providers from registries

and then invoke them. Current standards and techniques support these steps and enable

many important use cases. However, to our way of thinking, they are unnecessarily lim-

ited in some respects. Yet the architecture of Web services provides a nice framework,



xxiv Preface

which can be fleshed out with more powerful representations and techniques. These

are established computer science approaches and serious practitioners are already using

them, although they are omitted from most expositions of Web services. The rest of

the book shows what these are and how they can be employed.

Description. Part II addresses techniques and methodologies for describing services. These

techniques include ideas from conceptual modeling of database schemas and domain

knowledge, and cover both representation and reasoning approaches. They lead natu-

rally into some of the XML-based technologies gaining currency as the Semantic Web.

The idea is that when services are described with sufficient richness, it is easier for

providers to state what they offer and for consumers to specify what they need, leading

to meaning-based interactions.

Engagement. Part III deals with how services may be engaged or executed so as to facil-

itate the simpler kinds of composition. Often, when services are described, there is

an emphasis on invoking services as if they were no more than methods to be called

remotely. We prefer the term engagement, because it more accurately reflects the power

of the service metaphor for computing. Imagine going to a carpenter, a human service

provider, to have some bookshelves built in your home. You will typically not instruct

the carpenter in how to build the shelves. Instead, you will carry out a dialog with the

carpenter in which you will explain your wishes and your expectations; the carpenter

might take some measurements, check with some suppliers of hard-to-get materials

(maybe some exotic woods), and suggest a few options; based on your preferences and

your budgetary constraints, you might choose an option or get a second estimate from

another carpenter.

Likewise, in computing, instead of merely invoking a particular method, you would

engage a service. Here the relevant computational themes are peer-to-peer comput-

ing, messaging, transactions (traditional, nested, and extended or relaxed), workflow,

business processes, and exception handling. A number of standards for services are

emerging in these areas.

Collaboration. Part IV discusses advanced concepts that arise from a computational stand-

point in composing services, where it is helpful to think of the services as collaborating

with each other. Some of the key technologies that apply for collaboration include pro-

tocols, agents, contracts, service agreements, and negotiation techniques. The engage-

ment techniques in Part III give us the basis for engaging services while considering

various transactional properties. The techniques of collaboration in this part go several

steps further in characterizing the interactions among the consumers and the providers

of services, dealing with how they plan and enact service episodes, how they main-

tain consistency, negotiate, enter into and execute contracts and agreements, and carry

out specified protocols. This part includes a discussion of monitoring compliance with

contracts and service agreements.

Selection. Part V introduces concepts of service discovery and selection, and distributed



Preface xxv

trust. Service discovery in its simplest form involves registries where services can

be registered and looked up. However, selecting desirable services in practice also

involves accommodating notions of trust, endorsement, and reputation.

This part of the book also includes a discussion of how services can be evaluated by the

parties using them. This is essential to complete the cycle of locating services, engag-

ing the services, and then evaluating the services to determine if they were successful.

Fair and accurate evaluation can enable the various parties to find, select, and engage

the services that are superior in some way.

Engineering. Part VI focuses on the engineering of service-based applications. It discusses

methodologies and techniques for building services in the context of some important

classes of applications, especially knowledge management and e-business. This part

also discusses the best practices for the main kinds of techniques described in the pre-

vious parts.

Directions. Part VII discusses some of the key trends in services and in architectures. It

considers architectural policies, privacy, and personalization from the perspective of

how services fit into the larger world. It also discusses more advanced philosophical

notions, such as ethics and social mores, with a view to inspiring services that function

in a manner that improves the network at large, not just optimizing the results for

themselves.

Appendices. Part VIII has appendices on important background topics such as XML tech-

nologies and Web standards and protocols. The appendix on XML, in particular, is as

extensive as a chapter and includes description of all the key XML technologies that

you need to know in order to read this book. It also includes exercises for readers who

wish to test their knowledge.

The organization of the book is designed to encourage the building of a series of projects

beginning with the most basic applications of the most established standards, and ending

with areas where technologies are still gelling.

Munindar P. Singh Michael N. Huhns

Raleigh, North Carolina Columbia, South Carolina





Note to the Reader

This book brings together a lot of interesting concepts that apply in service-oriented comput-

ing. Where possible, we have sought to describe the techniques that these concepts support—

in other words, to make the concepts actionable. However, the concepts in many cases are

subtle; you must master the concepts before you can be effective with the techniques.

We recommend that you read the text carefully and work through several of the theoretical

exercises. If this book is successful, it will have piqued your interest about several topics.

If you have a theoretical bent, you will want to pursue deeper results. Virtually all topics

discussed here have a lot of depth, and a number of PhD problems lurk within. The book

cites the key work for each topic, which will give you excellent starting points.

For those with an interest in practical implementations (and we recommend that even

theoreticians work on a few, just to keep grounded), the book provides a fair amount of

detail about how various techniques can be realized. It discusses virtually all the key emerg-

ing standards for service-oriented computing, and concludes with a discussion of engineer-

ing challenges and the emerging methodologies and best practices to address them. In this

sense, it is a lot more practical than the typical advanced textbook. If you are reason-

ably experienced as a programmer, you can find the few necessary details to get started by

downloading the latest versions of the tools from the Internet. The book’s home page at

http://www.csc.ncsu.edu/faculty/mpsingh/books/SOC/ includes useful pointers.

However, as you can well imagine, each standard and tool has a lot of nitty-gritty details.

All too often these are not based on any theoretical concepts, but are accidents of history or

practical concerns of implementations. This book does not describe such idiosyncrasies. In

our own system development, we would learn such details by Internet searches or by trial and

error, and promptly forget them as soon as we could! For the bleeding edge standards and

tools, there may be no other way; for the older ones you can perhaps find detailed books. In

either case, this book will help you master the concepts that will last a long time, rather than

details that might be lost in the next release.

Lastly, please note that writing the first big book on a wide-ranging new topic is a daunting

task. In our combined four decades of post doctorate experience, this is the largest intellectual

venture that we have attempted. There will undoubtedly be lots of room for improvement.

We welcome your suggestions!

xxvii





Acknowledgments

A book such as this inevitably describes the work of others. Besides the authors cited within,

we are indebted to our colleagues, students, teaching and research assistants, and the audi-

ences of our tutorials at various conferences. In particular, we would like to thank Soydan

Bilgin, Michael Maximilien, Yathi Udupi for help with some of the programming assign-

ments, José Vidal for contributing several exercises and Paul Buhler for evaluating an early

version of the text in his class. Amit Chopra gave extensive comments on some chapters. Sev-

eral students, in particular Leena Wagle and Sameer Korrapati, gave useful suggestions on

previous drafts. We thank Mona Singh and Hilary Huhns for their creative talents in drawing

many figures.

We gratefully acknowledge support from the government and corporate sponsors of our

research, which enabled us to develop the understanding of service-oriented computing that is

described in this book. Munindar’s research sponsors include Cisco, DARPA, Ericsson, IBM,

and the National Science Foundation. Mike’s research sponsors include the National Science

Foundation, DARPA, the US Department of Agriculture, and NASA. Mike has greatly ben-

efited from his association with Ray Emami, Alok Nigam, and their research team at Global

Infotek, Inc.

As usual, we are deeply indebted to our families for their patience despite the onerous

demands made by our writing.

xxix





Figures

1.1 Relationship of services standards and methodologies . . . . . . . . . . . . . 16

2.1 The general architectural model for Web services . . . . . . . . . . . . . . . 20

2.2 SOAP as RPC or message exchange . . . . . . . . . . . . . . . . . . . . . . 21

2.3 UDDI yellow, green, and white pages . . . . . . . . . . . . . . . . . . . . . 33

2.4 The UML information model for a business entity in a UDDI registry . . . . 34

2.5 UDDI business entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 A WSDL to UDDI mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 A simple view of the WSDL data model . . . . . . . . . . . . . . . . . . . . 56

4.1 The J2EE architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 The Microsoft .NET architecture . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Example business-to-consumer transaction . . . . . . . . . . . . . . . . . . . 81

6.1 Modeling the composition of services . . . . . . . . . . . . . . . . . . . . . 88

6.2 Interoperation scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Ontologies and articulation axioms . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Example consistent and inconsistent value maps . . . . . . . . . . . . . . . . 100

6.5 Unintuitive value map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.6 Binary relation as a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.7 Using the Unified Modeling Language for ontologies . . . . . . . . . . . . . 114

6.8 Conceptual representations for rectangular objects . . . . . . . . . . . . . . . 116

7.1 RDF subPropertyOf Schematically . . . . . . . . . . . . . . . . . . . . . . . 129

7.2 Example of RDF N-triples . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.1 Main OWL entities and relationships . . . . . . . . . . . . . . . . . . . . . . 154

8.2 A schematic representation for the warehouse and shipping example . . . . . 159

9.1 An example UBL component for the common business concept of “tax” . . . 165

xxxi



xxxii Figures

9.2 An example upper ontology. The links represent specialization . . . . . . . . 166

9.3 Example ontology for information about people . . . . . . . . . . . . . . . . 169

9.4 Relating ontologies like a jigsaw puzzle . . . . . . . . . . . . . . . . . . . . 170

9.5 Ontology generated by merging independent ontologies . . . . . . . . . . . . 171

9.6 Consensus ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.1 Jini service model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

11.1 System architecture showing applications and database . . . . . . . . . . . . 194

11.2 Example of a distributed, nested transaction . . . . . . . . . . . . . . . . . . 204

11.3 Typical transaction skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

11.4 An example execution of 2PC . . . . . . . . . . . . . . . . . . . . . . . . . 205

11.5 A schematic architecture involving a TP monitor . . . . . . . . . . . . . . . 206

11.6 Transactions over composed services . . . . . . . . . . . . . . . . . . . . . . 207

11.7 Typical task skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

12.1 Relationship of service standards and methodologies . . . . . . . . . . . . . 226

12.2 Concepts in WSCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

12.3 A WSCL definition for a conversation about on-line purchasing . . . . . . . . 230

12.4 A coordination service for Web services . . . . . . . . . . . . . . . . . . . . 235

12.5 Coordination between Web services with coordinators . . . . . . . . . . . . . 236

12.6 An atomic transaction in WS-Coordination . . . . . . . . . . . . . . . . . . 241

12.7 An example of the Business Transaction Protocol . . . . . . . . . . . . . . . 243

13.1 An example UML activity diagram . . . . . . . . . . . . . . . . . . . . . . . 248

13.2 Telecommunications workflow example . . . . . . . . . . . . . . . . . . . . 249

13.3 Exceptions during workflow execution . . . . . . . . . . . . . . . . . . . . . 250

13.4 Exceptions as alternative flows of control . . . . . . . . . . . . . . . . . . . 251

13.5 Three primitive interoperability patterns . . . . . . . . . . . . . . . . . . . . 252

13.6 Workflow metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

13.7 Workflow as a state-transition diagram . . . . . . . . . . . . . . . . . . . . . 253

13.8 Workflow architecture reference model . . . . . . . . . . . . . . . . . . . . . 254

13.9 The BPEL4WS metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

13.10 BPEL4WS process as a composite Web service . . . . . . . . . . . . . . . 259

13.11 Steps in the design of an ebXML system . . . . . . . . . . . . . . . . . . . 263

13.12 Discover partner information and negotiate . . . . . . . . . . . . . . . . . . 268

13.13 Business Service Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

13.14 Creating a purchase order in accordance with a RosettaNet PIP . . . . . . . 273

13.15 PSL conceptual model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

13.16 An example workflow for student registration . . . . . . . . . . . . . . . . 279

14.1 Scheduler states and transitions for D< . . . . . . . . . . . . . . . . . . . . 289

14.2 Guards with respect to D< = e ∨ f ∨ e · f . . . . . . . . . . . . . . . . . . . 294



Figures xxxiii

14.3 Guards from D< assuming e is inevitable . . . . . . . . . . . . . . . . . . . 299

14.4 Extreme example of an immediate event (e) . . . . . . . . . . . . . . . . . . 300

15.1 BDI architecture for an agent . . . . . . . . . . . . . . . . . . . . . . . . . . 310

15.2 Types of agent inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

15.3 An architecture for a reactive agent . . . . . . . . . . . . . . . . . . . . . . . 314

15.4 A belief-desire-intention (BDI) agent architecture . . . . . . . . . . . . . . . 315

15.5 An upper ontology for services . . . . . . . . . . . . . . . . . . . . . . . . . 319

15.6 Applying OWL-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

15.7 Example composite service . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

16.1 Mediated architecture showing standard agent types . . . . . . . . . . . . . . 345

16.2 The components of an agent management system . . . . . . . . . . . . . . . 347

16.3 The architecture of a TMS-based agent . . . . . . . . . . . . . . . . . . . . . 350

16.4 Initial state of knowledge bases of interacting agents . . . . . . . . . . . . . 353

16.5 Continued example of knowledge bases of interacting agents . . . . . . . . . 353

16.6 Final state of knowledge bases of interacting agents . . . . . . . . . . . . . . 354

17.1 A selling virtual enterprise . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

17.2 Cake cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

18.1 Simple agent interaction patterns . . . . . . . . . . . . . . . . . . . . . . . . 384

18.2 Web Service Agent Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . 385

18.3 The Contract Net Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

18.4 FSM representation of the NetBill protocol . . . . . . . . . . . . . . . . . . 388

18.5 FSM representations of the Escrow protocol . . . . . . . . . . . . . . . . . . 389

18.6 FSM representation of an enhanced version of NetBill . . . . . . . . . . . . . 391

18.7 Message patterns for operations on commitment . . . . . . . . . . . . . . . . 393

18.8 An example of the execution of a fish-market auction . . . . . . . . . . . . . 394

18.9 An example of the local models of a fish-market auction . . . . . . . . . . . 395

18.10 An example B2B scenario for customers and suppliers . . . . . . . . . . . . 397

18.11 An example subproblem decomposition solved by the Contract Net . . . . . 397

19.1 Applying SoComs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

20.1 Querying and responding for referrals . . . . . . . . . . . . . . . . . . . . . 414

21.1 Example allocation of a Web service for financial portfolio analysis . . . . . 423

22.1 Examples of task decomposition based on spatial or functional criteria . . . . 444

22.2 A Jade model of the Contract Net initiator . . . . . . . . . . . . . . . . . . . 446

22.3 Engineering an SOC system . . . . . . . . . . . . . . . . . . . . . . . . . . 448

22.4 Supply chains and the automotive industry . . . . . . . . . . . . . . . . . . . 456

22.5 A sequence diagram of an agent-based B2B scenario . . . . . . . . . . . . . 458



xxxiv Figures

22.6 Collaboration diagram showing the key roles for a supply-chain scenario . . . 459

22.7 Agent-based enactment of a supply chain . . . . . . . . . . . . . . . . . . . 460

22.8 State-machine behavior skeletons for enacting agents for a supply chain . . . 461

23.1 The Global Best Practices approach . . . . . . . . . . . . . . . . . . . . . . 464

23.2 The Multi-Industry Process Technology approach . . . . . . . . . . . . . . . 464

23.3 Improving robustness by combining multiple implementations of a service . . 472

24.1 Using the eXtensible Access Control Markup Language (XACML) . . . . . . 480

25.1 Architecture for a philosophical agent . . . . . . . . . . . . . . . . . . . . . 492

A.1 Service-oriented computing: XML . . . . . . . . . . . . . . . . . . . . . . . 499

A.2 XML validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510



Tables

1.1 A historical view of services over the Web . . . . . . . . . . . . . . . . . . . 13

6.1 A historical view of interoperation levels . . . . . . . . . . . . . . . . . . . . 92

6.2 Insurance company ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Modeling language features . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

10.1 CORBA Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

11.1 The ACID properties for traditional transactions . . . . . . . . . . . . . . . . 196

11.2 Conflict matrix for transaction operations . . . . . . . . . . . . . . . . . . . 198

11.3 The ACID properties for closed nested distributed transactions . . . . . . . . 203

11.4 ACID Properties and SOA . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

13.1 UML to BPEL4WS mappings . . . . . . . . . . . . . . . . . . . . . . . . . 262

14.1 Assimilating messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

15.1 OWL-S service profile compared to UDDI . . . . . . . . . . . . . . . . . . . 320

15.2 The IOPEs for an example bookstore service . . . . . . . . . . . . . . . . . . 322

16.1 Dimensions of MAS: Agent . . . . . . . . . . . . . . . . . . . . . . . . . . 342

16.2 Dimensions of MAS: System . . . . . . . . . . . . . . . . . . . . . . . . . . 342

16.3 Knowledge integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

16.4 Knowledge inconsistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

16.5 Degrees of logical consistency . . . . . . . . . . . . . . . . . . . . . . . . . 352

18.1 Specifying business protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 390

A.1 Rendering the temperature document . . . . . . . . . . . . . . . . . . . . . . 502

xxxv





Listings

2.1 A SOAP request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 A SOAP response corresponding to the request of Listing 2.1 . . . . . . . . . 22

2.3 Example SOAP header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 A WSDL example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 SOAP body for example UDDI registration . . . . . . . . . . . . . . . . . . 35

2.6 Example tModel: 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Example tModel: 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 Example tModel: 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.9 Example UDDI inquiry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.10 Example UDDI response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.11 Example UDDI inquiry using a DUNS number . . . . . . . . . . . . . . . . 41

3.1 RESTful SOAP: Example of HTTP GET binding . . . . . . . . . . . . . . . 54

4.1 A Cobol program for multiplication as a service . . . . . . . . . . . . . . . . 65

7.1 An example purchase order in XML . . . . . . . . . . . . . . . . . . . . . . 120

7.2 An alternative XML representation of a purchase order . . . . . . . . . . . . 120

7.3 An example RDF snippet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4 An RDF example represented in N-Triples notation . . . . . . . . . . . . . . 128

7.5 Examples of assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.1 An example of ontology imports in OWL . . . . . . . . . . . . . . . . . . . 174

12.1 A WSCL specification for the conversation in Figure 12.3 . . . . . . . . . . . 229

12.2 A WSCL specification (cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . 231

12.3 An example WSDL document for a stock-quotation Web service, enhanced

by WSCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

12.4 An example of WSCI specifying a transaction, its compensation, and a while-

loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

13.1 Example BPSS document . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

13.2 An example of an ebXML Collaboration Protocol Profile . . . . . . . . . . . 265

13.3 Details to make CPP complete . . . . . . . . . . . . . . . . . . . . . . . . . 266

13.4 The general form of an ebXML Collaboration Protocol Agreement . . . . . . 268

13.5 PartyInfo field for ebXML CPA . . . . . . . . . . . . . . . . . . . . . . . . 270

13.6 The CollaborationRole field for an ebXML Collaboration Protocol Agreement 270

xxxvii



xxxviii Listings

13.7 An example SOAP message header for sending a Purchase Order Request

document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

15.1 Pseudocode for voluntary multitasking in the BDI architecture . . . . . . . . 313

A.1 XML example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

A.2 Alternative XML example . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

A.3 HTML version of XML example . . . . . . . . . . . . . . . . . . . . . . . . 502

A.4 Using a stylesheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

A.5 Stylesheet example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

A.6 DTD example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

A.7 Example of XML namespaces . . . . . . . . . . . . . . . . . . . . . . . . . 505

A.8 An example of !ENTITY in XML . . . . . . . . . . . . . . . . . . . . . . . 506

A.9 An equivalent example to Listing A.8 without !ENTITY . . . . . . . . . . . 506

A.10 Example XML Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

A.11 XML document conforming to preceding XML Schema . . . . . . . . . . . . 509



Part I

Basics

1





Chapter 1

Computing with Services

When we browse the Web, fill a form, or make a purchase, we are participating in a distributed

computation, whose other components we may know very little about. Web services are

interesting, because they provide an approach for constructing and deploying such distributed

computations in a manner that enhances the productivity of programmers, administrators, and

users alike.

Most researchers and practitioners agree that today’s Web, although successful in many

ways, also has a number of limitations. Information on the Web is not organized. It can be

inaccurate and inconsistent and, worse, incomprehensible. Current techniques for locating

information offer low precision (including irrelevant results) and low recall (missing relevant

information). Most of the information is static and Web sites typically do not exhibit well-

structured programmatic behavior. The only kind of programmative behavior is when a form

is posted to a script running at a specified URL, but these scripts have rigid interfaces and

behaviors, and complicate the tasks of building and maintaining distributed applications.

This chapter reviews some key motivations for the emergence of Web services. The

motivations are guiding some of the emerging standards and technologies for Web services

and provide a basis for evaluating competing approaches.

1.1 Visions for the Web
Most plausible visions for the future of the Web are based on the following tenets, many of

which have already begun to come about. The Web is and will be ubiquitous, have no central

authority, and consist of “components” that are heterogeneous and autonomous. Today, the

components are primarily Web pages, but increasingly they will be programs in general. In

other words, the Web provides both content and services today, but there is an increasing

emphasis on the latter. The Web is dynamic today in terms of its components being able to

change arbitrarily. However, it is not fully dynamic in that the components can negotiate only

a few limited aspects of their interactions: typically, the visual aspects of a page or whether

3



4 Computing with Services

cookies can be set and retrieved via a browser. The Web will begin to support cooperative
peer-to-peer (P2P) interactions, while continuing to support client-server interactions.

1.1.1 Semantic Web
Tim Berners-Lee, the originator of the World-Wide Web, has described one such vision called

the Semantic Web. Today’s Web is geared for use by people. In other words, information is

generally marked up for presentation and is displayed accordingly by a browser. Humans can

usually interpret the content of the information because they have the necessary background

knowledge, which they share with the creators of the given page. Unless programs are cre-

ated to represent and exploit such knowledge, they are limited to processing in a hard-coded

manner, which does not suit a dynamic setting where the details can easily change.

For example, we can write a so-called screen-scraping program that extracts the price of

a book from a search-results page on amazon.com. This program would, of course, rely upon

the syntax of the Web page being encoded in some sort of a formal grammar. Intuitively, such

a program may be instructed to read the price from the results page by parsing it appropriately.

Depending on the structure of the page at the given site, these instructions could be heavily

ad hoc, for example, get the seventh cell from the third row of the second table in the fifth

frame. Although tools exist to simplify such parsing and extraction, this task still requires

painstaking effort by programmers. Moreover, the program would fail or behave erroneously

when some seemingly irrelevant change is made to the structure of any of the Web pages that

it reads.

In the Semantic Web, the page would be marked up not only with presentation details,

but also with a separate representation of the meaning of its contents. In other words, the

results page of our example would say what the price was. A program instructed to extract

the price would find the price even if the layout of the page was changed. In other words, the

markup on the Web would progress from the merely syntactic—capturing just the structure

of the information, to the semantic—capturing the meaning of the information.

1.1.2 Peer-to-Peer Computing
Another important trend relevant to our topic is peer-to-peer computing (P2P). The Web

today is used for interactions in which most of the information resides on one side (server)

and most of the intelligence on the other (client). The asymmetry between the interacting

parties means that the information tends to be aggregated in large servers, which become

significant to the functioning of the entire system. If the servers fail, then the whole system is

adversely affected; if they are compromised, then security in the system may be violated. The

key idea behind P2P is that the different components are peers or equals of each other. Each

has aspects of being a server and a client—for this reason, the peers are sometimes termed

“servents.”

Under P2P, the Web would consist not of passive pages to be accessed by programs,

but of active programs that can communicate with one another. In principle, such programs

may carry out negotiations with one another and proactively offer suggestions to one another.



1.1 Visions for the Web 5

However, current P2P approaches lack semantics, meaning that the applications must hard-

code how they interact, precluding flexible negotiation. For this reason, they have been instan-

tiated in simple applications, such as file sharing, where humans provide the semantics.

1.1.3 Processes and Protocols
The Web today is by and large static and passive, although, as noted above, it is possible to

invoke programs (e.g., servlets) over it. However, the challenge is to find and correctly invoke

the programs. This challenge is addressed by first-generation service approaches, which

provide a means by which the parameters and outputs of programs can be specified, usually

in a notation based on the eXtensible Markup Language (XML). Further, these standards

provide a means to locate the services one might wish to invoke and provide support for how

to invoke those services over the Web, using the Hypertext Transfer Protocol (HTTP), the

same protocol as used by Web browsers.

Services are invoked to carry out business processes, which also involve high-level inter-

actions among various parties. In contrast to service invocations, which are single-shot

two-party interactions, processes are typically long-lived multiparty interactions. Except for

toy examples such as looking up the weather or converting currencies, services are usually

employed as parts of larger processes. For this reason, a process-oriented view of services is

gaining prominence. Standards for modeling business processes are being developed as close

extensions of standards for Web services.

1.1.4 Pragmatic Web
When we put the above together, we get what may be termed the Pragmatic Web. The term

pragmatic here means that the Web is understood as being used for processes in context. The

ramifications of this term are made clear by the rest of this book. Because this book describes

the technologies of Web services from the perspective of how they could be used to build

large, open information systems, it may be thought of as describing the emerging Pragmatic

Web.

What is important about the Pragmatic Web is that it begins to put together the enabling

technologies for negotiation. Negotiation is common in real life. Yet, in today’s computer

applications, most negotiations are handled ahead of time by humans; only the most trivial

negotiations are carried out automatically. This is changing with the emergence of online

markets that support bidding and bartering. Market algorithms and strategies for optimal

bidding are not central to service-oriented computing.

However, participating successfully in a negotiation depends upon modeling the seman-

tics of what is being negotiated, interacting as a peer, and carrying out long-lived interactions

as part of realistic business processes. These aspects are central to the thesis of this book.

This book does not seek to solve the problems of negotiation that arise in various applica-

tions, because the specific techniques would depend on the application in question. However,

it seeks to provide the concepts and techniques of Web services that would be an integral part

of the solutions in those applications.



6 Computing with Services

In our vision, the Web will become usable by machines as well as by people, and will

become active rather than passive. The following summarizes the main trends regarding the

Web:

• Automation. Human ⇒ Machine.

• Richer markup. The move from HTML to XML has regularized the syntax of docu-

ments and data structures found over the Web. However, XML is not adequate for cap-

turing the semantics or formal meaning of these documents and data structures. Richer

representations are needed. These are distinct layers above XML, although they might

be given an XML syntax as well.

• Richer activities. Passive ⇒ Active; Services ⇒ Processes.

• Greater interaction. Client-Server ⇒ P2P ⇒ Cooperative.

• Accommodating context. Semantics ⇒ Mutual Understanding ⇒ Pragmatics.

The above trends bring us well beyond the Semantic Web as currently understood, and

add pragmatics to the picture. For this reason, it is best to term these the Pragmatic Web.

1.2 Precursors

Let us quickly review the history of information technology from the perspectives of dis-

tributed computing and information modeling. As is well known, computing has evolved

from centralized systems to time-shared ones, to client-server computing, and now on to

peer-to-peer computing:

• First-generation information systems provide centralized processing that is controlled

and accessed from simple terminals that have no data-processing capabilities of their

own.

• Second-generation information systems are organized into servers that provide general-

purpose processing, data, files, and applications and clients that interact with the servers

and provide special-purpose processing, inputs, and outputs.

• Third-generation information systems, which include those termed peer-to-peer, enable

each node of a distributed set of processors to behave as both a client and a server; they

may still use some servers.

• Emerging next-generation information systems are cooperative, where autonomous,

active, heterogeneous components enable the components collectively to provide solu-

tions.



1.3 Open Environments 7

Already, systems are emerging that include aspects of cooperation wherein the components

not only can deal with each other as peers, but also can understand each other at a higher level.

Here we take the term cooperative to include both cases of intelligent help and intelligent

competition.

In the early days of computing, data and applications were inextricably intertwined, lead-

ing to poor maintainability and upgradeability. By separating the data from the applications,

database management systems enabled each to exist independently of the other. The hope

was that data could be used for applications other than those for which it was intended and

that applications could access databases other than those they were designed to access. This

hope was partially realized in that, with sufficient effort, one could build new applications

that access old data and feed new data into old applications. However, in its fullest form, this

hope was dashed, because although access methods became standardized on the Structured

Query Language (SQL) for relational databases, the semantics of the data remained as ad hoc
as ever. For example, two relations with the column employee may or may not refer to the

same concept.

The same problem occurred for the Internet. In the early days, applications and data

formats were ad hoc. The standardization on HTML enabled the advent of browsers through

which people could access information anywhere on the Web. This is fine as long as humans

are engaged in understanding and processing the information, but does not lend itself well to

automation. So it is natural that semantics will draw increasing attention on the Web as well.

The Web is simply the culmination of this trend to heterogeneity. There is an interesting

dilemma here: the more distributed and independently managed that resources on the Web

become, the greater is their potential value, but the harder it is to extract that value. Web

services, by being usable across independently designed systems, facilitate creating systems

of high value whose value can be extracted with greater ease than previously.

1.3 Open Environments
The above trends in information systems toward increasing distribution, decoupling, local

intelligence, and collaboration have been accompanied by a similar evolution in networking,

from proprietary local networks to wide-area private networks, such as extranets and virtual
private networks (VPNs), to the public Internet. The result is that information systems have

components that cross organizational boundaries, i.e., are open. The term open implies that

the components involved are autonomous and heterogeneous, and system configurations can

change dynamically.

Often, we would want to constrain the design and behavior of components, thus limiting

the openness of the information system. However, the system would still have to deal with

the rest of the world, which would remain open. For example, a company might develop an

enterprise integration system that is wholly within the enterprise. Yet, this system would have

to deal with external parties, e.g., to handle supply and production chains. In other words, the

system would still need to function in an open environment. For this reason, it is helpful to

think in terms of such environments. We now review some of the key characteristics of open



8 Computing with Services

information environments.

Let’s begin with a review of the concepts of autonomy, heterogeneity, and dynamism as

they relate to open information environments. A simple way to understand and distinguish

these concepts is to associate them with the independence of users, designers, and adminis-

trators, respectively.

1.3.1 Autonomy

Autonomy means that the components in an environment function solely under their own

control. Imagine dealing with an e-commerce site. It may or may not remove some items

from its catalog. It may or may not even deliver the goods it promised. Of course, one might

seek legal recourse if a contract is violated! In fact, the autonomy of the components is the

reason that contracts and compliance are so important for open environments. We will return

to these topics in Chapters 15 and 18.

Simply put, software components are autonomous because they reflect the autonomy of

the human and corporate interests that they represent on the Web. In other words, there are

sociopolitical reasons for autonomy. Resources are owned and controlled by autonomous

entities and that is why they behave autonomously.

There are also a couple of technical reasons for autonomy. The simplest one is that a

component that behaves unexpectedly might be doing so because of error, i.e., a mistaken

requirement or a faulty implementation. If we can handle such components, then our system

will be robust. A more subtle reason is that sometimes components are designed so as to

be externally opaque in certain respects. For example, a well-encapsulated data type imple-

mentation hides its internal structures; therefore, the behavior of instances of this data type

would not be controllable with respect to the hidden aspects. Consider a dictionary data type

implemented as a hash table, with supported methods for inserting elements to the dictionary

and iterating over all elements of the dictionary. The size of the hash table and the hash

function are not revealed. To a programmer using this implementation, the ordering of the

elements in the iteration would appear as uncontrollable. This ordering could even change

across successive invocations if, in the interim, the hash table is resized because of internal

considerations, perhaps motivated by space and efficiency.

A major practical example of this occurs in legacy enterprise systems wherein database

management systems might be designed or configured to decide unilaterally (based on inter-

nal considerations) whether to allow a transaction to complete. To other components, their

decision on whether a transaction may complete or not appears as purely autonomous. Lastly,

certain instances of autonomy reflect the possibility of errors. For example, if a file system

can fail, a Web site on which you submit a form may fail to record your changes, thus appear-

ing to have unilaterally decided to discard your submission.

A consequence of autonomy is that updates can occur only under local control. In other

words, you can request another party to do something, but you cannot force them to do it. This

simple point illustrates a limitation of object-oriented computing. We can invoke methods on

objects and, if we have the handle for an object, the object performs the method so invoked.



1.3 Open Environments 9

By contrast, for open environments, there is another layer of reasoning so that a component

that is requested to perform a method may decide whether or not to accept the request. An

advantage of service-oriented computing over object-oriented computing is that it respects

autonomy.

1.3.2 Heterogeneity

Heterogeneity means that the various components of a given system are different in their

design and construction. Just as for autonomy, there are both sociopolitical and technical

reasons for heterogeneity. Component designers and architects might wish to construct their

components in different ways, e.g., to satisfy different performance requirements. Often, the

reasons are historical: components fielded today may have arisen out of legacy systems that

were initially constructed for different narrow uses, but eventually expanded in their scopes

to participate in the same system.

Heterogeneity can arise at a variety of levels in a system, such as networking protocols,

encodings of information, and data formats. Clearly, standardization at each level reduces

heterogeneity and can improve productivity through enhanced interoperability. This is the

reason that standards such as the Internet Protocol (IP), HTTP, Universal Character Set

(UCS), UCS Transformation Format (UTF-8), and XML have gained currency. Standards

always evolve and different software components may lag behind or overtake standards in

various respects. In general, it is easier to establish and comply with lower-level standards.

Heterogeneity also arises at the level of semantics and usage, where it may be hardest

to resolve and sometimes even to detect. For example, a payroll system and a benefits sys-

tem might both deal with employees. Yet, the payroll system might treat employees as those

being paid on a regular basis, whereas the benefits system might treat employees as those

receiving health benefits on a regular basis. Under some cases, the systems might happen to

work correctly and be mutually consistent. A manager may obtain information aggregated

from the two systems and meaningfully calculate, for instance, the average monthly expenses

per employee. But a real-world event might cause their inherent heterogeneity to lead to dif-

ferences in the behavior. Consider what happens when Anne, a paid employee with benefits,

retires. If the organization continues to pay benefits for its retirees for the first year of their

retirement, Anne would appear to be an employee in the benefits system but not in the payroll

system. The aggregated data would not quite be as meaningful any more.

Heterogeneity can cause complications for the functioning of a component, because it

means that less can be assumed about the other components. However, there is an excellent

reason why heterogeneity emerges and should be allowed to persist. To remove heterogeneity

would involve redesigning and reimplementing the various components. Even if the different

designers are willing to bear the associated costs, removing heterogeneity is difficult, because

doing so assumes that we can come up with a conceptually integrated design. However,

integration is not easy and is fragile. This means that the conceptually integrated system,

if one can be built, would tend to be unreliable. Most importantly, such a system would be

fragile: as the components evolve because of changing local requirements, we would have to



10 Computing with Services

keep reintegrating them.

Therefore, it is more pragmatic to let the components be heterogeneous, but to impose

various kinds of weak requirements on their interactions. After all, this is the reason why we

have standardized protocols, such as TCP/IP and HTTP.

1.3.3 Dynamism
An open environment can exhibit dynamism in two main respects. First, because of auton-

omy, its participants can behave arbitrarily. In particular, they can change their behavior

because of how they happen to be configured. Second, they may also join or leave an open

environment at whim. It is worth separating out this aspect as a reflection of the independence

of the system administrators. A large-scale open system would of necessity be designed so

as to accommodate the arrival, departure, temporary absence, modification, and substitution

of its components.

With regard to the first type of dynamism, individual components can change dynamically

in their behavior, architecture and implementation, and interactions. That is, there might be

changes in their externally observed behavior, how they achieve or produce their behavior,

and how they interact with other components.

1.3.4 Challenges
Open environments pose significant technical challenges. In particular, we must develop

approaches that can cope with the scale of the number of participants and respect the auton-

omy and accommodate the heterogeneity of the various participants, while maintaining coor-

dination. Specifically, because of the scale, we cannot count on knowing all the available

resources in terms of their functionality, reliability, trustworthiness, and so on. This means

that discovering the required resources, deciding how to use them, engaging them, and check-

ing their compliance are all significant challenges.

As a consequence of their autonomy and heterogeneity, the components must be treated

in a local manner. In other words, each component must locally decide how to proceed in its

interactions with others. This is in tension with assembling global information. Some level of

global information is essential for ensuring that the different parties are coordinated. Yet, the

presence of global information creates the possibilities of inconsistencies and causes potential

difficulty for maintenance. Whereas the components in an open environment may often have

some interdependencies in practice, they would have only a few such interdependencies if

they are designed in a correct manner that preserves the autonomy and heterogeneity of the

components.

An argument for preserving the autonomy and heterogeneity of the components is that it

forces us to design simple or narrow interaction protocols, thereby eliminating any unneces-

sary dependencies among the components.

An argument for dynamism is that, if assumed, it greatly simplifies the challenge of con-

figuring and administering a system. Moreover, it makes the system resilient to certain kinds

of failures and enables the exploitation of certain emerging opportunities. For example, if a



1.4 Services Introduced 11

component fails, a system that was designed with dynamism in mind would take the failure in

its stride: it could easily patch in a replacement component. Likewise, if a better component

than one being used becomes available or a better deal comes along, such a system could

switch components to better meet the overall business objectives.

Also, in practical settings, it is often appropriate to relax the constraints among the var-

ious components. Thus, global information is obtained or aggregated only when needed.

More importantly, it is often OK to let inconsistencies emerge provided they can be corrected

quickly enough (depending, of course, on the specific application at hand). The corrective

actions in many cases will have a global basis, but can be applied locally. For example, an e-

commerce transaction can complete correctly only if the goods are received by the purchaser

and the payment is received by the vendor. It would be nearly impossible to synchronize these

events perfectly, but it is possible to use a reliable payment mechanism, such as a credit card

and a reliable delivery service. If the vendor fails to ship because of an unexpected shortfall,

it can cancel the debit to the credit card. Section 5.4.2 considers a more detailed example. In

general, there are many good examples of relaxed constraints in the way people have done

business before the advent of computers. Some of these examples can be readily adapted for

online settings.

1.4 Services Introduced
Just like objects a generation ago, services is now the killer buzzword of our era. And wher-

ever you turn, some vendor or analyst is promoting services. They are like motherhood and

apple-pie in modern computing. But unlike motherhood, services mean different things to

different people. Web services have been defined as:

• A piece of business logic accessible via the Internet using open standards (Microsoft).

• Encapsulated, loosely coupled, contracted software functions, offered via standard pro-

tocols over the Web (DestiCorp).

• Loosely coupled software components that interact with one another dynamically via

standard Internet technologies (Gartner).

• A software application identified by a URI, whose interfaces and binding are capable of

being defined, described, and discovered by XML artifacts and supports direct interac-

tions with other software applications using XML-based messages via Internet-based

protocols (W3C).

Although our emphasis is on Web services, it is instructive to review how different commu-

nities conceive of services, reflecting their backgrounds and concerns.

• Networking: a service is characterized by bandwidth, availability, error rate, and simi-

lar properties.



12 Computing with Services

• Telecommunications: a service is considered to be either a specific telephony feature,

such as caller ID or call forwarding, or a basic connection service, such as narrowband

versus broadband (itself of a few varieties).

• Systems: a service is for billing, storage, and other key operational functions. These

functions are often parceled up into the so-called operation-support systems.

• Web applications: a service corresponds to Web pages, especially those with forms or

a programmatic interface thereto.

• Wireless: in wireless versions of the Web, a service includes messaging, as in the

popular short message service (SMS).

If there is agreement here, it is that a service is a capability that is provided and exploited,

often but not always remotely. Accordingly, our working definition of a Web service is that

it is functionality that can be engaged over the Web. Later sections explain the ramifications

of engagement fully, but the essence is that engagement goes beyond mere invocation of

services. However, the above answers provide a litmus test for judging what role one expects

a “service” to play in a distributed system.

1.5 Using Services

Services provide a programming metaphor that supports the right kinds of programming mod-

els for open, distributed systems. Service architectures are modular, because each service

inherently offers a certain provider–subscriber interface. This interface enables much flexi-

bility, for instance, by allowing proxy agents transparently to provide new services based on

old services and to compose services as appropriate. In general, composability is a power-

ful property for engineering software and more than sufficient justification for all the current

interest in services.

Although services must be invoked, their invocations will often be implicit. For example,

many of the networking and telecom services are not invoked as such; they are merely variants

of other, more basic services that are invoked. That is, you might invoke a packet delivery

service to send a series of packets over a network; with the same programming interface and

depending on what underlying service is provisioned, you might obtain different guarantees

as to the packet delivery in terms of, say, jitter. In telecom, the definition of a service is

of regulatory (and hence economic) interest. For example, looking up a phone number is a

standalone service, whereas call forwarding is a feature of telephony. To get a feel for these

distinctions, see the Federal Communications Commission’s ruling on reverse phone number

lookup [FCC, 1996]. Telecom might not be of direct interest to Web specialists, but similar

considerations and even regulations might begin to apply to Web services, either because they

involve telephony or because the increasing economic importance of Web services attracts the

attention of legislators.



1.6 The Evolving Web 13

1.6 The Evolving Web
The Web is, at first look, ubiquitous and so uniformly accessible that it is easy to begin

thinking of it as a single large system. Its single distinguishing purpose seems to be the

exchange of marked-up documents and its single distinguishing characteristic seems to be

the hyperlinks among those documents.

However, the Web truly is many things to many people. Although the Web’s many uses

have similarities, we would be best off understanding their main variants so we can program

accordingly. To this end, it is helpful to review a classification proposed by Bill Joy, former

Chief Scientist of Sun Microsystems. Joy’s classification consists of four main kinds of

“Web,” which he distinguishes based on the modalities of the interface as experienced by a

user [Joy, 2000]:

• Near Web: conventional mouse-keyboard-monitor interaction with a personal com-

puter, typically for purposes such as surfing the Web.

• Far Web: interaction with a computer from across a room as with a TV remote control,

typically for entertainment, such as listening to music or viewing a movie.

• Here Web: interaction with a mobile device, with narrow bandwidths for input and

output.

• Weird Web: interaction through emerging interface technologies, such as voice and

wearable computing.

Joy defined two additional webs where there are no direct user interactions. These are the

business-to-business (B2B) Web, dealing with the supply networks of business-to-business

electronic commerce, and the pervasive Web, dealing with device-to-device interactions.

It is helpful to place the characteristics of services over the Web into a historical perspec-

tive, as shown in Table 1.1.

Table 1.1: A historical view of services over the Web

Generation Scope Technology Example

First All Browser Any HTML page

Second Programmatic Screen

scraper

Systematically

generated HTML

content

Third Standardized Web

services

Formally described

service

Fourth Semantic Semantic

Web

services

Semantically described ser-

vice



14 Computing with Services

Systematically generated HTML content refers to data-driven Web sites that have a well-

defined visual structure. Commercial Web sites such as amazon.com are examples. These can

be automatically parsed, although the grammar through which they are parsed may be ad hoc
and difficult to maintain as the structure of the content is not explicit and reflects the visual

structure of a page. Formally described services are those that are described via current Web

services standards (as introduced in Chapter 2). In current practice, these are being released

with specialized toolkits by leading vendors. Exercises 1.1, 1.2, and 1.3 ask you to review

three of these toolkits. Semantically described services are those that go beyond current Web

services to explicitly encode the meanings of the services.

1.7 Standards Bodies
Since services involve serious work and interactions among the implementations and systems

of diverse entities, it is only natural that several technologies related to services would be

standardized. As in much of computer science, standardization in services often proceeds in

a de facto manner where a standard is established merely by fact of being adopted by a large

number of vendors and users. However, standards bodies play an important role. Sometimes

they take the lead in coming up with de jure standards. At other times, they clean up and

formalize emerging de facto standards, and lend some semblance of order to the marketplace.

The following are the most important standards bodies and initiatives for services. This

book will refer to their specific contributions numerous times.

IETF. The Internet Engineering Task Force is charged with the creation and dissemination

of standards dealing with Internet technologies. Besides the TCP/IP suite and URIs,

the IETF is also responsible for HTTP and other protocols of interest to services, such

as Session Initiation Protocol (SIP) and SMTP.

OMG. The Object Management Group has been developing standards for modeling, interop-

erating, and enacting distributed object systems. Its most popular standards include the

Unified Modeling Language (UML) and Common Object Request Broker Architecture

(CORBA). OMG has recently proposed the Model-Driven Architecture (MDA).

W3C. The World-Wide Web Consortium is an organization that promotes standards dealing

with Web technologies. The W3C has mostly emphasized the representational aspects

of the Web, deferring to other bodies for networking and other computational standards,

e.g., those involving transactions. The W3C’s main standards of interest for services

include XML, XML Schema, WSDL, SOAP, and WSCI.

OASIS. The Organization for the Advancement of Structured Information Standards stan-

dardizes a number of protocols and methodologies relevant to Web services, includ-

ing the Universal Business Language (UBL), UDDI, the Business Process Execution

Language for Web Services (BPEL4WS), and, in collaboration with UN/CEFACT,

ebXML.



1.8 Overview of this Book 15

UN/CEFACT. The United Nations Center for Trade Facilitation and Electronic Business

focuses on the facilitation of international transactions, through the simplification and

harmonization of procedures and information flows. Its mission is to improve the abil-

ity of business, trade, and administrative organizations, from developed and develop-

ing economies, to exchange products and services effectively, and so contribute to the

growth of global commerce. One of UN/CEFACT’s most important developments is

the specification for the Electronic Business eXtensible Mark-up Language (ebXML),

which is a framework for the global use of electronic business information.

WS-I. The Web Services Interoperability Organization is an open, industry organization

chartered to promote the interoperability of Web services across platforms, operating

systems, and programming languages. It creates and supports generic protocols for

the interoperable exchange of messages between services. Its primary contribution to

date is Basic Profile version 1.0 (BP 1.0). BP 1.0 is a consistent specification for basic

Web services comprising SOAP 1.1, HTTP 1.1, XML 1.0, XML Schema Parts 1 and

2, UDDI Version 2, and WSDL 1.1.

BPMI.org. The Business Process Management Initiative is working to standardize the man-

agement of business processes that span multiple applications, corporate departments,

and business partners. Microsoft based XLANG on the pi calculus, IBM used Petri

Nets for WSFL, and BPMI.org unified the two approaches with the Business Process

Modeling Language (BPML). In this regard, BPML 1.0 is similar to BPEL4WS.

WfMC. The Workflow Management Coalition develops standardized models for workflows

and workflow engines, as well as protocols for monitoring and controlling workflows.

FIPA. The Foundation for Intelligent Physical Agents promotes technologies and specifica-

tions that facilitate the end-to-end interoperation of intelligent agent systems for indus-

trial applications [FIPA]. FIPA’s standards include agent management technologies and

agent communication languages.

1.8 Overview of this Book
This book is organized according to two different, but complementary schemes. The first

organization scheme is based on the major levels of abstraction for service-oriented comput-

ing, ranging from raw messages to individual services to conversations to choreography to

sophisticated forms of orchestration supported by high-level contracts among teams of inter-

acting, autonomous participants. This scheme is depicted in Figure 1.1, which illustrates the

levels of abstraction, their relationships, and the aspects of Web services and service-oriented

computing being addressed. The second scheme tracks the development of Web services and

service-oriented computing from their heritage to their current incarnation, and where they

either are heading or ought to head. The general themes of this organization cover basic

connection, quality of service (QoS), and enterprise interoperation.



16 Computing with Services

There have been several major efforts to standardize services and service protocols, par-

ticularly for electronic business. One of these is electronic business XML (ebXML), which

has produced the rightmost stack shown in Figure 1.1. The leftmost stack is the result of

development efforts by the Semantic Web research community in conjunction with the W3C.

The central stack is primarily the result of standards efforts led by IBM, Microsoft, BEA, HP,

and Sun Microsystems. By and large, these have been separate from standards bodies, but

will be ratified eventually by one or more appropriate such bodies.

BPEL4WS
OWL-S Service

Model

ebXML
CPA

Process and workflow
orchestrations

QoS: Service
descriptions and bindings

Contracts and
agreements

XLANG

WSCL

WSDL
ebXML

CPP

ebXML
BPSS

XML, DTD, and XML Schema

HTTP, FTP, SMTP, SIP, etc.

SOAP
ebXML

messaging

OWL

UDDI
ebXML

Registries

WSCL
WSCI

WS-Coordination

WS-AtomicTransaction and WS-
BusinessActivity

OWL-S Service
Grounding

OWL-S Service
Profile

BTP

BPML

Discovery

Messaging

Transport

QoS: Conversations

QoS: Choreography

QoS: Transactions

Encoding

WS-Policy

WS-Security

WS-Reliable
Messaging

PSL

RDF

Figure 1.1: The relationship of the different proposed standards and methodologies for

automating electronic business

Each stack makes use of the following abstraction levels:

• The transport layer provides the fundamental protocols for communicating information

among the components in a distributed system of services.

• The eXtensible Markup Language, XML, is the foundation for interoperation among

enterprises and for the envisioned Semantic Web. Standards at this level describe the

grammars for syntactically well formed data and documents, and how the well formed-

ness can be validated.

• The messaging layer describes the formats using which documents and service invoca-

tions are communicated.

• The service descriptions and bindings layer describes the functionality of Web services

in terms of their implementations, interfaces, and results.

• A Conversation is an instance of a protocol of interactions among services, describing

the sequences of documents and invocations exchanged by an individual service.



1.9 Notes 17

• Choreography protocols coordinate collections of Web services into patterns that pro-

vide a desired outcome. Choreography is used across a domain of control to ensure

harmony and interoperability.

• Transaction protocols specify not only the behavioral commitments of the autonomous

components, but also the means to rectify the problems that arise when exceptions and

commitment failures occur.

• The orchestration layer has protocols for workflows and business processes, which are

composed out of more primitive services and components. They specify the control

flows and data flows needed for the processes to be executed correctly. Orchestration

implies a centralized control mechanism (e.g., the conductor in an orchestra), whereas

choreography does not (e.g., the dancers on a stage). Orchestration is typically used

within a domain of control.

• Contracts and agreements formalize commitments among autonomous components in

order to automate electronic business and provide outcomes that have legal force and

consequences.

• The discovery layer specifies the protocols and languages needed for services to adver-

tise their capabilities and for clients that need such capabilities to locate and use the

services.

1.9 Notes
XMethods provides a number of services for simple tasks such as currency conversion, and

so on.

Microsoft MapPoint (http://www.microsoft.com/mappoint/webservice/) is a Web service

for searching city maps (it is based on the old mapblast.com technology that was acquired by

Microsoft).

1.10 Exercises
1.1. Study the amazon.com Web service toolkit licensing and evaluate their offering (with

examples) in terms of the concepts of autonomy, heterogeneity, and dynamism. Next,

imagine what additional forms of autonomy, heterogeneity, and dynamism you might

experience from this toolkit, even if they are not explicitly documented.

1.2. Repeat Exercise 1.1 but for the Google Web service toolkit.

1.3. Repeat Exercise 1.1 but with respect to the Microsoft MapPoint Web service toolkit.

1.4. Which (zero or more) of the following techniques would preserve autonomy among

the participating components:



18 Computing with Services

• Message-passing via TCP/IP sockets between component A and component B?

• Remote procedure call (RPC) between component A and component B?

• Remote method invocation (such as Java RMI) between component A and com-

ponent B?

• Email using SMTP between component A and component B?

1.5. Using a Web programming approach such as Java Server Pages (JSP) or Active Server

Pages (ASP), build a Web page that lets a user search a local database. Consider the

bookstore domain, where information is stored about authors, titles, publishers, years

of publication, and prices. For simplicity, the database may be implemented as a flat

file. This exercise is a precursor to implementing a Web service, thus helping you to

learn the nuances of your local installation.



Chapter 2

Basic Standards for Web Services

Although Web services in the sense of current standards are only now emerging, the idea of

providing services over the Web is quite old. If we checked, most of us would probably find

that we have been providing and using Web services for years. For example, mail reflectors

and their associated mailing lists are services to which we can subscribe. There are even

on-line catalogs of the mailing lists and the particular topics to which they are devoted. The

primary difference between older service offerings and contemporary Web services is that

human intervention was previously required.

The modern view of services goes beyond the above, however, in terms of accommodating

the openness of Web systems. This means describing services in a standard manner, arranging

for them to be discovered in a standard manner, and invoking them, also in a standard manner.

The general architectural model for Web services is shown in Figure 2.1. It consists of three

types of participants:

1. Service providers, who create Web services and advertise them to potential users by

registering the Web services with service brokers.

2. Service brokers, who maintain a registry of advertised (published) services and might

introduce service providers to service requesters.

3. Service requesters, who search the registries of service brokers for suitable service

providers, and then contact a service provider to use its services.

The architecture for Web services is founded on principles and standards for connection,

communication, description, and discovery. For providers and requesters of services to be

connected and exchange information, there must be a common language. This is provided

by the eXtensible Markup Language (XML). A common protocol is required for systems to

communicate with each other, so that they can request services, such as to schedule appoint-

ments, order parts, and deliver information. The Simple Object Access Protocol (now known

just by its acronym, SOAP) [Box et al., 2000] currently provides the common communication

19



20 Basic Standards for Web Services

Service

Broker

Service

Provider

Service

Requestor

Bind

(Soap/HTTP)

Publish

(WSDL)

Find

(UDDI)

Figure 2.1: The general architectural model for Web services

protocol. The services must be described in a machine-readable form, where the names of

functions, their required parameters, and their results can be specified. This is provided by the

Web Services Description Language (WSDL), sometimes pronounced “whiz-dull.” Finally,

clients—users and businesses—need a way to find the services they need. This is provided

by Universal Description, Discovery, and Integration (UDDI), which specifies a registry or

“yellow pages” of services. Besides standards for XML, SOAP, WSDL, and UDDI, there

is a need for broad agreement on the semantics of specific domains. In fact, that is where

the deeper challenges lie. Chapter 6 introduces approaches for representing the semantics of

services.

This chapter next introduces the key elements of the three main standards for Web ser-

vices. Many of the details of these standards are of greatest interest to those implementing

tools, not those implementing applications and systems using the tools. That is, applica-

tion programmers will rarely need to operate at the level of the standards themselves. Just

as they do not commonly use HTTP (much less TCP/IP) directly but through programming

interfaces, they will use programming interfaces and tools that provide a layer of abstraction

above the standards. Still, it is useful to develop an understanding of the standards them-

selves.



2.1 XML 21

2.1 XML

The most fundamental of the above languages is XML. XML tags convey information about

the meaning of data, not just how the data should appear, as is the case for HTML. XML

regularizes the syntax of HTML, so that it is easier to parse and process. Either of these can

provide definitions of tag structures and syntaxes that could be industry-wide and standard,

or idiosyncratic and local. XML has the advantages in that, first, it can be extended for new

applications and, second, it supports both documents (unstructured data) and structured data

(e.g., from databases). Third, XML enables structure-sensitive queries, meaning that we can

query an XML document based on its structure and its values in specific places or fields.

Fourth, XML-tagged data can be mechanically validated.

XML provides a data format for documents and structured data, but does not specify the

semantics of the format. To share information and knowledge among different applications

(i.e., for interoperability), a shared set of terms describing the application domain with a

common understanding is needed. Chapter 8 introduces a formal language for describing the

application domain, which is also expressible in XML, but is conceptually at a higher level

than XML. Appendix A provides a further description of XML and some relevant techniques.

2.2 SOAP

SOAP was originally intended to provide networked computers with remote-procedure call

(RPC) services written in XML. It has since become a simple and lightweight protocol for

exchanging XML messages over the Web using HTTP, SMTP, and SIP—the Session Initia-

tion Protocol for Internet telephony and other peer-to-peer applications [Schulzrinne, 2004].

In practice, however, HTTP is the most common transport for SOAP and is the option that is

included in interoperability standards, such as BP 1.0. Chapter 3 returns to this point.

Customer Supplier

Submit PO

Ack PO

Submit ASN

Submit Invoice

Submit Payment

purchasing()

catalogService()

order()

invoke

invoke

catalog

confirmation#

Figure 2.2: A customer can order goods from a supplier directly by method invocation (left)

or indirectly by sending a purchase order message (right)



22 Basic Standards for Web Services

Figure 2.2 shows examples of SOAP interactions modeled as methods and as messages,

respectively. In these examples, a manufacturing company (say, Dell) might directly invoke a

supplier’s (say, Intel’s) catalog and order functions, or might send a purchase order message

to the supplier. When services are modeled as methods, then service composition is achieved

via scripts that invoke methods.

SOAP defines an envelope for transmitting messages and rules for representing remote-

procedure calls. Listing 2.1 shows an example SOAP message packaged in an HTTP POST.

HTTP POST is used rather than HTTP GET due to its ability to carry a payload. The message,

sent to www.socweather.com, requests that the Web service perform the GetTemp procedure

using “Honolulu” as the value of the City parameter and “now” as the value of the When
parameter. The SOAP response message carries the resultant temperature as the parameter

DegreesCelsius with a value of “30”.

Listing 2.1: A SOAP request
� �

POST / temp HTTP / 1 . 1

H o s t : www. s o c w e a t h e r . com

Conten t−Type: t e x t / xml ; c h a r s e t ="utf-8"

Conten t−L e n g t h : xxx

SOAPAction: "http://www.socweather.com/temp"

<!−− The above are HTTP header f i e l d s −−>
<?xml v e r s i o n ="1.0"?>
<e n v : E n v e l o p e

xmlns : env ="http://schemas.xmlsoap.org/soap/envelope/"

e n v : e n c o d i n g S t y l e =

"http://schemas.xmlsoap.org/soap/encoding/"/>
<env:Body>
<m:GetTemp

xmlns:m="http://www.socweather.com/temp.xsd">
<m:City>Honolu lu </ m:Ci ty>
<m:When>now</m:When>

</m:GetTemp>
</ env:Body>

</ env :Enve lope>
� �

Listing 2.2: A SOAP response corresponding to the request of Listing 2.1
� �

HTTP / 1 . 1 2 0 0 OK

Conten t−Type: t e x t / xml ; c h a r s e t ="utf-8"

Conten t−L e n g t h : xxx

SOAPAction: "http://www.socweather.com/temp"

<?xml v e r s i o n ="1.0"?>
<e n v : E n v e l o p e

xmlns : env ="http://schemas.xmlsoap.org/soap/envelope/"



2.2 SOAP 23

e n v : e n c o d i n g S t y l e =

"http://schemas.xmlsoap.org/soap/encoding/"/>
<env:Body>

<m:GetTempResponse

xmlns:m="http://www.socweather.com/temp.xsd">
<D e g r e e s C e l c i u s >30</ D e g r e e s C e l c i u s >

</m:GetTempResponse>
</ env:Body>

</ env :Enve lope>
� �

The SOAP body, i.e., for SOAP RPC (see Section 5.2.2), describes method calls and

responses. It must contain the target object’s URI, the method name, and the parameters

of the message. The parameters are specified in a struct that contains an accessor for each

parameter in the method’s invocation and an accessor for the return value. Note that the types

of the parameters are not specified—this is left for WSDL, which is described in Section 2.3.

The EncodingStyle attribute specifies rules for deserializing the SOAP message.

2.2.1 Processing

SOAP messages are assumed to be routed from one recipient to the next until they arrive

at the final recipient. Thus SOAP is understood in terms of three kinds of nodes: sender,

intermediary, or ultimate recipient. The SOAP model involves two main roles: next and

ultimateReceiver, and the trivial role none. The role of next is played by any intermediary and

by the final recipient; the role of ultimateReceiver may only be played by the final recipient.

No participant can play the role none. In effect, each participant must play the role of next,
unless someone sends a message and never wishes to receive a reply. Each of these roles

is defined via a URI to ensure its uniqueness. However, the semantics of the roles is not

formally expressed.

2.2.2 Body and Header

Each SOAP message must include a body, which is generally interpreted by the ultimateRe-
ceiver. However, an intermediate node may also interpret the body. Such behavior is consid-

ered to be against the spirit of the specification, although there is no way to ensure compli-

ance. The processing semantics is left to the application, meaning that it must be negotiated

through some out-of-band communication.

Both Listings 2.1 and 2.2 demonstrate simple SOAP messages. The main element of a

message is the envelope, whose contents are processed as appropriate by the application, i.e.,

the interpretation of the contents is not part of the SOAP specification.

As shown in Listings 2.1 and 2.2, an envelope contains a mandatory body. In addition,

a SOAP envelope may optionally contain a header. The header provides a control channel

for passing additional directives and information that would influence a recipient’s treatment

of the body. A SOAP message may travel from a sender to a receiver by passing different



24 Basic Standards for Web Services

endpoints along the message path. SOAP header blocks contain information that might be

intended for SOAP intermediate endpoints, as well as the ultimate endpoint. The SOAP actor

attribute is used to address a header element to a particular endpoint. A header partitions into

blocks, which have their own namespace and describe some logically and computationally

related aspect of the processing of the body. As for the body, the semantics of the header

blocks is left to the application.

Listing 2.3: Example SOAP header
� �

<!ENTITY SOAPENV

h t t p : / /www. w3 . org / 2 0 0 3 / 0 5 / soap−enve lope>
<env :Header>

<c : c o n v e r s e

x m l n s : c =’http://www.socweather.com/conversation.xsd’

e n v : r o l e =’&SOAPENV;/role/next’>
<c:msgID>

uuid :0123456789 −0123456789−0123456789

</ c:msgID>
</ c : c o n v e r s e >

</ env :Header>
� �

The intended role for processing a header block can be identified via the role attribute; by

default, it means that the ultimateReceiver should process the given block. A header block that

is marked with a true value for the mustUnderstand attribute means that any node processing

the message must process the given block or throw a fault. The header may incorporate

information for transaction management and authentication, without an a priori agreement

between the interacting parties.

2.2.3 Faults
Exceptions are inevitable in computations in open environments. To accommodate excep-

tions, SOAP supports an element known as fault. A SOAP body may include up to one fault
element. The fault element would have the subelements faultcode, faultstring, faultactor, and

detail. Of these, faultcode is most precisely defined in the standard. The following are the

legal values of fault code:

• Client. The fault claims that the client formulated its request incorrectly. The server

will not be able to entertain this request again and so the client should not repeat it.

• Server. The fault indicates that the server encountered internal problems. It may be

able to entertain the same request later, and the client is free to retry.

• VersionMismatch. The fault asserts a mismatch between the server and the request.

The request should use the soapenv namespace (as explained in Appendix C).

• MustUnderstand. The fault claims that a SOAP role failed to process a header that was

marked mustUnderstand for that role.



2.2 SOAP 25

2.2.4 Message Exchange
SOAP provides a means for communicating information (specified as XML) from a sender

to a receiver. Just a single transfer of information would rarely be adequate. Therefore, richer

message exchange patterns are essential. One simple and well-known pattern is the remote

procedure call (RPC). A SOAP RPC is based on the following information:

• the address of the target SOAP node, which will be ultimateReceiver;

• the name of the method to be invoked;

• the arguments and return value, if any;

• additional header blocks.

One way to achieve the effect of richer message exchanges in SOAP is to use a header

block to carry some sort of a conversation identifier possibly along with a message identifier.

These would give the application sufficient information to correlate different messages, i.e.,

to recognize them as part of the same conversation. Further, the message identifiers can be

used to encode other information such as a replyTo attribute.

SOAP intermediaries can be of two kinds. A forwarding intermediary can modify the

header blocks of a SOAP message and decide where to forward it. The modifications and

forwarding decision are made based on the contents of the given message as well as poten-

tially the ongoing message exchange pattern. An active intermediary that can process an

incoming SOAP message could act in a manner that need not be specified in the message.

Examples are policy actions such as encryption or adding a new header with a timestamp or

creating an audit trail. Thus SOAP intermediaries can be used to implement process flows.

Although the above approach seems quite powerful, it throws the burden of programming

the right decisions upon the application designers. Consequently, this approach is fraught

with risk from the standpoint of productivity and correctness. However, if tools were available

to generate the correct intermediaries, then the ability to retrofit or modify a process would

enable great flexibility.

2.2.5 Limitations
Like HTTP, SOAP is a character-based, rather than a binary protocol, making it easier to

secure, i.e., encrypt and decrypt. Programmers can easily examine and comprehend the con-

tents of SOAP messages and tools are easier to build. SOAP is also popular because, as a

consequence of its riding on established protocols such as HTTP, it readily works through

firewalls, and thus is able to form the basis for e-commerce over the Web. However, SOAP is

inefficient for many applications, because data are transmitted in character, not binary form.

Moreover, SOAP headers are large and in some cases the header size overshadows the pay-

load size.

Since the original work on SOAP predates the XML Schema standard, SOAP has ended

up with two syntaxes for representing the data. One is the so-called Section 5 Encoding,



26 Basic Standards for Web Services

described in the eponymous section of the SOAP 1.1 specification; the other is XML Schema.

The latter is the preferred approach.

In conceptual terms, SOAP is a stateless protocol. Although you can, of course, add

and interpret conversation identifiers to lend some statefulness to the interaction, each SOAP

message is unrelated to any other message. Hence, SOAP does not describe bidirectional

or multiparty interactions. One can use conversation identifiers at the application level to

build a conversation with an appropriate message pattern. However, this is not supported

by the protocol itself. Thus, SOAP implementations would provide no support for any such

enhanced message patterns and any standardization would have to be through a separate

process. Conversations relate to business protocols and are an important theme, however,

that are revisited in Chapter 13 and Chapter 18.

The SOAP specification is continuing to be revised. It does not yet describe bidirectional

or multiparty communication, which would be useful for composing Web services from mul-

tiple providers. Also, there is no way to transfer transaction semantics across a SOAP call.

At the present time, there is no standardized way to pass security credentials, although this

problem should be solved soon due to the work on security standards that is currently under-

way. SOAP is effective for simple interoperability between single clients and servers, but for

more complex interoperability among heterogeneous systems a message-queuing component

should be used by each participant to provide transaction and security support.

Exercises 2.11 and 2.12 ask you to propose enhancements to SOAP to address some of

the main shortcomings of its current incarnation.

2.3 WSDL
The architectural model for Web services presupposes that services can be found and used.

This in turn presupposes accurate descriptions of services. The Web Services Description

Language (WSDL) is an XML language for describing a programmatic interface to a Web

service [Christensen et al., 2001]. The description includes definitions of data types, input and

output message formats, the operations provided by the service (such as GetTemp), network

addresses, and protocol bindings. WSDL can best be understood in terms of an example, as

described via the code shown in Listing 2.4.

Listing 2.4: A WSDL example
� �

<?xml v e r s i o n ="1.0"?>
<!−− t h e r o o t e l emen t , w s d l : d e f i n i t i o n s , d e f i n e s a s e t o f −−>
<!−− r e l a t e d s e r v i c e s −−>
<w s d l : d e f i n i t i o n s name="Temperature"

t a r g e t N a m e s p a c e ="http://www.socweather.com/schema"

x m l n s : t s ="http://www.socweather.com/TempSvc.wsdl"

x m l n s : t s x s d ="http://schemas.socweather.com/TempSvc.xsd"

x m l n s : s o a p ="http://schemas.xmlsoap.org/wsdl/soap/"

x m l n s : w s d l ="http://schemas.xmlsoap.org/wsdl/">



2.3 WSDL 27

<!−− w s d l : t y p e s e n c a p s u l a t e s schema d e f i n i t i o n s o f −−>
<!−− communica t ion t y p e s ; h er e u s i n g xsd −−>
<w s d l : t y p e s >

<!−− a l l t y p e d e c l a r a t i o n s are e x p r e s s e d i n xsd −−>
<xsd : schema

t a r g e t N a m e s p a c e ="http://namespaces.socweather.com"

x m l n s : x s d ="http://www.w3.org/1999/XMLSchema">

<!−− xsd d e f : GetTemp [ C i t y s t r i n g , When s t r i n g ] −−>
<x s d : e l e m e n t name="GetTemp">
<xsd:complexType>
<x s d : s e q u e n c e >
<x s d : e l e m e n t name="City" t y p e ="string"/>
<x s d : e l e m e n t name="When" t y p e ="string"/>

</ x s d : s e q u e n c e >
</ xsd:complexType>

</ x s d : e l e m e n t >

<!−− xsd d e f : GetTempResponse [ D e g r e e s C e l s i u s i n t e g e r ] −−>
<x s d : e l e m e n t name="GetTempResponse">
<!−− XML Schema e n t r y as above −−>

</ x s d : e l e m e n t >

<!−− xsd d e f : GetTempFaul t [ er rorMessage s t r i n g ] −−>
<x s d : e l e m e n t name="GetTempFault">
<!−− XML Schema e n t r y as above −−>
</ x s d : e l e m e n t >

</ xsd :schema>
</ w s d l : t y p e s >

<!−− w s d l : m e s s a g e e l e m e n t s d e s c r i b e p o t e n t i a l t r a n s a c t i o n s −−>
<!−− Most messages , as here , have o n l y one p a r t . M u l t i p l e −−>
<!−− p a r t s p r o v i d e a way t o a g g r e g a t e complex messages −−>

<!−− r e q u e s t GetTempRequest i s o f t y p e GetTemp −−>
<w s d l : m e s s a g e name="GetTempRequest">
<w s d l : p a r t name="body" e l e m e n t ="tsxsd:GetTemp"/>

</ wsd l :message>

<!−− r e s p o n s e GetTempResponse i s o f t y p e GetTempResponse −−>
<w s d l : m e s s a g e name="GetTempResponse">

<w s d l : p a r t name="body" e l e m e n t ="tsxsd:GetTempResponse"/>
</ wsd l :message>

<!−− w s d l : p o r t T y p e d e s c r i b e s messages i n an o p e r a t i o n −−>



28 Basic Standards for Web Services

<w s d l : p o r t T y p e name="GetTempPortType">

<!−− w s d l : o p e r a t i o n d e s c r i b e s t h e e n t i r e p r o t o c o l from −−>
<!−− i n p u t t o o u t p u t or f a u l t −−>

<w s d l : o p e r a t i o n name="GetTemp">
<!−− The o r d e r i n p u t p r e c e d i n g o u t p u t i n d i c a t e s t h e −−>
<!−− r e q u e s t−r e s p o n s e o p e r a t i o n t y p e −−>

<w s d l : i n p u t message="ts:GetTempRequest"/>
<w s d l : o u t p u t message="ts:GetTempResponse"/>
<w s d l : f a u l t message="ts:GetTempFault"/>

</ w s d l : o p e r a t i o n >
</ w s d l : p o r t T y p e >

<!−− w s d l : b i n d i n g s p e c i f i e s a s e r i a l i z a t i o n p r o t o c o l −−>
<w s d l : b i n d i n g name="TempSvcSoapBinding"

t y p e ="ts:GetTempPortType">

<!−− l e v e r a g e o f f s o a p : b i n d i n g document s t y l e −−>
<s o a p : b i n d i n g s t y l e ="document"

t r a n s p o r t ="http://schemas.xmlsoap.org/soap/http"/>

<!−− semi−opaque c o n t a i n e r o f ne twork t r a n s p o r t d e t a i l s −−>
<!−− c l a s s e d by s o a p : b i n d i n g above @@@ −−>

<w s d l : o p e r a t i o n name="GetTemp">
<s o a p : o p e r a t i o n

s o a p A c t i o n ="http://www.socweather.com/TempSvc"/>
<!−− f u r t h e r s p e c i f y t h a t t h e messages i n t h e −−>
<!−− w s d l : o p e r a t i o n "GetTemp" use SOAP ? @@@ −−>

<w s d l : i n p u t >
<s o a p : b o d y use ="literal"

namespace="http://schemas.socweather.com/TempSvc.xsd"/>
</ w s d l : i n p u t >

<!−− As above f o r w s d l : o u t p u t and w s d l : f a u l t −−>

</ w s d l : o p e r a t i o n >
</ w s d l : b i n d i n g >

<!−− w s d l : s e r v i c e names a new s e r v i c e "TemperatureService" −−>
<w s d l : s e r v i c e name="TemperatureService">
<w s d l : d o c u m e n t a t i o n >s o c w e a t h e r . com t e m p e r a t u r e s e r v i c e

</ w s d l : d o c u m e n t a t i o n >

<!−− c o n n e c t i t t o t h e b i n d i n g "TempSvcSoapBinding" above −−>
<w s d l : p o r t name="GetTempPort" b i n d i n g ="ts:TempSvcSoapBinding">



2.3 WSDL 29

<!−− g i v e t h e b i n d i n g a ne twork a d d r e s s −−>
<s o a p : a d d r e s s l o c a t i o n ="http://www.socweather.com/TempSvc"/>

</ w s d l : p o r t >
</ w s d l : s e r v i c e >

</ w s d l : d e f i n i t i o n s >
� �

WSDL specifies the name of the service, such as GetTemp, the types of the input param-

eters, such as (String, String), the types of the output parameters, such as (Integer), the struc-

tures for the inputs and outputs in terms of XML Schema definitions (from the xsd names-

pace), the operations provided by the service, such as GetTemp, the protocol sequence of

each operation from inputs to either outputs or faults, a serialization protocol to be followed

for communication, such as SOAP, and the network address where the service can be found,

in the form of a URL.

2.3.1 Concepts
Operation. Like a method in an imperative programming language, an atom of functionality.

Message. A representation of typed data that is input to or output from an operation. WSDL

defines three kinds of messages: IN, OUT, and INOUT. The first two are obvious; INOUT

messages describe data that can function both as input and as output.

Type. A data type as defined using XML Schema (introduced in Appendix A). SOAP Sec-
tion 5 Encoding can also be used if desired. The data types can be mapped to and from

the types of conventional programming languages.

Port Type. Like a Java interface, a collection of operations.

Binding. Associates a port type to a protocol and data format. An example is binding to

SOAP and further identifying its style (“RPC” or “document”), encoding (“encoded”

meaning SOAP Section 5 or “literal” meaning XML Schema), and transport (e.g.,

HTTP). An alternative binding is to use HTTP with a verb of GET or POST. This

binding does not involve SOAP.

Port. An endpoint where operations reside: defined by a network address and binding.

Service. A collection of ports.

2.3.2 Operation Types
WSDL introduces four operation types, which characterize the behavior of an endpoint. That

is, they are defined from the perspective of the ultimate implementation of the Web service.

• One-way. Receive a message.

• Notification. Send a message.



30 Basic Standards for Web Services

• Request-response. Receive a request and emit a correlated response.

• Solicit-response. Emit a request and receive a correlated response.

The paired operation types could be based on the unidirectional types, but they are kept

because they identify important design patterns. For example, being the server in RPC cor-

responds to request–response and being the client in RPC corresponds to solicit–response.

These operation types, thus, anticipate SOAP’s message exchange patterns. Of the above

types, one-way and request–response are the only ones that are commonly employed. These

are readily supported by HTTP and by common object-oriented programming approaches.

WSDL 2.0 offers a richer set of primitives than the above. These primitives include

receiving or sending multiple responses to a single query. The details are not of great sig-

nificance to the overall goals of this chapter. Richer message patterns are discussed in the

context of conversation modeling later.

2.3.3 Creating WSDL Models
It helps to separate out a WSDL specification into two main components: the interface and the

implementation. Splitting the WSDL specification in this manner improves modularity and

separates the service interface, which is reusable, and may have multiple implementations.

The WSDL interface is the more abstract component. It describes a service by flesh-

ing out the definition element in terms of the types, import, message, portType, and binding
subelements. An interface may import other interfaces.

The WSDL service implementation considers the specifics of binding a service. Its defini-
tion element must include an import element to import at least one WSDL interface document

and includes a service element, which includes port elements. The import element specifies

an identifier for the namespace being imported as well as its location.

2.4 Directory Services
The purpose of a directory service is for components and participants to be able to locate

each other, where the components and participants might be applications, agents, Web service

providers, Web service requesters, people, objects, and procedures. Directories collect and

organize location and description information and make it available to any clients that might

need it. Directories also function as the primary supporting mechanism for dynamism, as

defined in Section 1.3, because they are the repository for information about changes that

have occurred to their entries.

There are two general types of directories, determined by how entries are located in the

directory: (1) name servers or “white pages,” where entries are found by their name, and (2)

“yellow pages,” where entries are found by their characteristics and capabilities.

The implementation of a basic directory is a simple database-like mechanism that allows

participants to insert descriptions of the services they offer and query for services offered

by other participants. A more advanced directory might be more active than others, in that



2.5 UDDI 31

it might provide not only a search service, but also a brokering or facilitating service. For

example, a participant might request a brokerage service to recruit one or more agents who

can answer a query. The brokerage service would use knowledge about the requirements and

capabilities of registered service providers to determine the appropriate providers to which

a query could be forwarded. It would then send the query to those providers, relay their

answers back to the original requester, and learn about the properties of the responses it

passes on (e.g., the brokerage service might determine that advertised results from provider

X are incomplete, and so seek out a substitute for provider X).

Two major standards for directories are emerging: ebXML registries and UDDI registries.

Unfortunately, neither supports semantic descriptions, and thus neither supports semantic

searching on functionality. Searches, as a result, can only be based on keywords, such as a

service’s name, provider, location, or business category. ebXML registries have an advantage

over UDDI registries in that they allow SQL-based queries on keywords. As described in the

next section, UDDI provides white-pages, yellow-pages, and green-pages services.

2.5 UDDI
The Universal Description, Discovery, and Integration (UDDI) specification [UDDI, 2000]

describes a mechanism for registering and locating Web services. It defines an online registry

where organizations, i.e., service providers, can describe their organization and register their

Web services. The registry can then be used by service requesters and users to locate the

services they need. For our purposes, UDDI makes it possible for providers to relate their

services to each other and for a requester to discover services, a prerequisite for composing

them.

2.5.1 Conceptual Model
UDDI white pages consist of the following information fields:

• Business name.

• Text description: a list of multilanguage text strings.

• Contact information: names, phone numbers, fax numbers, and Web sites.

• Identifiers that a business may be known by, such as D-U-N-S (also known as the

“DUNS number”) and Thomas Register.

The yellow pages consist of business categories organized as the following three major

taxonomies:

• Industry: North American Industry Classification System (NAICS), a six-digit code

maintained by the US Government for classifying companies.



32 Basic Standards for Web Services

• Products and services: Ecma International (for classifying information and communi-

cation technology systems) and United Nations Standard Products and Services Code

(UNSPSC).

• Geographical location: ISO 3166 for country and region codes.

The yellow pages are implemented as name–value pairs to allow any valid taxonomy iden-

tifier to be attached to the white page for a business. Searches of a yellow pages can be

performed to locate businesses that service a particular industry or product category, or are

located in a particular geographic region.

The green pages consist of the information businesses use to describe how other busi-

nesses can conduct electronic commerce with them. Green-page information is a nested

model comprising business processes, service descriptions, and binding information. The

information is neutral as to language, platform, and implementation. The services can also

be categorized.

UDDI is itself a Web service that is based on XML and SOAP. For example, a busi-

ness registration is an XML document. A client uses a set of predefined SOAP interfaces

to search the registry for a desired Web service. Providers use SOAP interfaces to register

two types of information: (1) technical models (tModel), which are abstract service protocols

that describe an individual Web service’s behavior, and (2) business entities (businessEntity),

which describe a service implementation and provide descriptions of the specifications of

multiple tModels. Note that each distinct specification, transport, protocol, or namespace is

represented by a tModel. However, a UDDI registry does not actually store the specification

and such details. A UDDI tModel simply contains the addresses (URLs) where those tech-

nical documents can be found, metadata about the documents, and a key that identifies that

tModel.

Figure 2.3 shows the yellow, white, and green pages for a business. A businessEntity is

the top-level structure for all of the information related to a business. This is shown more

formally in Figure 2.4. The core components of a UDDI businessEntity and the relationships

among them are shown in Figure 2.5.

For our purposes, we will be interested mostly in registering Web services, so we will

want to map WSDL descriptions of Web services to UDDI service descriptions. Figure 2.6

shows the correspondence between the fields of a WSDL description and the fields of a UDDI

businessService.

2.5.2 UDDI APIs
UDDI specifies two APIs for programmatic access to a UDDI registry: the Inquiry API for

retrieving information from a registry and the Publish API for storing information there. The

Publish API requires authenticated access—which is particular to a registry and not specified

by UDDI—but the Inquiry API does not. The APIs currently support 28 SOAP messages,

the most important of which are the following:

• Inquiry API



2.5 UDDI 33

-businessKey : string(idl)

-name : string(idl)

-description : string(idl)

-URL : string(idl)

-contacts : contact

-businessServices : businessService

-identifierBag : keyedReference

-categoryBag : keyedReference

businessEntity

1

*

-tModelKey : string(idl)

-keyName : string(idl)

-keyValue : string(idl)

keyedReference

-serviceKey : string(idl)

-tModelKey : string(idl)

-name : string(idl)

-description : string(idl)

-bindingTemplates

businessService

-phone : string(idl)

-address : string(idl)

contact

Yellow pages

Green pages

White pages

Figure 2.3: The yellow, green, and white pages representing a business entity in a UDDI

registry

– Finding a business or its service and their characteristics

∗ find business, returns 〈businessList〉
∗ find service, returns 〈serviceList〉
∗ find binding, returns 〈bindingDetail〉
∗ find tModel, returns 〈tModelList〉

– Retrieving the details needed to interact with a business

∗ get businessDetail, returns 〈businessDetail〉
∗ get serviceDetail, returns 〈serviceDetail〉
∗ get bindingDetail, returns 〈bindingDetail〉
∗ get tModelDetail, returns 〈tModelDetail〉

• Publishing API

– Saving information about a business or its services

∗ save business, returns 〈businessDetail〉
∗ save service, returns 〈serviceDetail〉
∗ save binding, returns 〈bindingDetail〉
∗ save tModel, returns 〈tModelDetail〉

– Delete things

∗ delete business, returns 〈dispositionReport〉



34 Basic Standards for Web Services

-businessKey

-name

-description

-businessServices

-categoryBag

-identifierBag

businessEntity

-serviceKey

-businessKey

-name
-description

-bindingTemplates

-categoryBag

businessService

-bindingKey

-serviceKey

-description

-accessPoint

bindingTemplate

-name

-description

-overviewDoc

-categoryBag

-identifierBag

tModel

identifierBag

categoryBag

-keyName

-keyValue

keyedReference

-description

-overviewDoc

tModelInstanceInfo

Figure 2.4: The UML information model for a business entity in a UDDI registry

∗ delete service, returns 〈dispositionReport〉
∗ delete binding, returns 〈dispositionReport〉
∗ delete tModel, returns 〈dispositionReport〉

– Security

∗ get authToken, returns 〈authToken〉
∗ discard authToken, returns 〈dispositionReport〉

2.5.2.1 Registering and Publishing a Service

Now that we understand the basic components of a UDDI entry, let’s look at an example

registration from WeatherService, Inc. and how its service for reporting current temperatures

might be discovered and then used by a client. WeatherService, Inc. would first exchange

two SOAP messages with a UDDI registry (possibly the registry maintained by IBM at

https://uddi.ibm.com/ubr). The first SOAP message would invoke the operation get authToken
to establish authentication. The second, shown in Listing 2.5, would register WeatherService,

Inc. as a business entity.



2.5 UDDI 35

businessEntity: Information about the

party who publishes information about

a service

businessService: Descriptive

information about a particular family of

technical services

bindingTemplate: Technical

information about a service entry point

and implementation specs

tModel: Descriptions of specifications

for services or value sets. Basis for

technical fingerprints

businessEntities contain

businessServices

businessServices contain

bindingTemplates

bindingTemplates contain references

to tModels. These references

designate the interface specifications

for a service

Figure 2.5: The core data structures and the relationships among them for a UDDI business

entity

Listing 2.5: SOAP body of an example UDDI registration of a business entity
� �

POST / HTTP / 1 . 1

H o s t : www. s o c w e a t h e r . com

Conten t−Type: t e x t / xml ; c h a r s e t ="utf-8"

Conten t−L e n g t h : nnnn

SOAPAction: ""

<?xml v e r s i o n ="1.0" e n c o d i n g ="UTF-8" ?>
<e n v : E n v e l o p e x m lns : env ="http://schemas.xmlsoap.org/soap/envelope/">
<env:Body>
<s a v e b u s i n e s s xmlns="urn:uddi-org:api_v3">
<b u s i n e s s D e t a i l t r u n c a t e d ="false">
<b u s i n e s s E n t i t y b u s i n e s s K e y ="...K1...">
<discoveryURLs>
<discoveryURL useType="homepage">

h t t p : / /www. s o c w e a t h e r . com / W e a t h e r S e r v i c e . h tml

</ discoveryURL>



36 Basic Standards for Web Services

</ d iscoveryURLs>
<name xml: lang ="en">W e a t h e r S e r v i c e I n c . </name>
<d e s c r i p t i o n xml: lang ="en">P r o v i d e r o f t e m p e r a t u r e s e r v i c e s

</ d e s c r i p t i o n >
<c o n t a c t s >
<c o n t a c t >
<d e s c r i p t i o n xml: lang ="en">P r e s i d e n t </ d e s c r i p t i o n >
<personName>Hot N . Cold </personName>
<phone useType="Voice">803−555−1234</phone>

</ c o n t a c t >
</ c o n t a c t s >
< i d e n t i f i e r B a g >
<k e y e d R e f e r e n c e

tModelKey="uddi:uddi.org:ubr:identifier:dnb.com:d-u-n-s"

keyName="DUNS: WS Inc." keyValue ="12-123-1234"/>
</ i d e n t i f i e r B a g >
<ca tegoryBag>

<!−− NAICS C l a s s i f i c a t i o n −−>
<k e y e d R e f e r e n c e tModelKey="uuid:K6"

keyName="Meterological services" keyValue ="541990"/>
<!−− ISO 3 1 6 6 Geographic Taxonomy −−>
<k e y e d R e f e r e n c e tModelKey="uuid:K7"

keyName="North Carolina, USA" keyValue ="US-NC"/>
</ ca t egoryBag>
<b u s i n e s s S e r v i c e s >
<b u s i n e s s S e r v i c e s e r v i c e K e y ="...K2..." b u s i n e s s K e y ="...K1...">
<name xml: lang ="en">Tempera tu r e S e r v i c e </name>
<d e s c r i p t i o n xml: lang ="en">

Given a t i me and c i t y , i t r e t u r n s a t e m p e r a t u r e

</ d e s c r i p t i o n >
<b i n d i n g T e m p l a t e s >
<b i n d i n g T e m p l a t e b ind ingKey ="...K3..." s e r v i c e K e y ="...K2...">
<d e s c r i p t i o n xml: lang ="en">

Th i s s e r v i c e u s e s a SOAP / RPC encoded e n d p o i n t

</ d e s c r i p t i o n >
<a c c e s s P o i n t URLType="http">

h t t p : / /www. s o c w e a t h e r . com / TempSvc

</ a c c e s s P o i n t >
< t M o d e l I n s t a n c e D e t a i l s >
< t M o d e l I n s t a n c e I n f o tModelKey="uuid:...K4..."/>

</ t M o d e l I n s t a n c e D e t a i l s >
</ b i n d i n g T e m p l a t e >

</ b i n d i n g T e m p l a t e s >
</ b u s i n e s s S e r v i c e >

</ b u s i n e s s S e r v i c e s >
</ b u s i n e s s E n t i t y >



2.5 UDDI 37

</ b u s i n e s s D e t a i l >
<t M o d e l D e t a i l t r u n c a t e d ="false">
<tModel tModelKey="uuid:...K4...">
<name>TempSvc S p e c i f i c a t i o n </name>
<d e s c r i p t i o n xml: lang ="en">tModel f o r s e r v i c e i n t e r f a c e d e f i n i t i o n

</ d e s c r i p t i o n >
<overviewDoc>
<overviewURL>h t t p : / /www. s o c w e a t h e r . com / TempSvc . wsdl

</overviewURL>
</ overviewDoc>
<ca tegoryBag>
<k e y e d R e f e r e n c e tModelKey="uuid:...K6...."

keyName="uddi-org:types" keyValue ="wsdlSpec"/>
</ ca t egoryBag>

</ tModel>
</ t M o d e l D e t a i l >

</ s a v e b u s i n e s s >
</ env:Body>
</ env :Enve lope>

� �

<import>

<port>

<port>

BusinessEntity

BusinessService

BindingTemplate

BindingTemplate

Service Implementation

UDDI

<service>

Service Interface

<types>

<message>

<portType>

<binding>

tModel

WSDL

Figure 2.6: Correspondences between a WSDL document and a UDDI registration document



38 Basic Standards for Web Services

Let’s consider some of the fields in this registration for WeatherService, Inc. First, we

are sending to the registry the command save business, whose attribute specifies that we

are using version 3 of UDDI. A save business message contains a businessDetail and any

number of tModels. The businessDetail states where we can find the homepage for Weath-

erService, Inc., how we could call its president, what its D-U-N-S number is, and how Weath-

erService, Inc. is classified according to NAICS and ISO 3166 (that is, what sort of business

it is and where it is located).

Continuing with our description of the registration, only one of the services provided by

WeatherService, Inc. is listed: TemperatureService. Its details are given in a bindingTemplate
that has two essential parts: (1) the precise URL where the service can be accessed and (2)

the tModel that provides the access information. The tModel in this case has an identification

key pointing to the tModel that is given as part of the registration, but the tModel might have

been provided in a separate message to the registry or might even be part of another business’s

registration. tModels in this regard are like global user-definable and reusable data types.

The tModel in our registration message specifies that our TempSvc is defined in WSDL

and provides a pointer to the appropriate WSDL document.

Next, WeatherService, Inc. sends three SOAP messages to the UDDI registry to register

the following three tModels describing the behavior of its temperature services. The behavior

is described in terms of the portType for the service and its protocol bindings. The overview-
Doc element in the first two messages (Listings 2.6 and 2.7) contains an overviewURL ele-

ment, which contains the URI for the WSDL interface of the service being published. These

listings describe the registration of tModels that can be used as part of other services, not

just the ones for WeatherService, Inc. Note again that the registry does not store the WSDL

document, just a pointer to it.

Listing 2.6: The first of three tModels for WeatherService, Inc. specifying its port information
� �

<s a v e t M o d e l xmlns="urn:uddi-org:api_v3">
<tModel tModelKey="uuid:...KA..." >
<name>GetTempPortType </name>
<overviewDoc>
<overviewURL>h t t p : / /www. s o c w e a t h e r . com / TempSvc . wsdl </overviewURL>

</ overviewDoc>
<ca tegoryBag>
<k e y e d R e f e r e n c e tModelKey="uuid:...KB..."

keyName="portType namespace"

keyValue ="http://www.socweather.com/TempSvc"/>
<k e y e d R e f e r e n c e tModelKey="uuid:...KC..."

keyName="WSDL type" keyValue ="portType"/>
</ ca t egoryBag>

</ tModel>
</ s ave tMode l>

� �

Listing 2.7: The second of three tModels for WeatherService, Inc. specifying its protocol bindings



2.5 UDDI 39

� �

<s a v e t M o d e l xmlns="urn:uddi-org:api_v3">
<tModel tModelKey="uuid:...KD...">
<name>TempSvcSoapBinding </name>
<overviewDoc>
<overviewURL>h t t p : / /www. s o c w e a t h e r . com / TempSvc . wsdl </overviewURL>

</ overviewDoc>
<ca tegoryBag>
<k e y e d R e f e r e n c e tModelKey="uuid:...KE..."

keyName="binding namespace"

keyValue ="http://www.socweather.com/TempSvc"/>
<k e y e d R e f e r e n c e tModelKey="uuid:...KF..."

keyName="WSDL type" keyValue ="binding"/>
<k e y e d R e f e r e n c e tModelKey="uuid:...KG..."

keyName="portType reference" keyValue ="uuid:...KH..."/>
<k e y e d R e f e r e n c e tModelKey="uuid:...KI..."

keyName="SOAP protocol" keyValue ="uuid:...KJ..."/>
<k e y e d R e f e r e n c e tModelKey="uuid:...KK..."

keyName="HTTP transport" keyValue ="uuid:...KL..."/>
<k e y e d R e f e r e n c e tModelKey="uuid:...KM..."

keyName="uddi-org:types" keyValue ="wsdlSpec"/>
</ ca t egoryBag>

</ tModel>
</ s ave tMode l>

� �

Listing 2.8 is an additional description of WeatherService, Inc.’s businessService, con-

taining further details about the port for the Temperature Service.

Listing 2.8: The third of three tModels for WeatherService, Inc. updating the service it provides
� �

<s a v e s e r v i c e xmlns="urn:uddi-org:api_v3">
<b u s i n e s s S e r v i c e s e r v i c e K e y ="...K2..." b u s i n e s s K e y ="...K1...">
<name>Tempera tu r e S e r v i c e </name>
<b i n d i n g T e m p l a t e s >
<b i n d i n g T e m p l a t e b ind ingKey ="...KP..." s e r v i c e K e y ="...KN...">
<a c c e s s P o i n t URLType="http"> h t t p : / /www. s o c w e a t h e r . com / TempSvc

</ a c c e s s P o i n t >
< t M o d e l I n s t a n c e D e t a i l s >
< t M o d e l I n s t a n c e I n f o tModelKey="uuid:...KQ...">
<d e s c r i p t i o n xml: lang ="en">The w s d l : b i n d i n g t h e w s d l : p o r t

imp lemen t s ; i n s t a n c e P a r m s s p e c i f i e s t h e p o r t l o c a l name .

</ d e s c r i p t i o n >
< i n s t a n c e D e t a i l s >
<i n s t a n c e P a r m s >GetTempPort </ i n s t a n c e P a r m s >

</ i n s t a n c e D e t a i l s >
</ t M o d e l I n s t a n c e I n f o >
< t M o d e l I n s t a n c e I n f o tModelKey="uuid:...KR...">



40 Basic Standards for Web Services

<d e s c r i p t i o n xml: lang ="en">
The w s d l : p o r t T y p e t h a t t h i s w s d l : p o r t imp lemen t s .

</ d e s c r i p t i o n >
</ t M o d e l I n s t a n c e I n f o >

</ t M o d e l I n s t a n c e D e t a i l s >
</ b i n d i n g T e m p l a t e >

</ b i n d i n g T e m p l a t e s >
<ca tegoryBag>
<k e y e d R e f e r e n c e tModelKey="uuid:...KS..."

keyName="WSDL type" keyValue ="service"/>
<k e y e d R e f e r e n c e tModelKey="uuid:...KT..."

keyName="service namespace"

keyValue ="http://www.socweather.com"/>
<k e y e d R e f e r e n c e tModelKey="uuid:...KU..."

keyName="service local name" keyValue ="TemperatureService"/>
</ ca t egoryBag>

</ b u s i n e s s S e r v i c e >
</ s a v e s e r v i c e >

� �

As can be seen from the above examples, UDDI entries are XML documents that complement

WSDL by specifying the ports, interfaces, and protocol bindings of a service. Also note that

UDDI is open to the registration of any type of service, not just WSDL-based Web services.

2.5.2.2 Finding a Service

Once it is registered, the services of WeatherService, Inc. could be found by a client appli-

cation by sending the XML document in Listing 2.9 to the registry as the content of a SOAP

message. Note that inquiries do not have to be authenticated.

Listing 2.9: An example inquiry from a client to locate the information about WeatherService, Inc. that

is stored at a UDDI registry
� �

<?xml v e r s i o n ="1.0" e n c o d i n g ="UTF-8"?>
< f i n d b u s i n e s s xmlns="urn:uddi-org:api_v3">

< f i n d Q u a l i f i e r s >
< f i n d Q u a l i f i e r >u d d i : u d d i . o r g : f i n d q u a l i f i e r : e x a c t m a t c h

</ f i n d Q u a l i f i e r >
</ f i n d Q u a l i f i e r s >
<!−− f i n d i n f o abou t a l l b u s i n e s s e s named "WeatherService Inc." −−>
<name>W e a t h e r S e r v i c e I n c . </name>

</ f i n d b u s i n e s s >
� �

The resultant information returned about WeatherService, Inc. is shown in Listing 2.10.

The important part of this listing is the businessKey and the serviceKey, which can be used

in subsequent inquiries to find additional information about the service.



2.5 UDDI 41

Listing 2.10: The result of an inquiry to locate information about WeatherService, Inc.
� �

<?xml v e r s i o n ="1.0" e n c o d i n g ="UTF-8"?>
<b u s i n e s s L i s t >

<b u s i n e s s I n f o s >
<b u s i n e s s I n f o b u s i n e s s K e y ="...KO...">

<name>W e a t h e r S e r v i c e , I n c . </name>
<s e r v i c e I n f o s >

<s e r v i c e I n f o s e r v i c e K e y ="...KN..." b u s i n e s s K e y ="...K1...">
<name>Tempera tu r e S e r v i c e </name>

</ s e r v i c e I n f o >
</ s e r v i c e I n f o s >

</ b u s i n e s s I n f o >
</ b u s i n e s s I n f o s >

</ b u s i n e s s L i s t >
� �

As another example to show some of the flexibility allowed in accessing a UDDI registry,

a client could send the following find business inquiry to a registry to find all businesses

classified using the D-U-N-S number system (the “%” entry for keyValue in this example is

a “wildcard” indicating a match with any string):

Listing 2.11: An example UDDI inquiry to locate businesses identified by a D-U-N-S number
� �

<?xml v e r s i o n ="1.0" e n c o d i n g ="UTF-8"?>
< f i n d b u s i n e s s xmlns="urn:uddi-org:api_v3"

x m l n s : x s i ="http://www.w3.org/2001/XMLSchema-instance">
< f i n d Q u a l i f i e r s >

< f i n d Q u a l i f i e r >u d d i : u d d i . o r g : f i n d q u a l i f i e r : a p p r o x i m a t e m a t c h

</ f i n d Q u a l i f i e r >
</ f i n d Q u a l i f i e r s >
<!−− f i n d a l l b u s i n e s s e s c l a s s i f i e d by D−U−N−S −−>
< i d e n t i f i e r B a g >

<k e y e d R e f e r e n c e keyValue="%"

tModelKey="uddi:uddi.org:ubr:identifier:dnb.com:d-u-n-s"/>
</ i d e n t i f i e r B a g >

</ f i n d b u s i n e s s >
� �

Because UDDI’s Inquiry API allows substring matching on a name or a keyValue, and

because businesses can register several different keyValues as part of a categoryBag structure

using the Publish API, a UDDI registry supports relatively flexible and powerful syntactic

searching. There are efforts underway to provide semantic searching for UDDI, such as by

associating an RDF or OWL taxonomy (as introduced in Chapters 6 and 8) with a registry.

Then, a search based on a keyValue of “AutomobileRepair” would return businesses that spe-

cialized in, and were registered as “SportsCarRepair” (assuming, of course, that “SportsCar-

Repair” is a specialization of “AutomobileRepair”).



42 Basic Standards for Web Services

2.6 Notes
The subject of this book is the development of open information systems. It therefore deals

with abstractions for applying services. Consequently, our emphasis is on studying the asso-

ciated standards from the perspective of how they can be used, rather than how they can

be implemented over the infrastructure. This is, in particular, the case with SOAP, whose

implementation involves considerations of encoding and of the functioning of the underlying

protocols. SOAP supports MIME attachments, which enables SOAP to be used for exchang-

ing binary data of arbitrary form. Similarly, implementing UDDI involves considerations of

databases and directory services, which are outside the scope of this book.

ISO 11179 is a standard for registering data elements.

2.7 Exercises
2.1. Providing the temperature using the World Wide Web is a service. What is the essential

difference between a Web site such as www.weather.com where one can type in a zip

code and find out the temperature at that location, and a GetTemperature Web service

such as discussed in this chapter?

2.2. The “Object” in SOAP refers to which one of the following?

• Nothing

• The communication object

• The objects instantiated by both ends of the conversation

• The object to be accessed at the server, for which the client receives a reference

• The delivery object

2.3. Which one of the following would be the value of the actor attribute in a SOAP mes-

sage?

• A role

• An agent name

• A URI to a WSDL file

• The URI of an agent’s SOAP binding

• An unconstrained xsd:string

2.4. SOAP handles exceptions via which one of the following?

• The fault element

• The exception element

• The throws element



2.7 Exercises 43

• Nothing, because SOAP does not handle exceptions

• A “500” return code

2.5. When a node receives a SOAP message, which of the following should it do first?

• Process all header blocks that are targeted to the node.

• Process the body.

• Process the body, but only if the node is the final recipient.

• Create an instance of the SOAP object.

• Find and obey the mustUnderstand attributes.

2.6. True or False? A node must understand only those blocks in a SOAP message that

have their actor set to a role the node can play.

2.7. The following SOAP envelope:
� �

<!ENTITY SOAPENC

"http://www.w3.org/2001/06/soap-encoding">
<s : E n v e l o p e x m l n s : s ="...">
<s:Body>
<o r d e r xmlns="..."

s : e n c o d i n g S t y l e=&SOAPENC;>
<partName x s i : t y p e ="string">v a l v e </partName>
<q u a n t i t y x s i : t y p e ="string">12</ q u a n t i t y >

</ o r d e r >
</ s :Body>

</ s : E n v e l o p e >
� �

corresponds to which Java method signature(s)?

• String order(String partName, String quantity)

• void order(String quantity, String partName)

• void order(String quantity, Integer partName)

• void partName(String s); void quantity(Integer n)

• None of the above; in this case, specify whatever parts you can of a correct sig-

nature.

2.8. Develop a WSDL document describing a stock quote service. Define the following

message types: loginRequest, logReply, stockQuoteRequest, stockQuoteResponse,

and logoutRequest, and the following operations: QuoteToUser, LogIn, ProvideQuote,

LogOut, and QueryNYSE.



44 Basic Standards for Web Services

2.9. Consider two main kinds of message exchange patterns in SOAP (and operation types

in WSDL): (1) request-response and (2) one-way. How would you implement one-

way messages over HTTP, which is a request-response protocol? How would you

implement request-response messages over SMTP, which is a one-way protocol (do

not assume any special receipt notification functionality, which some mailers support)?

2.10. Extend your solution to Exercise 2.9 to accommodate the other two of the WSDL

operation types: (1) solicit-response and (2) notification. How would you implement

these over HTTP? How would you implement these over SMTP?

2.11. How would you enhance SOAP so that its payload could be compressed? The idea is

not simply to propose a new syntax but to show how the processing would be affected.

A design requirement is to work over the existing infrastructure without any changes.

For example, you cannot reasonably assume that you will be able to design and launch

successfully a new version of HTTP, which would make your task much easier. Ensure

the feasibility of the processing required in your proposed approach.

2.12. How would you enhance SOAP to accommodate some elements of security? Specifi-

cally, how would you accommodate authenticating the sender of a SOAP request from

the perspective of a recipient and authenticating the responder from the perspective of

the requester. Consider the use of simple credentials such as digital certificates or a

login ID and password.

2.13. In a WSDL file, which one of the following most closely corresponds to a method or

function name in an imperative programming language?

• operation

• portType

• message

• service

• type

Map the others to their closest analogs in such programming languages.

2.14. A WSDL message consists of parts that:

• each have a type from some type system;

• have a sender and receiver;

• are free-form;

• can themselves be messages;

• must be declared in the SOAP header.

2.15. Which one of the following is a WSDL transmission primitive that cannot be supported

by an endpoint?



2.7 Exercises 45

• multicast

• one-way

• request–response

• solicit–response

• notification

2.16. Which one of the following lists the top-level elements of a WSDL document?

• types, message, portType, binding, service

• portType, binding, service

• types, message, operator, portType, binding, service

• binding, service

• header, body

2.17. Produce the WSDL description for a phone book service that supports the operations

GetPhoneNumber and SetPhoneNumber. The operation GetPhoneNumber accepts a

name parameter of type String and returns a phone number of type String, whereas Set-
PhoneNumber accepts a name parameter of type String and a phone number parameter

of type String and returns nothing.

2.18. The UDDI protocol is used for which one of the following?

• Finding SOAP services that implement a given interface.

• Describing the interface of a SOAP service.

• Communicating between SOAP and .NET.

• Describing the communication protocol SOAP service.

• Describing how a SOAP service is deployed on a Web server.

2.19. A UDDI registry holds descriptions of (choose one):

• the business, service, and bindings;

• the UDDI clients;

• the interfaces implemented by the registered Web services;

• the encoding mechanism;

• the users’ preferences.

2.20. A UDDI tModel is:

• A way of describing the various business, service, and template structures stored

within the UDDI registry.



46 Basic Standards for Web Services

• A technical description of the Web services represented by the business service

structure.

• The English description of the business.

• A request-response message pattern definition.

• A transitional model.

2.21. A set of related UDDI registries are deployed using:

• a federated model;

• a hierarchical model;

• a master-slave model;

• an n-tier model;

• a centralized model.

2.22. A UDDI registry can be accessed using which SOAP interface(s)?

• InquireSOAP and PublishSOAP.

• UDDISOAPInterface.

• SOAP with HTTP.

• Publish and Query.

• uddiSOAP.

2.23. The first step in translating a WSDL file to be used with UDDI is to:

• split it into an interface file and an implementation description file.

• register the WSDL file as a UDDI tModel.

• change all the types from XML Schema to UDDI Schema.

• send it to a UDDI registry and gather the error messages.

• rewrite it using the UDDI Schema.

2.24. Imagine that the Web services described in Exercise 2.17 are offered by NSCU Phone,

Inc. Using the UDDI Publish API, write the XML files that would be sent to a registry

to register NSCU Phone, Inc. and its services.

2.25. Using the UDDI files you developed as part of Exercise 2.24, register your business at

the UDDI test registry maintained by IBM at

https://uddi.ibm.com/testregistry/registry.html. To do this, first obtain a username and

password for the test registry. Second, download and install a tool such as UDDI4J

available at http://uddi4j.org/. Third, if you choose the UDDI4J tool, recompile it with

an appropriate SOAP transport implementation, such as Apache Axis or SOAP 2.2,

which can be found at xml.apache.org, or HP SOAP, which can be found at

http://hp.com/go/webservices. Fourth, create and run your Java application.



2.7 Exercises 47

2.26. Imagine you are in charge of a UDDI registry, named MyUDDI.com and located

at http://www.MyUDDI.com. When someone, for example, sends a find tModel in

a SOAP message, your registry responds with the appropriate tModel in a SOAP

response. Your registry is providing a service, which can be described by a WSDL

document. Write the WSDL description of the find tModel service for your registry.

2.27. Web services, as currently implemented by using WSDL and SOAP, work well when a

requestor wants a single instance of a service that can be had via one interaction. That

is, there is a single request and a single response. Often, however, the interaction is

more complicated, as when a buyer (requestor) is purchasing a service from a seller

(provider). In this case, the buyer will ask the seller for a price quote. After receiving a

quote, the buyer will issue a purchase order. The seller will acknowledge the purchase

order. The buyer can then access the service from the seller. The interactions form

an extended conversation. How can the UDDI, WSDL, SOAP, and XML-based Web

service infrastructure be used or changed or adapted to support interactions of this sort?





Chapter 3

Programming Web Services

Chapter 2 introduced the key standards for Web services. However, just as for conven-

tional protocols such as HTTP, we would like to approach the standards through higher-

level abstractions, e.g., those reflected in programming interfaces. As Web services have

expanded, a number of programming interfaces have come about. This chapter decribes the

leading practical approaches for programming to the above standards and how to apply the

approaches in developing standard Web services.

3.1 Representational State Transfer

Representational State Transfer (REST), developed by Roy Fielding and others [Fielding and

Taylor, 2002; Fielding, 2000], is an architectural style for networked systems. It focuses on

the constraints that must be placed on connector semantics, where other styles have focused

on the constraints on component semantics. (Note that REST constrains, but does not spec-

ify.) REST considers the Web to comprise hyperlinked resources, which can be any items of

interest that are identified by URIs. For example, the fictitious NorthSouth Carolina Univer-

sity (NSCU) might define a resource for its offering for the first course in computer science,

CS1. A client application could access that resource at the following URL,
� �

h t t p : / /www. nscu . edu / c o u r s e s / CS1 . h tml
� �

and a suitable representation of the resource, perhaps the course syllabus, would be returned

(e.g., the contents of CS1.html). The representation places the client application in a certain

state. The result of the client traversing any hyperlink in the CS1.html resource is to access

another resource, whose representation places the client application into its next state. The

client application changes state with each new resource representation that it accesses.

With Representational State Transfer, a well-designed Web application appears to be a

network of Web pages (a virtual state-machine), where a user progresses through the appli-

49



50 Programming Web Services

cation by selecting links (state transitions), resulting in the next page (representing the next

state of the application) being transferred to the user’s browser and rendered appropriately.

REST is an architectural style for designing Web services, not a standard. It attempts to

capture the characteristics that have made the Web successful and are guiding its evolution.

While not a standard, REST does use the standards for HTTP, URI, resource representations

such as XML, HTML, GIF, and JPEG, and MIME types such as text/xml, text/html, image/gif,
and image/jpeg.

Familiar Web services, such as those for ordering books or for searching catalogs, are

typically REST-based, even if they were not explicitly constructed with REST in mind. How-

ever, let’s use REST to construct an example Web service.

3.2 A RESTful Example
The NorthSouth Carolina University has deployed a Web service to enable its students to:

• get a list of courses;

• get detailed information about a particular course;

• register for a course.

By making the following URL available, this Web service enables a client application to get

the course list:
� �

h t t p : / /www. nscu . edu / c o u r s e s
� �

Note that how the Web service generates the course list is not apparent to a client. All

the client knows is that if it submits the above URL, then a document containing the list

of courses is returned. NorthSouth Carolina University is thus free to modify the underly-

ing implementation of this resource (provided of course that it preserves their meaning and

behavior) without affecting the functioning of its clients, which is an extremely convenient

characteristic to have.

Here is the document that the client application receives, assuming that the application

can handle XML:
� �

<?xml v e r s i o n ="1.0"?>
<!ENTITY NSCU ’http://www.nscu.edu’>
<p : C o u r s e s xmlns :p ="&NSCU;"

x m l n s : x l i n k ="http://www.w3.org/1999/xlink">
<Course i d ="CS101" x l i n k : h r e f ="&NSCU;/courses/CS1"/>
<Course i d ="CS102" x l i n k : h r e f ="&NSCU;/courses/CS2"/>
<Course i d ="CS201" x l i n k : h r e f ="&NSCU;/courses/DataStruc"/>
<Course i d ="CS202" x l i n k : h r e f ="&NSCU;/courses/ProgLang"/>

</ p : C o u r s e s >
� �



3.2 A RESTful Example 51

Note that the document incorporates links that can be used by the client to obtain detailed

information about each course. This is a key feature of REST. The client transfers from one

state to the next by examining and choosing from among the alternative URIs in the response

document. For example, the client could get detailed information about the ProgLang course

by issuing the request
� �

h t t p : / /www. nscu . edu / c o u r s e s / ProgLang
� �

This results in the following document being sent to the client:
� �

<?xml v e r s i o n ="1.0"?>
<!ENTITY NSCU ’http://www.nscu.edu’>
<p : C o u r s e x m lns :p ="&NSCU;"

x m l n s : x l i n k ="http://www.w3.org/1999/xlink">
<Course−Num>CS202</ Course−Num>
<Name>Programming Languages </Name>
<Requi rement>R e q u i r e d f o r CS ma j o r s </ Requi rement>
<S y l l a b u s x l i n k : h r e f ="&NSCU;/courses/ProgLang/syllabus"/>
<C r e d i t H o u r s t y p e ="semester">3</ C r e d i t H o u r s >
<P r e r e q u i s i t e x l i n k : h r e f ="&NSCU;/courses/DataStruc"/>

</ p :Course>
� �

Observe how this document is linked to still more documents—the syllabus for this course

may be found by traversing the hyperlink. Each response document allows the client to get

more detailed or related information.

The Web service makes available a URL for course registration. The client creates a regis-

tration instance document, Reg.xml, that conforms to the registration schema that NorthSouth

Carolina University has provided in a WSDL document and published in a UDDI registry.

The client submits Reg.xml as the payload of an HTTP POST.

The registration service responds to the HTTP POST with a URL to the submitted Reg.xml
document. The client can retrieve this document any time thereafter to update or edit it.

Reg.xml has become an item of information that is shared between the client and the server.

By giving Reg.xml a URI, the server has, in essence, exposed it as a Web service (although

not necessarily a standard Web service in the sense of Chapter 2 or BP 1.0). A resource is

a conceptual entity, which is given a representation, i.e., a concrete manifestation, in REST.

REST does not generally place constraints on resources, e.g., the following URL
� �

h t t p : / /www. nscu . edu / c o u r s e s / ProgLang
� �

is a logical one, not a physical one. Thus there does not need to be, for example, a static

HTML page for this course. In fact, if there were a thousand courses, then a thousand static

HTML pages would not be a very good design. As a better design, NorthSouth Carolina

University could implement the service that returns detailed data about a particular course by

(as an example approach) carrying out the following steps:



52 Programming Web Services

• employing an application server that parses the string after the host name and invokes

an appropriate servlet based on one or more tokens;

• having the servlet parse the argument string;

• using the course number to query a course database;

• formulating the database tuples as an XML document;

• returning the XML document as the payload of the HTTP response.

As a matter of style URLs should not reveal the implementation technique used. Servers

need to be free to change their implementation without affecting clients. URLs that infor-

mally refer to the implementation would either restrict the server or be misleading.

To summarize, here are the main characteristics of REST:

Client-Server. By assuming client-server interactions, REST separates interface concerns

from data-storage concerns, enabling them to evolve independently.

Statelessness. Each request from a client to a server must contain all the information neces-

sary to understand the request, and cannot take advantage of any stored context on the

server.

Caching. To improve network efficiency, responses can be labeled as cacheable, enabling a

client to store and reuse a cacheable response rather than requesting it again later.

Uniform interface. All resources are accessed via a uniform interface based on the follow-

ing four constraints:

1. Identification of resources through URIs, where a resource corresponds to the

semantics of what the author intends to identify, rather than the value correspond-

ing to those semantics at the time the reference is created.

2. Manipulation of resources through their representations, where the representa-

tions of the resources are interconnected via URLs, thereby enabling a client to

progress from one state to another.

3. Self-descriptive messages, which include their own metadata, but maintain the

uniformity of the interface by limiting the scope to one of an evolving set of

standard data types selected dynamically.

4. Hypermedia as the engine for the application state.

Layered components. Intermediaries, such as proxy servers, cache servers, and gateways,

can be inserted between clients and resources to support additional properties such as

performance and security.

Code-on-demand. Optionally, clients can be extended dynamically by downloading and

executing code in the form of applets or scripts.



3.2 A RESTful Example 53

The following are the basic principles of REST Web service design:

1. The key to creating services in a REST network (i.e., the Web) is to identify all of the

conceptual entities that you wish to expose. Above are some examples of resources: a

course list, detailed information about a course, and a registration document.

2. Create a URL for each resource. The resources should correspond to nouns, not verbs.

For example, do not use this:
� �

h t t p : / /www. nscu . edu / c o u r s e s / g e t C o u r s e ? i d =CS101
� �

Note the verb, getCourse, which indicates a particular process for the implementation.

Instead, use a noun:
� �

h t t p : / /www. nscu . edu / c o u r s e s / CS1
� �

3. Categorize your resources according to whether clients can just receive a representa-

tion of the resource, or can modify (add to) the resource. For the former, make those

resources accessible using an HTTP GET. For the latter, make those resources acces-

sible using HTTP POST, HTTP PUT, or HTTP DELETE.

4. Make all resources that are accessible via HTTP GET free of side effects, so that invok-

ing the resource does not modify it.

5. Include hyperlinks in your resource representations that enable clients to obtain more

detailed or related information. Do not try to put all information in a single response

document.

6. Specify the format of response data using a schema.

7. Describe how your services are to be invoked using either a WSDL document or, sim-

ply, an HTML document.

REST is a set of architectural constraints that attempts to minimize latency and network

communication, while at the same time maximizing the independence and scalability of com-

ponent implementations. This is achieved by placing constraints on connector semantics,

instead of on component semantics, which has been the focus of other architectural styles.

REST enables the caching and reuse of interactions, dynamic substitutability of components,

and processing of actions by intermediaries, thereby supporting a world-wide hypermedia

system.

REST is the architectural style of the Web, and describes what makes the Web work well.

Adhering to REST principles will make your services work well in the context of the Web.



54 Programming Web Services

3.3 SOAP and REST
SOAP has received some criticism because of its apparent violation of some of the principles

that REST espouses. In particular, SOAP 1.1 required an HTTP POST binding and thus hid

the identity of the Web resource being accessed within the body of the message. Recall from

the above that REST requires Web resources to be identified in a manner that clearly separates

the identification information from any data and control information. REST advocates the use

of HTTP GET for accessing resources. In other words, it advocates that methods that satisfy

the following two properties be specified as HTTP GETs, where the URI completely specifies

the target object to be retrieved:

Safety. This holds for methods that are free of side effects on the given object. Query meth-

ods would be the canonical safe methods.

Idempotency. Loosely following the database transaction terminology, idempotent methods

are those whose repeated occurrences have no additional side-effects beyond the first

occurrence. In the database sense, an idempotent method would be resilient to restarts

(or, in the Web context) reloads. That is, if the method were not completed when it

had to be aborted and restarted, then assuming it eventually completed successfully,

its ultimate effect would be the same as if it had completed successfully on the first

attempt.

The association of GET with safe and idempotent methods is recorded in the HTTP protocol

specification. Notice, however, that the protocol can offer no means of ensuring compliance

with these guidelines. However, the specification does claim that when a GET is executed,

it can be presumed that the user acting through the user agent (browser) is interested in

retrieving information but not in changing it.

In acknowledgment of the above objections to SOAP 1.1, SOAP 1.2 supports a HTTP

binding, which uses HTTP GET and places the resource URI in the HTTP header—the same

as any other HTTP GET. Listing 3.1 illustrates this usage.

Listing 3.1: RESTful SOAP: Example of HTTP GET binding
� �

GET / www. s o c w e a t h e r . com / temp ? c i t y = Honolu lu&when=now HTTP / 1 . 1

H o s t : www. s o c w e a t h e r . com

A c c e p t : t e x t / html , a p p l i c a t i o n / soap +xml
� �

Notice that the HTTP GET formulation does not allow a request body. This means there

can be no SOAP content in the request: that is, no headers and no arguments.

3.4 Developing and Using Web Services
Services do not exist in a vacuum. Often the business logic that a service presents would

exist in some application programs, possibly already deployed. Therefore, a popular way to

go about developing services is as follows.



3.4 Developing and Using Web Services 55

On the server-side, programmers can take the internal code implementing the given busi-

ness logic and generate service descriptions from that business logic. WSDL specifications

can be readily generated from popular languages such as Java and C#, but also from other

languages. The service can be made available for invocation via SOAP. At the same time, the

WSDL specifications can be made available to prospective clients.

On the client-side, programmers would take the service descriptions and apply generic

tools to map WSDL into interfaces of their desired programming language. They would then

create their application using these interfaces and finally execute the application using SOAP

to invoke the services provided by the server.

To enable dynamic binding, the server would use a programming interface to publish

services just as the client would use a programming interface to find the services it needs.

3.4.1 Programming WSDL

WSDL appears complex, but is conceptually simple. A simple overview of the components

in a WSDL file is shown in Figure 3.1. It is designed neither for readability nor succinctness,

but for computers to process. As a result, it is straightforward for tools to generate WSDL

automatically from source code, especially if it is object-oriented. It is easiest if the source

code is in an object-oriented language, although even languages such as Cobol can be used.

Tools such as Microsoft’s Visual Studio .NET and Oracle Developer provide this functional-

ity. As programmers implement or modify their implementations, they can generate WSDL

specifications automatically. Clearly the efficiency helps or seems to.

However, there is a point of caution. The above kinds of tools end up exposing the imple-

mentation details of the underlying object-oriented framework, which would prove misguided

in many settings [Vinoski, 2002]. In particular, automatically exposing business objects exter-

nally is risky, because those objects would generally have been designed and previously

employed for limited internal purposes. Exposing such interfaces outside of the organiza-

tion in which they were designed to function means that their behavior might not be adequate

and may interfere in strange ways with their internal functioning. Also, the moment internal

details are exposed externally we end up with dependencies that limit the evolution of the

software components. Sometimes there can be mismatches caused by the differences in how

the objects are interpreted by service consumers and providers. For example, session-based

or stateful objects may not cohere with a pure invocation-based approach. It would be safer

from the professional software engineering standpoint to formulate the service interface care-

fully and then to develop systems to implement it, and not to expose any more details than

are explicitly called for by the interface.

3.4.2 Java for Web Services

Several tools for Web services now exist. The open-source Apache eXtensible Interaction

System (Axis) tool from the Apache Project is a SOAP engine, which includes important

functionality for WSDL as well.



56 Programming Web Services

            definitions

                targetNamespace=thisNamespace

                xmins:tns=thisNamespace

                types

                message name=in

                message name=out

       portType name=foo

           operation

                input message=tns:in

                output message=tns:out

      binding name=foobar

            type=tns:foo

            [binding information]

service name=foobar Service

   Port name=foobarPort

       binding=tns:foobar

       [endpoint information]

Types contains data type definitions

Messages consist of one or more parts

A portType describes an abstract set

of operations

A binding describes a concrete set of

formats and protocols for the foo

portTypes

A port describes an implementation

of the foobar binding

Figure 3.1: A simple view of the WSDL data model

3.4.2.1 JAX-RPC and SAAJ

The Java API for XML-Based RPC (JAX-RPC) and SOAP with Attachments API for Java

(SAAJ) provide Java application programmer interfaces for processing SOAP messages.

JAX-RPC is the higher-level of the two and builds on top of SAAJ. JAX-RPC handles conver-

sions between Java objects and XML and performs type-checking on the conversion. JAX-

RPC also includes tools to generate WSDL documents from Java code and Java code from

WSDL documents.

For SOAP, SAAJ itself builds on JAXP and provides a simpler API geared toward SOAP.

For instance, the API includes methods for managing SOAP connections, composing SOAP

messages, extracting appropriate contents (headers, body) from them, and handling responses.

The Java API for XML Messaging (JAXM) provides APIs for creating and processing

SOAP messages. JAXM is lower level than JAX-RPC and has been superseded by SAAJ.



3.5 Web Services Interoperability 57

3.4.2.2 Web Services Invocation Framework

The Apache Project’s Web Services Invocation Framework (WSIF) is an approach for invok-

ing WSDL-based services. WSIF takes a client perspective. However, it is based on WSDL

descriptions of services and, in principle, is independent of the binding. Naturally enough,

a binding for SOAP is available and is an important one, but a WSIF client could easily be

ported to another binding.

3.4.2.3 JAXR

The Java API for XML Registries (JAXR) is a Java-based approach for accessing many dif-

ferent kinds of registries, including ISO 11179, OASIS, ebXML, and UDDI. It is most useful

for accessing a UDDI or ebXML registry (discussed in Section 2.4) to advertise or discover

a service.

3.4.2.4 JAXP

JAXP is an API for processing XML documents. One of JAXP’s components is a parser based

on the Document Object Model (DOM), which views a well-formed XML document in terms

of the parse tree to which it corresponds. DOM provides a conceptually simple means to

traverse the parse tree of a document via recursive-descent processing. An alternative parser

based on the Simple API for XML (SAX) is also included. Further, JAXP has support for the

XSL Transformations (XSLT).

3.4.3 .NET
Microsoft’s .NET has tools that support essentially the same functionality as the Java family

of tools. For instance, .NET includes wsdl.exe, which generates stubs from WSDL documents

and generates WSDL documents from code.

3.5 Web Services Interoperability
The Web Services Interoperability Organization (WS-I) is an industry group that promotes

interoperability at a level that is above the standards proper [WSI, 2004]. WS-I members

include some of the leading Web service vendors, such as IBM, Microsoft, BEA, and Sun.

WS-I makes recommendations about standards that in essence package the standards into

compatible sets. These recommendations are termed profiles.

Currently, the WS-I has developed a profile known as the Basic Profile 1.0. This profile

bundles SOAP 1.1, WSDL 1.1, XML 1.0, XML Schema, and HTTP 1.1. Further, the WS-I

Basic Profile 1.0 imposes the following restrictions:

• SOAP should be used only with its HTTP POST binding.

• The SOAPAction header in the HTTP POST should be a quoted string.



58 Programming Web Services

• A SOAP recipient should return an HTTP response immediately upon receiving an

HTTP request, and this response should be an HTTP success code (200 or 202) or an

HTTP error code. A success code does not mean that the request was processed or even

that it was well-formed (as a SOAP request). The HTTP response must not contain a

SOAP envelope.

• A SOAP requestor must ignore any SOAP envelope that may be returned by a SOAP

recipient (which would be in violation of the above restriction anyway).

• The WSDL message patterns are limited to request-response and one-way.

• Only XML Schema encodings are recognized, not SOAP Section 5.

WS-I identifies several other points of potential disagreement or ambiguity and seeks to

resolve them, so that it can guarantee that if the various parties obey its recommendations,

they will be able to interoperate. As explained above, application programmers should not be

dealing with the raw protocols; instead, they should be exercising Web services through suit-

able tool suites and programmer interfaces. Consequently, standards such as WS-I’s Basic

Profile 1.0 are of greatest direct interest to tool developers.

3.6 Notes
Leading vendors such as HP, IBM, and Microsoft provide public UDDI registries for pro-

grammers to deploy their Web services. If you wish to provide your own UDDI registry,

jUDDI found at http://www.juddi.org/, is an open source Java-based implementation of a

UDDI registry. It includes a toolkit that enables developers to build access to UDDI registries

within their own applications. jUDDI can act as the UDDI front-end on top of existing direc-

tories and databases. jUDDI-enabled applications can look up services in the UDDI registry

and then proceed to invoke those services directly. Similar to jUDDI, UDDI4J (available at

http://uddi4j.org/) is a Java class library that provides an API to interact with a UDDI registry.

3.7 Exercises
3.1. Consider a leading e-commerce Web site such as amazon.com from the consumer per-

spective (in the case of amazon.com, this would offer more functionality than their

explicit Web service interfaces). Consider the basic steps of registering, signing in,

searching a catalog, selecting some goods for purchase, providing shipping and pay-

ment information, and paying to conclude the deal.

• Produce a state transition diagram corresponding to the various steps, possibly

showing the various screens that you encounter during your interactions. Label

the states with the choices available and the transitions with the choices taken by

the client.



3.7 Exercises 59

• Evaluate the above design with respect to the characteristics of REST.

3.2. Repeat Exercise 3.1 for an auction site, such as ebay.com from the perspective of buy-

ers, who can (among other things) view the prices bid on a given item and create bids

themselves. How might you model the closing time for an auction? Notice that inter-

actions here are potentially longer lived. Would there be any significant change if you

add sellers to your model explicitly?

3.3. Browser-Based Information System Using REST: Implement an intelligent vending

machine, described as follows:

An intelligent vending machine accepts credit cards from customers. When a customer

selects an item, the machine issues the item to the customer and issues to the credit card

company a debit entry to the customer’s account. The machine also maintains a list of

suppliers, one supplier for each type of item. When the machine’s inventory for an

item falls below a threshold, the machine automatically reorders that item from the

appropriate supplier.

Your implementation should proceed according to the following steps:

• Construct a model in UML for the application using Visio or Rational Rose:

– Construct use-case diagrams for the vending machine and for the credit card

company.

– Construct a class diagram for the vending machine application, showing

classes for Customer, Supplier, Vending Machine, Item, and any needed sub-

classes.

– Construct a sequence (interaction) diagram for the application.

– Construct a state-machine diagram for the vending machine as it goes from

Idle to Getting Credit Card to Accepting Selection to Processing Credit Card

to Dispensing Item to . . .

– Construct a class diagram for the credit card company, showing their card-

holders and card numbers. Make the classes persistent so that you can use

Rational Rose to generate the Data Description Language (DDL) statements

for the database you will need below.

• Construct your implementation in C# or as a Java applet. It should include the

following:

– A menu-based selection for items (allow at least 4 choices). To be RESTful,

the choices should be URIs.

– A user input (text-based) for entering a credit card number.

– A check of the customer’s credit card number with the credit card company’s

database of valid card numbers. Create the database using Microsoft Access

or MySQL from the DDL created above (or generate your own DDL) and

connect it to your application using ODBC or JDBC.



60 Programming Web Services

– A simulation of issuing the item to the customer.

– A simulation of sending a debit entry to the credit card company.

– A simulation of reordering items.

Suggestion: Use fixed (or pop-up) windows to display the progress of the simu-

lated processes, and to enable user interactions with them.



Chapter 4

Enterprise Architectures

Several implementation architectures are competing for dominance in the Web service mar-

ket. This chapter describes some of the architectures and indicates their differences and rel-

ative advantages. For the most part, it turns out that the various approaches are conceptually

similar if not indistinguishable for our purposes. This is comforting because it means that the

techniques described in this book can be realized with equal ease over different implementa-

tion architectures.

4.1 Enterprise Integration
An insidious terminological confusion is prevalent in a lot of the current literature. Often,

the terms integration and interoperation are used interchangeably. However, the term “inte-

gration” indicates that the given components or resources are pulled together into one logical

resource with a single schema, whereas the terms “interoperation” means that the given com-

ponents work together. Usually, integration is not appropriate because it would violate the

autonomy of the participants. Moreover, reasons of productivity and maintainability make

integration undesirable and interoperation of autonomous entities more sensible. In practice

when “integration” is realized, it is actually interoperation.

However, even in such settings, “integration” merely refers to a particular programming

approach based on invoking functionality remotely. That is, the approach emphasizes imper-

ative distributed programming using application programmer interfaces. A better approach

would involve protocols that express the arms’ length relationships among the interacting

parties. However, in deference to common buzzwords, we use the term integration in this

section. We revisit this point in Section 6.2.

The earlier work on addressing the challenges of heterogeneity involved integrating dif-

ferent information resources. This body of work was termed enterprise information integra-
tion (EII). More recently there has been work on enterprise application integration (EAI)

where the business logics of the various applications are suitably interrelated and informa-

61



62 Enterprise Architectures

tion flows from one to the other. Thus, whereas EII was about information modeling, EAI

emphasizes environments where applications can be hosted. EAI more often involves consid-

erations of performance and reliability. EII and EAI taken together can be termed enterprise
integration (EI).

The two major modern approaches to EAI are based on Microsoft’s .NET and Sun’s Java

2 Platform, Enterprise Edition (J2EE). .NET emphasizes Web services, as does J2EE. Several

J2EE server vendors are adding Web service capabilities to their platforms.

A common component of an EI architecture is a metadata registry, which records the

identities and locations of various resources in the enterprise. A particularly common exam-

ple of a registry is a directory service, typically based on the Lightweight Directory Access

Protocol (LDAP). Directories were originally used to record information about people, such

as their phone numbers and email addresses, as well as organizational information, such as

who reports to whom in the given enterprise. Directories have since expanded to record the

locations of shared resources in general. These resources can be databases, email servers,

application servers, other directories, OLAP (on-line analytical processing) tools, and so on.

Metadata registries are used in modern information architectures to provide a simplified

means of configuring complex systems. They facilitate the publishing and discovery of fairly

fine-grained information, such as particular XML schemas, information models, and services.

Interestingly, the technology behind enterprise metadata registries (e.g., LDAP) is commonly

used to implement service registries such as those based on UDDI.

Metadata registries can be given a narrow or private scope where they are meant to hold

information that is of interest only to a few applications and systems. For example, there

could be separate registries for the billing and payroll departments of an enterprise. These

registries would be used to configure applications within such departments. One reason to

confine their access to particular departments would be security; another reason would be

limiting external dependencies to the resources that are being made available to the rest of the

enterprise. Wider-scope registries would be used by an enterprise to expose some information

externally to its customers and partners, or to the public. The wider-scope registries can

facilitate semantic mediation between components by providing a common handle to the

models and semantic descriptions that are shared by the parties concerned.

Metadata registries are an excellent response to the challenges of dynamism, as defined in

Section 1.3. Dynamism arises not only in open settings, but also within enterprises. It poses

challenge for administering a system whose components may not be fixed and may change

their functionality. The larger the system the more dynamic the setting. The more dynamic

the setting the harder to manage the system. Because metadata registries lend structure to

such a system, they simplify accommodating dynamism. If a registry can be kept up to date,

it can be used to configure and reconfigure a system as needed.

4.2 J2EE
The Java 2 Platform, Enterprise Edition (J2EE) platform builds on the Java programming

language by providing a framework for developing and deploying Java applications centered



4.2 J2EE 63

around an application server. Following the general principles of multitier architectures, J2EE

separates into three main layers:

1. Presentation, for interacting with users, usually via client applications.

2. Business objects, for capturing the business logic that is the essence of the Java applica-

tion being supported. This is the core part of J2EE and consists primarily of Enterprise
Java Beans (EJBs), which are distributed objects defined according to rules that make

them self-describing in terms of the methods that can be invoked on them. Different

types of EJBs correspond to user sessions and to information entities. They can be

serialized and materialized. Some can be made persistent on external databases. Yet

other EJBs, called Message-Driven Beans (MDBs) listen for and respond to messages

from a message queue.

EJBs facilitate the development of maintainable applications because they capture the

business logic of an application in a manner that is independent of its deployment. In

other words, when an application is designed using EJBs, the decision about how to

allocate resources to the EJBs can be delayed. If a certain EJB sees a large demand, it

can be deployed using additional resources, for example, a larger number of threads.

3. Backend, which handles interactions with databases, ERP systems, and other systems

(even those that are not in J2EE). This layer is associated primarily with the J2EE

Connector Architecture (JCA), which supports both synchronous and asynchronous

communications among the systems.

A J2EE application server consists of a Web container and an EJB container. The former

hosts servlets and JSP pages. It invokes enterprise beans in the EJB container. The application

server also interacts with the external world through message queues and databases. The EJB

container provides system-level services including connectivity, security, and transactions.

This is a productivity benefit during application development and management.

J2EE includes support for message queues through the Java Message Service (JMS).

Messages can be sent and received synchronously by clients and EJBs. MDBs, mentioned

above, consume messages asynchronously. Messages sent and received can be part of a

distributed transaction.

The Java Naming and Directory Interface (JNDI) is a programming interface for meta-

data registries. A J2EE application or EJB can locate resources and other components on the

fly, thus separating configuration details from the implementation. Java Database Connec-
tivity (JDBC) provides libraries to open and maintain connections with relational databases,

retrieve relational metadata, prepare and submit SQL statements, and process result sets.

J2EE is illustrated in Figure 4.1. J2EE provides the following components and their

associated functionalities:

• Session, Entity, Message Driven Beans (EJB);

• Transaction Management (JTA/JTS);



64 Enterprise Architectures

EJB Server

Entity Bean

Session
Bean

J2EE
Connector

Relational
DBMS

Legacy
System

CORBA Client

Java Applet in
Browser

Java
Applications
(Swing, AWT)

Web Browser

Servlet JSP

RMI, IIOP

XML, HTML, HTTP (SSL)

RMI

RMI

RMI

Java Message
Service

Java Naming and
Directory
Interface

Operating System (Windows,
Linux, Mac, Solaris…)

Figure 4.1: The J2EE architecture

• Naming and Directory (JNDI);

• Remote Method Invocation (RMI);

• Security (JNDI Security); Java Authentication and Authorization Service (JAAS);

• Java Messaging Service (JMS);

• J2EE Connector Architecture (JCA);

• Security (realms, access control lists);

• Web Services;

• XML (JAXP);

• Caching;

• Web based management and monitoring.

4.3 .NET
.NET refers to Microsoft’s overall framework for Web services software [Meyer, 2001]. Its

architecture is shown in Figure 4.2. The framework includes an interpreter and compiler,

the Common Language Runtime (CLR) engine, which receives application code expressed



4.3 .NET 65

in the Microsoft Intermediate Language (MSIL). The engine converts the MSIL code into

native code, using just-in-time compilation techniques. There are interpreters for many pro-

gramming languages, such as C++, Cobol, and Visual Basic, that generate MSIL. The result

is that applications written in a variety of languages can be compiled into MSIL and then

made part of a Web service. For example, Listing 4.1 shows a simple COBOL program

repackaged as a Web service—this is accomplished via the webservice directive in the first

line. The program, which returns the result of multiplying two numbers, is merely a Cobol

class definition with a method called MULTIPLY.

Microsoft Transaction Server

Shared Property

Manager

COM+

COMPONENT

Babylon
Integration

Server

Relational

DBMS

Legacy

System

ADO,

OCEDB,

ODBC

CORBA Client

ActiveX Control

in Browser

Applications

Web Browser

IIS/ASP

XML, HTML, HTTP (SSL)

Microsoft

Message

Queue

Active Directory

Windows Operating System

Figure 4.2: The Microsoft .NET architecture

Listing 4.1: A Cobol program for multiplication as a service
� �

<\%@ w e b s e r v i c e l a n g u a g e ="COBOL" \%>
CLASS−ID .

MULTIPLICATIONSERVICE .

FACTORY.

PROCEDURE DIVISION .

METHOD−ID .

MULTIPLY .

DATA DIVISION .

LINKAGE SECTION .



66 Enterprise Architectures

0 1 VAL−1 PIC S9 ( 9 ) COMP−5.

0 2 VAL−2 PIC S9 ( 9 ) COMP−5.

0 1 PRODUCT PIC S9 ( 9 ) COMP−5.

PROCEDURE DIVISION

USING BY VALUE VAL−1 VAL−2 RETURNING PRODUCT.

COMPUTE PRODUCT = VAL−1 ∗ VAL−2.

END METHOD MULTIPLY .

END FACTORY.

END CLASS MULTIPLICATIONSERVICE .
� �

The Microsoft Transaction Server (MTS) corresponds to the J2EE server. This hosts the

ActiveX and COM+ objects, which correspond to EJBs. Further correspondences are quite

direct. The .NET Active Directory Service (ADS) corresponds to J2EE’s JNDI, Microsoft

Message Queue (MSMQ) to J2EE’s JMS, and Open Database Connectivity (ODBC) to JDBC.

The interesting point to note is that the .NET and J2EE approaches are quite similar to

each other. As shown above, they have architectural components that correspond to each

other mostly in a straightforward manner. A difference is that .NET is a product from a

single vendor (Microsoft), whereas J2EE is a specification for which products can be fielded

(and are) by different vendors.

4.4 Model-Driven Architecture
The Object Management Group (OMG) recently proposed the Model-Driven Architecture

(MDA) as a way to generalize over the existing component architectures to consider the

entire system lifecycle in a unified, platform-independent framework. The lifecycle includes

capturing business requirements, modeling and design, implementation and testing, config-

uration and deployment, management, and evolution induced by changing requirements or

changing technology.

MDA is based on three modeling capabilities. The first is the famous Unified Mod-
eling Language (UML), which includes sublanguages for a variety of software modeling

needs. The key sublanguages of UML are those for capturing class diagrams, activities, and

statecharts. The second is the Meta Object Facility (MOF), which is built as a subset of the

constructs of UML that are expressive enough to capture models of interest. The third is the

Common Warehouse Metamodel (CWM), which standardizes the data warehouse application

lifecycle, i.e., design, build, and manage.

Having a language such as MOF enables the exchange of models among development

tools and middleware. Model exchange is standardized through XML Metadata Interchange
(XMI), which provides the DTDs for UML, MOF, and CWM.

MDA distinguishes between a platform-independent model (PIM) and a platform-specific
model (PSM). A PIM formally captures the essence of the structure and function of the mod-

eled system (or artifact or activity), whereas a PSM captures details specific to an implemen-

tation or class of implementations. For example, in platform-independent terms, a payment

protocol involves the transfer of funds from one party to another. Payment via a credit card,



4.5 Legacy Systems 67

which involves a credit card company and the concomitant messages, is thus a special case

of the above but remains platform independent. That is, the PIM is the conceptual model

of the given system. However, in platform-specific terms, payment could be mapped into

an exchange of requests and responses implemented in SOAP or via remote method invo-

cations. Similar examples could be constructed for intraenterprise settings such as internal

billing processing.

The idea behind MDA is to enable conceptual models that are independent of platforms

and thus to make for easier interoperation of heterogeneous systems and easier portability

and evolution of such systems as the underlying platforms evolve. MDA would include the

so-called profiles for the various platforms of interest, e.g., Common Object Request Bro-

ker Architecture (CORBA), .NET, and J2EE. When new standards are proposed, the MDA

process requires them to be specified in terms of a PIM and one or more PSMs.

In practical terms, MDA can be used to model services formally. The models would be

constructed using UML, possibly augmented with stereotypes specific to services. Following

the terminology of Section 2.3.3, the MDA PIM would correspond to the service interface

and the MDA PSM would correspond to the service implementation.

4.5 Legacy Systems

Legacy systems is a phrase, often pejorative, for describing computing systems that are obso-

lete in some manner and typically not easy to modify or modernize. The term has undergone

some modification over the years. In the early days of client-server computing, the older

mainframe systems with their rigid hardware constraints and vertically integrated applica-

tions were often the culprits. Now those constraints have mostly been relaxed and the prob-

lems that remain are the more insidious ones based on the semantics or meaning of the data,

the applications, and the user interfaces.

Typically, legacy systems would be those that run on obsolete hardware architectures and

operating systems and over nonstandard communication networks. Traditionally, systems

based on mainframe computers were like that. The operating systems were proprietary to the

hardware vendor as were the communication networks. But the industry has evolved in some

respects. The communication networks are now all able to support IP. Legacy systems also

run poorly documented, unmaintainable software created by ad hoc patches to handle bugs,

changing regulations, and updated business needs. Mainframes do not have a monopoly

on unmaintainable software and the criticism may easily be levied against other systems

developed in a patchwork manner and without adequate modeling.

Legacy systems often involve a substantial database component, which is poorly modeled

if at all. Early on, the databases were hosted on hierarchical or network database management

systems and required custom programming. Nowadays, adapters are available to access data

with a relational interface from hierarchical or network databases, so the problem is no longer

due to the underlying data representation. However, even relational databases are often not

modeled well, so the data that can be accessed is only imperfectly understood.



68 Enterprise Architectures

Legacy systems tend to support rigid user interfaces. Traditionally, these were propri-

etary “screen-based” interfaces that were hardwired into applications and relied on particular

terminal models manufactured by particular vendors, e.g., IBM’s 3270 or Digital’s vt100.

Again, now almost all of these screens can be mapped into browser-based interfaces, and

potentially run over any browser and any monitor. However, the semantics of the interfaces

remains arcane and that is by far the bigger problem.

On the positive side, legacy systems fulfill crucial business functions, such as the majority

of banking systems, business data processing, and airline reservation systems. They repre-

sent huge investments that cannot easily be discarded. We advocate that legacy systems be

modeled as Web services, so that modern applications can interoperate with them to share

data and preserve integrity.

4.6 Notes
Because J2EE is an interface, it is implemented by several vendors and open-source projects.

The following are some well-known implementations.

• BEA WebLogic Server 8.1 from BEA Systems. BEA provides good integration between

tools and server, easy setup, Web services standards support, and a well-rounded fea-

ture set for enterprise deployments. WebLogic Workshop includes an integrated devel-

opment environment.

• IBM WebSphere Application Server 5.0 from IBM. WebSphere has an extensive set

of features, especially in regard to enterprise-level deployments. WebSphere allows

granular control of the application server and the Web services running on it from

either a GUI or a command-line interface.

• JBoss 3.2.1 and Apache Tomcat 5.0 from JBoss and the Apache Project, respectively,

are a combination of open source systems provides a powerful feature set and excel-

lent support for importing and exporting existing Web services, as well as support for

Web service standards. On the downside, the JBoss and Apache tools require more

expertise and initial configuration than their commercial counterparts. They also lack

many of the simpler, enterprise-class configuration and management tools found in

BEA WebLogic Server and IBM WebSphere Application Server.

• Novell exteNd Application Server 5.0 and Workbench. Novell’s exteNd is a plain

application server with an accompanying Workbench IDE. Novell has announced plans

for associated Director and Composer tools, which will make the Novell system more

capable and easier to use.

• Sybase EAServer 4.2. This J2EE platform features good integration between applica-

tion server and tools, a serviceable interface, and a reasonable set of features that is

comparable to the set in JBoss.



4.7 Exercises 69

4.7 Exercises
4.1. Install a development framework, based on either .NET or J2EE (using IBM Web-

sphere, Sybase EAServer, Novell exteNd, BEA WebLogic Server, or JBoss and Apache

Tomcat). Using your framework, construct a simple method, such as the GetTemp

method from Chapter 2, and expose it as a Web service. To test it you will have to

write a client application that connects to your server and requests the service.

4.2. Construct a Web service for unit conversion between units describing length, mass,

and time. For example, the Web service should be able to convert from centimeters to

inches. The WS would accept three inputs—a value, its unit, and the desired output

unit—and it would return one output—the value in terms of the output unit. Write a

WSDL description for this Web service, and then deploy the service on a Web server

by using one of the frameworks described in Exercise 4.1.

4.3. Construct a Web service for unit conversion into MKS units. This Web service would

be able to convert any length measure into meters, any mass measure into kilograms,

and any time measure into seconds. The WS input would be a value and its unit, and

the output would be the appropriate MKS unit and its value. Write a WSDL description

for this Web service, and then deploy the service on a Web server by using one of the

frameworks described in Exercise 4.1.





Chapter 5

Principles of Service-Oriented
Computing

The preceding chapters have taken us from a historical perspective of Web services to the

basic standards for realizing them, as well as current enterprise computing architectures and

programming approaches for implementing Web services. If we were content with using and

fielding simple Web services, the above topics would be more than adequate. However, if

we would like to develop and manage systems of real-life complexity, the above concepts are

merely a prologue to the underpinnings of the technology that we will need to develop.

A question often arises about the benefits of service-oriented computing and specific

approaches for it. There are two major answers to this question. One, service-oriented com-

puting enables new kinds of flexible business applications of open systems that simply would

not be possible otherwise. When new techniques improve the reaction times of organiza-

tions and people from weeks to seconds, they change the very structure of business. This

is not a mere quantitative change, but a major qualitative change. It has ramifications on

how business is conducted. Two, service-oriented computing improves the productivity of

programming and administering applications in open systems. Such applications are noto-

riously complex. By offering productivity gains, new techniques make the above kinds of

applications practical, thus helping bring them to fruition.

5.1 Use Cases

In order to motivate the full expanse of service-oriented computing that this book presents, it

would help to take a closer look at its main use cases—that is, its major application settings.

The interesting thing about these use cases is they are simple and straightforward. This

supports the view that service-oriented computing is not a set of futuristic technologies for

applications that may or may not matter, but a set of existing and emerging technologies that

71



72 Principles of Service-Oriented Computing

solve problems that have been with computer science for a while.

To help ground our examples, let us first consider at some length a few aspects of a

typical surgery division of a large hospital in the USA. A challenge in such a setting would

be to make the payroll, scheduling, and billing systems interoperate. Each of the systems

would likely be quite complex and involve its own user interfaces and databases and run on

different operating systems.

There are obvious reasons for ensuring that these systems interoperate. For example,

scheduling employees and operating rooms for surgery is a complex task; schedules are rarely

final and are frequently updated. This is so the availability of staff and key equipment can

be balanced with the unpredictable demand from patients needing surgical procedures with

various levels of urgency and advance notice.

Next, the staff must be compensated for their efforts via the payroll system. Just as for

scheduling, the mechanisms for payroll are complex, because various kinds of overtime rules

must be considered for the different categories of labor: nurses, residents, fellows, consulting

physicians, senior surgeons, anesthesiologists, radiologists, and so on.

Likewise, the billing system must also incorporate the schedule information. Billing is

extremely arcane in most businesses, and especially medicine. The billing system must not

only bill customers, but also deal with medical insurance companies and often with govern-

ment agencies (e.g., agencies for children, the elderly, retired government employees, and

veterans). Such agencies typically impose complex rules for valid billing and penalties for

the violation of such rules. For example, different rules apply across the USA as to how

hospitals may bill for the efforts of anesthesiologists during surgeries. In some parts of the

USA, a senior anesthesiologist may supervise up to four junior (resident) anesthesiologists.

The senior person time-shares his or her effort among four concurrent surgeries, whereas

each junior person is dedicated to one of the surgeries. However, if there is an emergency

and a fifth surgical procedure must be conducted under the supervision of the same senior

anesthesiologist, then that is tolerated, but the billing rate is severely reduced. If such a situ-

ation occurs, the billing system must be aware of it. Notice that the billing for a surgery on a

patient depends not only on the given surgery, but also on other apparently unrelated events.

Conversely, the scheduling system may work with some other decision-support tool to ensure

that there are enough anesthesiologists on staff and on call so that the overall billings by the

hospital are optimized.

5.1.1 Intraenterprise Interoperation

Intraenterprise interoperation is about achieving the interoperation of applications within an

enterprise. This set of problems is also known—mistakenly, in the view of the authors—as

enterprise integration. The classical problem here is to make different software components

work well together. These components would often have begun their existence as indepen-

dent, self-contained systems.

Considering only the interoperation aspects of the above problem, we can easily see that

several challenges must be overcome. First, there must be connectivity among the applica-



5.1 Use Cases 73

tions, nowadays readily ensured through the ubiquity of IP networks. Higher-level protocols

such as TCP and HTTP facilitate this further. Second, there must be an ability for the various

components to understand each other’s communications. The formatting aspects of these are

taken care of nowadays through the use of XML, especially with the help of XML Schemas,

which capture their syntax. However, challenges remain as to the meanings of the com-

munications. The meaning often is not encoded explicitly, but depends on how the various

systems process information. Consequently, one of the greatest challenges to achieving inter-

operation is reconciling the meanings used in the interacting components. The reconciliation

often presupposes that accurate declarative information models exist; in practice, such mod-

els often must be reconstructed, because they either would not have been built or were built

but not maintained. The information models involve several aspects of abstraction, which are

reviewed in Chapter 6.

Because the setting deals with legacy and other systems and application that operate

within an enterprise, the parties to the interaction can be more readily authenticated and

trusted. Various enterprise policies for authentication and authorization of actions apply and

compliance with them can be organizationally enforced, thus simplifying the management of

the system.

Service-oriented computing provides the tools to model the information and relate the
models, construct processes over the systems, assert and guarantee transactional properties,
add in flexible decision-support, and relate the functioning of the component software systems
to the organizations that they represent.

5.1.2 Interenterprise Interoperation

Interenterprise interoperation is fast becoming an important application setting for IT. Previ-

ously, enterprises interoperated through ad hoc means that required substantial human inter-

vention. Or, they used rigid standards such as Electronic Data Interchange (EDI), which led to

systems that were difficult to maintain. Recently, there has been growing interest in supply-

chain management and intelligent manufacturing, leading up to cross-enterprise processes

in general. The idea is that businesses must work together anyway. If they can streamline

their interactions through technology, they can improve their responses to information, reduce

overhead, and exploit emerging opportunities.

Let us consider our healthcare scenario again. As remarked above, a hospital needs to bill

a variety of external entities. These would be insurance companies and government agencies

(besides individual patients, whom we can ignore here since we are discussing enterprise

interoperation). The traditional approach would be to send printed paper bills, which would

be re-keyed in by the receiving party. Naturally enough, such approaches have largely disap-

peared in favor of online billing.

But online processing exposes a number of challenges of interoperation. The data for-

mats would need to be captured in some reliable manner, so that information formatted by

the hospital could be understood by the insurance companies and vice versa. However, con-

siderations of productivity suggest that a standard approach be used, so that the format could



74 Principles of Service-Oriented Computing

be processed via robust commercial tools, rather than through custom software. In recent

years, industry has converged on XML as the data format of choice. This is clearly a success.

However, it opens up questions of how the content of the data being communicated can be

understood and processed.

Service-oriented computing provides the same benefits as for intraenterprise interopera-
tion above. In addition, it provides the ability for the interacting parties to choreograph their
behaviors so that each may apply its local policies autonomously and yet achieve effective
and coherent cross-enterprise processes.

5.1.3 Application Configuration
Imagine that the hospital purchases an anesthesia information management system (AIMS) to

complement its existing systems. An AIMS would enable anesthesiologists to manage anes-

thetic procedures on patients in surgery better and to monitor, record, and report key actions

better, such as the turning on or turning off of various gases and drips. Such information can

help establish compliance with government regulations, ensure that certain clinical guidelines

are met, and support studies of patient outcomes. It is easy to purchase an AIMS, but not as

easy to install and use it (or any such system: this point is not just about AIMS). To intro-

duce such a system requires that the right interface be exposed by the new system and by the

existing systems. Since these systems would have been developed on different platforms and

may, in fact, run on different operating systems, adherence to standards for interconnections

is required for each.

We can assume that low-level connectivity is taken care of. However, it still leaves the

following challenges as in intraenterprise interoperation. One is messaging so that the sys-

tems can be operationally connected. Another is semantics so that the components understand

each other.

However, there is another challenge with introducing a new application. This is to con-

figure and customize its behavior. In the case of an AIMS, it must be populated with a

hospital-specific data model or terminology so that it displays the right user interface screens

to the hospital staff and logs the right observations. This model is governed by hospital pro-

cedures as well as the requirements imposed by the insurance companies and government

agencies with whom they interact. If the application is designed with the considerations of

service-oriented computing in mind, then it can be quickly configured and introduced into

existing business processes.

Service-oriented computing enables the customization of new applications by providing a
Web service interface that eliminates messaging problems and by providing a semantic basis
to customize the functioning of the application.

5.1.4 Dynamic Selection
Imagine that a hospital wishes to purchase supplies such as catheters. To carry out such pur-

chases efficiently requires that the hospital be able to interoperate with the catheter vendor—

a case of interenterprise interoperation. Now suppose that the hospital would like to pur-



5.1 Use Cases 75

chase catheters from whichever vendor offers it the best terms. In other words, the business

partner—the other enterprise with which to interoperate—would be chosen on the fly. Such

dynamic selection is becoming increasingly common as the possible gains of such flexibility

are recognized. If business partners can be selected flexibly, then they can be selected to

optimize any kind of quality-of-service criteria, such as performance, availability, reliability,

and trustworthiness.

Service-oriented computing enables dynamic selection of business partners based on
quality-of-service criteria that each party can customize for itself.

5.1.5 Software Fault Tolerance
Suppose a hospital is carrying out a business transaction with a partner and encounters an

error. It would be great if the interaction could be rewired to an alternative business partner

dynamically in a manner that is transparent to the overall process. To the extent that the state

of the interaction is lost, some means of recovery would be needed to restore a consistent

state and resume the computation with new business partners.

Service-oriented computing provides support for dynamic selection of partners as well
as abstractions through which the state of a business transaction can be captured and flex-
ibly manipulated; in this way, dynamic selection is exploited to yield application-level fault
tolerance.

5.1.6 Grid
Grid computing refers to distributed computing where several resources are made available

over a network, and are combined into large applications on demand. Grid computing is a

form of metacomputing and arose as the successor of previous approaches for large-scale

scientific computing. Building complex applications over Grid architectures has been diffi-

cult, which has led to an interest in the more modular kinds of interfaces based on services.

Accordingly, Grid services have been proposed in analogy with Web services.

Service-oriented computing enables the efficient usage of Grid resources.

5.1.7 Utility Computing
Following up on Grid-like environments, there has been a recent expansion of utility com-
puting, where computing resources are modeled as a utility analogous to electric power or

telecommunications. The idea is that enterprises would concentrate on their core business

and out-source their computing infrastructure to a specialist company. Leading companies

such as IBM and HP have made utility computing offerings; the one from IBM is called

autonomic computing, although that term is starting to be used generically as a technical

area for fault-tolerant computing. Utility computing presupposes that diverse computational

resources can be brought together on demand and that computations can be realized on phys-

ical resources based on demand and service load. In other words, service instances would be

created on the fly and automatically bound to configure applications dynamically.



76 Principles of Service-Oriented Computing

Service-oriented computing facilitates utility computing, especially where redundant ser-
vices can be used to achieve fault tolerance.

5.1.8 Software Development
Software development remains a challenging intellectual endeavor. Improvements are real-

ized through the use of superior abstractions. Services offer programming abstractions where

different software modules can be developed through cleaner interfaces than before. When

the full complement of semantic representations are employed, the resulting modules are not

only more easily customizable than otherwise, but the following holds:

Service-oriented computing provides a semantically rich and flexible computational model
that simplifies software development.

5.2 Service-Oriented Architectures
The above use cases provide a challenging set of requirements for any approach to computing.

While there are no free lunches in computer science, the requirements can be satisfied more

easily through an architecture that matches the essential properties of the above use cases.

Let us term such an architecture a service-oriented architecture (SOA).

The emphasis falls on the architecture because many of the key techniques are already

well understood in isolation. Practical success would depend on how well these techniques

can be placed in a cohesive framework—an architecture—and translated into methodolo-

gies and infrastructure so they can be applied in production software development. Recent

progress on standards and tools is extremely encouraging in this regard. There can be sev-

eral SOAs provided they satisfy the key elements of service-oriented computing, which are

introduced below.

The current incarnation of Web services emphasizes a single provider offering a single

service to a single requester. This is in keeping with a client-server architectural view of the

Web.

5.2.1 Elements of Service-Oriented Architectures
To realize the above advantages, SOAs impose the following requirements:

Loose coupling. No tight transactional properties would generally apply among the compo-

nents. In general, it would not be appropriate to specify the consistency of data across

the information resources that are parts of the various components. However, it would

be reasonable to think of the high-level contractual relationships through which the

interactions among the components are specified.

Implementation neutrality. The interface is what matters. We cannot depend on the details

of the implementations of the interacting components. In particular, the approach can-

not be specific to a set of programming languages.



5.2 Service-Oriented Architectures 77

Flexible configurability. The system is configured late and flexibly. In other words, the

different components are bound to each other late in the process. The configuration

can change dynamically.

Long lifetime. We do not necessarily advocate a long lifetime for our components. However,

since we are dealing with computations among autonomous heterogeneous parties in

dynamic environments, we must always be able to handle exceptions. This means that

the components must exist long enough to be able to detect any relevant exceptions, to

take corrective action, and to respond to the corrective actions taken by others. Com-

ponents must exist long enough to be discovered, to be relied upon, and to engender

trust in their behavior.

Granularity. The participants in an SOA should be understood at a coarse granularity. That

is, instead of modeling actions and interactions at a detailed level, it would be better to

capture the essential high-level qualities that are (or should be) visible for the purposes

of business contracts among the participants. Coarse granularity reduces dependen-

cies among the participants and reduces communications to a few messages of greater

significance.

Teams. Instead of framing computations centrally, it would be better to think in terms of

how computations are realized by autonomous parties. In other words, instead of a

participant commanding its partners, computation in open systems is more a matter of

business partners working as a team. That is, instead of an individual, a team of coop-

erating participants is a better modeling unit. A team-oriented view is a consequence

of taking a peer-to-peer architecture seriously.

Researchers in multiagent systems (MAS) confronted the challenges of open systems early on

when they attempted to develop autonomous agents that would solve problems cooperatively,

or compete intelligently. Thus, ideas similar to service-oriented architectures were developed

in the MAS literature. Although SOAs might not be brand new, they address the fundamental

challenges of open systems. Clearly the time is right for such architectures to become more

prevalent. What service-oriented computing adds to MAS ideas is the ability to build on

conventional information technology and do so in a standardized manner so that tools can

facilitate the practical development of large-scale systems.

5.2.2 RPC versus Document Orientation

There are two main views of Web services. Services can be understood in terms of the

RPC-centric view or the document-centric view. The former treats services as offering a set

of methods to be invoked remotely, i.e., through remote procedure calls. The latter treats

services as exchanging documents with one another. In both views, what is transmitted are

XML documents and what is computed with are objects based on or corresponding to the

XML documents. However, there is a significant conceptual difference.



78 Principles of Service-Oriented Computing

The RPC view sees the XML documents as incidental to the overall distributed compu-

tation. The documents are merely serializations of the business objects on which the main

computation takes place. The document-centric view considers the documents as the main

representations and purpose of the distributed computation. Each component reads, produces,

stores, and transmits documents. The documents are temporarily materialized into business

objects to enable computing, but the documents are the be all and end all of the computation.

The RPC view thus corresponds to a thin veneer of Web services over an existing applica-

tion. The application determines what functionality the services will support. The document

view more naturally considers Web services as a means of implementing business relation-

ships. The documents to be processed (and their relationships) determine the functionality of

the services. The business objects, such as there are, on either side of a relationship are local,

and should not be exposed to the other side.

For this reason, the document-centric view coheres better with our primary use case of

applying services in open environments. The RPC view is more natural for the use case of

making independently developed applications interoperate. What happens is that application

developers expose their application interface in the form of Web services, which can then be

bound to in the usual manner. If the applications are designed for method integration, then

the RPC view of services is natural for such interoperation. However, if the applications are

designed—as they should be—to function as independent components, then the document-

centric view would be natural even for application interoperation.

5.3 Major Benefits of Service-Oriented Computing

It is worth considering the major benefits of using standardized services here. Clearly any-

thing that can be done with services can be done without. So what are some reasons for using

services, especially in standardized form? The following are the main reasons that stand out.

• Services provide higher-level abstractions for organizing applications in large-scale,

open environments. Even if these were not associated with standards, they would

be helpful as we implemented and configured software applications in a manner that

improved our productivity and improved the quality of the applications that we devel-

oped.

• Moreover, these abstractions are standardized. Standards enable the interoperation of

software produced by different programmers. Standards thus improve our productivity

for the service use cases described above.

• Standards make it possible to develop general-purpose tools to manage the entire sys-

tem lifecycle, including design, development, debugging, monitoring, and so on. This

proves to be a major practical advantage, because without significant tool support, it

would be nearly impossible to create and field robust systems in a feasible manner.

Such tools ensure that the components developed are indeed interoperable, because



5.4 Composing Services 79

tool vendors can validate their tools and thus shift part of the burden of validation from

the application programmer.

• The standards feed other standards. For example the above basic standards enable

further standards, e.g., dealing with processes and transactions.

5.4 Composing Services

Although there can be some value in accessing a single service through a semantically well-

founded interface, the greater value is clearly derived through enabling a flexible composition
of services. Composition leads to the creation of new services from old ones and can poten-

tially add much value beyond merely a nicer interface to a single preexisting service. The

new services can be thought of as composite services.

From a business perspective too, intermediaries that primarily offer access to a single

service would have a tough time thriving or even surviving. Airline travel agents are a case

in point. Traditional travel agents provide a nice user interface: friendly and with a human

touch, but little more. However, airlines do not like to pay commissions for services that

merely repackage their offerings. As a result, the airlines compete with the travel agents

and reduce their commissions, slowly squeezing them out of business. This is as one would

expect where the offerings are conceptually simple, especially for frequent customers. By

contrast, package tour operators, who combine offers from airlines and other vendors, can

prosper. In other words, the increased complexity due to subtle compositions is essential for

intermediaries to flourish, because it provides an opportunity for offering greater value to

customers.

Service composition concepts involve enough intricacy so as to attract considerable inter-

est and to demand a careful analysis of the underlying principles. The need for principles is

greater as the basic infrastructure for Web services becomes more common. We address these

principles herein. Sometimes, the term composition is taken to mean a particular approach to

achieving composition, for example, by invoking a series of services. In the present usage,

however, composition refers to any form of putting services together to achieve some desired

functionality.

Composed Web services find application in a number of practical settings. For example,

portals aggregate information from a number of sources and possibly offer programmatic

facilities for their intended audience. The challenge to making an effective portal is to be able

to personalize the information presented to each user. Electronic commerce is another major

scenario where users would like to aggregate product bundles to meet their specific needs.

Virtual enterprises and supply-chain management reflect generalizations of the consumer-

oriented e-commerce scenarios, because they include more subtle constraints among a larger

number of participants.



80 Principles of Service-Oriented Computing

5.4.1 Goals of Composition
Most of the applications touted for Web services are simple and straightforward client-server

interactions. For example, an airline’s flight-schedule database could interact directly with a

PC user’s personal information and appointment software to book a flight; or software for a

personal database of contacts could automatically query a distant series of phone databases

to add missing numbers to its list. This sort of a scenario is not far-fetched at all. Even in the

early days of Web service standards, Southwest Airlines and Dollar Rent-A-Car developed a

prototype system that used SOAP to link Southwest’s Web site to Dollar’s reservation system,

so that airline customers could reserve a car along with their airline tickets [Metz, 2001].

Although useful, such applications are insufficient to drive the strong development and

deployment of Web services. The fruitful, and also the more challenging, applications require

services to be combined in ways that yield more powerful and novel uses. For example, the

airline’s flight schedule might also enable a fuel supplier to anticipate fuel purchases by the

airline and to alert its refineries to adjust their production rates. Or, a travel agency Web

site could combine the services of Southwest Airlines, Dollar Rent-A-Car, and Sheraton to

construct custom travel packages.

Service composition has been studied in the research literature for quite some time, but

it is now becoming an important theme in practical Web system development. The basic

idea behind service composition is simple. Web sites can be thought of as not only offering

content, but also providing services. For example, Yahoo! provides a news service and Ama-

zon provides a book selection service. We typically invoke these services by hand through a

Web browser, but a program could invoke them directly. Service composition on the Web is

about taking some existing services and building new customized services out of them. For

instance, you might find the latest news headlines and search for books that match those head-

lines. Another example is where you might take the news from one service, filter it through

a service that selects news based on a given user’s interests, and pass the selected news items

through a transcoding service to create a personalized Web page that a user could review

through a handheld device. Or, more conventionally, you could create a travel service that

invokes hotel, airline, and car rental services. In other words, you would create a workflow

over the existing services.

5.4.2 Challenges for Composition
The main advantage of Web services arises when we can compose them to create new ser-

vices. Unfortunately, much of the attention on Web services has been focused on the lower-

level, infrastructural matters, often down to encoding syntaxes and unnecessarily narrow

means of invoking services. For Web services to be composed effectively requires an under-

standing of deeper concepts. These concepts have been developed in diverse parts of com-

puter science, especially heterogeneous databases, distributed computing, artificial intelli-

gence, and multiagent systems.

Consider a simple business-to-consumer (B2C) situation, where a company sells digital

cameras over the Web, combining an on-line catalog with up-to-date models and prices, a



5.4 Composing Services 81

Internet
SellCamera

Web Service

Shipping

Database

Sales

Database

Inventory

Database

User

Figure 5.1: An example of a business-to-consumer (B2C) transaction environment, where

cameras are sold to customers over the Web

valid credit-card transaction, and a guaranteed delivery. The B2C transaction software, as

shown in Figure 5.1, would

• Record a sale in a sales database.

• Debit the credit card.

• Send an order to the shipping department.

• Receive an OK from the shipping department for next-day delivery.

• Update an inventory database.

However, some problems can arise: What if the order is shipped, but the debit fails? What

if the debit succeeds, but the order was never entered or shipped? If this were a closed

environment, then transaction processing (TP) monitors (such as IBM’s CICS, Transarc’s

Encina, or BEA System’s Tuxedo) can ensure that all or none of the steps are completed and

that the systems eventually reach a consistent state.

But suppose the user’s modem is disconnected right after he clicks on OK. Did the order

succeed? Suppose the line went dead before the acknowledgment arrives. Will the user

order again? The basic problem is that the TP monitor cannot get the user into a consistent

state! The user is part of the software system’s environment, which is open because it can

accommodate any user. The TP monitor is able to control no more than the part of the

environment that is within its scope.

Possible solutions for an open environment include

• The server application could send email about credit problems, or detect duplicate

transactions.

• A downloaded Java applet could synchronize with the server after the broken con-

nection was reestablished and recover the transaction; the applet could communicate



82 Principles of Service-Oriented Computing

using HTTP, or directly with server objects via CORBA’s Internet Inter-ORB Protocol

(IIOP) (where an ORB is CORBA’s object request broker) or Remote Method Invoca-

tion (RMI).

• If there are too many orders to process synchronously, they could be put in a message

queue, managed by a Message Oriented Middleware (MOM) server (which guarantees

message delivery or failure notification), and customers would be notified by email

when the transaction is complete.

Email is typically used for people to communicate with each other, so in using email, the

server is behaving like an intelligent agent. We will have more to say about the emerging

agent-like aspects of the Web and its services in later chapters.

Notice that although the above example considers a user dealing with a particular enter-

prise, the problem arises in more acute form in business-to-business settings. If our little

camera store were considered as merely a component in a large supply network, it would

have no hope of forcing the other parties to conduct their local transactions in any partic-

ular manner or to reliably converge to a state that would be consistent across the system.

Deeper models of transactions and of business processes are needed to ensure that the correct

behavior is realized in such cases.

The current specifications for Web services do not address transactions or specify a trans-

action model. The Organization for the Advancement of Structured Information Standards

(OASIS) is developing one, but the view of most implementors is that SOAP will manage

transactions—somehow. Without guidance from a standard or an agreed-upon methodology

by the major vendors, transactions will be implemented in an ad hoc fashion, thus defeating

the hopes for interoperability and extensibility.

Some of the other problems for composed services are

• Security will be more difficult, because more participants will be involved and the

nature of their interactions and their needs might be unanticipated by the designers of

the services.

• There will be incompatibilities in vocabularies, semantics, and pragmatics among the

service providers, service brokers, and service requesters.

• As services are composed dynamically, performance problems might arise that were

not anticipated.

• Dynamic service composition will make it difficult to guarantee the quality of service

(QoS) that applications require.

Two fundamental styles for delivering Web services are emerging, characterized as RPC-

style (favored by Sun) and document-style (favored by Microsoft, and supported by Sun).

In the latter style, the body of a SOAP message would not have the call-response semantics

of most programming languages, but rather would consist of arbitrary XML documents that

use WSDL to describe how a service works. In the long term the document-style is likely to



5.5 Spirit of the Approach 83

prevail, because it is more declarative (rather than procedural), more asynchronous, and more

consistent with the document-exchange underpinnings of the Web.

5.5 Spirit of the Approach
Figure 2.1 shows the generic architecture for Web services. Although this is a simple picture,

it radically alters many of the problems that must be solved in order for the architecture to

become viable on a large scale.

• To publish effectively, we must be able to specify services with precision and with

greater structure. This is because the service would eventually be invoked by parties

that are not from the same administrative space as the provider of the service and

differences in assumptions about the semantics of the service could be devastating.

• From the perspective of the registry, it must be able to certify the given providers so

that it can endorse the providers to the users of the registry.

• Requestors of services should be able to find a registry that they can trust. This opens

up challenges dealing with considerations of trust, reputation, incentives for registries

and, most importantly, for the registry to understand the needs of a requestor.

• Once a service has been selected, the requestor and the provider must develop a finer-

grained sharing of representations. They must be able to participate in conversations to

conduct long-lived, flexible transactions. Related questions are those of how a service

level agreement (SLA) can be established and monitored. Success or failure with SLAs

feeds into how a service is published and found, and how the reputation of a provider

is developed and maintained.

The keys to the next-generation Web are cooperative services, systemic trust, and under-
standing based on semantics, coupled with a declarative agent-based infrastructure.

The size and dynamism of the Web presents problems, but it fortuitously provides a means

for solving its own problems. For example, for a given topic there might be an overload

of information, with much of it redundant and some of it inaccurate, but a system can use

voting techniques to reduce the information to that which is consistent and agreed upon.

For another example, there might be many potential service providers competing for many

potential clients, and some of the providers might not be trustworthy, but a system can use a

Web-based reputation network to assess credibility. Finally, different sites might use different

ontologies, but a multiplicity of ontologies can yield a global, dynamically formed, consensus

ontology. The subsequent chapters of this book address each of these concepts.

5.6 Exercises
5.1. Consider the basic Web service architecture and its main components introduced above:

WSDL, SOAP, and UDDI. List and briefly explain a total of six shortcomings of these



84 Principles of Service-Oriented Computing

three components. Two sentences each would be adequate to convey the essential

points, although you could certainly present more in-depth analyses.



Part II

Description

85





Chapter 6

Modeling and Representation

Services have several important static and dynamic aspects, roughly dealing with their under-

lying information and process models, respectively. When services are to be understood,

implemented, modified, discovered, selected, engaged, or composed, it is essential that these

key aspects be captured perspicuously. This is the primary motivation for modeling services.

The main motivation for modeling a resource in an enterprise is that the model captures

the requirements for the resources and the rationale behind their design. Thus models facili-

tate reuse of the resource within the enterprise. Further, they enable integrity constraints on

the given resource to be stated so that the resource (or instances of it) can be validated. Even

more importantly, when a model exists, consistency analysis to discover errors can be per-

formed on the model itself, perhaps in conjunction with the models of other resources, instead

of on the actual resources involved. Models can be used as a basis for tracking changes in

requirements and to analyze the impact of changes. Lastly, the models can be taken as inputs

by various software engineering frameworks and tools to help in the generation of the neces-

sary data models, application stubs, and interfaces.

But one important respect in which services go beyond traditional settings is that they

are meant to be used in multiple contexts. That is, models for services apply both in terms

of how the services are implemented and how they are used by others. For complex service

implementations, we would need to model the databases and knowledge bases, applications,

workflows, and the organizational roles involved. For complex service usages, formal markup

is needed not only for the services themselves, but also for the needs and preferences of the

users for whom the services are composed and executed.

As explained in Section 6.2.1 below, the most perspicuous models are those that are

declarative, capturing the content of what is being represented without over-constraining how

the representations are used.

87



88 Modeling and Representation

6.1 Modeling to Enable Interoperation

When we build a conceptual model for a service, we rely upon our knowledge of the domain

in which the service will be embedded, i.e., of the universe of discourse. A model of a service

is useful for all the reasons discussed at the beginning of this chapter. Most importantly, the

model helps us design the proper interactions among services, generally through a composi-

tion consisting of or otherwise involving the modeled services.

To achieve the desired interactions among services, we must back off from the service

implementations and consider their conceptual schemas. Relating conceptual schemas essen-

tially involves finding common ground between the universes of discourse of the services.

When the conceptual schemas are sufficiently rich as to capture the dimensions of abstrac-

tion introduced in Section 6.3, the interrelationships among the involved services can support

their effective interaction.

Requirements
Analysis

Conceptual
Schema

Background
Knowledge

Universe of
Discourse

Universe of
Discourse

Requirements
Analysis

C
O

M
P

R
E

H
E

N
D

Conceptual
Schema

Service
Interface

Service
Interface

Design
Service

Implementation

Design
Service

Implementation

M
A

P

IN
T

E
R

O
P

E
R

A
T

E

Figure 6.1: Modeling the composition of services at a conceptual level

Figure 6.1 shows how two services may be enabled for interoperation. Going left to right

along the top branch shows how a traditional application that maps to a single service may be

modeled and constructed. It helps to review this figure going from right to left. If we would

like the two services to interoperate, we must make sure that their models are interrelated. The

point of modeling is to extract dynamic behavior into a static representation. How the models

relate to one another statically determines how the services interoperate dynamically. But the

models cannot be interrelated unless we can establish that they share the same universe of

discourse. Ultimately, it is the universe of discourse that determines the overlaps between the

models and thus makes the interoperation meaningful. Below we discuss how the universe of

discourse can be computationally represented in an ontology, and how such shared universes

can be built and used.



6.2 Integration versus Interoperation 89

6.2 Integration versus Interoperation
Often we hear discussion of integrating schemas, databases, workflows, or services. Integra-

tion refers to the idea of putting diverse concepts together to create an integrated whole. Hav-

ing an integrated model would facilitate the services working well together. This contrasts

with interoperation, which refers to making services work together by sharing the appropri-

ate messages and using narrow, agreed-upon, interfaces, but without any single conceptual

integration. In general, interoperation is what we desire and integration is often the wrong

way to go about trying to obtain it. This is because integration can be expensive to achieve.

Also, integration is fragile, meaning that when one of the integrated services changes, it may

affect the integrated whole. Therefore, it is wiser to motivate service composition from the

perspective of interoperation.

Interoperability can be discussed at the levels of syntax and semantics. Standard infor-

mation interchange formats, e.g., those based on XML, solve the syntax problem, but the

semantics problem has several aspects.

6.2.1 Declarative versus Procedural Representations
As before, there is a question of procedural versus declarative representations. Declara-

tive representations have the advantages of enabling standardization, optimization through

sophisticated tools, and improved productivity in terms of capturing and reusing knowledge.

However, declarative approaches sometimes have a greater startup cost, because they require

deeper and cleaner conceptualization of the domain of interest. Further, declarative concep-

tualizations rely upon a reasoning engine for processing and such engines can have poor

performance.

Throughout the history of computing, declarative approaches have been developed many

times, usually in the face of opposition from those who consider performance as paramount.

Each time, the productivity gains they offer have far outweighed the loss in performance.

Tools with higher performance are soon developed and improvements in hardware and sys-

tems reduce the effect of any loss of performance as well. For example, higher-level pro-

gramming languages and compilers were initially slower than expert assembly language pro-

grammers, but today no one would seriously consider developing a large business application

in assembly language. Likewise, database query languages such as the Structured Query

Language (SQL) faced much opposition initially, but soon went on to deliver sufficient per-

formance with greater productivity than procedural techniques.

Web applications, because of the autonomy and heterogeneity of the constituents, demand

flexibility and open representations. Consequently, they greatly shift the trade-off in favor of

declarative modeling.

6.2.2 Interoperation
Figure 6.2 describes how interoperation approaches have evolved over the years, bringing

us closer to a service-oriented architecture (SOA) with each step. The earliest approach to



90 Modeling and Representation

achieving interoperation involved forcing the interoperating parties to fit into each other’s

requirements. Typically, one of the parties would dominate because of its business or polit-

ical clout and the others would comply with whatever arbitrary encoding and networking

standards it adopted. With this approach, labeled direct integration, the master computation

must invoke methods in the slave computation. To pass parameters to invoke such methods

and to process their results presupposes a tight integration of the data structures between the

interacting parties.

Application

Transform

Application Application Application Application

Integration EDI XML Portal + Workflow Solution

API

solution

Standard Data

Format

XML-Based Data

Exchange Format

Application Application Application Application Application

Distributed application: XML +

Web services + workflow

TransformationTransformation

Transform Transform Transform Transform

Transform Transform Transform Transform Transform

Figure 6.2: Interoperation scenarios

Traditional enterprise application integration (EAI) is a step toward increased flexibility

wherein there is a common data exchange format. The format would be something propri-

etary, but having it explicit enables interacting parties to be added more easily than in the

previous case. A more recent approach bases the common data exchange format on XML,

and is viewed as part of the middleware. It can be produced, parsed, validated, and trans-

formed through commercial, general-purpose tools.

The state-of-the art approach for EAI would involve distributed workflows in which a

number of application components are orchestrated over the Web. The components can be

thought of as exposing functionality in the style of Web services and of composing func-

tionality as in a portal. Here the middleware does more than merely translate data formats.

It also handles process dependencies among the components. This is clearly an improve-

ment, because it separates not only the data flow, but also the top-level control flow, from the

application logic.



6.2 Integration versus Interoperation 91

6.2.3 Layered View

Interoperation between several applications or processes can conveniently be viewed as a set

of layers, where each layer provides a higher-level model of the processes.

For distributed applications to interoperate, they must be able to exchange information

successfully. For the information to be communicated, it must be represented in low-level

data, but the desired semantics needs to be associated with the information. Putting aside

ad hoc approaches, the semantics should capture the dimensions of abstraction discussed

above. As discussed in Chapter 2, for service-oriented computing, XML has become the low-

level representation for information across components. Consequently, information from the

application layer should be conveyed down to the data systematically when it is serialized

into an XML document; conversely, the data should be conveyed up to the application layer

when the XML document is materialized.

The generation and consumption of the XML documents can be understood in terms

of a series of transforms from the semantic to the syntactic layers. Consider an application

executing at one of the business partners in an instantiation of an SOA. The application, which

incorporates the business logic and specifies internal object representations, can be thought

of as the top layer. In principle, the application itself may expose further representations to its

users and a rich organizational structure could cover the various business partners, but those

would take us from computational representations into the human organizational aspects and

cannot readily be modeled, at least for the present purposes.

We can imagine that the application at a given business partner creates and reasons with

an object graph representing the entities and their relationships. The application is supported

by an object representation layer. The application invokes that layer by constructing meta-

data for its object graph. The metadata is sufficiently expressive as to convey which onto-

logy languages and ontologies are used, how they are implemented, and how cardinality and

aggregation are expressed. The metadata describes, e.g., how ordered relationships or n-ary

relationships are implemented, or how typing of nodes is represented in the object graph. The

application passes both the object graph and its metadata to the object layer. This information

is forwarded to the syntax layer, which generates an XML document containing the object

graph, and references an XML schema document needed to extract the object graph from the

main XML document. On the other end of the communication link, the software modules of

the interacting business partner begin executing. They reverse the above process, culminating

in the delivery of a high-level object graph to the application in that business partner.

In this scheme, the idea of the business partners interacting through documents that are

described via separate schema documents comes from the SOA. The idea of separating the

conceptual, logical (or representational), and syntactic layers is a simple variant of the three-

level models in information systems, where a conceptual schema is separated from a logical

schema, which is itself separated from the physical layer. In a typical database application,

the object graph resides in the application code and is modeled via UML or entity-relationship

diagrams; the representational or object layer corresponds to the relational schemas, and the

syntactic representation to the physical rendition of the database on disk.



92 Modeling and Representation

6.2.4 Interoperation Trends
Ever since enterprise integration came into its own, interoperation has gone through a series

of steps in its evolution. The earliest generation involved point-to-point communication; the

latest, which is only now beginning to emerge, allows flows of computation that respect the

autonomy and heterogeneity of the various components.

Table 6.1: A historical view of interoperation levels

Generation First Second Third Fourth

Communication TCP/IP CORBA HTTP Messaging

Information SQL XML RDF OWL

Application RPC EDI SOAP Protocols

Configuration Hard-coded Directories UDDI Selection

Table 6.1 illustrates the historical development of the main levels of interoperation. The

term protocols as used in Table 6.1 refers to business protocols, such as for payment and

negotiation, and not to low-level protocols such as for request-response interactions. Of

course, business protocols would be realized using such lower-level protocols. Likewise,

selection refers to the trusted selection. Also, messaging refers to reliable messaging, which

would build on underlying protocols such as HTTP.

6.3 Common Ontologies
A shared representation is essential for the mutual understanding of communications. For

humans, the physical, biological, and social world that they inhabit provides a basis for

mutual understanding. For computations, a common ontology provides the basis.

An ontology is a kind of a knowledge representation describing a conceptualization of

some domain. An ontology specifies a vocabulary including the key terms, their semantic

interconnections, and some rules of inference.

In general terms, as a representation for a universe of discourse, an ontology need apply

not merely to information that is stored and manipulated, but also to any area of intellectual

endeavor. For example, we can have an ontology for security concepts, which formalizes

terms such as roles, credentials, authentication, privileges, granted privileges, and revoked

privileges. Such an ontology could be used to compare security approaches and perhaps

make them function in a cohesive manner. As another example, we might build an ontology

of student life, which encodes home, work, commuting, courses, prerequisites, theses, grad-

uation, internships, financial aid, and so on. Such an ontology provides a basis for students

to talk intelligibly with each other about their lives even if they have not been acquainted

previously. An ontology might delve into its universe of discourse to the desired level of

detail. For example, it might or might not be worthwhile to represent teaching assistants in



6.3 Common Ontologies 93

the above ontology of student life. However, if we are going to talk about teaching assistants,

we would have to represent them in the ontology. The same consideration applies in com-

putational settings: an ontology facilitates conversations and must be (or become) complete

enough to sustain the desired conversations.

If there were a central authority with a global ontology to which all Web components

adhered, and if the components of the Web were static, and if the identity of the components

were fixed, and if there were a small fixed number of component types, then the challenges

of interoperation and understanding would disappear, but the Web would no longer be the

vibrant useful place upon which the global economy and modern society increasingly rely.

However, two architectural approaches have emerged for achieving mutual understanding

that do not place such strong restrictions on the Web. The first, a client-server approach to

information management, has produced a plethora of search and query tools that are mostly

based on keywords. Keywords are better for text than for the structured data found in most

databases, but are completely unsuitable for information sources that do not adhere to a

uniform semantics, especially the autonomously maintained databases and services being

deployed widely.

A second, more compelling, approach, which achieves interoperation among informa-

tion sources, applications, and users, introduces software agents. An agent can serve as a

mediator, translator, or information broker. Here the term agent may be understood as an

active, autonomous software component that serves as a critical part of the middleware. The

deeper technical consequences of this definition are revisited in Chapter 15. In simple terms,

the major task for the agents is to reconcile the varied semantics of the mostly autonomous

resources in a manner that is scalable across large numbers of sources. This is the essence of

cooperation that must be incorporated in a viable SOA.

For either approach, ontology-based interoperation provides the best solution, especially

in environments with heterogeneous semantics. Ontologies can capture both the structure and

semantics of information environments. An ontology-based search engine can handle both

simple keyword-based queries as well as complex queries on structured data. Reconciliation

can be accomplished through the use of a global ontology to which the semantics of the

individual resources can be related.

Ontologies are described at greater length below. The subsequent chapters describe some

emerging approaches that seek to satisfy the above considerations in a decentralized, flexible

manner that is compatible with service-oriented computing.

6.3.1 Ontologies: A Definition

An ontology is a computational model of some portion of the world. It is often captured in

some form of a semantic network—a graph whose nodes are concepts or individual objects

and whose arcs represent relationships or associations among the concepts. The network is

augmented by properties and attributes, constraints, functions, and rules, which govern the

behavior of the concepts.

Formally, an ontology is an agreement about a shared conceptualization, which includes



94 Modeling and Representation

frameworks for modeling domain knowledge and agreements about the representation of

particular domain theories. Definitions associate the names of entities in a universe of dis-

course (for example, classes, relations, functions, or other objects) with human-readable text

describing what the names mean, and formal axioms that constrain the interpretation and

well-formed use of these names.

For individual information systems, or for the Internet at large, ontologies can be used to

organize keywords and database concepts by capturing the semantic relationships among the

keywords or among the tables and fields in a database. The semantic relationships give users

an abstract view of an information space for their domain of interest.

6.3.2 A Shared Virtual World

How can such an ontology help our software agents? It can provide a shared virtual world

in which each agent can ground its beliefs and actions. When we talk with a human travel

planner, we rely on the fact that we all live in the same physical world containing planes,

trains, and automobiles. We know, for example, that a Boeing 777 is a type of airliner that

can carry us to our destination.

When our agents talk, the only world they share is one consisting of bits and bytes—

which does not allow for a very interesting discussion. An ontology (see Figure 6.3) gives

the agents a richer and more useful domain of discourse. A communication protocol specifies

the syntax but not the semantics of a message. However, a more flexible protocol would allow

the agents to state which ontology they are presuming as the basis for their messages.

Suppose our agent interacts with our travel planner’s agent. Suppose both agents have

access to a common ontology for travel (Figure 6.3), and suppose their agent tells our agent

about a flight on a Boeing 777. Suppose further that the concept “Boeing 777” is not part

of the travel ontology. How could our agent understand? The travel planner’s agent could

explain that a Boeing 777 is a kind of “Commercial Transportation Device,” which is a con-

cept in the travel ontology. Our agent would then know the general characteristics of a Boeing

777. The relationships from the common ontology to the local representation of a service con-

sumer or provider are termed articulation axioms or mappings. These axioms help us infer

how a term, e.g., Airliner, used in the schema of a service corresponds to another term, e.g.,

Airplane, used in the schema of an application.

Other categories and examples of mappings from our wire example are given below. Here

O1 and O2 are the ontologies whose concepts are being compared and related. We can

imagine that each of the ontologies is for an application or information resource.

• Term-to-term (one-to-one), e.g.,

hookupWireO1 ≡ wireO2

• Many-to-one, e.g.,

solidWireO1(x, size, color) ∧ strandedWireO1(x, size, color)
≡ wireO2(x, size, color, (Stranded|Solid))



6.3 Common Ontologies 95

Seating

Arrangement

Airplane

Transportation

Device

nonNegativeInteger

seats

nonNegativeInteger

range

numpassengers

Airliner

Flight

Airport

to from

equipment

Commercial

Transportation

Device

Public

Transportation

Device

Itinerary

Location
Class of

Service

class

to Leg

from

uses

1
*

Boeing

777

JumboJet

Common Travel

Ontology

Travel Agent Service
User’s Agent

Figure 6.3: Ontologies and articulation axioms. Here a service user’s application and a ser-

vice provider’s information source are related to a common ontology (dotted lines represent

articulation axioms). Consequently, their schemas become comprehensible to each other

• Many-to-many, e.g.,

solidBlueWireO1(x, size) ∧ solidRedWireO1(x, size)∧
strandedBlueWireO1(x, size) ∧ strandedRedWireO1(x, size)
≡ solidWireO2(x, size, (Red|Blue))
∧strandedWireO2(x, size, (Red|Blue))

Finding such mappings is difficult, and there have been many research attempts to provide

automated help. All of the attempts extend one of the following two basic approaches:

• Extensional approach. If there are a number of instances of predicate assertions from

different ontologies, as might be obtained from a database, then clustering can be used

to identify and match enumerated predicate terms.

• Intensional approach. Substring matching can be used on predicate names, where



96 Modeling and Representation

enumerated attributes (as described in Section 6.7) might be included in the predicate

names.

A variation of the extensional approach—one based on a consensus—is described in Sec-

tion 9.4.

6.3.3 Dimensions of Abstraction
Information resources are associated with a variety of constraints that must be discovered

and represented as parts of the models of those resources. These constraints guide how the

models for the information resources can be related to one another in an effective manner.

These constraints can be thought of as running over different dimensions of abstraction:

Data. The data abstractions apply to the data models underlying the information resources.

These include domain constraints on the values for data items (e.g., something is an

integer), value range constraints (e.g., Price ≥ 0), and whether null values are allowed

or disallowed.

Structure. Structural constraints deal with the relationships among concepts that underlie

schema and view models, for example, as captured via entity-relationship or class dia-

grams. These include identities among various terms (e.g., securities are stocks), spe-

cializations and generalizations of domain concepts (e.g., stocks are a kind of liquid

asset), and integrity constraints (e.g., each stock must have a unique SEC identifier).

We classify other semantic properties of the data, which are needed to characterize the

meaning of the data. For example, even something as straightforward as stock prices

can hide a lot of semantic complexity. The units are rarely specified explicitly and may

change (as they did in Europe with the introduction of a new currency); the precision

can change, such as from prices in 8ths of a dollar to 100ths (cents) (as occurred in

the USA in the 1990s). Historical data about the Madrid Stock Exchange changed

from daily averages to closing prices. Thus an application that deals with services that

produce stock prices as input would need to understand a number of details about those

services—details that might not be modeled well if the service implementors are simply

passing along data from some legacy databases. The legacy databases might have

worked all right because a matching application might have hard-coded the requisite

knowledge. But when you expose the information through a service, then the meaning

needs to be clear—or any resulting computation would be bogus.

Other structural properties characterizing semantic relationships among resources also

help in understanding the relationships. One class of such relationships is the value
map. A value map related the values produced by two services. For example, Standard

and Poor’s (S&P) and Moody’s are two financial rating agencies that assess the qual-

ity of financial institutions and corporations in terms of their ability to pay back their

debt. Their ratings, reflecting different criteria, have different ranges and thus must be

mapped to one another. For instance, we may assume that S&P’s A+ rating corresponds



6.3 Common Ontologies 97

to Moody’s A rating. The relationship is clearly domain-dependent and often heuristi-

cally determined. However, our general approach must accommodate such mappings.

Value maps are discussed at length in Section 6.3.4.

Process. How information is processed by different resources is crucial, especially when we

would like the resources to interoperate. Process abstractions include models of various

key procedures to capture the semantics of the externally visible operations. Sometimes

the externally visible operations might have a variety of possible instantiations on the

underlying data, which may have some bearing on some other constraints. These would

be captured through the preferences for view updates.

More generally, process models are necessary to support the following:

• Exception handling. What contingency strategies are used to handle exceptions?

Major variants of the strategies include (1) ignore the indicated exceptions, (2)

redo the subtask that produces the exception, (3) retry the entire task if any sub-

task throws an exception, and (4) compensate for the subtask that threw an excep-

tion by semantically undoing some of the other subtasks.

• Flow. Where should requests or results be forwarded so as to produce composed

services and what temporal constraints and deadlines apply? For example, should

tax data be reported every quarter? These influence the orchestration and choreo-

graphy of services, as introduced in Chapter 13.

• Preferences. If data is replicated at several sites, what are the preferences for

accessing and updating it, possibly based on recency or accuracy of the data, or

the capability of the site?

Policy. Different resources often have different policies for security and authentication, which

characterize the rights of different roles or parties to access, create, update, or delete

information at the resources. For example, customers can access all of their accounts,

except blind trusts. Similarly, different resources would have different standards to

establish the identity of the parties playing various roles. Lastly, they would have dif-

ferent policies for bookkeeping (e.g., logging all accesses).

6.3.4 Value Maps
The above discussion introduced value maps. Let us now take a closer look at how a value

map can be constructed and used. As an example of a real-life business situation where value

maps are necessary, Table 6.2 shows possible ratings that are given by leading insurance

company raters. The ratings indicate the financial strength of the insurance companies that

are rated, roughly meaning that an insurance company with higher ratings is believed to be

less likely to go bankrupt when you file your claim. The rating agencies use proprietary

techniques to come up with their ratings.

The ratings given in Table 6.2 are sorted best to worst for each rating agency, but no

particular relationship among the ratings of different agencies is asserted. There may be



98 Modeling and Representation

Table 6.2: Grading schemes used by five leading insurance company rating agencies in the

USA [Wiegold, 1997, page 134]

A. M. Best Duff & Phelps Moody’s Standard & Poor’s() Weiss

A++ AAA Aaa AAA A+
A+ AA+ Aa1 AA+ A

A AA Aa2 AA A−
A− AA− Aa3 AA− B+
B++ A+ A1 A+ B

B+ A A2 A B−
B A− A3 A− C+
B− BBB+ Baa1 BBB+ C

C++ BBB Baa2 BBB C−
C+ BBB− Baa3 BBB− D+
C BB+ Ba1 BB+ D

C− BB Ba2 BB D−
D BB− Ba3 BB− E+
E B+ B1 B+ E

F B B2 B E−
B− B3 B− F

CCC Caa CCC

DD Ca R

C

business reasons to relate the different ratings, e.g., to build consolidated lists of insurance

companies that have been rated by one or more of the rating agencies. How can we relate the

ratings of the different agencies?

Notice that Duff & Phelps and Standard & Poor’s (S&P) use sets of grades that are almost

identical (the only difference is in the lowest grade), but that does not entail that the meanings

of the grades (i.e., the reasoning behind the grades) are in agreement. However, it might be

reasonable to assume that the agencies are referring to the same inherent concept of reliability.

Thus we can try to construct a mapping among the different rating schemes. In the case of

Duff & Phelps and S&P, a straightforward mapping may appear reasonable and would be

technically obvious.

However, when the agencies use different numbers of grades, a trivial mapping between

their grades is not possible. Interpreting the ratings as recommendations, we can infer at best

that any acceptable mapping will be order-preserving.

This discussion can be cast more generally in the form of value sets and value mappings.

A grading scheme in the above sense is a kind of value set. To formalize this concept, let

each value set be defined as a pair 〈V,≺〉, where V is the set of values allowed in the given

set and ≺ is the strict partial order among the values. Then a mapping mab from a value set



6.3 Common Ontologies 99

〈Va,≺a〉 to another value set 〈Vb,≺b〉 is given by a (partial) function from Va to Vb. Since

a mapping is a function, it must be unambiguous, meaning that a value from one set may be

mapped to no more than one value in the other set.

Typically, for a mapping mab, there will also be an inverse mapping from Vb to Va, which

we can notate mba. A mapping and its inverse would generally need to be designed together.

A mapping mab and its inverse mba may be subject to the following properties:

Totality. (∀v ∈ Va : mab(v) ∈ Vb). We would usually require totality to ensure that we

could map any value that came about from the given value sets. Unless the value sets

in question had the same cardinality, both a mapping and its inverse would not be total

unless at least one of the mappings was not an injective (i.e., not a one-to-one) function.

Order preservation. (∀v1, v2 ∈ Va : v1 ≺a v2 ⇒ mab(v1) �b mab(v2)). Notice that the

consequent uses � instead of ≺, because the mapped values may need to coincide—

especially when the target value set has a smaller cardinality, but even otherwise.

Consistent inversion. (∀v ∈ Va : mab(mba(mab(v))) = mab(v)). That is, a mapping

should be such that the inverse of the inverse of the result of mapping a value is the

same as the result of mapping a value. In other words, the inverses cancel out when

applied to the result of mapping a value. Notice that, in general, we cannot require

(∀v ∈ Va : mba(mab(v)) = v), because often we may wish to map two or more values

to the same target value; thus the inverse of a mapped value may not be the original

value. That is, a mapping and its inverse do not necessarily cancel out.

The above definitions are stated for one direction of the mapping, from value set 〈Va,≺a〉
to value set 〈Vb,≺b〉. In general, we would need to ensure explicitly that the necessary

properties hold in both directions. When each of a pair of mappings satisfies consistent

inversion, then we say that the mappings are consistent inversions of each other. Consistent

inversions do not entail order preservation.

Figure 6.4 shows possible value maps between the ratings of A. M. Best and Moody’s.

Although the two value maps are similar, they have a subtle difference. If you compare the

mappings from Moody’s to A. M. Best, you will notice that, in Figure 6.4(a), Aaa and Aa1

are mapped to A++, Aa2 to A+, and Aa3 to A. By contrast, in Figure 6.4(b), Aaa is mapped

to A++, Aa1 to A+, Aa2 to A, and Aa3 to A−. This is only a slight shift in the mappings.

Why is it potentially important? This shift causes the map of Figure 6.4(b) to violate the

property of consistent inversion in each direction. When that property is violated, it means

we cannot partition the values into those that map well to each other. Exercise 6.8 asks you

to study these value maps more closely.

Notice that just because two value sets have the same cardinality does not mean that we

must map their values sequentially. Figure 6.5 shows a less obvious value map between two

of the grading schemes introduced above. This particular value map is not parsimonious.

However, it can be justified as follows. Imagine that the S&P grading scheme corresponds to

the natural numbers 1, 2, and so on, whereas the Duff & Phelps grading scheme corresponds

(in the same order) to the following real numbers: 1, 1.4, 3, 3.4, and so on. Now, going from



100 Modeling and Representation

A++

Aaa

A.M. Best Moody’s

A+

Aa1

A

Aa2

A-

Aa3

B++

A1

B+

A2

B

A3

B-

Baa1

C++

Baa2

C+

Baa3

C

Ba1

C-

Ba2

D

Ba3

E

B1

F

B2

B3

Caa

Ca

C

A++

Aaa

A.M. Best Moody’s

A+

Aa1

A

Aa2

A-

Aa3

B++

A1

B+

A2

B

A3

B-

Baa1

C++

Baa2

C+

Baa3

C

Ba1

C-

Ba2

D

Ba3

E

B1

F

B2

B3

Caa

Ca

C

(a) A consistent value map
(b) A value map that violates

consistent inversion

Figure 6.4: Consistent and inconsistent value maps between A. M. Best and Moody’s ratings

(note the changed mapping for A. M. Best’s B++ rating

Duff & Phelps to S&P, the best match for AAA (i.e., 1) and AA+ (i.e., 1.4) would be AAA

(i.e., 1), and nothing would map to AA+. However, in the reverse direction, we would need

to map AA+ (i.e., 2) to something, and the the best match for it would be AA+ (i.e., 1.4).

The value sets of Table 6.2 are all finite. In general, this need not be the case. Value sets

may be infinite, in which case they may be modeled as discrete and unbounded on one end

(like the natural numbers), discrete and unbounded on both ends (like the integers), dense

(like the rational numbers), or continuous (like the real numbers). The above assumes that

the value sets use total ordering relationships. In general, if a value set represents data pairs,

then the ordering relationship defined for it would not be total. For instance, if a service rates



6.4 Knowledge Representations 101

AAA AAA

AA+ AA+

AA AA

AA- AA-

A+ A+

A A

A- A-

BBB+ BBB+

BBB BBB

BB+

BBB-

BB

BB+

B+

BB

B

BB-

B+

B

B-

CCC

R

B-

CCC

DD

BBB-

BB-

Duff &

Phelps

Standard

& Poor’s

Figure 6.5: An example of an unintuitive value map between the grading schemes of Duff &

Phelps (D & P) and S&P. Notice the interesting pattern

insurance companies with separate grades for their claims-paying ability and the friendliness

of their customer response, the value set for that service would not be totally ordered in a

natural manner.

6.4 Knowledge Representations
Many efforts are underway to devise classification schemes and to use the schemes to build

and populate classification structures. The following list includes four main types of clas-

sification schemes of varying power that provide semantics for messages among services or

agents. Each scheme has particular strengths and weaknesses, and provides a foundation

upon which particular capabilities can be built.

Keywords. Keywords are a quick way for agents to locate potentially useful information.



102 Modeling and Representation

Thesauri. Thesauri offer a more structured approach than keywords, arranging descriptive

terms into broader, narrower, and related classification categories.

Taxonomies. Taxonomies provide classification structures that add the power of inheritance

of meaning from generalized taxa to specialized taxa.

Ontologies. Ontologies permit a richer variety of structural and nonstructural relationships

than taxonomies, which are limited just to generalization. Ontologies provide more

complete and precise domain models as are needed, for example, by software applica-

tions that implement intelligent information services.

There are additional purposes for developing classifications for concepts. Among them are:

• helping users find a particular concept from among many;

• facilitating the administration of information systems;

• through inheritance, conveying semantic content that is often only incompletely speci-

fied by other attributes, such as names and definitions;

• deriving and formulating abstract and application concepts;

• ensuring appropriate attribute and attribute-value inheritance;

• deriving names from a controlled vocabulary;

• disambiguating communicated information;

• recognizing superordinate, coordinate, and subordinate concepts;

• recognizing relationships among concepts;

• assisting in the development of modularly designed names and definitions.

Chapter 8 discusses some widely used representation languages for ontologies.

6.4.1 Relationships Represented
Most ontologies represent and support relationships among classes. Among the most impor-

tant of these relationships are the following:

Generalization and inheritance are powerful abstractions for sharing similarities among

classes while preserving their differences. Generalization is the relationship between

a class and one or more refined versions of it. Each subclass inherits the features of

its superclass, adding other features of its own. Generalization and inheritance are

transitive across an arbitrary number of levels. They are also antisymmetric.



6.4 Knowledge Representations 103

Aggregation is the part–whole or part–of relationship, in which classes representing the

components of something are associated with the class representing the entire assem-

bly. Aggregation is also transitive, as well as antisymmetric. Some of the properties of

the assembly class propagate to its component classes.

Instantiation is the relationship between a class and each of the individuals that constitute

that class.

Some of the other relationships that occur frequently in ontologies are owns, causes, and

contains. Causes and contains are transitive and antisymmetric; owns propagates over aggre-

gation, because when you own something, you also own all of its parts.

6.4.2 Frames versus Descriptions
We now discuss two main approaches behind ontologies. The approaches are appropriate

for an intensional view, whereby a class or concept is defined by a set of either membership

conditions or properties.

Frames directly express knowledge in terms of graphs. They involve defining frames (a

structured object corresponding to classes or instances) and relating them explicitly to

other frames through labeled edges. The definition of a frame is expressed in terms of

a set of properties and their allowed values.

Description logic is a family of languages that formally express certain constraints on know-

ledge representation. Since they have a precise semantics and axiomatization, they are

amenable to automatic processing in a manner that is unambiguous across implemen-

tations. Description logic begins with primitive concepts and defines further concepts

in terms of formal descriptions. Concepts are computed from these descriptions. Sub-

sumption, that is, the specialization-generalization hierarchy among concepts, can be

determined from the descriptions. The potential advantage of description logic is that

it can help determine if a concept is redundant or how it relates to other concepts.

Frame representations are intuitive for people to build and do not rely on any special math-

ematical training. However, such representations provide no principled basis for inferring

relationships between frames. Frame representations provide no intrinsic account of mean-

ing, but rely on names of classes and properties to indicate meaning. This may be natural for

humans, but can introduce problems when used computationally.

Description logic, by contrast, is difficult for people. Often, descriptions are created only

to capture a frame hierarchy that a person has in mind. Managing the trade-off between ease

of use and rigor is a major challenge for knowledge representation.

The above are both what might be termed discrete and vivid approaches to knowledge rep-

resentation. Yet another alternative for knowledge representation is a connectionist approach,

which stores knowledge in terms of (internal) weights on the edges of a graph of concepts.

Such approaches keep their knowledge implicit. In general, such representations are diffi-

cult to engineer and particularly difficult to share and reconcile with other representations.



104 Modeling and Representation

They are also difficult to generate explanations from, and thus can be difficult for people to

understand—knowledge engineering should try to produce representations that are intuitive

to people so they can place sufficient confidence in them. However, an advantage of a connec-

tionist approach is that there are efficient algorithms for learning the weights automatically

from instances and examples. Also, in well-circumscribed domains, implicit representations

might be standardized and used for exchanging certain kinds of information. For example, a

fraud detection program may be able to share an implicit representation with another similar

program capturing some information that it might have mined.

6.4.3 Ontology Language Features
The semantics of services may be captured by representational languages such as the Resource

Description Framework (RDF) [Decker et al., 2000a,b], the DARPA Agent Modeling Lan-

guage (DAML) coupled with the Ontology Interchange Language (OIL) (the combination

was known as DAML+OIL) [DAML; Hendler and McGuinness, 2001], the Web Ontology

Language (OWL), and more generally, ontologies [Heflin and Hendler, 2000]. OWL enables

the creation of ontologies in the description of specific Web sites. Although OWL is not

specifically geared to services, it has obvious applications in specifying the contents of the

parameters and results of Web services. OWL Services (OWL-S), an OWL ontology for

services, is discussed in Section 15.5.2.

Other relevant modeling languages include UML, SHOE, OEM, and OIL. In Web prac-

tice, RDF is now quite established and OWL (built on RDF) is gaining ground because of

its superior support for semantics. UML is entrenched in information and application model-

ing. Any serious implementation of services and processes will typically involve UML. The

other languages are of limited practical interest, but their technical features are still worth

reviewing. Table 6.3 summarizes these features to illustrate their expressiveness.

The first four features have obvious definitions. The remaining features are defined as

follows:

• Multiple inheritance means that the language allows a class to be an immediate sub-

class of more than one class. This contrasts with single inheritance, which limits

each class to have no more than one parent (immediate superclass). Single inheritance

accommodates one feature of classification at a time. But often what we encounter are

orthogonal features, that is, independent. For example, we may specify shoes accord-

ing to their size (a number), their width, and whether they are for men or women. If we

build the first classification according to men or women, then we will have to repeat the

size and width classifications under each of the two subclasses. Thus the shoe ontology

can end with a lot of concepts and would clearly not be the most compressed variant.

A more compressed specification can be obtained by using multiple inheritance.

• Basic typing specifies that one object in the language can be used to represent the type

of another object.

• A partition is a division of the instances of a concept into disjoint sets.



6.4 Knowledge Representations 105

Table 6.3: Features provided by some of the languages that are suitable for modeling the

objects involved in interoperation (i indicates implicit)

Feature RDF UML SHOE OEM OIL OWL

Object ID + + + + + +
Subclass + + + + + +
Not Subclass − − − − + +
Basic Typing + i i + + +
Multiple inheritance + + + + + +
Reification + + − − − +
Partitions − − − − + +
Instance Attributes + + + + + +
Class Attributes − − − − + +
Constraints: Cardinality − + − − + +
Constraints: Ordering − i − − − −
Relationships: Binary + + + + + +
Relationships: N-ary − + i − − −

• Reification enables statements, i.e., a relationship among concepts, to be made about

other statements.

• An instance attribute is one whose value can be different for each instance of a concept.

• A class attribute is one whose value is the same for each instance of a concept.

• A cardinality constraint specifies the minimum and maximum number of values for an

attribute.

• An ordered relationship is one whose values occur in a specific sequence. For example,

the students in a classroom might be ordered alphabetically by last name.

• Relationships express meaningful associations among the concepts of a domain. Most

formal languages support binary relationships, which provide a directed-graph repre-

sentation for a conceptualization, but few support relationships of higher arity, although

they are common in the real world. For example, purchase can be naturally understood

as a quaternary relationship that involves a buyer, a seller, a product, and some money.

Most of the effort on interoperability has focused on the syntax and semantics of data, with

much less emphasis on relating different processes. The modeling of processes has been

found to be much harder, but this is exactly what is needed to compose services. A formal

language for process modeling, the Process Specification Language (PSL) (see Section 13.5),



106 Modeling and Representation

has been the most successful to date. In demonstrations, PSL has enabled descriptions of

processes that are operating on different CAD/CAM tools to be related, even if the individual

descriptions are encoded in different languages. The resultant processes can then be made to

work in concert. Chapter 13 addresses process modeling in general.

6.5 Elementary Algebra: Relations

There are two main examples of hierarchies in knowledge representation. One, class or inher-

itance hierarchies correspond to the isA relation, where a class extends another class. Two,

part–whole hierarchies correspond to the isPartOf relation, where a class aggregates other

classes, i.e., instance of a class are said to be parts of the instances of another class.

Relationships in ontologies are naturally modeled as binary relations. For example, a

class being a subclass of another is a binary relationship. Other domain-specific relationships

or properties can be captured as binary relations. For example, a student taking a course

expresses a relationship (taking) between student and course.

A binary relation R between a set Sd and a set Sr relates zero or more members of Sd

with zero or more members of Sr. That is, R can itself be modeled as a set of pairs, each

of which consists of a member of Sd and a member of Sr. Recall that Sd × Sr refers to the

Cartesian product of Sd and Sr, meaning the set of all possible pairs whose first component

is drawn from Sd and whose second component is drawn from Sr. Formally, we can write

R ⊆ Sd × Sr. A binary relation naturally corresponds to a graph as shown in Figure 6.6.

b ca

Figure 6.6: A binary relation on a set corresponds to a graph whose vertices are the underlying

set and whose edges represent the relation instances. Here the set is {a, b, c}, and the relation

is {(a, b), (b, c), (c, b)}

Often properties that indicate binary relationships occur in pairs, indicating the polarity of

the relationship. For example, if c1 is a subclass of c2, then c2 is a superclass of c1. Likewise,

if students take courses, courses are taken by students: i.e., “take” and “taken by” exhibit

reverse polarities. Such pairs of relationships are called inverses of each other. A relationship

may be explicitly documented as being the inverse of another. A relationship is much like

its inverse, except that their domains and ranges are interchanged. Thus any instance of one

corresponds to exactly one instance of the other. Formally, a binary relation R−1 ⊆ Sr × Sd

is defined as an inverse of R if and only if the following holds: (∀d ∈ Sd, r ∈ Sr : (d, r) ∈
R ≡ (r, d) ∈ R−1).



6.6 Hierarchies 107

A partial order is a binary relation for which the following properties hold. Partial orders

are frequently notated via an infix operator such as ≺ and are termed precedence relations.

That is, let us write x ≺ y to mean that x relates to y via the given relation.

• Antisymmetry. If x ≺ y and y ≺ x, then x = y. In other words, we cannot have two

distinct objects such that each precedes the other. However, it is acceptable (but not

required) for an object to precede itself.

• Transitivity. If x ≺ y and y ≺ z, then x ≺ z. If x precedes y and y precedes z, then x
precedes z.

In addition, some partial orders can also satisfy asymmetry, which also forces them to satisfy

irreflexivity:

• Asymmetry. If x ≺ y then y �≺ x. Asymmetry is a stronger form for antisymmetry,

because it forbids two objects (whether the same or distinct) from preceding each other.

That is, an object cannot precede itself.

• Irreflexivity. x �≺ x. This simply states that an object cannot precede itself. Irreflexivity

is entailed by asymmetry.

Lastly, a total order or a linear order is a partial order that also satisfies the linearity (also

known as totality) property:

• Linearity. x ≺ y or y ≺ x or x = y. This states that for any two distinct objects, one

must precede the other. That is, for any two objects, the ordering relation must hold

one way or the other.

6.6 Hierarchies
A hierarchy is naturally modeled as a binary relation that is a partial order.

6.6.1 Taxonomy
The isA relation is interpreted to indicate subclassing and it defines a taxonomy. For example,

a human isA mammal. The isA relation is antisymmetric and transitive. The combination of

antisymmetry and transitivity means that if you ever have a cycle of hierarchic relationships,

then all the classes that occur on the cycle are equal.

6.6.2 Meronomy
The isPartOf relation means that the given individual is part of another. For example, an

engine isPartOf an automobile. The isPartOf relation applies to instances and forms a part-

whole hierarchy or meronomy. Meronomic hierarchies are also partial orders in the above



108 Modeling and Representation

sense. However, we would not encounter any cycles in a correct part-whole hierarchy, i.e., an

object would not be a part of itself. For this reason, meronomic hierarchies are asymmetric
and irreflexive.

Meronomic hierarchies are not considered a native part of most existing ontology lan-

guages. In these languages, if needed, the part-whole hierarchy can be captured via an

explicit property. But, for such added properties, no special mathematical constraints can

be automatically assumed and there would be no tool support available. In other words, the

modelers would be on their own in ensuring correctness for such constructs. The lack of sup-

port for part-whole representation and reasoning is a significant limitation of current ontology

languages.

6.7 Modeling Fundamentals
A conceptualization consists of the following components:

• a universe of discourse, which is the set of entities under consideration;

• concepts that identify sets of entities;

• relationships among these entities;

• functions that map from entities to entities.

Conceptual modeling languages are languages that support the above components. This holds

whether a given language is designed to model information systems or real-world processes.

That is, a conceptual modeling language would include symbols that may be associated in

different ways with entities, concepts, relationships, and functions.

Associating a conceptualization with the “real world” gives semantics to statements in

a conceptual modeling language. Such an association of symbols to the world is termed an

interpretation, and an interpretation characterizes the meaning of a statement in the given con-

ceptual modeling language. Typically, we are interested in the semantics of the language in

general from which the semantics of its statements can be inferred. To capture the semantics

of a language, we would nail down some, but not all, details of its intended interpretations.

For example, a conceptual modeling language for document structure might fix the meanings

of symbols such as “chapter,” “section,” “title,” and “author,” but let the other symbols in a

statement be given meanings according to the particular needs of an application.

Modeling languages must provide explicit representations for concepts, which can be real

or imaginary, tangible or intangible, and concrete (actual) or abstract (prototypical). For a

few simple examples of concepts, your car is real, tangible, and concrete; a Porsche 911S is

real, tangible, and abstract; your last vacation is real, intangible, and concrete; and a unicorn

is imaginary, tangible, and abstract.

Second, modeling languages must provide means for representing relationships among

the concepts. The representations might involve such relationships as ownership, causation,



6.7 Modeling Fundamentals 109

generality, instantiation, and meronomy (part-whole). For example, you own your car, a

steering wheel is part of a car, and a Porsche is a kind of sports car.

Third, models can include constraints on the relationships that can occur among the con-

cepts. The constraints might involve cardinality, temporal existence, business rules, or higher-

order functions. Some examples are: your car has four wheels; in most states in the USA, a

person should be older than 16 years to obtain a driver’s license; and the perimeter of a square

is four times the length of its side.

Finally, the planned uses and applications of the model determine the concepts that must

be represented. Consider the following different conceptualizations of a piece of electrical

hook-up wire that is solid (versus stranded), is uniquely labeled ID5, has size 22 in the Amer-

ican Wire Gauge (AWG), and has blue insulation:

• awg22SolidBlueWire(ID5)

• blueWire(ID5, AWG22, Solid)

• solidWire(ID5, AWG22, Blue)

• wire(ID5, AWG22, Solid, Blue)

Here ID5 is a symbol whose interpretation is an entity in the universe of discourse. Predicates

such as awg22SolidBlueWire are interpreted as the appropriate concepts. Let us hold off dis-

cussing the other symbols until Section 6.7.3. The first conceptualization, a unary predicate,

simply tests if the entity denoted by ID5 belongs to the concept denoted by awg22SolidBlue.

In the second conceptualization, the wire core type is extracted from the predicate name and

added to the symbols representing objects in the universe of discourse; in the third the wire

color is extracted. The fourth conceptualization is the most flexible, since it allows the prop-

erties of the wire to be explicitly expressed as separate arguments. That is, the concepts of

wire size, wire type, and color are elevated from being “bound” in predicated names to repre-

senting entities in the universe of discourse. The entities can then be reasoned about, whereas

concepts embedded within predicate names cannot.

Attributes that can be enumerated (e.g., color, type of wire core, and the small range of

integer wire sizes) can possibly be included in predicate names. Nonenumerated attributes are

never good candidates for inclusion in predicate names. For example, we would not expect

to use a predicate such as blue13.245ftWire for what happens to be a 13.245 foot length of

wire. We would need uncountably many predicates just to capture the possible real number

lengths of wires. Section 6.7.3 discusses other variations and aspects of the above example.

6.7.1 Perspectives for Conceptualization
Even if you settle upon the most flexible of the styles of conceptualization, there are a number

of choices for one. How do you choose the best conceptualization? It would be dependent on

your application’s view. For example, the following views might be reasonable when talking

about electrical wires.



110 Modeling and Representation

• Design view: the color and core type of a wire are not important. Wire size and break-

down voltage of the insulation, however, are important considerations.

• Manufacturing view: the color and core type of a wire are important. Breakdown

voltage is not important, if the proper wire has already been selected.

• Sales view: the number of feet on a spool and shipping weight are important. The

above discussion did not mention weight, so it would have to be added to the concep-

tualization to accommodate the sales view.

In other words, not every conceivable property need be represented explicitly, and thus some

properties would need to be added as the uses of the conceptualization develop.

6.7.2 Guidelines for Conceptualization
The best overall conceptualization is one that obeys the following guidelines:

• A concept must have instances, directly or through some subconcepts.

• A concept must contain all properties common to the instances in its extension.

• Classification should obey cognitive economy—instances of a concept must share some,

but not all of their properties. Otherwise, if two instances were at all distinguishable

based on their properties, then they would have to belong to different concepts, leading

to a proliferation of concepts.

• Classification should enable inference of properties based on the membership of an

instance in a concept.

• Restrictions on concept relationships:

– Completeness: every property must be used in the definition of at least one con-

cept.

– Nonredundancy: a subconcept must be defined by at least one property not in any

of its superconcepts. The result is that a subconcept is always a specialization of

any of its superconcepts, i.e., it has more properties or restrictions, and has fewer

instances.

However, even if a rich conceptualization such as

wire(id, size, solidity, color)

is a part of a model, interoperation with systems modeled by other conceptualizations might

be desired, which would require extensive reasoning to map between them. A challenge

is how do we perform the mappings if the conceptualizations are different? That is, what

must we do to go beyond simple term matching schemes, such as hookUpWire in model 1

matches wire in model 2? For example, suppose there are two conceptualizations for a two-

dimensional point:



6.7 Modeling Fundamentals 111

• Point(x, y), based on a rectangular coordinate system.

• Point(radius, theta), based on a polar coordinate system.

Section 6.7.3 considers interoperation and mappings in more detail.

6.7.3 Modularity and Extensibility
We discussed how to map the symbols ID5 and wire. A problem lurking behind the above

approach is how to map the remaining symbols. For instance, to what should Blue be

mapped? It is tempting to map it to some set of entities in our universe of discourse, namely,

the set of entities that are blue. In other words, it would then be a concept, i.e., have the

same kind of denotation as the denotation of a unary predicate. In that case, placing it as

an argument to another predicate seems suspect. An alternative is that Blue be mapped to

an entity, which means that we have different sorts of entities: concrete objects such as wire
as well as abstract objects such as clear. Either of these approaches can work depending on

other assumptions in the conceptualization.

The conceptualization described above suffers from one major shortcoming. As we invent

new attributes, we would not be able to accommodate them in our conceptualization without

continually revising our predicates. For example, if we wish to add the fact that the given

wire is heavy, we would have to modify the predicate wire to take an additional argument as

in the expression below.

• wire(ID5, AWG22, Solid, Blue, Heavy)

For this reason, a more parsimonious predicate, as in the expression below, proves desirable.

• wire(ID5) ∧ AWG22(ID5) ∧ solid(ID5) ∧ blue(ID5) ∧ heavy(ID5)

Here we conceptualize the main entity as a predicate, but also have separate predicates for

each of the attributes that we are interested in. Indeed, this is how natural languages handle

complex noun phrases. They use nouns for entities and adjectives for properties of nouns.

New attributes can be inserted with as much ease as adding a new adjective to a phrase.

Moreover, additional domain-specific constraints can be captured and reasoned about per-

spicuously. For example, we might state that wires above a certain product of length and

thickness are always heavy.

Although it is more modular than the naive approach, the above approach can be improved

further. Whenever we declare a predicate such as blue or heavy, we are implying that nothing

more can be said about the feature that is reflected in that predicate. A predicate is the end of

the road for modeling, as it were. Now if we wanted to capture that the blue was a particular

deep shade and was permanent and would not stain the clothes of people handling the blue

wires, we would be at a loss. We may generate additional predicates such as permanentBlue
and use those predicates instead of blue. But then it would no longer be obvious that a

permanent blue wire was a blue wire. The above discussion leads to yet another formulation

where the predicates are chosen to represent a given feature concept or attribute, not any of



112 Modeling and Representation

the values that may be assigned to the given attribute. The values are modeled as objects and

further assertions can then be made about them. The following formulation illustrates this for

our example, where we have added that the Blue in question is permanent.

• wire(ID5) ∧ thickness(ID5, AWG22) ∧ type(ID5, Solid) ∧ color(ID5, Blue) ∧ weight(ID5,
Heavy) ∧ permanent(Blue)

An analogous situation occurs when modeling activities or processes. For example, we

may wish to model a transaction, such as a payment, being performed. As above, we might

encode the amount of the payment, its currency, its mode (cash or check), and so on, into the

predicate name. For the same reasons as above, such an approach is inappropriate because it

hides semantically relevant properties into a text label. As before, an approach that exhibits

reification by upgrading the important attributes into entities improves reasoning about them.

Further, an approach that captures separate predicates that associate different attributes with

the payment provides the same kind of extensibility as above. For example, we may have

• payment(P1) ∧ by(P1, Alice) ∧ to(P1, Bob) ∧ value(P1, 5) ∧ currency(P1, USD) ∧
mode(P1, cash) ∧ on time(P1)

Now we can capture additional constraints such as that payments below a certain amount must

be cash. In our natural language analogy, activities are verbs (e.g., P1, but read on), the objects

they involve are nouns (e.g., Alice, Bob, 5, and USD), the properties of the objects are adjec-

tives (none here), and the properties of the activities themselves are adverbs (e.g., on time

and mode). In conceptual terms, there is often a thin line between different parts of speech

such as verbs and nouns, and adjectives and adverbs. That is, we can easily write equivalent

natural language sentences that present the same idea using differing parts of speech. Indeed,

in the above example P1 is a way of thinking of a payment as a noun, although in the real

world, making a payment is an activity. This phenomenon is called nominalization and is

common in natural languages. It corresponds to the use of gerunds—simply, verbs that act as

nouns—in English. In our example, it is as if to capture that “Alice paid Bob USD five in cash

on time” we are saying “there was a paying (a payment event), whose actor was Alice, whose

beneficiary was Bob, which involved the USD currency and an amount of five; moreover, this

paying was in cash and was on time.” Here, “paying” is a gerund. The long-winded formu-

lation has the advantage that it is modular and extensible. That is, we can readily question or

deny specific components of it and we can stick more facts into it should we need to.

The moral of the above discussion is that the more explicit we can make our formulation,

and doing so in a manner that facilitates inferencing about the representations, the better it

is in terms of extensibility (adding more facts) and flexibility (adding features that further

finesse the properties of interest).

6.8 UML as an Ontology Language
The Unified Modeling Language is a language for building conceptual models. Although

targeted originally towards software development, and especially visual modeling, it has the



6.9 Alternative Terminology 113

constructs needed to specify ontologies. Table 6.3 summarizes the basic features provided

by UML for modeling objects in ontologies. As can be seen there, although it does not

provide a description logic, it is richer than OWL in some ways. Moreover, it enables a

form of aggregation to be captured directly and has a means for modeling activities. Overall,

UML would be a credible ontology language for many practical circumstances, as we briefly

describe next.

UML provides five different architectural views of a system (use-case, design, process,

implementation, and deployment), but the most relevant for ontology development is the

design view. This view enables both the static and dynamic properties of a system to be

described. We address the static aspects here, and the dynamic aspects in Section 13.2.

Many of UML’s structures for supporting the static aspects of a domain are exemplified

in the small ontology shown in Figure 6.7. In particular, showing aggregation, the parts of

a purchase order are item details, shipping details, and billing details. Buyers can be either

organizations or persons, showing specialization and generalization, and organizations can

be both buyers and sellers, showing multiple inheritance. There is an association between a

buyer and an account, and they are both parts of billing details. Although the textual serial-

ization of a UML diagram captures the graphical layout well, it is cumbersome and generally

unsuitable for the automated understanding of the diagram’s concepts.

6.9 Alternative Terminology
Variations of the above terminology also exist in the literature. An entity is a class or an

individual. Classes are also called concepts or categories.

Members or instances of typical classes are individuals.

Classes can be members of classes, especially of predefined classes such as owl:Class.

Properties are also called slots (in frame languages) and roles (in description logic).

Restrictions on properties are called facets or role restrictions.

6.10 Notes
An idea similar to object graphs mapping to objects, which map to XML documents is devel-

oped in Melnik and Decker [2000] in the context of XML-based communication. Our dis-

cussion of language features is based on Melnik and Decker [2000] and Gomez-Perez and

Corcho [2002].

Protégé is an ontology tool available for free download from http://protege.stanford.edu.

6.11 Exercises
6.1. The Semantic Web vision calls for ontologies to (choose one):

• be created incrementally;



114 Modeling and Representation

PurchaseOrder ShippingDetail

BillingDetailItemDetail

Seller Buyer Account

Organization Person

1 *

1
*

1
*

1
*

1
*

1
*

Figure 6.7: The Unified Modeling Language, with its support for aggregation, generalization,

association, and inheritance, can be used to model a domain and depict an ontology

• reside in a central location;

• go through a standardization process;

• be defined with any encoding language available to the user;

• obey a top-level ontology.

Discuss and provide a justification for your answer.

6.2. Which one of the following statements about Semantic Web documents is not true?

• They can reference terms without an ontology.

• They are written in XML.

• They are written in RDF.

• They can reference many ontologies.

• They can define new ontologies.

Justify your answer.



6.11 Exercises 115

6.3. Consider the case of software development, involving software systems, project super-

visors, and project teams. The following knowledge is given:

• Each supervisor can be a member of several project teams.

• Each supervisor can supervise several project teams.

• Each software system is developed by exactly one project team.

• Each project team develops exactly one software system.

• Each supervisor can manage several software systems.

• Each project team has exactly one supervisor.

(a) Using a tool such as Rational Rose or Visio, construct a UML representation corre-

sponding to the above description.

(b) In the above description, one of the relationships involving software systems is

redundant and can be removed. Identify it, and justify your choice.

6.4. Consider the problem of managing the waiting lists for courses in an academic depart-

ment. Construct a UML model for a system that could help an administrator in this

task. Your system should enable a student to be added to a waiting list for a course.

Students should be able to check their place in a list. The administrator should be able

to find the name of the student who is first in a list and add that student to a course.

Professors should be able to find out how many students are waiting to be added to their

course. Construct a use-case diagram for this system. Then construct an interaction

diagram, state-machine diagram, and class diagram for it. Use a tool such as Rational

Rose or Visio to generate these diagrams.

6.5. Consider the problem of managing the computer systems in your department. Con-

struct a UML model for a system that could help your computer systems administrator

in this task. Computers are either OK, broken, or being repaired. Your system should

enable a student to report a broken computer. Students and staff should be able to

check which computers are not broken. The computer administrator should be able to

change the status of a computer to OK after it gets repaired. The maintenance staff

should be able to find which computers are broken so that they can begin repairing

them. Construct a use-case diagram for this system. Then construct an interaction

diagram, state-machine diagram, and class diagram for it. Use a tool such as Rational

Rose or Visio to generate these diagrams, and turn in the results.

6.6. A rectangular two-dimensional object can be represented by a set of line segments or a

set of boxes, as indicated in Figure 6.8. Fill in the following table by indicating which

representation is easier or harder for calculating perimeter and area, and then define a

mapping that could be used to interoperate between conceptual models based on each.



116 Modeling and Representation

box1 box2 box3

line1 line2 line3

line8 line4

line7 line6 line5

line(id, x1, y1, x2, y2)  vs. box(id, x1, y1, x2, y2)

Figure 6.8: Two different conceptual representations for two-dimensional rectangular objects

Representation Perimeter Area

Set of Lines
Set of Boxes

6.7. Consider the following two database schemas used in buying a new car:

automobile(model, capacity, cost)
car(model, passengers, price)
One way of reconciling the semantics between the two databases would be to use a

look-up table that contained the equivalent terms between the databases, as follows:

Database 1 Database 2

automobile car

model model

capacity passengers

cost price

Now suppose we had a different pair of databases for stock exchanges, where one had

closing prices and the other had average daily prices. How would you reconcile the

semantics between these two databases?

6.8. Study the value maps given in Figure 6.4. Evaluate each value map with respect to the

properties of totality, order preservation, and consistent inversion. If the value maps

differ in how they satisfy or fail to satisfy any of these properties, why does that matter?

6.9. Study the value map given in Figure 6.5. Evaluate this value map with respect to the

properties of totality, order preservation, and consistent inversion in each direction.



6.11 Exercises 117

6.10. Modify the value map given in Figure 6.5, so that the resulting value map violates the

properties of totality, order preservation, and consistent inversion in each direction. For

each property and each direction, you may modify no more than one arrow.

6.11. Devise a pair of mappings from Moody’s to Weiss and from Weiss to Moody’s, respec-

tively. These mappings should be total, order preserving, and consistent inverses of

each other. Work from the grading schemes given in Table 6.2; disregard the subtleties

of the financial reasoning behind the grades.

6.12. Give an example of a case where a mapping is consistently inverting, but its inverse is

not.

6.13. Give an example of a case where a mapping is consistently inverting in both directions,

order-preserving left to right, but not order-preserving right to left.

6.14. Suppose you are developing a software tool for reviewing graduate school admission

applications. The applicants’ undergraduate transcripts are from two universities that

use the following grading schemes, each sorted from best to worst.

• X College: A, B, C, D, F

• U of Y: A+, A, A−, B+, B, B−, C+, C, C−, D+, D

Devise a pair of mappings from X College to U of Y and from U of Y to X College,

respectively. Your mappings must be total and order preserving, but not consistent

inverses of each other.

6.15. When there are multiple value sets, as in Table 6.2, another challenge is to ensure

that the mappings between any two of them are mutually consistent. For example, if

A. M. Best is mapped to both Weiss and Moody’s, we may wish to ensure that the

values to which a given A. M. Best value is mapped are themselves (approximately)

being mapped to each other. Such three-party relationships can be suitably constrained.

Formulate the constraints for mappings between any pair of value sets selected from

among three finite value sets.

6.16. Dances are attended by couples. A couple consists of one boy and one girl. Boys and

girls are people. Couples travel to dances in automobiles. People have an age and

a height. Dances have a time and place. Automobiles have a manufacturer, model,

and year. Dances can have at most 50 couples. People have the ability to drive an

automobile.

Draw the UML class diagram for the ontology that models this scenario.





Chapter 7

Resource Description Framework

The previous chapter argued that we need deeper representations of meaning so as to enable

interoperation among services. These representations require us to employ more sophisti-

cated languages than XML. Why do we need another language? It is simply because we

need to express knowledge structures that have a mathematically well-formed semantics, and

which our computational tools can process in a well-defined predictable manner.

However, this is not to suggest that we need a syntax other than that of XML. Any lan-

guage that we come up with will be expressible in XML. This is because computational (or,

for that matter, logical) languages are given context-free syntactical specifications, typically

in a notation such as the Backus Naur Form (BNF). XML is adequate to express any such

syntax: it is just not adequate to capture the semantics. In other words, XML is expressively

complete in one sense (syntax) and expressively limited in another sense (semantics).

It is the latter limitation that drives the development of additional languages. The reason

we need other languages is that XML offers no special constraints on the meanings associated

with the specific constructs of the given languages. What other languages offer are higher-

level abstractions. These abstractions streamline certain aspects of representations, in essence

standardizing the range of meanings that can be expressed. Thus, instead of another ad
hoc encoding of knowledge via XML, we would use a high-level language that encodes the

desired knowledge in a manner that can be understood by all. Thus each language enables

two major productivity enhancements:

• Service descriptions created by one party become readily comprehensible to another

party, because the standard semantics for the given language substitutes for the out-of-

band communication between the interacting parties that would otherwise be necessary.

• Tools can be built that accommodate the given language at its level of abstraction, thus

enabling more efficient creation, validation, and processing of documents in the given

language.

The first language we consider is the Resource Description Framework (RDF). RDF pro-

119



120 Resource Description Framework

vides an ability to define graph-like structures; thus, any discrete knowledge structures can be

encoded in RDF. However, the encodings would need to be invented for each case. The RDF

Schema solves this problem by providing the abstractions with which new vocabularies can

be readily described. Next, the Web Ontology Language (OWL) proposes a specific vocabu-

lary that provides selected frame and description logic primitives to capture ontologies.

7.1 Motivation for RDF
Consider a simple XML document that purports to describe a purchase order for two wires,

both of gauge AWG22, blue, and stranded. Wire lengths are specified as subelements.

Listing 7.1: An example purchase order in XML
� �

<p u r c h a s e buyer =’Alice’>
<p r i c e >50</ p r i c e >
<da te>3 1 December 2 00 4 </ da t e>
<w ir e gauge=’AWG22’ c o l o r =’blue’ t y p e =’stranded’>

<l e n g t h >1 2 . 5 </ l e n g t h >
<l e n g t h >6 . 2 5 </ l e n g t h >

</ wire>
</ pu rchase >

� �

Knowing or guessing the meanings of the English words used to name the various elements

and attributes, we can infer the meaning of the document. However, the inherent structure

of the document is no more than the parse tree to which it corresponds. In other words, the

structure is not expressive of the content of the document. Indeed, there might be another

representation, which is syntactically quite different from the above and yet somehow closely

related in terms of meaning. For example, consider the following encoding for the above

purchase order.

Listing 7.2: An alternative XML representation of a purchase order
� �

<p u r c h a s e buyer =’Alice’>
<p r i c e >50</ p r i c e >
<da te>3 1 December 2 00 4 </ da t e>
<w ir e gauge=’AWG22’ c o l o r =’blue’ t y p e =’stranded’>

<l e n g t h >1 2 . 5 </ l e n g t h >
</ wire>
<w ir e gauge=’AWG22’ c o l o r =’blue’ t y p e =’stranded’>

<l e n g t h >6 . 2 5 </ l e n g t h >
</ wire>

</ pu rchase >
� �

Listings 7.1 and 7.2 yield different parse trees and yet may have the same semantic contents.

Clearly, a large number of other variations are possible. Typically, the lower layers of docu-

ment processing would accommodate some designated set of syntactic variations. We cannot



7.2 RDF Basics 121

expect all variations to be processed automatically without some effort by a designer. How-

ever, we can shift the emphasis from the syntax of the document to the structure of the content

that it represents. This is the role of the RDF, which provides us with a standardized means

to capture the structure of information, enabling other parties to understand the document’s

contents.

In simple terms, RDF provides a simple language in which to capture knowledge. RDF

incorporates a number of well-known ideas from knowledge representation, but standardizes

them and applies them on the Web. (RDF can be applied in settings other than the Web, of

course, and often is.) RDF is built on top of the Web notion of a URI, which is described

in greater detail in Appendix B. URIs uniquely identify resources. Notice that, because

the underlying services are context sensitive, a resource may not be a unique entity and may

change its interpretation over time. For example, the page created by a news service or a book

catalog service may be a different entity on each invocation, but could still be conceptualized

as a single resource. Importantly, URIs are employed in RDF to remove ambiguity about

terms and to enable multiple perspectives to coexist. The use of URIs gives RDF additional

expressive power.

7.2 RDF Basics

An RDF document is a collection of statements, each of which is expressed as a triple involv-

ing a subject, a predicate, and an object. The subject and predicate are each a resource, and

the object can be a resource or a literal. Sometimes the predicate is called the property of the

given triple. The RDF term for a predicate is rdf:Property. In effect, a statement makes an

assertion about its subject, namely that the subject is related to the object through its predi-

cate.

7.2.1 Resources

A resource is something with identity. Resources are identified via URIs or, rather, to be

more precise, by URI References. Importantly, URIs need not be absolute, in that they need

not correspond to the name of any actual object to be accessed via any specific protocol.

URLs are a kind of absolute URIs. Moreover, even the absolute URIs need not correspond

to a physical object. That is, resources in RDF can be abstract and might not be mapped to a

network address. rdf:Resource is the set of resources.

Some useful examples of resources are entities that exist on the Web, such as documents,

images, video clips, and, most importantly, services. Resources can also aggregate other

resources. Lastly, some resources can reside decidedly outside the realm of the Web. Good

examples of such resources are people, social entities, and physical objects.

Resources map conceptually to entities or sets thereof. A resource would be considered

unchanging as long as its identity holds, even if the underlying contents change. Intuitively,

this is a powerful aspect of having names. For example, General Motors will remain the same



122 Resource Description Framework

conceptual entity even as it changes physically, e.g., as all of its staff retire and are replaced

by new people. To resolve a resource involves finding the entity to which it binds currently.

7.2.2 Literals

Besides resources, the other kind of object that RDF deals with are literals. Literals can

be expressed explicitly. Plain literals are expressed as a string with an optional language

identifier (the language identifier determines which human language is being considered).

Typed literals, for which a type is provided, are specified in terms of a lexical representation

(a string) and a URI Reference to the XML Schema describing the type.

7.2.3 Properties

RDF properties are two-place predicates. That is, they are resources that are interpreted

as predicates. Predicates with two arguments form statements. The first argument of the

predicate becomes the subject and the second argument the object of the given statement.

7.2.4 Statements

An RDF statement corresponds to a logical assertion based on a two-place predicate whose

first place is taken by the subject and second place by the object. For example, the notation

in Listing 7.3 expresses several statements, namely, that “SOC is a resource, whose title is

Service-Oriented Computing, whose creators are Munindar and Michael, and whose pub-

lisher is Wiley.”

Listing 7.3: An example RDF snippet
� �

<?xml v e r s i o n =’1.0’ e n c o d i n g =’UTF-8’?>
<rdf :RDF

x m l n s : r d f ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

x m l n s : d c ="http://purl.org/dc/elements/1.1/">
< r d f : D e s c r i p t i o n r d f : a b o u t ="http://www.wiley.com/SOC">

<d c : t i t l e >S e r v i c e−O r i e n t e d Computing </ d c : t i t l e >
<d c : c r e a t o r >Munindar </ d c : c r e a t o r >
<d c : c r e a t o r >Michae l </ d c : c r e a t o r >
<d c : p u b l i s h e r >Wiley </ d c : p u b l i s h e r >

</ r d f : D e s c r i p t i o n >
</ rdf:RDF>

� �

This listing illustrates the standard XML serialization or rendering for RDF. Section 7.4

presents an additional discussion of rendering RDF documents in XML.



7.3 Key Primitives 123

7.3 Key Primitives
RDF is intended for capturing information about resources. To this end, it defines primitives

for identifying and referring to resources in various ways. The main concept is that of a

resource identifier, expressed as rdf:ID. The rdf:ID attribute comes with a constraint, namely,

that two or more elements in an RDF document cannot have the same value for it (unless they

use different base URIs: see below).

The rdf:ID values are interpreted as fragment identifiers relative to the base URI of the

current scope. This means that an rdf:ID value, when prepended with a #, corresponds to a

relative URI, which when appended to the base URI yields an absolute URI.

The rdf:about attribute functions quite like the rdf:ID except that it takes a URI as a value.

The URI can be relative (if it begins with #) or absolute. However, the intent behind rdf:about
is different from that behind rdf:ID. Whereas rdf:ID introduces a resource being defined,

rdf:about refers to a resource defined elsewhere.

The main primitive predicate that RDF includes is rdf:type. This is used to assert that its

object is the type of its subject. In effect, the object is a class and the subject is an instance of

that class.

Still other primitives deal with containers and the reification of statements and are dis-

cussed next.

7.3.1 Containers and Collections
RDF statements involve exactly three components. Therefore, an additional mechanism is

needed to make assertions that involve aggregations of various kinds. For this purpose, RDF

provides a means to define structured containers of resources. Containers enable the repre-

sentation of a relationship where more than one resource may be required to participate.

Bag. An rdf:Bag is an unordered collection. As usual, a bag is like a set, except that it may

have duplicate members. An example of a bag follows:

<r d f : B a g ID="group1">
< r d f : l i >One</ r d f : l i >
< r d f : l i >Two</ r d f : l i >
< r d f : l i >Three </ r d f : l i >

</ r d f : B a g >

Seq. An rdf:Seq is an ordered collection, which, being a sequence, obviously may have dupli-

cates.

<r d f : S e q ID="sequence1">
<r d f : 1 >F i r s t </ r d f : l i >
<r d f : 2 >Second </ r d f : l i >
<r d f : 3 >T h i r d </ r d f : l i >

</ r d f : S e q >



124 Resource Description Framework

Alt. An rdf:Alt captures a disjoint union; the idea is that the given predicate would apply to

one of the stated alternatives. For this reason, rdf:Alt requires that it have at least one

member; the first member is interpreted as the default.

< r d f : A l t ID="alt1">
< r d f : l i >A d e f a u l t c h o i c e </ r d f : l i >
< r d f : l i >Another c h o i c e </ r d f : l i >
< r d f : l i >Yet a n o t h e r c h o i c e </ r d f : l i >

</ r d f : A l t >

The Bag and Alt examples illustrate the rdf:li predicates. The Seq example illustrates an inter-

esting variety of predicates that are schematically based on the positive integers: rdf: 1, rdf: 2,

and so on. That is, RDF allows two styles: one based on rdf:li and the other on rdf: 1, and so

on. When rdf:li elements are used, their order of occurrence in a given document is impor-

tant. The integers do not necessarily indicate any semantic ordering (for instance, ordering

is not appropriate for bags and alternates), but help identify and separate the members of the

containers uniquely.

Containers specify some, but not necessarily all of their members. When it is helpful to

specify that no more than the specified entities are involved, then the corresponding closed

structures are termed collections. Briefly, a collection is a group of entities. Collections are

represented as instances of rdf:List. rdf:List in essence is a linked-list data structure. The

head and tail of a list are accessed in the usual manner through the rdf:first and rdf:rest. The

rdf:first property yields the first member of a list; the rdf:rest property yields the residual list

when the first is taken out. (Like all RDF properties, these too should be understood as being

nondestructive.) A list terminates in a unique element known as rdf:nil. This is exactly as

in the programming language Lisp, where each list node is a so-called cons pair, a pair of

references interpreted as first and rest, with the last of the rest chain terminating in a nil.

7.3.2 Reification
To reify a concept is to enable it to be referenced. This process is called reification in general.

In the case of RDF, statements are reified so as to enable further statements to be made about

them. Reification enables statements to be quoted and have evaluations expressed about them,

such as to agree or disagree with them (i.e., to assert whether they are true or false). Because

the basic framework of RDF is quite weak, reification is essential to enable even simple

enhancements, such as being able to capture temporal and modal properties. An example of

a temporal assertion is that a given statement was true in the past or will be true in the future.

An example of a modal assertion is that a given statement is possible, necessary, believed,

intended, and so on.

The essential idea behind reification is to convert statements into a resource. For this pur-

pose, RDF defines a type called rdf:Statement. When viewed as resources, all statements are

of the rdf:type rdf:Statement. Further, each rdf:Statement has three main properties, namely,

rdf:subject, rdf:object, and rdf:predicate. These properties enable explicit access to the three

components of a statement.



7.4 XML Syntax 125

7.3.3 Information Model

RDF provides an information model based on graphs. Each edge corresponds to a statement,

whose predicate is the label of the edge, whose subject is the source vertex of the edge, and

whose object is the target of the edge.

The vertices of an RDF graph can be literals, URI References, or even unlabeled or blank.

Literals, URI References, and unlabeled vertices are pairwise disjoint sets. That is, nothing

can be both a literal and an unlabeled vertex or both a literal and a URI Reference, or both a

URI Reference and an unlabeled vertex.

The edges are labeled with URI References. The label of an edge may also be a vertex in

the given graph. Relative URIs are not used in an RDF graph.

An unlabeled or blank vertex is neither a literal nor a URI Reference. Such a vertex is

considered unique for the purposes of the graph, but has no global identity. Sometimes unla-

beled vertices are given local identifiers, via rdf:nodeID, but the only purpose of the identifiers

is to help keep them apart within the given document. Such local identifiers are not part of

the RDF abstract syntax.

RDF can be thought of as a logical language in which we can express conjunctions of

binary relationships. It does not natively include negation or disjunction. Thus RDF corre-

sponds to the existential-conjunctive fragment of the predicate calculus [Sowa, 2000].

7.4 XML Syntax
RDF documents can be readily expressed in XML (provided they avoid some pathological

conditions such as the inappropriate use of reserved words or names that are not well-formed

lexemes in XML). By convention, RDF documents rendered in XML begin with the rdf:RDF
element, where the necessary namespaces (including the main rdf namespace) are declared.

When the top-level element contains only one element (as above), the rdf:RDF element can

be omitted and the namespace declarations moved to the inner element. However, it is good

practice to always use the rdf:RDF element and to declare the namespaces in it. As for any

other XML document, it is customary and advisable to include the XML processing instruc-

tion with version and encoding information.

RDF uses the namespace convention of XML to separate different sets of terms. Gen-

eral RDF terms are defined in a namespace, which is defined as part of the standard. This

namespace is typically abbreviated as rdf. Listing 7.3 illustrates the standard XML syntax for

RDF.

The main principle behind expressing an RDF document in XML is to consider the graph

that the given document represents, and to ensure that each path in that graph is captured by

the XML notation. Recall that an XML document corresponds to its parse tree, whereas the

RDF structure being captured is a graph. The parse tree has a unique root and incorporates

directionality in the form of a directed edge from each vertex to its children. A vertex other

than the root must have exactly one parent and has no other edges. Thus a parse tree can have

no cycles. However, a graph can have cycles and noncyclic structures where multiple edges



126 Resource Description Framework

terminate on the same vertex.

Thus it might seem that a graph in general cannot be represented as a tree. However, it

turns out that representing a graph as a tree is quite straightforward, provided the vertices of

the tree can be referred to from other vertices. Such references must be symbolic, because a

tree will not allow multiple edges that terminate in a given vertex. The solution is to label the

multiply referenced vertices uniquely within the graph and to refer to them as needed. RDF

provides the necessary primitives to label and refer to vertices.

• rdf:Description is the main element used to capture statements about resources. To

serialize an RDF document, start with an rdf:Description element corresponding to a

resource vertex in the graph. If possible, this should be a root vertex (which means that

the graph in this case would have no edges coming into this vertex). The description

element would have an rdf:about attribute giving the URI for this vertex.

• The vertex element would contain a subelement for every property of which the given

vertex is the subject.

• If the object of the property is a literal, the text of the literal would be placed within the

property element.

• If the object of the property is a resource, the property element would contain a subele-

ment for the object, and the rdf:about of this subelement would be the URI of the object

resource.

• A useful abbreviation of the above syntax applies when the object of a property element

has no further properties applying to it (i.e., the object element would be empty): the

object element can be eliminated altogether. Its URI (otherwise to be set as the value

for rdf:about of the object) can be placed as the rdf:resource of the property element

itself. Since XML syntax requires that there can be no more than one copy of an

attribute within a given element, this means that separate property elements are needed

for each copy of the given property that applies to the subject resource.

• The attribute rdf:nodeid, when applied on rdf:Description elements instead of rdf:ID or

rdf:about, is used to identify blank nodes internally within a document. The same

attribute is used on property elements, instead of rdf:resource, to refer to blank nodes.

• Literals can be typed through the rdf:datatype mechanism. These are written like any

other literals, except that the property element is given an attribute rdf:datatype with

a value as the URI for the desired datatype. Then the text enclosed within the scope

of the property element is interpreted according to the named datatype. RDF mostly

leaves the datatypes to be defined externally, although it offers a built-in datatype

rdf:XMLLiteral to represent XML content in RDF literals. Such literals can use the

standard XML Schema datatypes. An advantage of RDF’s hands-off treatment of

datatypes is that, because RDF has no native datatypes, it does not require that the

various application-specific datatypes be translated into a particular set of datatypes.



7.5 The N-Triples Notation 127

Conceptually, RDF distinguishes three components of a datatype: its value space or set

of legal values, its lexical space or legal string representations, and a lexical to value
mapping or how a value can be materialized from or serialized into a lexical string.

• An rdf:Description element with an rdf:type property can be replaced by an element

whose tag is the object of the rdf:type property (which is then not needed). For exam-

ple,

<!−− The Wire t y p e i s d e f i n e d i n t h e EX namespace −−>
<!−− ex i s t h e d e c l a r e d a b b r e v i a t i o n f o r EX −−>
< r d f : D e s c r i p t i o n r d f : a b o u t ="wire-9">

< r d f : t y p e r d f : r e s o u r c e ="&EX;#Wire"/>
<e x : c o l o r >b l u e </ e x : c o l o r >

</ r d f : D e s c r i p t i o n >

can be replaced by

<ex :Wi re r d f : a b o u t ="wire-9">
<e x : c o l o r >b l u e </ e x : c o l o r >

</ ex :Wire>

In other words, the defined type acts as a custom vocabulary.

• RDF uses the xml:base attribute to specify a base URI for a given document. When it

is used, the values of the RDF URI references, i.e., rdf:ID, rdf:about, rdf:resource, and

rdf:datatype, are interpreted as relative references within the base URI.

• Reification can be accomplished quite simply by placing an rdf:ID attribute on a prop-

erty element. This attribute in essence names the statement being asserted by the given

property element. The value of the rdf:ID attribute can be used as the value of an

rdf:about attribute so as to capture additional properties about the statement.

• The XML serialization of RDF includes an attribute rdf:parseType, which enables

further compaction of the syntax. For example, when we have an attribute value

rdf:parseType=’Collection’ on an element, its subelements are interpreted as forming

a collection list.

7.5 The N-Triples Notation
RDF is not tied exclusively to XML, and can be given different syntaxes. A mapping to

XML is, of course, defined and is popularly used. The N-Triples notation simply expresses

each RDF statement as a single triple, in text. Each triple, as the name suggests, consists

of three components: the subject, predicate, and object of the corresponding RDF statement.

Each component is placed on a separate line, with the third line terminating in a period. N-

Triples are easier to read and often more succinct than XML. Listing 7.4 shows the N-Triples

corresponding to the XML document in Listing 7.3.



128 Resource Description Framework

Listing 7.4: An RDF example represented in N-Triples notation
� �

<h t t p : / /www. w i l e y . com / SOC>
<h t t p : / / p u r l . o rg / dc / e l e m e n t s / 1 . 1 / t i t l e >
"Service-Oriented Computing" .

<h t t p : / /www. w i l e y . com / SOC>
<h t t p : / / p u r l . o rg / dc / e l e m e n t s / 1 . 1 / c r e a t o r >
"Munindar" .

<h t t p : / /www. w i l e y . com / SOC>
<h t t p : / / p u r l . o rg / dc / e l e m e n t s / 1 . 1 / c r e a t o r >
"Michael" .

<h t t p : / /www. w i l e y . com / SOC>
<h t t p : / / p u r l . o rg / dc / e l e m e n t s / 1 . 1 / p u b l i s h e r >
"Wiley" .

� �

7.6 Storing RDF
RDF statements can be readily stored in a relational database or in an object database. For

relational databases, one can imagine a two-column relation or table whose name is the name

of the predicate and whose two columns are named “subject” and “object,” respectively. This

representation requires a separate relation for each predicate. Each statement involving a

given predicate corresponds to a tuple or row in the relation corresponding to the same pred-

icate.

Alternatively, we can form a three-column relation, two of whose columns are as above

and whose third column is the predicate. A single relation can hold statements based on any

of the predicates. Each statement corresponds to a tuple or row in the relation.

Thus translating from RDF into database relations is quite simple. In the other direction,

it is not as obvious. The name of the relation clearly maps to the predicate. However, since

each statement involves only one object and only one subject, a statement cannot directly

represent a tuple of a relation that has three or more columns. An acceptable solution would

be to formulate the tuple itself as an object. Using the fact that each tuple in a relation

must have a key, we can state that the key relates to the tuple. The details are explored in

Exercise 7.15.

7.7 RDF Schema
RDF Schema (RDFS) can be thought of as an object-oriented type system defined over RDF.

RDF Schema includes the essential primitives to function as a minimal ontology language.

This language exploits the historical similarities between knowledge modeling and object

modeling. However, knowledge modeling goes further than object modeling and we must

look beyond RDF Schema to capture deeper aspects of it, such as other kinds of relationships

among classes. In other words, when viewed as ontology languages, RDF and RDF Schema



7.7 RDF Schema 129

have limited expressive power. They do not directly support defining necessary and sufficient

conditions for classes, asserting equivalence or disjointness of classes, defining properties of

properties, and specifying constraints on properties besides on domains and ranges.

a

b

c

1

2

3

a

b

c

1

2

3

Domain DomainRange Range

Figure 7.1: An illustration of RDF subPropertyOf. The property on the right is a subproperty

of the property on the right, because all of its instances (edges) are instances of the property

on the left

RDF Schema is used to define vocabularies. It uses RDF to define a standard set of pred-

icates that enable simple semantic relationships to be captured. If the vertices are interpreted

as classes, as in an object-oriented type system, the vertices could be classes or properties.

Then examples of the relevant semantic relationships would specify whether one vertex is a

subclass or subproperty of another vertex. A more extensive list of the terms defined in RDF

Schema is given next. These can be used to structure target vocabularies. The terms of RDF

Schema itself are defined in a namespace, which is included in the standard. The namespace

is conventionally abbreviated as rdfs.

• A class in RDF Schema is a resource that denotes a set of resources, called its instances.

The set of instances associated with a class is called its extension. A class is not iden-

tical to its extension: distinct classes may have the same extension.

Each instance has an rdf:type equal to the given class. In other words, each instance

is the subject of a statement whose predicate is rdf:type and whose object is the given

class.

rdfs:Class is the class of RDF Schema classes.

• rdfs:subClassOf indicates that the instances of the subject class are instances of the

object class. Thus rdfs:subClassOf forms a hierarchy of classes. rdfs:subClassOf is

defined to be reflexive.



130 Resource Description Framework

• rdfs:Resource is an instance of rdfs:Class and is the top member of the class hierarchy

induced by rdfs:subClassOf. All other classes are subclasses of it. That is, all RDF

resources are instances of rdfs:Resource.

• rdfs:Literal is the class of literals, i.e., strings and integers. Thus, rdfs:Literal is an

instance of rdfs:Class and a subclass of rdf:Literal.

• rdfs:Datatype is the class of datatypes. Each of its instances is a subclass of rdfs:Literal.
A special instance of rdfs:Datatype is rdf:XMLLiteral, the class of XML literals. Inter-

estingly, rdfs:Datatype is both an instance and a subclass of rdfs:Class.

• rdf:Property, the class of properties, is an instance of rdfs:Class.

• rdfs:subPropertyOf forms statements that mean that their subject property is a sub-

set of their object property. Thus rdfs:subPropertyOf forms a hierarchy of properties.

rdfs:subPropertyOf is also defined to be reflexive.

• The properties rdfs:range and rdfs:domain have properties as subjects and classes as

objects. When multiple domains are defined for a property, then the resources used

as a subject for the property must be instances of all the domains—i.e., the domain

assertions are interpreted conjunctively. Similarly, multiple ranges are interpreted con-

junctively.

Interestingly, rdfs:range and rdfs:domain apply to themselves. The rdfs:range of both

is rdfs:Class and the rdfs:domain of both is rdf:Property.

• rdf:type is a property that states the class of a given resource.

• rdfs:label, rdfs:comment, rdfs:seeAlso are used to provide a user-friendly label, text

comments, and cross-references, respectively.

• rdfs:Container is a superclass of the RDF container classes, namely, rdf:Bag, rdf:Seq,

and rdf:Alt. The property rdfs:member captures membership in any of the containers.

7.8 Vocabularies in RDF Schema
Some useful vocabularies built on RDF and RDF Schema are the following.

• Dublin Core defines an annotation system for documents. It is an important namespace

that standardizes several key metatags, including author and title. It is conventionally

abbreviated as dc. Also by convention, capitalized terms refer to vertices and lowercase

terms refer to edges.

• RDF Graph.

• RDF Site Summary.



7.9 Notes 131

• RDF Directory Description Language.

• XML Topic Maps.

7.9 Notes
Jena is an open-source RDF and RDFS toolkit [McBride, 2002]. Jena includes XML readers,

writers, storage, querying, and inference mechanisms.

7.10 Exercises
7.1. Which of the following best characterizes the difference between the rdf:ID and rdf:about

attributes?

• They are equivalent.

• rdf:ID is used when defining an object, rdf:about is used when referring to an

object.

• rdf:ID is used for resources, rdf:about is used for predicates.

• rdf:ID can have any value, rdf:about’s value must be a URN.

• rdf:ID does not support the use of namespaces, but rdf:about does.

7.2. Of the following RDF snippets which, if any, are equivalent to the English phrase

“Anything that is a student is a person?”

• <!−− r d f s i s t h e URI f o r t h e RDF Schema namespace −−>
< r d f : D e s c r i p t i o n r d f : I D ="student">

< r d f : t y p e

r e s o u r c e ="&rdfs;#Class"/>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e ="#person"/>

</ r d f : D e s c r i p t i o n >

• < r d f : D e s c r i p t i o n >
<s t u d e n t >

<r d f s : s u b C l a s s O f r d f : r e s o u r c e ="#person"/>
</ s t u d e n t >

</ r d f : D e s c r i p t i o n >

• < r d f : D e s c r i p t i o n r d f : a b o u t ="student">
< r d f s : i s A r d f : r e s o u r c e ="#person"/>

</ r d f : D e s c r i p t i o n >



132 Resource Description Framework

• < r d f : C l a s s r d f : I D ="student">
<r d f s : s u b C l a s s O f r d f : r e s o u r c e ="#person"/>

</ r d f : D e s c r i p t i o n >

7.3. Choose an HTML-encoded page from the Web—the simpler the better—and construct

a representation of its content using RDF. For concreteness, consider the Web pages

maintained by the authors, specifically, http://www.csc.ncsu.edu/faculty/mpsingh/books/
or http://www.cse.sc.edu/˜huhns/ (with either page, ignore the links in the top bars and

consider only a few of the entries).

7.4. Using a tool such as Protégé, construct RDFS and RDF representations for the follow-

ing made-up report from an intelligence agency:

CIA Report Date 1 April, 2004 (from MI5): The British Special Branch

arrested suspect XYZ at his residence at 11 St. Mary’s Place, London.

Found in XYZ’s bedroom was a small container holding 8 ounces of pen-

taerythritol (PETN) and triacetone triperoxide (TATP). This is the same

explosive that a terrorist tried to use on American Airlines flight #63 from

Paris to Miami on 22 December 2001.

That is, produce two files: one in RDFS that describes the general concepts and classes

involved in the domain of the report, and a second in RDF that describes the specific

instances of the concepts.

7.5. The objective for this homework is to construct a model (ontology) in RDF for a

domain of your choice. Specifically,

• Choose a site on the Web that has links to other pages as your starting domain.

Some general possibilities are a university department, a company portal, a gov-

ernment organization, a city or country, and a zoo.

• Create a node-and-link diagram containing at least 15 resources, with associated

properties and statements.

• Convert the diagram into RDF.

• Turn in the page(s) from the Web site you chose, the RDF diagram, and the RDF

statements.

7.6. Programming Project: An XML Database

• Create a database in MS Access, MySQL, Oracle, or any other DBMS that you

have available. Your database should have at least three tables, with at least three

fields (columns) per table.

• Write an XML Schema that describes the tables.

• Add at least two tuples to each table and write the XML document that describes

the data. Verify the document against its XML Schema.



7.10 Exercises 133

• Write an interface program in Java or C# that will allow a user to send a query

to the database and then display the resultant data from the tables. The query

and results will be in XML, i.e., there will be XML tags surrounding an SQL

command and the results that are returned. An example command user command

is

<query>S e l e c t ∗ from P r o d u c t </ query>

7.7. Repeat Exercise 7.6, except describe the database using RDFS, describe the data in the

tables using RDF, and write the query in RDQL or RQL.

7.8. For the database you constructed in Exercise 7.6, write an XML mediator that will

receive a query, remove the XML tags, send the query to your database using JDBC,

receive the results from the database, wrap the appropriate XML tags around the data

(to match the XML Schema), and then send the tagged data to the interface.

7.9. Compare XML Schema’s type extension mechanism with RDF Schema’s subclassOf.
Are members of an XML Schema subtype members of the corresponding supertype?

7.10. Express the following English assertions using RDF in its XML serialization.

• Amitoj is funny.

• Amitoj thinks that Amitoj is funny.

• Amitoj is funny and Amitoj thinks that Amitoj is funny.

• Amitoj is not funny and Amitoj thinks that Amitoj is funny.

7.11. Repeat Exercise 7.10, but using the N-triples notation.

7.12. Using the N-triples notation and some of the following semantic primitives for objects

and properties, describe the brick-and-board bookshelf shown in the picture below.

standing lying aTypicalMemberIs Board

Pyramid Object hasProperty onePartIs

subclass group supportedBy Brick

7.13. Give the rdfs:range and rdfs:domain statements whose subjects are rdf:type, rdfs:range,

and rdfs:domain, respectively.

7.14. Define a vocabulary to capture the assertions of Exercise 7.10. Use your vocabulary to

express those assertions.

7.15. A relation schema (in the sense of the relational model for databases) is an association

of attributes or columns, each defined with a name and a datatype. The names of the

different attributes must be distinct. Each relation schema has a key formed from the

aggregation of one or more of its attributes. A tuple in a relation conforming to a given



134 Resource Description Framework

Figure 7.2: A brick-and-board bookcase to be described by a set of RDF N-triples

relation schema associates data values, each value being a value of the datatype of

the corresponding column. The tuples in a relation cannot be duplicated. Describe a

generic approach to represent a single tuple using RDF. Hint: represent the key for the

schema and the entire set of attributes as objects and assert the main statement between

them. The problem comes down to representing the key and the tuple accurately.

7.16. Which one of the following best represents the basic modeling primitives of RDF

Schema?

• Class, Property, and ConstraintProperty.

• Elements and attributes.

• Subject, verb, and object.

• Things and ideas.

• Namespaces, elements, and doctypes.

7.17. Develop an RDF Schema for assertions as shown below. Listing 7.5 shows an example

RDF document in which the last part would use your schema.

• The 〈isTrue〉 of a statement is an assertion. For example, assuming that a state-

ment of rdf:ID=”S1” is given, 〈isTrue rdf:resource=”#S1”〉 is an assertion.

• The 〈isFalse〉 of a statement is an assertion. For example, assuming that a state-

ment of rdf:ID=”S1” is given, 〈isFalse rdf:resource=”#S1”〉 is an assertion.

• The 〈and〉 of two assertions is an assertion.

The solution involves defining classes Assertion, and, isTrue, and isFalse, and suitable

properties.

Listing 7.5: Examples of assertions
� �

<rdf :RDF



7.10 Exercises 135

x m l n s : r d f = "as usual"

x m l n s : r d f s = "as usual"

x m l n s : b o o l = "your solution">

< r d f s : C l a s s r d f : I D ="Person"/>
< r d f s : C l a s s r d f : I D ="Univ"/>
<Univ r d f : I D ="NCSU"/>
<Univ r d f : I D ="USC"/>

< r d f : P r o p e r t y r d f : I D ="gradOf">
<r d f s : d o m a i n r d f : r e s o u r c e ="#Person"/>
< r d f s : r a n g e r d f : r e s o u r c e ="#Univ"/>

</ r d f : P r o p e r t y >

<P e r s o n r d f : I D ="Jie">
<gradOf r d f : I D ="G1" r d f : r e s o u r c e ="#NCSU"/>
<gradOf r d f : I D ="G2" r d f : r e s o u r c e ="#USC"/>

</ Person>

<b o o l : a n d r d f : I D ="Main">
<b o o l : l e f t r d f : I D ="yesNCSU">

<b o o l : i s T r u e >
<b o o l : o f S t a t e m e n t r d f : r e s o u r c e ="#G1"/>

</ b o o l : i s T r u e >
</ b o o l : l e f t >
<b o o l : r i g h t r d f : I D ="noUSC">

<b o o l : i s F a l s e >
<b o o l : o f S t a t e m e n t r d f : r e s o u r c e ="#G2"/>

</ b o o l : i s F a l s e >
</ b o o l : r i g h t >

</ b o o l : a n d >

</ rdf:RDF>
� �

7.18. Add the following Boolean operators to your solution to Exercise 7.17.

• The 〈or〉 of two assertions is an assertion.

• The 〈not〉 of an assertion is an assertion.

7.19. Recall that an AND-OR graph is a directed graph whose nodes are interpreted as tasks.

The root node indicates the main overall task. Each leaf node is an atomic task. Non-

leaf nodes can be AND-nodes or OR-nodes. The out-edges of a node indicate its sub-

tasks. For each AND-node, all subtasks must be performed; for each OR-node, at least

one of the subtasks must be performed. There is no ordering among the tasks.

• Give an RDF Schema description for AND-OR graphs.



136 Resource Description Framework

• Give a simple example of an AND-OR graph with at least two AND-nodes and at

least two OR-nodes and formalize it according to your RDF Schema description.

7.20. Develop an RDF Schema description for SOAP messages. Consider envelopes, head-

ers, and body. Consider the various roles as defined in SOAP.

7.21. Develop an RDF Schema description for UDDI registries.



Chapter 8

Web Ontology Language

Let us briefly recapitulate our story so far regarding how the description of services relates

to knowledge representation. Autonomous services must be described to each other and

exchange information with each other in a manner that is comprehensible. We can take it

as a given that the information exchanged is in the form of an XML document, but any

standardized syntax would do equally well. However, XML merely standardizes the parse

tree associated with a document; it does not capture the underlying structure of the document

in terms of the relationships that it respects. RDF provides a means to represent graphs,

which express the structure of a given document as well as of the background knowledge or

ontology with respect to which a given document may be understood. The RDF primitives by

themselves are rather sparse. This motivated the development of the RDF Schema (RDFS),

which enables specialized vocabularies to be readily formulated.

RDF Schema includes the primitives to specify classes and properties, and the subclass

and subproperty relationships among them. To characterize the desired vocabularies more

precisely also requires additional expressiveness in the specification. Examples of some addi-

tional constructs are cardinality restrictions, Boolean operators, restrictions on property par-

ticipation, and so on. Notice, however, that although RDF Schema is less expressive in these

obvious ways, it can be thought of as being more expressive in another way. RDF Schema

enables us to construct models in which we have arbitrary applications of rdf:type, indicating

that a resource was the type of a resource, which was itself the type of a resource, and so on.

And nonstandard models could be constructed for vocabularies based on RDF Schema. OWL

for the most part is intended to limit such expressiveness, although the OWL Full dialect (see

below) lifts such restrictions.

8.1 Getting Started with OWL
The Web Ontology Language (OWL) provides the ability to specify classes and properties in

a form of description logic with the terms in its expressions related using Boolean operators

137



138 Web Ontology Language

analogous to AND, NOT, and OR, as well as the constraints on various properties. A special

form of constraint involves the existence of properties. For example, a parent may be defined

as an adult who has at least one child, i.e., participates as a subject in one or more instances

of the hasChild property. Further, the languages define constructs such as inverse relations,

transitivity, and disjointness.

The following is a detailed description of an OWL model for a domain of animals. An

OWL specification document—in loose terms, this would correspond to a file—has rdf:RDF
as its top-level element. This element includes attributes declaring the key namespaces. These

would almost always include the OWL, RDF, and RDF Schema namespaces, and often XML

Schema, plus others that are specific to the given domain. The following listing shows the

top element for our example:
� �

<rdf :RDF

xmlns :owl ="http://www.w3.org/2002/07/owl#"

x m l n s : r d f s ="http://www.w3.org/2000/01/rdf-schema#"

x m l n s : r d f ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

x m l n s : x s d ="http://www.w3.org/2001/XMLSchema#">
<!−− more here −−>
</ rdf:RDF>

� �

It then contains an assertion, made via the owl:Ontology element, that the given document

is an ontology. Here it is customary to specify the version and a comment. OWL also supports

a set of primitives to encode versions and relationships among versions. It also supports

importing ontologies into other ontologies. Section 9.5 reviews these primitives.
� �

<o w l : O n t o l o g y r d f : a b o u t ="Life">
<o w l : v e r s i o n I n f o >$ I d : L i f e . owl , v1 . 0 2 0 0 3 / 1 2 / 0 1

12 : 3 5 : 3 1 huhns Exp$

</ o w l : v e r s i o n I n f o >
<rd f s : comment>An Onto logy f o r L i f e </ rd f s : comment>

</ owl :Onto logy>
� �

An ontology defines classes, and relationships among those classes, as in the following

definitions. The first definition asserts that there is a class named “Animal,” and the second

that there is another class named “Mammal,” which is a subclass of “Animal” and, further,

that it is disjoint with a class named “Reptile.”
� �

<o w l : C l a s s r d f : I D ="Animal">
< r d f s : l a b e l >Animal </ r d f s : l a b e l >
<rd f s : comment>

Thi s c l a s s r e p r e s e n t s t h e an im a l kingdom .

</ rd f s : comment>
</ o w l : C l a s s >

<o w l : C l a s s r d f : I D ="Mammal">



8.1 Getting Started with OWL 139

<r d f s : s u b C l a s s O f r d f : r e s o u r c e ="#Animal"/>
<o w l : d i s j o i n t W i t h r d f : r e s o u r c e ="#Reptile"/>

</ o w l : C l a s s >
� �

Multiple superclasses are allowed in OWL, so we can state that a “Reptile” is both an

“Animal” and an “OxygenUser” (not defined within this ontology snippet) as
� �

<o w l : C l a s s r d f : I D ="Reptile">
<r d f s : s u b C l a s s O f r d f : r e s o u r c e ="#Animal"/>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e ="#OxygenUser"/>

</ o w l : C l a s s >
� �

An OWL class can be further defined by its properties. Like properties in RDF, OWL

properties are binary relations between two classes. Like in RDF Schema, these properties

are defined via their domain and range. For example, we may have a parent property that

states that the parent of an “Animal” is also an “Animal.”
� �

<o w l : O b j e c t P r o p e r t y r d f : I D ="hasParent">
<r d f s : d o m a i n r d f : r e s o u r c e ="#Animal"/>
< r d f s : r a n g e r d f : r e s o u r c e ="#Animal"/>

</ o w l : O b j e c t P r o p e r t y >
� �

Further, as in RDF Schema, a property can have subproperties. For example, “hasFather”

is a subproperty of “hasParent” that is restricted to have only male animals as its objects.

However, OWL enables us to state additional restrictions on the allowed property values. For

example, we can state that an animal must have at most one father by declaring it to be a

member of (i.e., having an rdf:type of) the following class:
� �

<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e ="#hasFather"/>
<o w l : m a x C a r d i n a l i t y r d f : d a t a t y p e ="xsd:nonNegativeInteger">

1

</ o w l : m a x C a r d i n a l i t y >
</ o w l : R e s t r i c t i o n >

� �

Finally, an individual can be defined as an object in a class. For example, the fact that

“Rover” is a “Mammal” whose father is the “MaleAnimal” instance “Spot” would be repre-

sented as
� �

<Mammal r d f : I D ="Rover">
<h a s F a t h e r ><MaleAnimal r d f : I D ="#Spot"/></ h a s F a t h e r >

</Mammal>
� �

The above discussion gives us a start on an OWL ontology. However, OWL has a number

of other constructs that make it an interesting and powerful language. These are introduced

below.



140 Web Ontology Language

8.2 OWL Dialects
OWL is a set of three languages or dialects of different expressiveness. Playing on the OWL

pun, these dialects are sometimes referred to as species.

• OWL Lite provides a classification hierarchy and limited constraints. For example, it

limits cardinality restrictions, and does not allow complementation (negation) or union

(disjunction) operators.

• OWL DL provides maximum expressiveness while ensuring computational complete-

ness (all valid conclusions can be inferred) and decidability (the inferences take finite

time). For example, classes cannot be used as instances.

• OWL Full provides maximum syntactic freedom, limited only by RDF. For example,

classes can be used as instances. However, OWL Full makes no guarantees of com-

pleteness or decidability.

An ontology expressed in OWL Lite is automatically expressed in OWL DL, and an ontology

expressed in OWL DL is automatically expressed in OWL Full. All conclusions drawn in

OWL Lite are valid in OWL DL, and all conclusions drawn in OWL DL are valid in OWL

Full.

In terms of what can be expressed, OWL Full is an extension of RDF, whereas OWL Lite

and OWL DL build on a restricted view of RDF. Thus every OWL document (of any dialect)

is an RDF document and every RDF document is an OWL Full document.

Section 8.6 returns to a discussion of the dialects and compares their expressiveness. For

now, the discussion introduces the main constructs without specific attention to the distinc-

tions among the dialects.

8.3 OWL Constructors
OWL distinguishes between constructors and axioms, which are discussed at length in Sec-

tion 8.4. In simple terms, the OWL constructors are the primitives that help us specify new

classes and axioms are the primitives that help us make additional assertions about classes

and properties.

The OWL dialects provide class constructors that are based on description logic. These

constructors build on the datatypes defined in XML Schema. These include the primitive

datatypes such as integer, string, and floating point number, which are defined in the XML

Schema namespace that is conventionally abbreviated to xsd. These are sometimes referred

to as the datatype domain and the object domain, respectively.

8.3.1 Classes
As before, classes correspond to sets of objects (their instances). Object types are distinct

from datatypes. That is, the instance of an object class cannot be the instance of a datatype.



8.3 OWL Constructors 141

This is a useful practical requirement, because most times you would need to specify con-

straints on the values of the data types, but the values of the data types cannot constrain the

objects. You would rarely (perhaps never) need to form new datatypes using the object types.

On the other hand, allowing such variation would complicate the representation and reason-

ing significantly. It makes more sense to set up the predicates defined on the datatypes to be

responsible for the datatypes. The reasoners built for OWL dialects would typically involve

a component for reasoning about the XML datatypes, which would be kept separate from the

component for reasoning about the object properties.

OWL includes a class called owl:Class, which is defined as a subclass of rdfs:Class. All

OWL object classes are members of owl:Class. OWL supports a variety of datatypes, includ-

ing those based on RDF datatype specifications, RDF Schema literals, and enumerations

based on objects. An example declaration, repeated from above, is
� �

<o w l : C l a s s r d f : I D ="Reptile">
<r d f s : s u b C l a s s O f r d f : r e s o u r c e ="#Animal"/>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e ="#OxygenUser"/>

</ o w l : C l a s s >
� �

A built-in class owl:Thing is at the top of the class hierarchy. Individuals are instances

of classes. OWL includes a built-in class called owl:Nothing that cannot have any instances

and which is, therefore, a subclass of every class. Formally, owl:Thing and owl:Nothing are

complements of each other.

We can declare individuals to be members of specified classes by using the class name

as the element name: this is a special case of the RDF XML syntax convention where the

rdf:type of an individual can be used as the element name:
� �

<R e p t i l e r d f : I D ="BobsLizard"/>
<owl :Th ing r d f : I D ="BobsLizardCage"/>
� �

Here no special class is being asserted for BobsLizardCage. It is simply an owl:Thing, which

all individuals in OWL are.

8.3.2 Properties

Properties relate pairs of individuals. Object properties, instances of owl:ObjectProperty,

relate instances of two classes (possibly the same class). Datatype properties, instances of

owl:DatatypeProperty, relate an instance of a class with an instance of a datatype. Whereas in

RDF we can declare an rdf:Property, in OWL we must explicitly choose the kind of property

we declare: owl:ObjectProperty or owl:DatatypeProperty.

Domain and range are global restrictions since they apply to a property by itself indepen-

dently of the class to whose instances the property is being applied. That is, the domain of a

property must be an instance of owl:Class, and is owl:Thing unless otherwise specified. The

range of an object property is also an instance of owl:Class, and is owl:Thing unless otherwise



142 Web Ontology Language

specified. However, the range of a datatype property is an owl:DataRange, which is a subclass

of rdfs:Datatype.

OWL allows multiple assertions about the domains and ranges of properties. These asser-

tions are interpreted conjunctively, i.e., all must be true. In other words, something is in the

domain of a property if it is in the intersection of all the specified domains. The range of a

property is treated similarly.

An rdf:Property element refers to a property name as a URI. As explained above, the

instances of a property are pairs of individuals, the first of which must be an object and the

second may be an object or a data value. An rdf:Property element may contain the following:

• Zero or more rdfs:subPropertyOf elements, each containing a property name. Any

pair of individuals that is an instance of the property named in the main rdf:Property
element must be an instance of the property named in each rdfs:subPropertyOf element.

An owl:ObjectProperty cannot be the subproperty of an owl:DatatypeProperty and vice

versa.

• Zero or more rdfs:domain elements. The first component of each instance for which

the given property applies must be in the stated domain. Multiple domain elements are

thus interpreted conjunctively.

• Zero or more rdfs:range elements. The second component of each instance for which

the given property applies must be in the stated range. Multiple range elements are thus

interpreted conjunctively.

• Zero or more owl:equivalentProperty elements, which assert the equivalence of the two

properties. This is a subproperty of rdfs:subPropertyOf. Therefore, it must satisfy the

same constraint (mentioned above) about not relating an owl:ObjectProperty with an

owl:DatatypeProperty.

• Zero or more owl:inverseOf elements, each naming a property of which the given prop-

erty is taken as an inverse. Because all properties must have owl:Class as their domain,

the owl:inverseOf element applies only to an owl:ObjectProperty. Section 6.5 defines

inverses.

The following listing brings the above primitives together in a single example.
� �

<o w l : O b j e c t P r o p e r t y r d f : I D ="livesIn">
<r d f s : d o m a i n r d f : r e s o u r c e =’#Animal’/>
< r d f s : r a n g e r d f : r e s o u r c e =’#Locale’/>
<r d f s : s u b P r o p e r t y O f r d f : r e s o u r c e =’#hasHabitat’/>
<o w l : i n v e r s e O f r d f : r e s o u r c e =’#hasDenizen’/>
<o w l : e q u i v a l e n t P r o p e r t y r d f : r e s o u r c e =’#hasHome’/>

</ o w l : O b j e c t P r o p e r t y >
� �



8.3 OWL Constructors 143

8.3.3 Class Expressions
The above constructors are not much different from the primitives of RDF Schema. OWL

comes into its own through a sophisticated set of class expression constructors. Listed in

order of increasing sophistication, a class expression may be any of the following things:

• Simply a class name, as given via a URI. The above examples are illustrations of this

variant.

• A Boolean combination of class expressions, enclosed in the owl:Class element.

• An enumeration enclosed in the owl:Class element.

• A property restriction, which provides an interesting technique (unique to description

logic) for deriving class definitions from properties.

As one would expect, except for the explicitly named class, the other expressions yield anony-
mous classes. The owl:equivalentClass axiom introduced in Section 8.4 provides a means to

assign names to anonymous classes.

8.3.3.1 Boolean Expressions

OWL includes the Boolean operators captured as three elements:

• The owl:intersectionOf element includes a list of class expressions and defines a class

equal to the intersection of the given expressions.

• The owl:unionOf element includes a list of class expressions and defines a class equal

to the union of the given expressions.

• The owl:complementOf element includes a single class expression and defines a class

equal to the complement of the given expression. One can think of this as producing

owl:Thing minus the given class expression.

The Boolean expressions have the following syntax:
� �

<o w l : C l a s s r d f : I D =’SugaryBread’>
<o w l : i n t e r s e c t i o n O f r d f : p a r s e T y p e =’Collection’>

<o w l : C l a s s r d f : a b o u t =’#Bread’/>
<o w l : C l a s s r d f : a b o u t =’#SweetFood’/>

</ o w l : i n t e r s e c t i o n O f >
</ o w l : C l a s s >

� �

Notice that the above syntax yields a definition for the SugaryBread class. This is to be

contrasted with merely asserting subclass relations about it. For example, if we define Rais-
inBread as follows



144 Web Ontology Language

� �

<o w l : C l a s s r d f : I D =’RaisinBread’>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e =’#Bread’/>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e =’#SweetFood’/>

</ o w l : C l a s s >
� �

then we would be able to infer that raisin bread is a subclass of sugary bread, but not that they

are equivalent.

8.3.3.2 Enumerations

An enumeration is given by the owl:oneOf element, which literally enumerates the objects

that are the instances of the anonymous class being described by the given expression. A key

feature of this constructor is that it provides an exhaustive list of its members.
� �

<o w l : C l a s s r d f : I D =’OvenType’>
<owl :oneOf r d f : p a r s e T y p e =’Collection’>

<OvenType r d f : a b o u t =’#Conventional’/>
<OvenType r d f : a b o u t =’#Convectional’/>
<OvenType r d f : a b o u t =’#Microwave’/>
<OvenType r d f : a b o u t =’#Tandoor’/>

</ owl:oneOf>
</ o w l : C l a s s >

� �

The owl:oneOf element can be combined with axioms such as rdfs:subClassOf. For example,

we can write
� �

<o w l : C l a s s r d f : I D =’OvenType’>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e =’#EquipmentType’/>
<owl :oneOf r d f : p a r s e T y p e =’Collection’>

<!−− as above −−>
</ owl:oneOf>

</ o w l : C l a s s >
� �

which not only specifies the members of oven type, but also states that it is a subclass of

equipment type.

8.3.3.3 Restrictions

OWL enables classes to be constructed out of properties through the mechanism of the prop-
erty restriction. In essence, the objects involved in a property that satisfy the stated restriction

form an anonymous class. A property restriction is modeled as an owl:Restriction, which is

a subclass of owl:Class. A property restriction can be of two varieties: owl:ObjectRestriction
(applies on object properties) or owl:DatatypeRestriction (applies on datatype properties).

Object and datatype restrictions are created with the same syntax: the former uses a class

element, the latter a datatype reference.



8.3 OWL Constructors 145

OWL enables stating restrictions on the type of values for a property that are related

to a class on which the property is defined. A property restriction acts as the constructor

for a class, namely, the class of individuals that satisfy the given restriction. The class is

anonymous, but may be declared to the same class as a named class, and hence be named.

Property restrictions provide local restrictions on a property in the context of a given class.

Each restriction applies to a single property; the property in question is specified through

owl:onProperty.

An owl:Restriction element takes an owl:onProperty subelement, which specifies the prop-

erty being restricted. This is usually written as the first subelement of owl:Restriction. Thus

the following is a typical syntax fragment:
� �

<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =’#bakes’/>

<!−− a c t u a l r e s t r i c t i o n here −−>
</ o w l : R e s t r i c t i o n >

� �

As remarked above, the owl:Restriction functions as a class. Consequently, this element can

be dropped into an OWL expression where a class would be expected. Restrictions are a local
way of stating constraints in that they would apply only to some of the range individuals or

values for a property. Based on these range individuals or values, we can induce the domain

individuals for which the constraint holds. These domain individuals, in essence, form an

anonymous class that is identified by the restriction expression.

The following are the major property restriction types that can be plugged into the above

syntax:

• owl:someValuesFrom forms the class of individuals such that at least one of the objects

or values associated to any of these individuals via the given property is a member of

the specified class or datatype. Notice that if no objects or data values are associated

with a given individual, then it automatically fails to qualify as a member of this class.

This is simply the traditional trivial case for the existential quantifier in logic. For

example, we may define a bread oven as a subclass of oven that can be used to bake a

kind of bread.
� �

<o w l : C l a s s r d f : I D =’BreadOven’>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e =’#OvenType’/>
<r d f s : s u b C l a s s O f >

<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =’#bakes’/>
<owl:someValuesFrom r d f : r e s o u r c e =’#Bread’/>

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f >

<o w l : C l a s s >
� �

• owl:allValuesFrom forms the class of individuals such that all objects or data values

associated to any of these individuals via the given property are members of the spec-



146 Web Ontology Language

ified class or datatype. Notice that if no objects or data values are associated with a

given individual, then it automatically qualifies as a member of this class. This is sim-

ply the traditional trivial case for the universal quantifier in logic. For example, we may

define a European company as a company all of whose offices are located in countries

in Europe.
� �

<o w l : C l a s s r d f : I D =’EuropeanCompany’>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e =’#Company’/>
<r d f s : s u b C l a s s O f >

<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =’#locatedIn’/>
<o w l : a l l V a l u e s F r o m r d f : r e s o u r c e =’#EuropeanCountry’/>

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f >

<o w l : C l a s s >
� �

• owl:hasValue forms the class of individuals such that at least one of the objects or

values associated to any of these individuals via the given property is the specified

individual or data value. Note that owl:hasValue refers to a particular instance, whereas

owl:someValuesFrom refers to a class expression. For example, we may define a USA

company as a company that has an office located in the USA.
� �

<o w l : C l a s s r d f : I D =’USACompany’>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e =’#Company’/>
<r d f s : s u b C l a s s O f >

<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =’#locatedIn’/>
<o w l : h a s V a l u e r d f : r e s o u r c e =’#USA’/>

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f >

<o w l : C l a s s >
� �

Another example is for specifying countries that belong to Europe. Here we identify an

individual continent called Europe. Notice that if a country falls partly in Europe and

partly in another continent (as do Russia and Turkey), and if the property isInContinent
is interpreted as being multivalued, then such countries would be identified as European

countries.
� �

<o w l : C l a s s r d f : I D =’EuropeanCountry’>
<o w l : e q u i v a l e n t C l a s s >
<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =’#isInContinent’/>
<o w l : h a s V a l u e r d f : r e s o u r c e =’#Europe’/>

</ o w l : R e s t r i c t i o n >
</ o w l : e q u i v a l e n t C l a s s >

<o w l : C l a s s >
� �



8.3 OWL Constructors 147

• owl:minCardinality: Consider the number of instances to which a given instance of a

class must be related via the given property. This number must be equal or above

the minimum cardinality stated for that property. If nothing is stated about minimum

cardinality, then a minimum cardinality of 0 is implied. A minimum cardinality of

0 indicates that participation in the given property is optional, whereas a minimum

cardinality of 1 indicates that participation in the given property is mandatory.

As a restriction, this selects the domain individuals for a property for which the given

minimum cardinality constraint holds. For example, we can define a distributed com-

pany as one that has at least two locations. All the cardinality constraints are based on

the XML Schema Datatype of nonNegativeInteger.
� �

<o w l : C l a s s r d f : I D =’DistributedCompany’>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e =’#Company’/>
<r d f s : s u b C l a s s O f >

<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =’#locatedIn’/>
<o w l : m i n C a r d i n a l i t y

r d f : d a t a t y p e =’&xsd;#nonNegativeInteger’>
2

</ o w l : m i n C a r d i n a l i t y >
</ o w l : R e s t r i c t i o n >

</ r d f s : s u b C l a s s O f >
<o w l : C l a s s >
� �

• owl:maxCardinality: Consider the number of instances to which a given instance of a

class must be related via a given property. This number must be equal or below the

maximum cardinality stated for the property. If nothing is stated about maximum car-

dinality, then an unbounded maximum cardinality is implied. A maximum cardinality

of 1 indicates a functional property (defined in Section 8.4). A maximum cardinality

of 0 indicates that the property cannot apply on the given class—typically, this would

be a subclass of a class where the property does apply. For example, an unemployed

person may be modeled as one with no employer.
� �

<o w l : C l a s s r d f : I D =’UnemployedPerson’>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e =’#Person’/>
<r d f s : s u b C l a s s O f >

<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =’#hasEmployer’/>
<o w l : m a x C a r d i n a l i t y

r d f : d a t a t y p e =’&xsd;#nonNegativeInteger’>
0

</ o w l : m a x C a r d i n a l i t y >
</ o w l : R e s t r i c t i o n >

</ r d f s : s u b C l a s s O f >
<o w l : C l a s s >
� �



148 Web Ontology Language

• owl:cardinality specifies the minimum and maximum cardinalities to be equal to the

stated value. Thus it abbreviates owl:minCardinality and owl:maxCardinality.

8.3.4 Collections
OWL has support for collections of entities. For a given collectionID, we can declare it to be

of rdf:type owl:Collection. Further we can assert for an entity that it is the owl:memberOf of a

given collectionID.

8.4 OWL Axioms
The above section covered the main OWL class constructors. Other key OWL primitives

behave as axioms or assertions about classes and properties. These are introduced next.

8.4.1 Individuals
Instances of both classes (objects) and properties (pairs of objects) are written in the XML

syntax for RDF.

• Individuals can be stated to be of the rdf:type of a class. Properties can be asserted for

an individual by explicitly specifying an individual or data value with which the given

individual is being associated.

• The owl:sameAs primitive applies to individuals. In OWL Full, classes are treated as

individuals, so owl:sameAs applies to them as well. When applied to classes, it means

that they denote the same concept, not that they are distinct concepts that happen to

have the same instances. For example, the singleton class of morning stars could be

asserted to be equivalent to the singleton class of evening stars, even though they are

not asserted to be the same class.

• The OWL semantics makes no assumptions about unique names. In other words,

distinct URIs are obviously distinct, but the resources they point to might in fact be

the same or distinct objects. But it is often essential to assert that two resources are

in fact the same individual. The identity of such pairs of resources can possibly be

inferred, but it is often essential and always good practice to record known such iden-

tities explicitly. (Section 8.5 discusses OWL inference.) This is achieved through

owl:sameIndividualAs. For example, the following asserts that the country Persia is the

same as Iran.
� �

<e x : C o u n t r y r d f : I D =’Iran’/>
<e x : C o u n t r y r d f : I D =’Persia’>

<o w l : s a m e I n d i v i d u a l A s r d f : r e s o u r c e =’#Iran’/>
</ ex :C oun t r y >

� �



8.4 OWL Axioms 149

Such an assertion of identity would be most useful if Iran and Persia were defined as

terms in different ontologies.

• owl:differentFrom is used to assert that two individuals are different from each other.

This is valuable because OWL makes no assumption about the uniqueness of the names

of individuals. For example, we may state that
� �

<e x : C o u n t r y r d f : I D =’Russia’/>
<e x : C o u n t r y r d f : I D =’India’>

<o w l : d i f f e r e n t F r o m r d f : r e s o u r c e =’#Russia’/>
</ ex :C oun t r y >

� �

• The above works for more individuals, but requires a separate assertion for each pair.

For n individuals, we would need on the order of n2 entries. Clearly, a more compact

notation is called for. The owl:AllDifferent primitive along with owl:distinctMembers is

used to assert that a number of individuals is pairwise distinct.
� �

<o w l : A l l D i f f e r e n t >
<o w l : d i s t i n c t M e m b e r s r d f : p a r s e T y p e =’Collection’>
<e x : C o u n t r y r d f : I D =’Russia’/>
<e x : C o u n t r y r d f : I D =’India’/>
<e x : C o u n t r y r d f : I D =’USA’/>

<o w l : d i s t i n c t M e m b e r s />
</ o w l : A l l D i f f e r e n t >

� �

8.4.2 Data Values
Data values are written in RDF syntax with a string representation of the desired value along

with a URI for the XML Schema datatype and a mechanism to parse the string and produce

the desired value. The XML Schema datatype is the rdf:type of the data value and the string

representation is the rdf:value of the value. Thus the decimal 7.9 would be expressed as an

RDF literal as 〈xsd:decimal rdf:value=”7.9”〉. For data values, XML Schema Datatype identity

is used to determine whether they are the same or different.

8.4.3 Classes
A pair of classes or a pair of properties may be stated to be identical or equivalent: in this case

they behave as synonyms and one may be substituted for the other. OWL class properties are

• rdfs:subClassOf, already introduced, asserts that its subject is a subclass of its object.

• owl:equivalentClass is a subProperty of rdfs:subClassOf. When applied to classes,

it has the same meaning as owl:sameAs. However, because owl:equivalentClass is

a subproperty of rdfs:subClassOf, this indicates that a part of its meaning is inter-

pretable from RDF Schema without necessarily involving any knowledge of OWL. In



150 Web Ontology Language

other words, an RDF Schema processor could partially understand owl:equivalentClass
but not owl:sameAs. Therefore, the owl:equivalentClass formulation is preferred over

owl:sameAs when classes are involved.

• owl:disjointWith asserts that its subject class has no members in common with its object

class. For example, the following asserts that no mammal may be a reptile, bird, or

amphibian.
� �

<o w l : C l a s s r d f : I D ="Mammal">
<r d f s : s u b C l a s s O f r d f : r e s o u r c e ="#Vertebrate"/>
<o w l : d i s j o i n t W i t h r d f : r e s o u r c e ="#Reptile"/>
<o w l : d i s j o i n t W i t h r d f : r e s o u r c e ="#Bird"/>
<o w l : d i s j o i n t W i t h r d f : r e s o u r c e ="#Amphibian"/>

</ o w l : C l a s s >
� �

8.4.4 Properties
Properties can be introduced as inverses of other properties. This only works for object

properties, because only a class may be the domain of a property. Further, properties may be

declared to be transitive or symmetric. Obviously, these specifications too make sense only

for object properties. In the above and other such cases, a reasoner is authorized to make the

corresponding inferences.

Functional or unique properties are those that have at most one value for a given instance

to which they apply. This specification holds for all properties. These correspond to the so-

called partial functions of elementary algebra, because they are not defined for every member

of their domain. In other words, the minimum cardinality of such properties is 0 and their

maximum cardinality is 1. Properties can be inverse functional, meaning that their inverses

must be functional, that is, the inverse of such a property would have at most one value for

each instance to which it applies. In other words, it would be unambiguous.

Inverse functional properties are those for which each range value relates to no more than

one domain value. This specification holds only for object properties.

• owl:equivalentProperty is a subProperty of rdfs:subPropertyOf. When applied to prop-

erties, it has the same meaning as owl:sameAs. However, for reasons similar to those

discussed for owl:equivalentClass, when properties are involved it is preferable to use

owl:equivalentProperty instead of owl:sameAs.

• owl:inverseOf is a property of object properties. It asserts that its subject and object

properties are inverses of each other. The formal definition for owl:inverseOf follows

the definition of inverse binary relations in Section 6.5.

• The owl:TransitiveProperty element, is a subclass of owl:ObjectProperty, and asserts

that the given property is transitive. In other words, if the pairs (x, y) and (y, z) are

instances of the given property, then so is the pair (x, z). As for transitive binary



8.4 OWL Axioms 151

relations in general, owl:TransitiveProperty requires that its domain and range be equal

so that the transitivity is well-defined.

• The owl:SymmetricProperty element, is a subclass of owl:ObjectProperty, and asserts

that the given property is symmetric. In other words, if the pair (x, y) is an instance of

the given property, then so is the pair (y, x). As above, owl:SymmetricProperty requires

that its domain and range be equal so that symmetry is well-defined.

• The owl:FunctionalProperty element asserts that the given property can have at most

one pair instance with a given first component. This behaves as a global cardinality

restriction.

• The owl:InverseFunctionalProperty element asserts that the given property can have

at most one pair instance with a given second component. This behaves as a global

cardinality restriction. As is perhaps obvious, owl:InverseFunctionalProperty applies

only on object properties, that is, it is an rdfs:subClassOf owl:ObjectProperty.

8.4.5 Elementary Algebra: Functions
It is helpful to relate ontologies to binary relations as in elementary, high-school algebra. Let

us review some basic definitions, which support some interesting results.

Recall from elementary algebra that given sets Sd (domain) and Sr (range, also known

as codomain), a binary relation R between these sets is defined as any subset of Sd × Sr.

Informally, R associates each member of Sd with zero or more members of Sr. Consider the

following definitions.

• A partial function f from Sd to Sr (written f : Sd �→ Sr) is a relation that associates

each member of Sd with at most one member of Sr. For d ∈ Sd, f(d) denotes the

member of Sr (if any) associated with Sd.

• A total function f : Sd �→ Sr is a relation that associates each member of Sd with at

most one member of Sr. A total function is a partial function that is defined for all

members of its domain.

• We say that a total function f : Sd �→ Sr is injective or one-to-one if (∀d1, d2 ∈ Sd :
f(d1) = f(d2) ⇒ d1 = d2). That is, an injective function is one whose targets are

different if its sources are different.

• We say that a total function f : Sd �→ Sr is surjective or onto if (∀r ∈ Sr : (∃d ∈ Sd :
f(d) = r)). That is, a surjective function is one that “uses up” all of its range.

• We say that a total function f : Sd �→ Sr is bijective if it is both injective and surjective.

Bijective functions are also known as bijections.

Exercises 8.6 and 8.8 ask you to establish some simple results and give natural examples of

the above.



152 Web Ontology Language

8.5 OWL Inference
The essential theme behind knowledge representation is that it is about computing with the

specifications of conceptual models that are given. In particular, a form of computing—

inference—can be specified as part of the semantics of the language. The dialects of OWL,

RDF Schema, and RDF are all syntactically expressible in XML. However, the inferences

they support go beyond those of XML to capture increasingly subtle shades of meaning.

Each well-formed OWL document legitimizes a number of inferences.

A consequence of the inference view is that we cannot consider OWL documents merely

in terms of their syntax, but should also consider their semantics. In other words, two super-

ficially different OWL documents may have the same semantics because they legitimize the

same inferences. For example, we can infer the meaning of the following listing:
� �

<o w l : C l a s s r d f : I D ="Mammal">
<r d f s : s u b C l a s s O f r d f : r e s o u r c e ="#Vertebrate"/>

</ o w l : C l a s s >
� �

from the following listing:
� �

<o w l : C l a s s r d f : I D =’Vertebrate’>
<owl :un ionOf r d f : p a r s e T y p e =’Collection’>

<o w l : C l a s s r d f : a b o u t ="#Amphibian"/>
<o w l : C l a s s r d f : a b o u t ="#Reptile"/>
<o w l : C l a s s r d f : a b o u t ="#Bird"/>
<o w l : C l a s s r d f : a b o u t ="#Mammal"/>

</ owl :un ionOf>
</ o w l : C l a s s >

� �

An advantage of thinking in terms of inferences is that we can put together knowledge

from different sources. In other words, differently developed conceptual models can be com-

bined or mapped to each other. The inferencing mechanism can detect potential inconsisten-

cies, thus helping resolve errors early.

A special case of the above is that classes can be defined piecemeal. Thus an owl:Class
element may contain only part of the definition of the given class. Additional parts of the

definition can be added via other elements. The following snippets illustrate this.
� �

<o w l : C l a s s r d f : I D ="Mammal">
<r d f s : s u b C l a s s O f r d f : r e s o u r c e ="#Vertebrate"/>

</ o w l : C l a s s >
� �

Notice that whereas the snippet above uses the rdf:ID attribute to declare the identifier for a

class, the snippets below use the rdf:about attribute to refer to the same class.
� �

<o w l : C l a s s r d f : a b o u t ="#Mammal">
<o w l : d i s j o i n t W i t h r d f : r e s o u r c e ="#Reptile"/>



8.5 OWL Inference 153

<o w l : d i s j o i n t W i t h r d f : r e s o u r c e ="#Bird"/>
<o w l : d i s j o i n t W i t h r d f : r e s o u r c e ="#Amphibian"/>

</ o w l : C l a s s >
� �

� �

<o w l : C l a s s r d f : a b o u t ="#Mammal">
<r d f s : s u b C l a s s O f >

<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =’#hasSkinCovering’/>
<o w l : h a s V a l u e r d f : r e s o u r c e =’#Hair’/>

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f >
<r d f s : s u b C l a s s O f >

<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =’#temperatureControl’/>
<o w l : h a s V a l u e r d f : r e s o u r c e =’#Warm’/>

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f >

<o w l : C l a s s >
� �

This is not to say that we should purposely scatter the definition of a class in different

places, but that we can begin with a definition and possibly augment it. The above case

might occur if one ontology simply introduces mammals as a kind of vertebrate; another one

remarks they are disjoint from reptiles, birds, and amphibians; and a third source states that

they are covered with hair and are warm-blooded. If the sources came about independently,

then there would be a step where it is recognized that the different documents are about the

same concept. Chapter 9 revisits this point. If the extensions were inconsistent, then the class

would end up being subsumed by owl:Nothing.

There are can be two main ways to specify a class. One involves necessary, but in general

not sufficient, constraints. An owl:Class element may include zero or more subclass elements,

each of which contains a resource, which is a class expression. It may also have zero or more

disjointWith elements. Each disjointWith element specifies a class expression and indicates, as

described above, that the given class does not overlap with the specified expression.

The other way to specify a class involves necessary and sufficient conditions for class

membership. The simplest means to do so is by using the owl:equivalentClass element. An

owl:Class element may use as many of these as necessary. The class is then taken to be

equivalent to each of the class expressions. An owl:Class element may contain Boolean

class expressions, indicating intersection, union, and complementation. Lastly, an owl:Class
element may include some individuals that are treated as being its exact set of instances: no

more, no less.

The combination of the axiom primitives with the constructors yields enhanced expressive

power. For example, OWL DL enables us to state axioms, such as rdfs:subClassOf, between

arbitrary class expressions. An advantage of this expressiveness is that many of the primitives

can be understood theoretically as abbreviations of other primitives. We can still use the

primitives for their convenience, but they do not add to the overall expressive power.



154 Web Ontology Language

8.6 OWL Dialects Compared

We can now summarize the main entities in the OWL metamodel. Figure 8.1 presents an

RDF Schema that includes the main entities and relationships of OWL.

rdfs:subClassOf

owl:equivalentClass

owl:disjointWith rdf:domain

owl:inverseOf

owl:equivalentProperty

rdfs:subPropertyOf

rdf:range

x

rdf:subPropertyOf

owl:equivalentProperty

owl:Transitive

Property
owl:Symmetric

Property

owl:Datatype

Property

rdf:Property

owl:Object

Property

owl:Class

rdfs:Class rdfs:Datatype

owl:DataRange

owl:Functional

Property

owl:Inverse

Functional

Property

rdf:range

Figure 8.1: The main OWL entities and relationships. Here a double arrow indicates

rdfs:subClassOf, a dashed arrow indicates rdf:type, and all other arrows indicate the labeled

properties. The ⊗ connector symbol indicates mutual exclusion of the subclasses

The OWL dialects vary in their treatment of cardinality. OWL Lite limits all cardinality

values to be 0 or 1. For minimum cardinality, specifying nothing is equivalent to specify-

ing 0, so it is only necessary to specify mandatory participation. For maximum cardinality,

specifying nothing is equivalent to leaving it unbounded. If the maximum cardinality is 1,

then that means there can be at most one associated value. In general, limiting the maximum

cardinality to 0 would be unlikely, since it suggests that participation is forbidden. In OWL

DL and in OWL Lite, only an owl:ObjectProperty can be an owl:InverseFunctionalProperty;

in OWL Full, it may be an owl:ObjectProperty or an owl:DatatypeProperty.



8.7 An OWL Example 155

Interestingly, OWL Lite and OWL DL impose the additional requirements that transitive

properties and their superproperties may not have a maximum cardinality of 1. Without such

a requirement, these languages would become undecidable [Horrocks et al., 1999].

As explained in Section 8.3.3.3, the above restrictions can be thought of as generating

anonymous classes. OWL Lite supports intersection of named classes and restrictions. It

also limits rdfs:subClassOf and owl:equivalentClass statements to use individual class names

as their subjects, as opposed to arbitrary expressions denoting classes; the objects of these

statements can be named classes or restrictions.

OWL Lite respects the limitations imposed by OWL DL. Further, OWL Lite eliminates

some useful primitives from the following categories, namely, enumeration (owl:oneOf), set

operations (owl:unionOf and owl:complementOf), data ranges (owl:DataRange), class axioms

(owl:disjointWith), and property restrictions (owl:hasValue and cardinalities other than 0 and

1). Moreover, in OWL Lite, intersections must involve more than one class (each named

or an expression). Further, the objects of the properties rdfs:range, owl:allValuesFrom, and

owl:someValuesFrom must be named classes or datatypes; the objects of rdfs:domain must be

named classes; and the objects of rdf:type must be named classes or restrictions.

OWL DL includes some further valuable constructs. Enumerated classes can be defined

in terms of a set of enumerated individuals that form their set of instances—this is the exact

set of instances.

OWL Full can state that two classes are mutually disjoint, that is, they have no common

instances. It allows cardinalities to be arbitrary nonnegative integers. Importantly, it allows

complex class descriptions to be used for the constructs where a class name may be used.

Further, OWL Full allows classes to be used as instances.

8.7 An OWL Example
We now discuss a short example ontology that brings together some of the concepts intro-

duced above. Consider an academic setting where students take courses and courses are

offered by departments. Further, assume that each course is offered by exactly one depart-

ment, CS is a department, a student must take at least one course, and a full-time student

must take between three and five courses. How might we capture this scenario in OWL? The

following listing illustrates the basic entities and relationships.
� �

<o w l : C l a s s r d f : I D ="Student"/>
<o w l : C l a s s r d f : I D ="Course"/>
<o w l : C l a s s r d f : I D ="Department"/>

<Depar tment r d f : I D =’CS’/>

<o w l : O b j e c t P r o p e r t y r d f : I D =’takes’>
<r d f s : d o m a i n r d f : r e s o u r c e =’#Student’/>
< r d f s : r a n g e r d f : r e s o u r c e =’#Course’/>

</ o w l : O b j e c t P r o p e r t y >



156 Web Ontology Language

<o w l : I n v e r s e F u n c t i o n a l P r o p e r t y r d f : I D =’offers’>
<r d f s : d o m a i n r d f : r e s o u r c e =’#Department’/>
< r d f s : r a n g e r d f : r e s o u r c e =’#Course’/>

</ o w l : I n v e r s e F u n c t i o n a l P r o p e r t y >

<o w l : O b j e c t P r o p e r t y r d f : I D =’offeredBy’>
<i n v e r s e O f r d f : r e s o u r c e =’#offers’/>

<!−− i m p l i e s t h a t o f f e r e d B y i s a F u n c t i o n a l P r o p e r t y −−>
</ o w l : O b j e c t P r o p e r t y >

� �

The above has captured all of our constraints except that a student must take at least one

course. The following OWL fragment would seem like a good shot at it:
� �

<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =’#takes’/>
<o w l : m i n C a r d i n a l i t y

r d f : d a t a t y p e =’&xsd;#nonNegativeInteger’>
1

</ o w l : m i n C a r d i n a l i t y >
</ o w l : R e s t r i c t i o n >

� �

However, what it does is declare a new anonymous class of objects that take at least one

course. Knowing that the domain of takes is Student, we can infer that the above anonymous

class is a subclass of Student. However, it does not say that all students take at least one

course. To capture that requirement, we would have to additionally assert that students are

a subclass of the above anonymous class. This requires the use of one of OWL’s axiom

constructors as below (notice we use rdf:about to refer to the class Student, which is defined

elsewhere (above in this case)).
� �

<o w l : C l a s s r d f : a b o u t ="#Student">
<r d f s : s u b C l a s s O f >

<o w l : R e s t r i c t i o n >
<o w l : o n P r o p e r t y r d f : r e s o u r c e =’#takes’/>
<o w l : m i n C a r d i n a l i t y

r d f : d a t a t y p e =’&xsd;#nonNegativeInteger’>
1

</ o w l : m i n C a r d i n a l i t y >
</ o w l : R e s t r i c t i o n >

<r d f s : s u b C l a s s O f >
</ o w l : C l a s s >

� �

Armed with the above, we can formulate the definition of full-time student as the following

complex description:
� �

<o w l : C l a s s r d f : I D ="FullTimeStudent">



8.7 An OWL Example 157

<o w l : i n t e r s e c t i o n O f r d f : p a r s e T y p e =’Collection’>
< r d f s : C l a s s r d f : a b o u t =’#Student’/>
<o w l : R e s t r i c t i o n >

<o w l : o n P r o p e r t y r d f : r e s o u r c e =’#takes’/>
<o w l : m i n C a r d i n a l i t y

r d f : d a t a t y p e =’&xsd;#nonNegativeInteger’>
3

</ o w l : m i n C a r d i n a l i t y >
<o w l : m a x C a r d i n a l i t y

r d f : d a t a t y p e =’&xsd;#nonNegativeInteger’>
5

</ o w l : m a x C a r d i n a l i t y >
</ o w l : R e s t r i c t i o n >

</ o w l : i n t e r s e c t i o n O f >
</ o w l : C l a s s >

� �

Now we can formulate additional classes that use the above. For example, computer

science courses are those offered by the CS department.

� �

<o w l : C l a s s r d f : I D ="CSCourse">
<o w l : i n t e r s e c t i o n O f r d f : p a r s e T y p e =’Collection’>

< r d f s : C l a s s r d f : a b o u t =’#Course’/>
<o w l : R e s t r i c t i o n >

<o w l : o n P r o p e r t y r d f : r e s o u r c e =’#offeredBy’/>
<o w l : h a s V a l u e r d f : r e s o u r c e =’#CS’/>

</ o w l : R e s t r i c t i o n >
</ o w l : i n t e r s e c t i o n O f >

</ o w l : C l a s s >
� �

And, full-time computer science students could be defined as full-time students who take

only computer science courses.

� �

<o w l : C l a s s r d f : I D ="CSFullTimeStudent">
<o w l : i n t e r s e c t i o n O f r d f : p a r s e T y p e =’Collection’>

< r d f s : C l a s s r d f : a b o u t =’#FullTimeStudent’/>
<o w l : R e s t r i c t i o n >

<o w l : o n P r o p e r t y r d f : r e s o u r c e =’#takes’/>
<o w l : a l l V a l u e s F r o m r d f : r e s o u r c e =’#CSCourse’/>

</ o w l : R e s t r i c t i o n >
</ o w l : i n t e r s e c t i o n O f >

</ o w l : C l a s s >
� �



158 Web Ontology Language

8.8 Expressiveness
When designers of Web services are faced with choosing a representation for their services,

there are a number of trade-offs that they must consider. The trade-offs must be made among

the expressive power, the rigor, the ease of use, and the computational tractability of a repre-

sentation.

8.8.1 Tree Model Definitions
A limitation of OWL is that, in essence, it allows the formulation of restrictions that consider

no more than one individual member of a class. Formally, description logic (as remarked

above, the intellectual basis of languages such as OWL) satisfy the so-called tree model
property. In other words, we cannot define classes or properties whose members are related

via an anonymous variable.

Consider this scenario about products stored in warehouses and shipped on trucks:
� �

<o w l : C l a s s r d f : I D ="Product"/>
<o w l : C l a s s r d f : I D ="Warehouse"/>
<o w l : C l a s s r d f : I D ="Truck"/>
<o w l : C l a s s r d f : I D ="Location"/>

<o w l : O b j e c t P r o p e r t y r d f : I D =’inWarehouse’>
<r d f s : d o m a i n r d f : r e s o u r c e =’#Product’/>
< r d f s : r a n g e r d f : r e s o u r c e =’#Warehouse’/>

</ o w l : O b j e c t P r o p e r t y >

<o w l : O b j e c t P r o p e r t y r d f : I D =’fitsOnTruck’>
<r d f s : d o m a i n r d f : r e s o u r c e =’#Product’/>
< r d f s : r a n g e r d f : r e s o u r c e =’#Truck’/>

</ o w l : O b j e c t P r o p e r t y >

<o w l : O b j e c t P r o p e r t y r d f : I D =’wLoc’>
<r d f s : d o m a i n r d f : r e s o u r c e =’#Warehouse’/>
< r d f s : r a n g e r d f : r e s o u r c e =’#Location’/>

</ o w l : O b j e c t P r o p e r t y >

<o w l : O b j e c t P r o p e r t y r d f : I D =’tLoc’>
<r d f s : d o m a i n r d f : r e s o u r c e =’#Truck’/>
< r d f s : r a n g e r d f : r e s o u r c e =’#Location’/>

</ o w l : O b j e c t P r o p e r t y >
� �

The challenge is to define a class Shippable of products that are in a warehouse where a

suitable truck is available. In predicate logic, this could be represented as

shippable(x) ≡ (∃y, z, w : inWarehouse(x, y)∧fitsOnTruck(x, z)∧wLoc(y, w)∧tLoc(z, w))



8.8 Expressiveness 159

Such a simple formula cannot be expressed in OWL, because it involves a nontree graphical

w

zy

wloc zloc

fitsOnTruckinWarehouse

x

Figure 8.2: A schematic representation for the warehouse and shipping example

model. Figure 8.2, where a cycle is apparent, illustrates the desired formula schematically.

8.8.2 Constraints among Individuals

A representation such as OWL that is based on description logic allows ontological reasoning

but not constraint reasoning. For example, an AntiqueBook can be described as a subclass

of Book, enabling a Web service to provide information either about all books or just about

antique books. Unfortunately, this would require the designer of a bookstore Web service to

classify each book as an antique or not. However, because each book has a publication date,

it would be easier to define an antique book as one that is published (printed) before, say,

1850. Then, each book would not have to be individually classified. The Web service would

only have to reason about whether or not a publication date is prior to 1850, a simple kind of

constraint reasoning, but one that OWL does not allow.

8.8.3 Specialized Properties

OWL allows properties to be subproperties of others. It also captures restrictions. Now con-

sider the following setting. Assume we have modeled a class Animal and various subclasses

of it, such as Mammal and Reptile. Assume we have defined a property hasChild from Ani-
mal to Animal. Going further, we would like to state that the child of a Mammal must be a

Mammal and the child of a Reptile must be a Reptile. It turns out this is not possible in OWL.

We can, however, define different subproperties of hasChild, such as hasMammalChild and

hasReptileChild, but doing so would proliferate the properties in the model.



160 Web Ontology Language

8.8.4 Defeasible Concepts

In the same vein, a lot of commonsense knowledge has the flavor of defaults. A classi-

cal example is whether birds fly. We would like to state that birds fly and yet be able to

accommodate that penguins, a subclass of birds, do not fly. Such reasoning is operationally

reflected in object-oriented programming languages, where a method in a subclass (imagine

a method canFly on penguins) may override a method of the same name in a superclass. The

logical treatment of such reasoning—termed defeasible or nonmonotonic—is nontrivial. The

ontology framework, in essence, partitions the responsibilities between ontologies and other

general-purpose reasoning mechanisms. Ontologies capture the basic definitions whereas

other application-specific mechanisms handle how to reason with the ontologies when given

specific data and usage context. Section 15.7, on rules, discusses such reasoning in practical

settings and includes some aspects of defeasible reasoning.

8.9 Notes
The OWL proposed standard was created by a standards committee called the Web ontology

(WebOnto) group, whose main input was the representation language called DAML+OIL.

DAML+OIL itself arose from the synthesis of two preceding efforts, namely, the DARPA

Agent Modeling Language (DAML) and the Ontology Interchange Language (OIL). OIL

sometimes is said to stand for the Ontology Inference Layer. DAML is discussed in [DAML]

and RDF is discussed in Decker et al. [2000a].

A number of tools for OWL have been implemented. Jena, described in Section 7.9, has

libraries that support using OWL on top of RDF. Protégé, introduced in Section 6.10, supports

editing ontologies and generates OWL documents automatically.

A number of effective validators for OWL now exist. These include the BBN OWL Val-

idator, which is available from http://owl.bbn.com/validator/. It is also known as the vOWL-
idator. vOWLidator has both a downloadable tool and a Web form interface. Another

validator is RACER: Renamed ABox and Concept Expression Reasoner, available from

http://www.cs.concordia.ca/˜haarslev/racer/. RACER integrates with Protégé.

The theoretical study of ontology modeling languages is a major research area. Interested

readers can pursue the references given above to learn more about specific algorithms, the

complexity of the algorithms and of the decision problems, and the trade-offs involved in

designing the representation languages.

8.10 Exercises
8.1. Which one of the following best characterizes what OWL can be used for?

• Creating ontologies.

• Describing Web services.



8.10 Exercises 161

• Describing applications.

• Defining XML Schema types.

• Creating multicast SOAP messages.

8.2. Which one of the following best represents the main entities we define in OWL?

• Classes and properties.

• Elements and attributes.

• Services and bindings.

• Ports and services.

• Strings and integers.

8.3. Define a property parentOf relating animals and a class Parent as a restriction on par-
entOf of minimum cardinality 1. Further, write an OWL specification for grandparent.

8.4. Beginning from Exercise 8.3 and adding a property sex, write an OWL specification

for grandmother and for maternal grandmother.

8.5. Produce an OWL description of the following scenario. Express the solution as a graph

with suitable annotations of labels or constraints. Use the following abbreviations:

student (S); faculty member (F); regular faculty member (R); department (D); thesis

committee (T).

• An S belongs to exactly one D.

• An R is an F.

• An R advises zero or more Ss.

• An F is affiliated with one or more Ds.

• An S is advised by exactly one R.

• An S is evaluated by exactly one T.

• A T evaluates exactly one S.

• A T has three or more Fs as its members.

• Exactly one of the members of a T is its chair, who is an R.

8.6. Prove or disprove that an OWL property is transitive if and only if its inverse is transi-

tive.

8.7. Section 6.6.2 described the isPartOf relation. Formalize this relation as an OWL prop-

erty, capturing the formal properties discussed for it in that section.



162 Web Ontology Language

8.8. Give distinct examples of OWL specifications for describing properties that behave as

a partial function, a total function, an injective function, a surjective function, and a

bijection, respectively. Make sure that the examples are natural or realistic, i.e., they

are about some real-world (or even computational) phenomenon that you did not just

conjure up for this exercise.

8.9. Suppose you were asked to augment your solution to Exercise 8.5 to capture the fol-

lowing additional facts and constraints. How would you go about capturing this know-

ledge?

• An S is advised by exactly one R, who is affiliated with the D to which the S

belongs.

• A T has three or more Fs as its members, each of whom is affiliated with the D

to which the evaluated S belongs.

• Exactly one of the members of a T is its chair, who is an R and belongs to the

same department as the student.

• A T consists of zero or one nondepartmental members, each of whom is affiliated

with a D different from the one to which the evaluated S belongs.

8.10. Construct an OWL-DL ontology for a small domain of your choice.

8.11. Produce an OWL document covering the following university scenario. Assume the

classes student, course, and department, as well as the properties takes and offeredBy.

You can define auxiliary classes and properties if you like. Use the RDF-XML syntax.

• Define a cross-listed course as one that is offered by two or more departments.

• A student is a member of exactly one department.

• Define an unlucky student as one who takes a course that is taken by a hundred

or more students.

8.12. How many instances of rdfs:Class are defined by the current standard for OWL?

8.13. Which one of the following is an example of a statement that can be defined in OWL

but not in RDF or RDFS?

• Things that have the isTall property cannot have the isShort property.

• Anything that has the isTall property is a human.

• All things that are Men are Human.

• The property hasIncome maps a Worker to a Real.
• There is a class called Firefly.

8.14. Develop an OWL model for basic aspects of Web services: include consideration of

service provider, requester, registry, and the publishing, discovery, and invocation of

services. State what you can about the parameters of services.



Chapter 9

Ontology Management

In early work on ontologies, there was often an implicit assumption that the process would

proceed in the following manner. You would build or find an ontology for your domain. Pos-

sibly, this would be a standard ontology. Then you would relate the models for your infor-

mation sources with this ontology by defining appropriate formal mappings. The mappings

between the ontology and each information source would be composed to yield direct map-

pings between the information sources themselves. Thus, the ontology would have assisted

in relating the given information sources.

This approach is intuitive and it yields one significant advantage over its precursor, namely

attempting to create direct mappings between information sources from scratch. If you have

n sources, you would need a total of n2 mappings (one for each direction of each pairing).

However, if you have a shared domain ontology, you only need 2n mappings. Since the cre-

ation of mappings is a human-intensive task, this reduction in complexity is enormous, going

from what is practically intractable to what seems quite feasible.

However, the above approach has one significant shortcoming. It calls for the existence

of an ontology that is expressive enough to yield mappings from the n sources. In practice,

such an ontology would be difficult to come by. However, such an ontology can be built

provided you are willing to augment it as you go along. In other words, instead of starting

with a sufficiently complete ontology, you start with an ontology that is the best one you can

locate. In the worst case, this could be an empty ontology. Next you attempt to map your

information sources one by one to this ontology. As you proceed, you enhance the ontology

itself. Of course, you do not need to create all the mappings in one shot. You might create a

mapping and then post the enhanced ontology. Another person may create another mapping

and post their enhanced ontology, and so on.

The above is clearly attractive as an approach for building ontologies. However, it opens

up the following challenges. It is conceivable, and indeed likely, that the enhancements

to an ontology will modify its structure sufficiently to call the previous mappings into ques-

tion. Likewise, different people modifying an ontology could make conflicting modifications.

Therefore, a resulting challenge is to reconcile the modifications to an ontology. The above

163



164 Ontology Management

are examples of why ontology versioning and maintenance are difficult tasks. These are being

studied actively, and any likely solution would not be trivial.

9.1 Language-Based Representations

There are a large number of representations for knowledge that have been built over the

years. Typically, these are based on natural language. Well known among these are online

versions of thesauri and dictionaries. These representations provide a basis through which

relationships among terms in different ontologies or schemas can be discovered.

A particularly important effort is WordNet [Miller, 1995], which captures word senses.

Interestingly, WordNet models each word as having a number of word senses and each word

sense as associating a number of words. Thus, it creates a network of words. It groups words

into synonym sets and then relates the sets via hypernymy/hyponymy (i.e., higher-level or

lower-level concepts), antonymy (i.e., opposite meanings), and meronymy/holonymy (i.e.,

parts-wholes).

9.2 Standard Ontologies

9.2.1 Universal Business Language

As an example of a standard that specifies an information interchange format, let us consider

the Universal Business Language (UBL).

UBL is an effort by the OASIS UBL Technical Committee to define a common XML

business document library. In human languages, the same word might mean different things

for different industries or in different contexts. Conversely, different words sometimes can

mean the same thing in different industries. UBL is specifying a set of XML building blocks

and a framework that can enable trading partners to identify and exchange business docu-

ments unambiguously in specific contexts.

UBL is intended to help solve the interoperability problem by defining a generic XML

interchange format for business documents that can be extended to meet the requirements of

particular industries. Specifically, UBL provides the following:

• A library of XML schemas for reusable data components, such as “Address,” “Item,”

and “Payment,” which are the common data elements of everyday business documents.

Each such component is called a Business Information Entity (BIE).

• A small set of XML schemas for common business documents, such as “Despatch

Advice,” “Order,” and “Invoice” that can be used in a generic order-to-invoice trading

context. These are composed from the BIEs.

• Guidelines for the extension of UBL in specific trading relationships.



9.2 Standard Ontologies 165

-ID
-taxTypeCode
-currencyCode

TaxScheme

-registrationName
-companyID
-taxLevelCode
-exemptionReasonCode

PartyTaxScheme

-ID
-ratePercent

TaxCategory

-taxableAmount
-taxAmount

TaxSubTotal

-totalTaxAmount

TaxTotal

AllowanceCharge Item Party

AddressjurisdictionAddress

registrationAddress

Figure 9.1: An example UBL component for the common business concept of “tax”

Figure 9.1 shows an example BIE for a tax component. Such a BIE may be used as part

of a standard invoice. A standard invoice would include items such as an identifier, currency

code, an order reference, a delivery rate, means of payment, tax total, and an invoice total. Of

these, the tax total is as defined in Figure 9.1.

Notice that the UBL definitions are given in terms of a conceptual model. In this sense,

UBL is a kind of standard business ontology.

9.2.2 Cyc
The Cyc project is one of the most well-known knowledge representation efforts. It began

in 1984 and its initial intent was to capture a large variety of knowledge such as might be

found in an encyclopedia (hence the name Cyc) [Lenat, 1995]. Later Cyc’s focus evolved to

emphasize common-sense knowledge, specifically knowledge that would not be captured in

an encyclopedia or other rigorous formulation but which is required to understand encyclo-

pedic information or rigorous formulations [Lenat and Guha, 1990]. The idea behind Cyc

is that by capturing a common base of knowledge, Cyc would facilitate the development



166 Ontology Management

of new knowledge-based applications, which otherwise would place onerous demands for

knowledge acquisition. By amortizing the costs of acquiring knowledge, Cyc can potentially

assist in the development of knowledge-based systems. Cyc has been used to support inter-

operation among information resources [Huhns et al., 1998]. An open-source version of the

upper ontology of Cyc, containing approximately 6 000 concepts and 60 000 assertions about

the concepts, is available at http://www.opencyc.org/.

9.2.3 IEEE Standard Upper Ontology
The IEEE Standard Upper Ontology (SUO) is the proposed outcome of a working group

whose purpose is to specify a standardized set of concepts, axioms, and relationships that

describe a domain of interest. The resultant common ontology will be suitable for auto-

mated reasoning, will form the basis for interoperability among software and database appli-

cations, and will support applications from e-commerce to natural language understanding.

The working group has produced a metaontology, encoded in the Knowledge Interchange

Format (KIF). (KIF is now included in the proposed ISO standard called Common Logic.)

Using this metaontology, other ontologies can be related. In particular, it enables upper onto-

logies and domain ontologies to be aligned and unified. An example upper ontology is shown

in Figure 9.2.

Anything

AbstractObject Event

Place TangibleThing Process

Individual Stuff

Animal Agent Solid Liquid Gas

Human

Set Number Representation

Category

Figure 9.2: An example upper ontology. The links represent specialization

9.3 Standardization versus Semantic Reconciliation
Let us consider the following basic problem: a search will typically uncover a large number

of independently developed information sources—some relevant and some irrelevant. The

sources might be ranked, but they are otherwise unorganized, and there are too many for a



9.4 Consensus Ontologies 167

user to investigate manually. The problem is familiar and many solutions have been pro-

posed, ranging from requiring the user to be more precise in specifying search criteria, to

constructing more intelligent search engines, or to requiring sources to be more precise in

describing their contents. A common theme for all of the approaches is the use of ontologies

for describing both requirements and sources. Unfortunately, ontologies are not a panacea,

and are not effective unless everyone adheres to the same one, and no one has yet constructed

an ontology that is comprehensive enough (in spite of determined attempts to create one,

such as the Cyc Project, described in the previous section). Moreover, even if one did exist,

it probably would not be adhered to, considering the dynamic and eclectic nature of the Web

and other information sources.

Different communities of practice often tend to have standardized vocabularies and con-

cepts. So it is natural to expect that the ontologies of different domains be created and ratified

by the appropriate standards bodies or professional societies. Good standards are clearly

desirable because they can reduce the wasted effort and unnecessary discrepancies among

models of services. For instance, if our interest is in modeling the databases of a chemical

factory, we would use modern knowledge of chemistry and would not need to build models

that, say, discussed the phlogiston theory (discredited a long time ago with the discovery of

oxygen).

However, there are some major challenges indicating that we cannot rely exclusively upon

standards.

• Universally agreed-upon standards address only a small body of the knowledge for

dealing with different applications. For example, in chemistry, chemical bonds might

be well understood, but the specifics of many processes, especially those that are still

of competitive value, are not likely to be standardized yet.

• Even if a standard emerges in a given domain, we still must accommodate resources

that exist prior to the creation of the standard.

• Further, even if a standard is established for some domain, new work will have to go

beyond the standard and thus will venture into uncharted territory.

In other words, we would claim that heterogeneity is the normal state of affairs, with small

bursts of homogeneity when specific standards are adopted. Consequently, we must always

be able to handle heterogeneous models. For this reason, techniques and tools that support

reconciliation of ontologies will remain important.

9.4 Consensus Ontologies
Ontologies are critical for interoperation but are difficult to build. Further, even if an ontology

is available, it may not necessarily be accepted by all the parties involved. An approach that

suggests itself is to attempt to develop a unified ontology from a set of ontologies. These

ontologies would be heterogeneous and might be inconsistent, but if they apply to the same



168 Ontology Management

universe of discourse, they might have sufficient overlap to enable a consensus ontology to

be effectively induced.

Organizational knowledge typically comes from many independent sources, each with its

own semantics. Corporate information searches can involve data and documents both internal

and external to the organization. We describe below a methodology by which information

from large numbers of such sources can be associated, organized, and merged.

9.4.1 Analysis
The approach hypothesizes that a multiplicity of ontology fragments, representing the seman-

tics of the independent sources, can be related to each other automatically without the use of

an existing global ontology. That is, any pair of ontologies can be related indirectly through a

semantic bridge consisting of many other previously unrelated ontologies, even when there is

no way to determine a direct relationship between them. The relationships among the onto-

logy fragments indicate the relationships among the sources, enabling the source information

to be categorized and organized.

The methodology relies on sources that have been annotated with ontologies [Pierre,

2000]; such annotation is consistent with the semantic Web, e.g., Heflin and Hendler [2000].

The domains of the sources must be similar—else there would be no interesting relationships

among them—but they will undoubtedly have dissimilar ontologies, because they will have

been annotated independently.

Other researchers have attempted to merge a pair of ontologies in isolation, or merge a

domain-specific ontology into a global, more general ontology [Wiederhold, 1994]. To our

knowledge, no one has previously tried to reconcile a large number of domain-specific ont-

ologies. A preliminary evaluation of the methodology has been conducted by relating 53

small, independently developed ontologies for a single domain. One of these small onto-

logies is shown in Figure 9.3. A nice feature of the methodology is that common parts of

the ontologies reinforce each other, while unique parts are deemphasized. The result is a

consensus ontology.

9.4.2 Reconciling Ontologies
In agent-assisted information retrieval, a user will describe a need to his agent, which will

translate the description into a set of requests, using terms from the user’s local ontology. The

agent will contact on-line brokers and request their help in locating sources that can satisfy

the requests. The agents must reconcile their semantics in order to communicate about the

request. This will be seemingly impossible if their ontologies share no concepts. However, if

their ontologies share concepts with a third ontology, then the third ontology might provide

a semantic bridge to relate all three. Note that the agents do not have to relate their entire

ontologies, only the portions needed to respond to the request.

The difficulty in establishing a bridge will depend on the semantic distance between the

concepts involved, and on the number of ontologies that comprise the bridge. Our method-

ology is appropriate when there are large numbers of small ontologies—the situation we



9.4 Consensus Ontologies 169

LivingThings

Animals Plants

Humans Nonhumans

Asians NorthAmericansOthers

Figure 9.3: A typical small ontology used to characterize an information source about people

(all links denote subclasses)

expect to occur in large and complex information environments. Our metaphor is that a small

ontology is like a piece of a jigsaw puzzle, as depicted in Figure 9.4. It is difficult to relate

two random pieces of a jigsaw puzzle until they are constrained by other puzzle pieces. We

expect the same to be true for ontologies.

In Figure 9.4, the ontology fragment on the left would be represented as partOf(Wheel,
Truck), while the one on the right would be represented as partOf(Tire, APC). There are no

obvious equivalences between these two fragments. The concept Truck in the first ontology

could be related to APC in the second by equivalence, partOf, hasPart, subclass, superclass,

or other. There is no way to decide which is correct. When the middle ontology fragment

partOf(Wheel, APC) is added, there is evidence that the concepts Truck and APC, and Wheel
and Tire could be equivalent.

• A concept in one ontology can have one of seven mutually exclusive relationships with

a concept in another:

– subclass

– superclass

– partOf

– hasPart

– sibling

– equivalence

– other

• Each ontology adds constraints that can help to determine the most likely relationship



170 Ontology Management

Truck

Wheel

APC

Tire

APC

Wheel

Truck

Wheel

APC

Tire

partOf

equivalence

equivalence

Possibly Equivalent

(a) Two ontology fragments with no obvious relationships between them

(b) The introduction of a third ontology reveals equivalences between components of the

original two ontology fragments

Figure 9.4: Ontologies can be made to relate to each other like pieces of a jigsaw puzzle

In attempting to relate two ontologies, a system might be unable to find correspondences

between concepts because of insufficient constraints and similarity among their terms. How-

ever, trying to find correspondences with other ontologies might yield enough constraints to

relate the original two ontologies. As more ontologies are related, there will be more con-

straints among the terms of any pair, which is an advantage. It is also a disadvantage in that

some of the constraints might be in conflict. However, we can make use of the preponderance

of evidence to resolve these conflicts statistically.

The following process is described in the context of a merger for a Human (alternatively,

People or Person) ontology.

1. Using string-matching and other such heuristics, merge the ontologies by identifying

various classes.



9.4 Consensus Ontologies 171

Thing

Material Student NonLiving

Person Animals Living UnintelligentThing MentallyDisab

Employee Plants NonMoving Movable

Creature Immobile TerrestrialInvertebrateIntelligentThing

PhysicallyDisab

Figure 9.5: A portion of the ontology formed by merging 53 independently constructed onto-

logies for the domain Humans-People-Persons. The entire ontology has 281 concepts related

by 554 subclass links

2. Construct a consensus ontology by counting the number of times classes and subclass

links appeared in the component ontologies when performing the merging operation.

The component ontologies described 864 classes, while the merged ontology contained

281 classes in a single graph with a root node of the OWL concept #Thing. All of the

concepts were related, i.e., there was some relationship (path) between any pair of the

281 concepts (see Figure 9.5).

3. The reinforcement of a concept refers to how often a class or subclass relationship

appears in the given ontologies (after they have been matched). For example, the class

Person and its matching classes appeared 14 times. The subclass link from Mammals

(and its matches) to Humans (and its matches) appeared 9 times.

4. Redundant subclass links are removed and the corresponding transitive closure links

were reinforced. That is, if C has subclass A with reinforcement 2, C has subclass

B reinforced m times, and B has subclass A reinforced n times, then the link from

C directly to A is removed and the remaining link reinforcements are increased by 2.

Next, any classes or links that are not reinforced are then removed from the merged

ontology.

5. An equivalence heuristic can be applied for collapsing classes that have common rein-

forced superclasses and subclasses. For example, the equivalence heuristic found that

all reinforced subclasses of Person are also reinforced subclasses of Humans, and all

reinforced superclasses of Person are also reinforced superclasses of Humans. It thus



172 Ontology Management

deems that Humans and Person are the same concept. This heuristic is similar to an

inexact graph matching technique such as Manocha et al. [2001].

Figure 9.6 shows the collapsed consensus ontology, now containing 36 classes related by 62

subclass links.

9.4.3 Correctness versus Relevance
In simple terms, there are three main doctrines behind approaches for relating disparate Web

services:

• All services will use the same terminology with agreed-upon semantics (improbable).

• Each service will use its own terminology, but provide translations to a global ontology

(difficult, and thus unlikely).

• Each service will have a small, local ontology that will be related to those from other

services (described herein).

A consensus ontology is perhaps the most useful for information retrieval by humans,

because it represents the way most people view the world and its information. For example,

if most people wrongly believe that crocodiles are a kind of mammal, then most people would

find it easier to locate information about crocodiles if it were located in a mammals grouping,

rather than where it factually belonged. A variant of the above is when there are multiple

legitimate perspectives on the concepts underlying a service. For example, a Web service

providing nutritional information and assistance with diet planning may appropriately treat

apples as a kind of fruit and cashew as a kind of nut, whereas another service designed for

agriculture may well classify them differently (biologically, apples are not fruits and cashews

are not nuts).

The information retrieval measures of precision and recall are based on some degree

of match between a request and a response. The length of a semantic bridge between two

concepts can provide an alternative measure of conceptual distance and an improved notion

for relevance of information. Previous measures relied on the number of properties shared by

two concepts within the same ontology, or the number of links separating two concepts within

the same ontology [Delugach, 1993]. These measures not only require a common ontology,

but also do not take into account the density or paucity of information about a concept. Our

measure does not require a common ontology and is sensitive to the information available.

The basic hypothesis, that a multiplicity of ontology fragments can be related automat-

ically without the use of a global ontology, appears correct. However, some interesting

research challenges remain, some of which are discussed in the exercises.

9.5 Ontology Imports and Versioning
An ontology declaration includes zero or more version information and import elements. The

version information is not interpreted by the OWL semantics. The owl:imports are a means to



9.5 Ontology Imports and Versioning 173

Thing

OrganicMatter

AnimateObject

AbstractThing

Animal

Natural

Movable

NonLiving

House

Useless

Herbivorous

Carnivorous

Omnivore

NonMoving

Invertebrate

Bird

Educated

Employee

NonWorking

Working

Human

Person

Female

Student

Girl

Multicell

MarriedMan

MaleSane

Living

Plant

Mammal

Woman

Engineer

Doctor

Vertebrate

Asians

Chinese

Terrestrial

Amphibian

Figure 9.6: The final consensus ontology formed by merging concepts with common sub-

classes and superclasses. It contains 36 concepts related by 62 subclass links. The concepts

and relationships with darker shading have more reinforcement



174 Ontology Management

refer to other OWL ontologies, whose definitions are then imported into the current ontology.

This is in contrast with RDF Schema documents where a schema document does not need to

be explicitly imported.

An ontology automatically imports the ontologies imported by the ontologies that it

directly imports—this is only natural, because otherwise the imported ontologies would not

be interpretable. Importing drops the definitions of the imported ontology into the imported

ontology. If two ontologies are defined as importing each other, then the sets of assertions in

each is the same. Thus, they are considered equivalent.

Listing 9.1: An example of ontology imports in OWL
� �

<?xml v e r s i o n ="1.0"?>
<rdf :RDF x m l n s : r d f s ="http://www.w3.org/2000/01/rdf-schema#"

xmlns :owl ="http://www.w3.org/2002/07/owl#"

x m l n s : r d f ="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<o w l : O n t o l o g y r d f : a b o u t ="Life">
<o w l : v e r s i o n I n f o >$ I d : L i f e . owl , v1 . 0 2 0 0 3 / 1 2 / 0 1

12 : 3 5 : 3 1 huhns Exp$

</ o w l : v e r s i o n I n f o >
<rd f s : comment>An Onto logy f o r L i f e </ rd f s : comment>
<o w l : i m p o r t s

r d f : r e s o u r c e ="http://www.w3.org/2002/07/owl"/>
</ owl :Onto logy>

<!−− D e f i n i t i o n s go here −−>

</ rdf:RDF>
� �

Recall that an XML namespace is simply a namespace. It provides a means for uniquely

naming terms, such as elements. The definitions of the terms are not included as they are with

OWL imports. In fact, the URI given in a namespace declaration may not even correspond

to a real resource. Conversely, an OWL import is simply an import. It does not set up a

namespace. Thus, it is possible to import ontologies that define terms but do not introduce

any new names. Typically, however, we would see matching pairs of namespace declarations

and import statements.

OWL provides a property owl:priorVersion applied to owl:Ontology. OWL also provides

properties to declare backward compatibility or incompatibility. The owl:versionInfo applies

not only to the owl:Ontology element, but also to other elements, e.g., those describing classes

and properties.

� �

<o w l : O n t o l o g y r d f : a b o u t ="Life">
<o w l : v e r s i o n I n f o >$ I d : L i f e . owl , v1 . 0 2 0 0 3 / 1 2 / 0 1

12 : 3 5 : 3 1 huhns Exp$



9.6 Notes 175

</ o w l : v e r s i o n I n f o >
<o w l : p r i o r V e r s i o n r d f : r e s o u r c e =’URI to prior version’/>
<owl :backwardCompa t ib l eWi th r d f : r e s o u r c e =’URI to prior version’/>
<o w l : i n c o m p a t i b l e W i t h r d f : r e s o u r c e =’URI to prior version’/>

</ owl :Onto logy>
� �

Further, there is an ability to declare classes and properties as deprecated.

9.6 Notes
Ontologies are typically constructed with the aid of editors. Common ones for the modern

languages are Protégé, WebOnto, and OilEd. Of these, Protégé has a new version for OWL.

The Cyc project http://www.cyc.com has developed a large-scale ontology to support com-

monsense reasoning.

9.7 Exercises
9.1. Compare XML Schema’s type extension mechanism with RDF Schema’s subclassOf.

Are members of an XML Schema subtype members of a supertype?

9.2. Extend the consensus ontology approach in the following ways.

• Improve the algorithm for relating ontologies, based on methods for partial and

inexact matching, making extensive use of common ontological primitives, such

as subclass and partOf. The algorithm should take as input ontology fragments

and produce mappings among the concepts represented in the fragments. Con-

straints among known ontological primitives should be used to control computa-

tional complexity.

• Develop metrics for successful relations among ontologies, based on the number

of concepts correctly related, as well as the number incorrectly matched. The

quality of a match will be based on semantic distance, as measured by the number

of intervening semantic bridges.

9.3. Search the Web for publicly available DTDs or XML Schemas. Find at least two

that have at least some degree of overlap in the concepts they include. For example,

one might be about widgets and one might be about buying and selling things, so the

overlap would be the buying and selling of widgets. Turn in a listing of the DTDs or

schemas, a written description of what each covers, and a written description of the

overlap.

9.4. Relate the concepts (each element and attribute) in each DTD or schema from the pre-

vious exercise to the concepts in the Cyc ontology that they best match. A relationship



176 Ontology Management

consists of a concept from the DTD or schema, the corresponding concept or set of

concepts in Cyc, and a specification of whether the relation is equivalence, specializa-
tion, generalization, part-of , or other. Turn in a table of your relations.

9.5. There are several kinds of relationships that are important and common in ontologies:

aggregation (part-whole), association, generalization, and instantiation. Categorize

each of the following relationships as one of the four kinds.

(a) Triangles, quadrilaterals, and pentagons are polygons.

(b) A chair has a back, a seat, and four legs.

(c) A person has a house, a car, and two dogs.

(d) A highway runs through many towns.

(e) My 4-door sedan and Hilary’s sports car are cars.

9.6. Extend the top-level ontology shown in Figure 9.2 to include (at least) the following

categories: Vegetable, Carrot, Bean, YellowSquash, GreenSquash, StringBean, Yel-

lowStringBean, PintoBean, LimaBean, and Pea.



Part III

Engagement

177





Chapter 10

Execution Models

Interoperation can occur at multiple levels of processing and abstraction. Effective interoper-

ation must occur at all of the levels listed below; this is made easier by the availability and

widespread adoption of standards (also listed, where appropriate), but it also requires sur-

mounting a series of challenges at the process level and above, as later sections of this text

address.

Transport. HTTP, SMTP, and SIP.

Formatting. XML.

Messaging. SOAP.

Data and structure. WSDL.

Finding and binding. UDDI.

Semantics. Ontologies, as expressed in RDF, RDFS, and OWL.

Transaction. WS-AtomicTransaction, WS-BusinessActivity, WS-Coordination, and BTP.

Process. OWL-S, BPEL4WS, PSL, and WSCI.

Policy. XACML.

Dynamism. Agents.

Cooperation. Multiagent systems.

It is worth considering the architectural elements over which services are engaged. At the

lowest level, which is included in commercial application servers, we find support for direc-

tories and messaging. Above this, in the data and process interoperation layer, we find meta-

data and transformations, message routing, and possibly rule engines to handle routing and

179



180 Execution Models

other policies. At the top, in the business process layer, we find components for business

process modeling and execution.

Resource adapters provide an ability to access resources. A standard resource adapter

would expose a connection factory in an appropriate namespace (conceptually a directory).

Commercial application servers provide the ability to employ resource adapters. They main-

tain a pool of connections that other applications can use to interact with the resource adapters.

Resource adapters expose transactional contracts, which enable transactions to be controlled

externally. Further, they provide contracts for security, including authentication (which could

be one-way or mutual) and authorization.

Resource adapters are included in the .NET and J2EE approaches. For example, the

contracts above are standardized in J2EE’s Java Connection Architecture (JCA).

10.1 Basic Interaction Models
Distributed object settings, such as those based on EJBs (Enterprise JavaBeans) and Dis-

tributed Component Model (DCOM) (which is now subsumed by the .NET Framework),

commonly include invocation-based resource adapters. Invocation is supported in four gen-

eral forms, as follows.

Synchronous invocation. The classical form for a synchronous request-response interaction

pattern is blocking method invocation. A caller computation hangs until its method

call returns with a response, which is either a result or an exception. Synchronous

interactions are conceptually simple, because they correspond to a single thread of

execution. A conventional single-threaded computation can be naturally partitioned

into components where one calls another. No additional control structures are required

to capture the original computation. As an analogy, you might call your travel agent

and wait on the phone until you get a confirmation number. But it could be a long

indeterminate wait, especially if the travel agent is similarly put on hold by the airlines

or if your request simply cannot be met.

Asynchronous invocation. Nonblocking (one-way) method invocation is a form of asyn-

chronous interaction, because the two parties need not agree on reaching specific parts

of their respective computations. The caller computation does not wait. When the

called method eventually completes, the component that was called sends a result back

to the caller. In the world of invocation-based adapters, these results can be naturally

sent back by invoking a predetermined callback method. The initiator implements the

callback and registers it with the callee, which then invokes the registered callback

method as needed to return the relevant information.

An alternative invocation-based approach for the caller to receive the results is for

the caller to perform polling, i.e., to call repeatedly to check for results. Internally,

an application that supports polling would implement a buffer where the results of

the computation would be stored. It would also provide an additional simple, public



10.2 Messaging 181

method to check the status of this buffer. This method would return immediately.

Polling is usually not desirable, because it is wasteful of resources and can complicate

the conceptual organization of the software, which must in essence still wait until it

receives the expected result. However, polling might be essential if the caller cannot

receive unsolicited messages, e.g., because it resides behind a firewall or is mobile

without a fixed address.

To follow the above analogy, a callback would be if you call your travel agent, leave

your telephone number with him, and go do something else. Your travel agent will

call you (or attempt to call you once: therein may lie a problem) with a confirmation

number. Polling would be if you call the travel agent repeatedly until he can give you

the confirmation number. Polling would generally be annoying for the travel agent and

a waste of time for both parties. However, you would be able to check in with your

travel agent at times when it is convenient for you. Further, you can poll the travel

agent from different places, e.g., home, work, a pay phone, and a friend’s house.

Asynchronous invocation with immediate acknowledgment. In a variant of asynchronous

invocation, the invoked application would return an acknowledgment right away if the

request is considered valid and then continue with its main computation. This pattern is

strictly a form of synchronous invocation, because the calling computation waits until

it obtains a response. Further, the calling computation would still register a callback

or poll in order to receive the ultimate result. For example, you might call your travel

agent who would do a quick check as to whether your request was reasonable; if so, he

would undertake to get back to you with an actual confirmation.

Deferred synchronous invocation. Here a caller proceeds independently of a callee, but

only up to a point, which is where the caller and the callee synchronize. This pattern is

included in CORBA.

The above are executed in a best-effort manner, i.e., at most once. In other words, problems

in the infrastructure may cause failure. Multiple invocations might be acceptable for some

(the so-called idempotent) operations, but not in general.

10.2 Messaging
At the most fundamental level, interactions involve the exchange of messages. Messaging

involves the sending and receiving of data among applications. Messaging provides an archi-

tecturally hands-off means with which to make components or services interoperate. The

methods of the services are not directly invoked by others, but when messages are received,

a service provider can unilaterally decide how to proceed. Message queue systems are now

standard fare in enterprise IT settings. Traditionally, message queue systems use proprietary

protocols other than HTTP, but there is an increasing trend to implement them over HTTP

and use XML as the syntax for the messages sent. Messaging systems usually offer some



182 Execution Models

“transactional” qualities, ensuring that all or none of a certain set of messages is sent or

received.

Message-oriented middleware represents a major class of interaction, which conceptually

differs from invocation. In practice, it is usually implemented through an invocation-based

interface wherein callbacks are registered by the parties interested in receiving notifications.

There are two main varieties:

Queues. Queues enable point-to-point communication. Components can post and read mes-

sages from queues.

Publish and subscribe. These so-called pub-sub systems enable applications to define sev-

eral topics. Components can subscribe to specific topics so that messages published

to matching topics are made available to them. Typically, a message posted to a given

topic may be received by no more than one subscriber.

It is also worthwhile to explore the distinction between push and pull, which are the two main

ways to program with messaging. Pull brings information into a receiver’s context when the

information is needed, but the sender must have it ready or be able to prepare it on demand;

push offers information from a sender’s context, but the receiver must be ready or be able to

absorb it in a different context. Push interrupts the receiver: this can be intrusive, but also

helpful. Therefore, push should be confined to control signals, while pull is used for data.

However, push and pull are both low-level abstractions.

10.3 CORBA

This section gives a short, practical introduction to the Common Object Request Broker

Architecture (CORBA), which was developed by the Object Management Group (OMG). It

provides a good understanding of the basic mechanics of the CORBA architecture, overviews

its components, and defines the relevant vocabulary.

An object request broker (ORB) is the distributed service (in the systems sense introduced

in Section 1.4) that implements a request to a remote object. An ORB locates the remote

object on the network, communicates the request to the object, waits for the results, and,

when available, communicates those results back to the client. An ORB implements location

transparency and programming language independence: the same request mechanism is used

by the client and the CORBA object regardless of where the object is located, and the client

and CORBA object can be written in different languages. CORBA also defines the Internet

Inter-ORB Protocol (IIOP) for communications among ORBs.

The services that an object provides are given by its interface, defined in OMG’s Interface

Definition Language (IDL). In the OMG Object Model, clients request services from objects

through this interface. A client accesses an object by issuing a request to the object. The

request is a CORBA event, and it carries information about which operation is requested, the

object reference of the service provider, and actual parameters, if any. The object reference is



10.3 CORBA 183

a name that identifies an object reliably. An object adaptor handles functions such as the gen-

eration and interpretation of object references, method invocation, security of interactions,

object and implementation activation and deactivation, mapping references corresponding to

object implementations, and registration of implementations. To do this, it obtains infor-

mation about an object’s location and operating environment from a database, called the

“Implementation Repository.”

As an example of how CORBA and its functionality might be used, the following is an

IDL description of an object, a Catalog, and the services it provides:
� �

module C a t a l o g O b j e c t s {

s t r u c t I t em {
s t r i n g name ;

d o u b l e p r i c e ;

} ;

e x c e p t i o n Unknown {} ;

i n t e r f a c e C a t a l o g {

/ / R e t u r n s t h e c u r r e n t c a t a l o g i t em

I tem g e t i t e m ( ) r a i s e s ( Unknown ) ;

/ / S e t s t h e c u r r e n t c a t a l o g i t em

vo id s e t i t e m ( i n I tem c a t a l o g i t e m ) ;

} ;

} ;
� �

An IDL compiler would convert the above module into its associated representation in a

target programming language, such as Java. After compilation, a client written in Java could

obtain a catalog item by the following code fragment:
� �

C a t a l o g t h e C a t = . . .

t r y {
I t em c u r r e n t i t e m = t h e C a t . g e t i t e m ( ) ;

}
c a t c h ( Throwable e ) {
}

� �

The IDL compiler would also generate a skeleton class for the object implementation. A

skeleton is the entry point into the distributed object. It unmarshals incoming data, calls the

method implementing the operation being requested, and returns the marshaled results. A

developer must implement a Java class that extends the generated skeleton class and provide

a method for each operation in the interface. In the example, the IDL compiler generates the

skeleton class CatalogImplBase for the Catalog interface. A possible implementation of the

Catalog interface is:



184 Execution Models

� �

p u b l i c c l a s s C a t a l o g I m p l e x t e n d s

C a t a l o g O b j e c t s . C a t a l o g I m p l B a s e {

p r i v a t e I tem i t e m = n u l l ;

p u b l i c C a t a l o g I m p l ( S t r i n g name ) {
s u p e r ( ) ;

}

p u b l i c I tem g e t i t e m ( ) th r o w s Unknown {
i f ( i t e m = = n u l l ) th row new Unknown ( ) ;

r e t u r n i t e m ;

}

p u b l i c v o i d s e t i t e m ( I tem i t em ) {
i t e m = i t em ;

}
}

� �

The Java code below defines a server that when run makes the services of its objects

available to clients. A server that will run with the Java ORB needs to do the following:

• define a main method;

• initialize the ORB;

• instantiate at least one object;

• connect each object to the orb;

• wait for requests.

� �

p u b l i c c l a s s t h e S e r v e r {
p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {

t r y {
/ / I n i t i a l i z e t h e ORB

org . omg .CORBA.ORB orb =

org . omg .CORBA.ORB. i n i t ( a rgs , n u l l ) ;

/ / C r e a t e a c a t a l o g o b j e c t

C a t a l o g I m p l t h e C a t = new C a t a l o g I m p l ( ) ;

/ / Le t t h e ORB know a b o u t t h e o b j e c t

o rb . c o n n e c t ( t h e C a t ) ;

/ / Wr i t e s t r i n g i f i e d o b j e c t r e f e r e n c e



10.3 CORBA 185

P r i n t W r i t e r o u t =

new P r i n t W r i t e r ( new B u f f e r e d W r i t e r (

new F i l e W r i t e r ( a r g s [ 0 ] ) ) ) ;

o u t . p r i n t l n ( o rb . o b j e c t t o s t r i n g ( t h e C a t ) ) ;

o u t . c l o s e ( ) ;

/ / Wait f o r i n v o c a t i o n s from c l i e n t s

O b j e c t sync = new O b j e c t ( ) ;

s y n c h r o n i z e d ( sync ) {
sync . w a i t ( ) ;

}
} c a t c h ( E x c e p t i o n e ) {

System . e r r . p r i n t l n ( "Catalog error: " + e ) ;

e . p r i n t S t a c k T r a c e ( System . o u t ) ;

}
}

}
� �

The services that CORBA provides to objects are shown in Table 10.1. One of these, the

CORBA event service, is a generalization of techniques for maintaining referential integrity.

One way to maintain integrity constraints is to notify other objects of changes in a given

object. The event service separates notification from an object’s program logic, which decides

how to accommodate the notification.

Table 10.1: CORBA Services

Service Description

Object Life Cycle Defines how CORBA objects are created, removed, moved, and

copied

Naming Defines how CORBA objects can have symbolic names

Event Decouples the communication between objects

Relationship Provides typed n-ary relationships between objects

Externalization Coordinates the transformation of CORBA objects to and from

external media

Transaction Coordinates atomic access to CORBA objects

Concurrency Control Provides a locking service for CORBA objects in order to ensure

serializable access

Property Supports the association of name-value pairs with objects

Trader Supports the finding of CORBA objects based on properties

describing the service offered by the object

Query Supports queries on objects



186 Execution Models

ORB communications are of the main three kinds—synchronous, asynchronous, and

deferred synchronous—described in Section 10.1. The CORBA event service architecture

uses event channels to decouple communication. Each event from a supplier is sent to every

consumer. The amount of storage for notifications affects the QoS of the channel, and is left

to implementers.

CORBA allows different ORBs in different administrative domains to interoperate, but

this requires a bridging mechanism. Different domains might have different security policies

and different semantics. A bridging mechanism provides transformations that reconcile the

differences.

The Object Management Group in late 2002 defined interoperability between CORBA,

WSDL, and SOAP. Once developers have included SOAP and WSDL transports in their

CORBA implementations, existing CORBA applications will be able to use a Web service

transport without having to be changed.

10.4 Peer-to-Peer Computing

How much would you like to share files with another user without having to place them in

an explicitly designated external location? Since the late 1990s, the successes of (and con-

troversies surrounding) Napster, Gnutella, and FreeNet have drawn attention to peer-to-peer

computing, a form of computing which allows precisely such client-to-client interactions.

Consequently, peer-to-peer computing, or P2P for short, has become a popular topic. P2P,

however, promises to go beyond file sharing or any other specific application. It can provide a

general substrate for supporting distributed computation, for example, in Web services. This

section briefly examines P2P and its main variants, both those that are popular and those that

ought to be.

First, here is a brief motivation and definition. P2P can be defined most easily in terms

of what it is not: it is not the client-server model, which is currently the most common

model of distributed computing. In the client-server model, an application residing on a client

computer invokes commands at a server. The client-server model is simple and effective but it

has serious shortcomings. Each client interacts with the server independently of other clients.

This property is codified in the traditional transaction model—great for isolation (as among

bank accounts) but not so great for collaboration. Chapter 13 discusses transactions at length.

P2P is by no means a new idea. The distributed computing research community has

studied it for decades. Networks themselves demonstrate P2P in action: Ethernet is nothing

if not a P2P protocol, and network routing operates with routers acting as peers of routers to

whom they send packets and from whom they receive packets. The difference prompting the

recent attention seems to be that P2P finally has caught the imagination of people building

practical systems at the application layer. And this is a significant expansion in its scope.



10.4 Peer-to-Peer Computing 187

10.4.1 Going Beyond Client-Server
The centralization of information on servers makes for performance bottlenecks and makes

the overall systems susceptible to failure at a single point. Cluster computing and even con-

tent networking are inspired by the idea of preserving the logical centrality of servers while

replicating them to build sufficient redundancies into a system to sustain higher performance

and to help the system’s functionality degrade better under failure. The implicit claim behind

P2P is that these redundancies are not enough. Let us examine the various motivations for

this claim.

As long there is some centralization in a system it can be controlled from that central

location. Arguably, Napster’s original incarnation could be shut down simply because it had

a server and the site running that server can be sued. P2P approaches that lack such a central

server, such as FreeNet, would be much harder to shut down.

In client-server computing, the control rests entirely in the client; the server merely

responds to requests. By requiring all control to reside on the client, the client-server model

forces applications to be structured in such a way that coordination between their components

is rigid. P2P can support richer models of interaction than client-server.

10.4.2 Models of P2P Computing
P2P computing models take on three main forms.

Symmetric client-server. Each party can query the other, thereby gaining power over the

other at different times. The idea of symmetry is appealing in general, but this partic-

ular form, often touted as an explanation of P2P, is inherently limited, because it does

not fundamentally look beyond client-server.

Asynchrony. In the client-server model, if the client needs to know of changes observed by

the server, it must poll the server to learn of them. As peers, computations naturally

communicate asynchronously. This is the original form of P2P. While the request-

response paradigm corresponds to pull, asynchronous communication corresponds to

push. Push, unfortunately, received bad publicity with applications that place their

entire intelligence on the server (pushing) side. Pushing ads is viewed as spamming.

Federation of equals. When we take asynchrony but apply it in settings where the parties

in principle have an equal share in and equal control over their joint computation, we

can create applications of a performance and usability that is simply unattainable by

client-server. This means symmetry not only at the level of communication, but also

in terms of decision-making. This would require making the reasoning and policies of

interaction explicit and enabling each party to take and concede the initiative as it sees

fit. In simple terms, only intellectual equals can be true peers.

How we understand P2P depends on how we judge peerhood. The criterion that matters most

for computer scientists is the model of computation supported (notwithstanding its political

or marketing ramifications). And, it is only when we support flexible interactions that we



188 Execution Models

achieve true P2P and realize the benefits that the Internet offers to computing. Chapter 15

discusses agents, which capture the above notion of P2P computing.

10.5 Jini
Jini is Sun Microsystems’ system architecture for distributed computing among intercon-

nected devices. Jini extends Java from one machine to a network of machines. It uses

Remote Method Invocation (RMI) to move code around a network, and provides mechanisms

for devices, services, and users to join and detach from the network. When a Jini device is

plugged in, it announces itself to a special network service, a matchmaker. This is all it takes

to enable the device to access and use other devices on the network and in turn to be usable

by those devices.

A Jini announcement is a 512-byte packet that is broadcast to the network. The network

replies with a description of itself so that the device can access its services. The device

then sends a message registering its own capabilities with the network. Devices find each

other through the matchmaker via a lookup process. Once they are matched, devices can

interact directly. Jini is essentially a model for Web services (compare Figure 10.1 to Fig-

ure 2.1) within a local-area network, which might be implemented using Bluetooth or the

IEEE 802.11x wireless LAN protocols. The Jini infrastructure for providing local-area Web

Service object

& attributes

Service object

& attributes

Lookup Service

Service Provider

(printer)
Client

(digital camera)

Service object

& attributes

1. discovery

2. join

4. invoke

3. look up

Figure 10.1: Jini services and protocols implement a local service-oriented architecture

services has the following positive and negative characteristics:

• Transactions support a two-phase commit protocol (positive).

• Clients lease services for specific durations (positive).

• Lookup services can be arranged hierarchically (positive).

• Services occupy nodes in tuple spaces, called JavaSpaces (positive).



10.6 Grid Computing 189

• Lookup services require an exact match on the name of a Java class or its subclass

(negative).

• Clients and servers exchange code synchronously via RMI (negative).

The development of and agreement on protocols for wireless local-area networks, such as

Bluetooth and IEEE 802.11x provides a key enabler for Jini. However, its widespread deploy-

ment in practical settings also depends on (1) the ubiquity of wireless devices within homes,

offices, and commercial establishments, and (2) a favored computing model based on syn-

chronous invocations of individual services.

10.6 Grid Computing
The Grid was originally designed to be an environment with a large number of networked

computer systems where computing and storage resources could be shared as needed and

on demand. The development of standards, originally the Open Grid Service Architecture

(OGSA) and more recently the Web Services Resource Framework (WS-Resource Frame-

work), is leading the Grid toward an environment that is suited not only for computationally

intensive applications, but also for typical distributed computing scenarios, such as informa-

tion retrieval, multimedia environments, and ubiquitous computing.

Grid computing can be differentiated from other distributed computing paradigms, such

as CORBA, P2P, and cluster computing, by the following characteristic: Grid computing

involves the efficient utilization of an organization’s heterogeneous, loosely coupled resources
tied to workload management capabilities or information virtualization. The objective of

workload management is to allocate resources to the most important applications.

To emphasize the differences from other paradigms, cluster computing involves a static
number of homogeneous computing elements, and is concerned with computing, not storage.

CORBA presumes an object orientation. Unlike P2P, Grid computing relies on centralized

management and security, making it easier to manage but less scalable and less robust.

The purpose of the WSRF is to align Grid services with Web services. In this regard, a

Grid service is a (potentially transient) Web service with specified interfaces and conventions:

the interfaces address discovery, dynamic service creation, lifetime management, notification,

and manageability, while the conventions address naming and upgradeability. As an example

of transience, extra service instances supporting a Web server might be instantiated as needed

to provide for constant user response time, i.e., capacity is added dynamically as workload

increases. Other examples of transient service instances might be a query against a database,

a data mining operation, a network bandwidth allocation, a running data transfer, and an

advance reservation for processing capability.

The Globus Toolkit is an open-architecture set of services and libraries that supports Grid

computing. It provides the

• Grid Resource Allocation and Management (GRAM) protocol and its gatekeeper (fac-

tory) service; these provide for the secure and reliable creation and management of

arbitrary computations, termed transient service instances.



190 Execution Models

• Grid Security Infrastructure (GSI), which supports single sign on, delegation, and cre-

dential mapping. A two-phase commit protocol is used for reliable invocation.

• Meta Directory Service (MDS-2), which provides for information discovery through

soft-state registration, data modeling, and a local registry.

The toolkit is being aligned with WSRF, so that its capabilities are expressed in Web service

terminology.

The WS-Resource Framework, along with WS-Notification (another outgrowth of OGSA

that deals with events), defines a common, standards-based infrastructure for business appli-

cations, Grid resources, and systems management. These specifications help in integrating

heterogeneous resources and systems across and outside of an enterprise. The specifications

provide the ability to utilize common Web services to support Grid and management-based

solutions. The WS-Notification specification and the WS-Resource Framework provide a

scalable pub-sub messaging model and the ability to model stateful resources using Web

services.

Stateful resources are elements with state, including physical entities such as servers and

logical constructs such as business agreements and contracts. Examples of components that

may be modeled as stateful resources are files in a file system, rows in a relational database,

and encapsulated objects such as Enterprise Java Beans. A stateful resource can also be a

collection or group of other stateful resources. Access to these stateful resources enables

customers to realize business efficiencies, including just-in-time procurement with multiple

suppliers, systems outage detection and recovery, and Grid-based workload balancing. For

example, a business might provide a Web service where customers can submit a purchase

order. The business must maintain the state of the purchase in order to provide additional

Web services whereby a customer can check on the status of the order or add an item to it.

Statelessness is desirable, however, because it can enhance reliability and scalability: a

stateless Web service can be restarted without regard for its history; an arbitrary number of

copies can be created to meet increased loads. To preserve these qualities without storing

a static state within a Web service, dynamic state can be provided either within a request

message (directly, by-name, or by-reference) or within other components with which the

Web service can interact.

WS-Resource Framework provides the ability to (1) determine the type of the state and

thus the specific message exchanges that may be supported, and (2) issue read, modify, and

query requests against state components. It uses standard XML Schema global element dec-

larations to define resource property elements. These elements are collected in a Resource
properties document, which is associated with an interface by using an XML attribute on the

WSDL 1.1 portType.

WS-Notification proposes to specify an agreed upon definition for events, as well as stan-

dardizing broker, publisher, subscriber, and consumer roles. It can automatically trigger an

action in the IT infrastructure once certain criteria have been met. This can include, for

example, suppliers automatically being notified to bid on replenishing inventory once current

inventory drops to a set level. Several suppliers can be notified of this depletion in inventory

and WS-Notification can be set up so that only the supplier with the best bid fills the order.



10.7 Notes 191

Besides describing how to model stateful resources with Web services, the WS-Resource

Framework includes the following:

• WS-Resource Properties defines how data associated with a stateful resource can be

queried and changed using Web service technologies. This allows clients to build

applications that efficiently read and update data associated with resources, such as

contracts, servers, and purchase orders.

• WS-Resource Lifetime enables a user to specify the period during which a resource

definition is valid. WS-Resource Lifetime can, for example, automatically update sup-

pliers from all systems once contracts or service-level agreements expire, or delete

from inventory systems products that are no longer being manufactured.

Note that because a Web service can modify a stateful resource, a failed Web service might

leave the resource in an inconsistent state. Provision must thus be made for restoring con-

sistency and obeying the ACID properties (see Table 11.1). This can be done by using WS-

Transaction (see Section 12.4) to govern use of the stateful Web service.

The problem being addressed by the Grid is resource sharing and coordinated problem

solving in dynamic, multi-institutional virtual organizations. The architecture being defined

specifies a protocol and service definitions for interoperability and resource sharing. Some

implementors of Web services argue that Web services should not have state or instances, and

some implementations do not accommodate dynamic service creation and destruction. WSRF

makes an explicit distinction between a Web service and the stateful entities acted upon by

that service. WSRF calls these entities WS-Resources and introduces an implied resource
pattern to formalize the relationship between Web services and the stateful resources. As a

result, the Grid is becoming an interesting and challenging environment supporting new ser-

vices for cooperative applications. A research effort is needed not only to investigate innova-

tive Grid infrastructures, but also to make the current Grid model suitable for the emerging

usage scenarios.

10.7 Notes
Some useful articles on Grid computing are Foster [2002] and Foster et al. [2001]. The Grid

community is also moving into a Web service-like model, where resources can be more easily

accessed and bound [Tuecke et al., 2002].

10.8 Exercises
10.1. Which of the following are true about IIOP?

• It is the protocol that ORBs should use for talking to each other.

• It is an ORB implementation that is machine-independent.



192 Execution Models

• It is the Integrated Internet Object Protocol.

• It is the implementation of the IDL language.

• It is the next version of CORBA.

10.2. Which of the following, if any, are features that Java RMI has but CORBA lacks?

• Automatic code downloading.

• Location transparency.

• Object state transparency.

• Dynamic invocation.

• A naming service.

10.3. Which of the following, if any, are features that CORBA has but RMI lacks?

• Language independence.

• Automatic code downloading.

• Location transparency.

• Object state transparency.

• A naming service.

10.4. Which of the following does RMI-IIOP allow you to do?

• Have an RMI server be accessed by a CORBA client.

• Automatically transform the source code for an RMI object into the code for a

CORBA object.

• Translate between IIOP and the RMI protocol.

• Garbage collect CORBA objects.

• Implement IDL interfaces with RMI.

10.5. (a) List the fundamental services and protocols in Jini.

(b) What are the differences between Jini’s discovery, join, and lookup?

(c) For discovery, what are the differences between the multicast request protocol and

the multicast announcement protocol?

10.6. Grid computing provides a service that is different than the types of Web services

we have described in previous chapters: it provides a computation or storage service,

rather than a functionality. To describe a Grid computing service, we would be more

interested in its performance and similar quality-of-service metrics than in the param-

eters and data types it accepts and returns. Where should such a description of quality-

of-service be contained, i.e., in WSDL or UDDI or somewhere else? Invent a format

for such a description.



Chapter 11

Transaction Concepts

As currently conceived and implemented, Web services are isolated independent functional-

ities accessible over the Web. But Web services are useful precisely when they can be com-

posed and coordinated, offering enhanced functionalities and achieving more complicated

and valuable results than individually. To succeed in this coordination, techniques are needed

for modeling activities and activity relationships as expressed in workflows and processes.

The basic theme of this chapter is the set of abstractions and techniques for activity mod-

eling and management that have been developed in the context of databases. Since most ser-

vices worth their salt involve a significant usage of databases, it is only reasonable to review

these concepts. It turns out that the basic concepts, such as transactions and schedules, apply

naturally in service-oriented computing. However, the most obvious, naive application of

these concepts turns out to be impossible, because it is incompatible with the core assump-

tions of service-oriented architectures. Obvious enhancements also prove to be unsuitable.

This chapter includes a brief discussion of well-known database transaction concepts,

such as conflicts among operations, serializability, locking protocols, deadlocks, and mutual

commitment. It concludes with more sophisticated approaches that can be developed that

combine the ideas of transaction models with service-oriented computing.

11.1 Transactions
In the following, database refers to a store of data and database management system (DBMS)

refers to the software component that manages databases. In the context of data management,

a transaction is a generic term used to refer to any activity that creates, updates, or deletes

data in a database. The DBMS is responsible for ensuring the integrity of the data in the

databases that it hosts. To this end, the DBMS runs transactions, committing and aborting

them (rolling them back) as appropriate. Transaction concepts are important for Web services

that affect data, maintain persistent records of their invocation, or involve dependencies on

other Web services.

193



194 Transaction Concepts

A transaction is a program in execution. That is, a transaction is a computation, not the

source or machine code that describes a computation. Typically, every time a program is run

that would lead to a new transaction. Formally, a transaction is a set of database operations

that are executed in some (partial) order. For our present purposes, a total or linear order is

adequate. (Section 6.5 describes partial and total orders.) Figure 11.1 shows a simplified view

of a central (single-site) database interfacing with applications. The applications begin tran-

sactions and request data items. The DBMS may give them the data items requested, possibly

delaying the transactions arbitrarily. The application indicates its success by committing its

transaction and failure by aborting its transaction. The DBMS would respect an abort request,

but may deny a commit request by instead aborting a transaction. In fact, it is within the pre-

rogative of the DBMS to abort a transaction unilaterally, if necessary to maintain database

integrity or to break deadlocks among transactions.

Application Application

DBMS

Data cache

Lock manager

begin/commit,

abort transaction,

reorder data,

update data

data

log database

Begin, commit,

abort, read, write
Read, write

begin/commit,

abort transaction,

reorder data,

update data

data

Figure 11.1: Simplified system architecture showing multiple applications running tran-

sactions on a single database. The applications could be hosted on one or more servers

The order of execution of the operations of a transaction depends on the source code, but

the source code resides in the application and is not accessible to the DBMS. For example,

we can imagine different programs to transfer money from one account in a bank to another

account in the same bank. Mike’s program may first perform a deposit and then a withdrawal,

whereas Munindar’s program may proceed in the reverse order. Here the deposit and with-



11.1 Transactions 195

drawal (of specified amounts and into or from specified accounts) are operations on the bank’s

database. Each program would presumably also perform some reasoning, e.g., to validate any

user inputs and decide upon the amounts to be deposited and withdrawn. However, such rea-

soning is not visible to the database and, therefore, not included among the operations with

which we model a transaction.

The essence of transactions is the following: when an ordered set of operations is mod-

eled as a transaction, it is as if the set of operations were indistinguishable from one logical
operation. The effects of a transaction appear to occur completely and become visible to

other transactions if and when that single logical operation has concluded successfully; if the

operation fails, then it is as if nothing happened. (Traditional transactions always terminate,

meaning that their set of operations is finite.) Transactions thus provide a great approach for

abstracting computations, because they help us map an arbitrary set of operations to a sin-

gle operation. Each programmer need only worry about the logical operation that his or her

source code implements and disregard the work of other programmers whose programs may

be running as transactions on the same database at the same time.

At the elementary level for traditional databases, the transaction concept offers the fol-

lowing deal to the application programmers. If each programmer individually implements his

or her transactions correctly, then the DBMS will ensure that any concurrently executing mix

of those transactions will execute correctly. Given some assumptions about system recovery,

the DBMS will ensure that the results of committed transactions are durable and the results

of uncommitted transactions are not reflected in the database.

11.1.1 ACID Properties

Traditional database transactions satisfy the so-called ACID properties [Gray and Reuter,

1993]. A transaction happens entirely or not at all, does not violate consistency constraints,

does not expose any partial results, and, if successful, has permanent results. Table 11.1

illustrates these properties.

Notice that because of atomicity and isolation, the above examples of Mike’s and Munin-

dar’s programs are functionally equivalent. If the deposit and withdrawal operations both

succeed or both fail, then their relative order is irrelevant. In general, though, there could

be dependencies among the operations because of the flow of information among them or

consequences on other decision making by the program logic. For this reason, a transaction

is defined with a specific order in mind and the order of operations of a transaction cannot be

modified arbitrarily.

Transactions are essential whenever we need definite and correct guarantees about access

(viewing and modification) of data. But while the traditional transaction properties are desir-

able some of the time, they can also be a hindrance at other times. Further, setting up tran-

sactions across services is nontrivial, as examined in Chapter 13. In distributed settings, some

sort of mutual commit (e.g., two-phase commit) is necessary to prevent violation of the ACID

properties.



196 Transaction Concepts

Table 11.1: The ACID properties for traditional transactions

Property Meaning Example

Atomicity All or nothing All operations that constitute a transaction com-

plete successfully or none does; e.g., if we

transfer money within a bank from a source

account to a target account, then either the

money moves from the source to the target, or

stays where it was

Consistency Integrity preserving If the deposit and withdrawal programs are

individually correct, then so are all concurrent

executions of them

Isolation Hidden partial results No one can see a state of the database where

the money has been withdrawn but is not yet

deposited or the other way around, meaning

that you may view the snapshot of the database

before or after, but not during a funds transfer

Durability Permanent committed

results

Once the money has been transferred, the state

of the accounts is exposed to all; you will need

another transaction to transfer the money back

should you want to do so

11.1.2 Schedules

Before we get into additional details, however, it is essential to motivate the notion of a seri-
alizable schedule. A schedule over a set of transactions consists of the operations in those

transactions that are executed in an order that is consistent with the orders of the given tran-

sactions. For our purposes, it is adequate to consider schedules as linear orders. A schedule

inevitably ends up ordering the operations of its constituent transactions. How these opera-

tions are ordered has significant ramifications on the notions of correctness and recoverability

of transactions and the ease or difficulty with which they can be implemented.

The notion of schedules is quite general and shows up in several settings where activities

are modeled and the semantics of activity modeling languages is studied. The richness of

how schedules are understood depends upon the richness of the operations on which they are

based. For our present purposes, to understand schedules in databases, the range of operations

is quite limited. Conventionally, only a few operation types are significant. These are the read
and write of a data item as performed by a transaction, the commit of a transaction (to indicate

that it was successful and all of its operations are considered to have occurred) or the abort
of a transaction (to indicate that it failed and none of its operations are considered to have

occurred). Sometimes, because of how transaction aborts are implemented using logs, abort

is also called rollback.



11.1 Transactions 197

The motivation for considering only the above operation types is that the database only

sees the operations that either retrieve or modify data items. Further, it is advisable not

to include any reference to the values of the data items that are read or written. Avoiding

reference to values makes for a more general approach where we can avoid having to reason

about a potentially large set of possible states of the data items. In other words, by ignoring

the values of the data items, we can come up with a notion of correctness that is based purely

on the structure of the schedules involved. Because it doesn’t require poking inside the data

items, it is easier to understand and to implement.

11.1.2.1 Conflict

The most basic structural property with which transaction schedules may be evaluated is

based on the notion of conflict. Two operations are said to conflict if they occur in different

transactions, involve the same data item, and their mutual order matters. Since we have only

two operation types involving data items, there are only four possible orders in which two of

them can occur.

We first introduce the following notation. Our transactions are identified as T1, T2, and

so on. The ith transaction, denoted Ti, might consist of reading data item x, denoted ri(x),
and writing data item y, denoted wi(y). The commit of Ti is an operation that is written ci

and the abort of Ti is an operation that is written ai. As an example of this notation, consider

two transactions T1 and T2. Say T1 reads an item z, (internally) adds 1 to it, and writes back

the incremented value into z. Suppose that T2 performs the same computation on z. In other

words, we can write the transactions as follows:

• T1 = r1(z); w1(z); c1

• T2 = r2(z); w2(z); c2

Now we can define four different schedules using the above transactions. Each schedule uses

the operations of T1 and T2 and preserves the order of each transaction.

• S1 = r1(z); w1(z); c1; r2(z); w2(z); c2

• S2 = r2(z); w2(z); c2; r1(z); w1(z); c1

• S3 = r1(z); r2(z); w1(z); w2(z); c1; c2

• S4 = r1(z); r2(z); w2(z); w1(z); c1; c2

Other schedules are also possible in terms of different positioning and order of c1 and c2.

Now consider what would happen if z begins with a value of 100 and each transaction writes

back a value that is 1 more than the value it reads. A read operation on z yields either its

initial value (before the schedule) or the value written by the previous write in the schedule.

If z begins as 100, one might expect that its value at the conclusion of T1 and T2 would be

102.



198 Transaction Concepts

However, we can see that schedules S1 and S2 each yield a final value of 102 for z, but

S3 and S4 each yield a final value of 101 for z. S3 and S4 illustrate a well-known problem

of concurrency, known as the lost update problem. Our intuition is that S1 and S2 are correct

whereas S3 and S4 are not.

Table 11.2 shows the conflicts for our operations. Any two operations of different tran-

sactions on the same data item conflict provided one of them is a write. Notice that other

operations can be defined to obtain alternative sets of conflicts. The fewer the conflicts the

better. However, conventionally, only read and write are considered in DBMS designs.

Table 11.2: Conflict matrix for transaction operations

Read (rj) Write (wj)

Read (ri) No conflict If ri precedes wj , ri retrieves a

previously written value

Write (wi) If wi precedes rj , rj retrieves the

value written by wi

The final value of the data item

depends on whether wi or wj exe-

cutes second

We define two additional database operations: increment (inc) and decrement (dec). The

inc operation atomically increments the value of an integer data item by a given amount,

and the dec operation atomically decrements the value of the data item. These operations

correspond to a combination of read and write operations (with an intervening arithmetical

step) but with one major difference. The inc and dec do not reveal the value of the data

item to the transaction in which they are performed. Instead, if a transaction performs a read

followed by write, it would become aware of the value of the data item as a consequence of

the read. Notice that even if a transaction uses an inc or dec, it can still perform a separate read

operation to obtain the value of the data item. The idea behind these operations is that inc and

dec are common enough use cases and are often performed where the value of the data item is

irrelevant to a transaction. Notice that inc and inc do not conflict. That is, if two transactions

each increment the same data item, then the mutual order does not matter, because neither

transaction reads the incremented value and the final value is the same regardless of the order

in which the two increments take place. (For simplicity, let us neglect the possibility of

integer overflow, because in case of such exceptions, all bets are off anyway.) Exercise 11.16

asks you to develop the complete conflict matrix incorporating these operations.

11.1.2.2 Serial Schedules

The classical definition of schedule correctness is based on the observation that in a correctly

functioning DBMS, service requests, corresponding to different transactions, may come in

slowly, one by one. In other words, not knowing the program logic of any transaction and

assuming the correctness of the individual programs that the transactions are executions of,

we must state that a schedule in which transactions occur one by one is correct. Such a



11.1 Transactions 199

schedule is termed a serial schedule. Serial schedules are correct but offer unacceptably poor

performance and resource usage. In many settings, serial schedules simply will not work.

For example, if an on-line bookstore were to run its sales transactions serially, then it would

end up making most of its customers wait for excessively long periods. Indeed, if there is

a confirmation step in the sales transactions that involves human input, a single sale would

take several seconds to complete, say, one minute (to make up an estimate). This would limit

the bookstore to 24 × 60 = 1440 sales per day. Likewise, a bank would be limited to a small

number of transactions per day. As you can imagine, such limits are low; typical loads for

successful businesses would easily be several orders of magnitude greater.

11.1.2.3 Serializable Schedules

Thus, for any realistic application scenario, we must allow concurrent transactions. Some

concurrent executions of transactions correspond to schedules that are clearly incorrect, but

some can be correct. The correct schedules are those that are equivalent to a serial schedule.

The classical notion of equivalence is preservation of conflicts among operations. A schedule

consists of a set of operations ordered in some manner. Let us consider two schedules con-

sisting of the same set of operations, that is, executed by the same transactions and involving

the same data items. Such schedules are said to be conflict equivalent provided that for any

two conflicting operations, the orders of occurrence of those operation in the two schedules

are the same. A serializable schedule is one that is conflict equivalent to a serial schedule.

In essence, this means that the two schedules agree about what information does or does not

flow from one transaction to another or from a transaction to a future transaction. Since a

serial schedule is correct, so is a serializable schedule, because it may improve concurrency

but does not alter the information flows or nonflows.

11.1.2.4 Strict and Rigorous Schedules

Besides ensuring correctness through serializability, a DBMS must also ensure that the tran-

sactions it runs are atomic and durable. Durability can be incompatible with consistency in

the following way. Assume your bank account has a balance of $1 000. Assume a transaction

deposits $1 000 into this account. A second transaction withdraws $1 500 from the same

account. Based on the increased balance in your account, because of the first transaction, the

second transaction can complete successfully. Say the money is handed out. Now if the first

(deposit) transaction were to run into an error (or simply not receive a confirmation from the

user), then that would mean it would only perform some of its operations. In other words,

this would be a case of partial success. But atomicity requires all-or-none behavior. Since

the deposit transaction is not succeeding, it is not taking the “all” branch. All that the DBMS

can do is to cause it to be aborted or rolled back, i.e., to take the “none” branch. But if the

DBMS does so, that means the deposit never took place. However, the withdraw transaction

has used the results of the deposit transaction so it too is invalidated.

If the withdraw transaction has been recorded as having committed, (i.e., completed

successfully)—meaning that the money was paid out—then the situation is past repair. In



200 Transaction Concepts

technical terms, the withdraw transaction reads from the deposit transaction. We should not

have let the withdraw transaction commit prior to the deposit transaction. Such a sched-

ule, where a transaction that reads from another transaction commits before the transaction

being read from, is called a nonrecoverable schedule. This is the absolute no-no of database

management, because it means that the data is corrupted and, further, because the second

transaction is durable, the corruption is permanent.

An alternative would be to withhold committing the withdraw transaction until we knew

whether the deposit transaction had committed. Now if the deposit transaction turns out to

abort, we would abort the withdraw transaction as well. A schedule in which a transaction

that reads from another transaction does not commit before the transaction being read from

is called a recoverable schedule. Such a case avoids the above error of database corruption,

but suffers from another potential problem. The problem is that the abort of one transaction

can cause the aborts of other transactions, even if they had no internal reason to abort. Such

cascading aborts cause a lot of work to be wasted. If only the transaction that would read

from another transaction is made to wait until the transaction to be read from has committed

or aborted, then such work would not be wasted.

For technical reasons to do with the implementations of logs, it is helpful if a transaction

(say, T2) that does not read from but overwrites the data items written by another transaction

(say, T1) is made to wait until T1 has committed or aborted. The resulting schedule is called

a strict schedule. In implementing this with locks, as discussed below, it is convenient to

prevent a data item even from being written by T2 after it has been read by T1. The resulting

schedule is called a rigorous schedule.

11.1.3 Locking

Conflict serializability is commonly used in commercial DBMSs. It is easy to realize through

mechanisms such as the two-phase locking protocol (2PL). The mechanisms are largely trans-

parent to the programmer. It is worthwhile to understand the functioning of 2PL in brief. Let

us first review the basic concepts of locking. A lock is a data structure that controls access to

a given data item. Locks are commonly used to prevent incompatible concurrent accesses to

a data item. This is easy enough to ensure when data items are accessed through a particular

software component, typically called a lock manager. When a computation needs to access

a given data item, the lock manager assigns a lock on the data item to the given computa-

tion and gives it access to the data item. After the computation has accessed the data item,

it relinquishes its lock on that data item. Notice that although we use the terms “acquire”

and “relinquish” for locks, in a database environment these locks are generally not explicitly

requested or released by a programmer, but are inferred by the DBMS based on the access

requests made by the application that begins the given transaction and by an abort or commit

generated by the application.

Lock types are often specific to the operation types that they allow. During the period that

a transaction has a lock on a data item, the lock manager would not grant an incompatible lock

on the same data item to another transaction. Since the operation types we are considering



11.1 Transactions 201

are read and write, it is appropriate to consider two kinds of locks: shared and exclusive. To

ensure correctness, a lock manager cannot grant an exclusive lock if a shared lock or another

exclusive lock has currently been granted and it cannot grant a shared lock if an exclusive lock

has currently been granted. T3 may obtain an exclusive lock on item x, which would enable

it to read or write x. The exclusive lock would prevent another transaction from accessing

x until the lock is released. Conversely, if T4 obtains a shared lock on item y, it may read

y. Another transaction, T5, may also obtain a shared lock on y and may read y concurrently

with T6. However, if T6 requests an exclusive lock on y, it would not be granted that lock

until T4 and T5 have released their shared locks. This form of locking corresponds to the

conflict matrix shown in Table 11.2. Two reads on a data item can happen concurrently, but a

read and a write or two writes must happen one by one.

When a transaction requests a lock, either the lock is granted or a decision must be made

about what to do with the transaction. Typically, the transaction is made to wait. This is

reasonable based on the idea that the transaction cannot proceed without the data item it

requested. However, alternative policies are considered in Section 11.2.2.

To continue with the transactions T1 and T2 introduced above, let us see how schedule S1

may be realized. T1 would first need to acquire an exclusive lock on z (because T1 needs to

both read and write z). T1 would relinquish its lock upon committing. T2 would then request

an exclusive lock on z, acquire it, and proceed. Schedule S1 could also be realized with a

slightly different sequence of events. Again, T1 would request and acquire a lock on z. Now

T2 could request a lock on z, but would be made to wait. In the meantime, T1 would proceed.

When T1 relinquishes its lock, then the lock would be granted to T2, which would resume

at that point. The (observable) schedule would still be S1, although T2 requested its lock

earlier than in the previous example. As you can verify, schedule S2 may be realized through

another sequence of lock acquisitions and releases.

11.1.3.1 Two-Phase Locking Protocol

Unfortunately, S3 and S4 can also occur provided one of the transactions acquires, releases,

and acquires a lock again. In other words, undesirable schedules are not prevented by locking.

Suppose we forbid such behavior. Would that prevent nonserializable schedules from being

generated?

Unfortunately, no. A more interesting example can be constructed where two data items

are involved. The above kind of locking applies to individual data items and ensures that each

item is accessed serially whenever there is a conflict. However, transactions access multiple

data items. If we are careless, the following kind of schedule over data items x and y may

occur (we can infer the transactions T7 and T8 from this schedule):

• S5 = r7(x); w8(x); r8(y); w7(y); c7; c8

Here T7 reads x before T8 writes x, but writes y after T8 reads y. Such a schedule is clearly

not serializable, because in any serial schedule of T7 and T8, one of the mutual orders of the

conflicting operations on x and y, respectively, would be violated.



202 Transaction Concepts

The above schedule can occur because, in essence, the locks are being released prema-

turely. To ensure that such is not the case, a simple approach considers each transaction to

be separated into two main phases: a growing phase and a shrinking phase. Locks can only

be acquired during the former phase and only be released during the latter phase. That is, all

lock acquisitions precede all lock releases. It is simple to show that this protocol, aptly called

two-phase locking (2PL), would not allow schedule S5 to be obtained. Specifically, because

T7 would not relinquish its lock on x until after it has acquired a lock on y, this means that

w8(x) cannot occur prior to T7’s having locked y, at which point T8 would not be able to

acquire a lock on y prior to T8. In fact, r8(y) cannot occur until T7 relinquishes its lock on y,

which is only after w7(y). Thus, at best we would end up with the following schedule:

• S6 = r7(x); w8(x); w7(y); r8(y); c7; c8

The following sequence of lock and unlock events shows how this schedule may be realized

via 2PL: first T7 locks both x and y; after r7(x), T7 unlocks x; next T8 locks x and performs

w8(x); then T7 does w7(y) and subsequently unlocks y; lastly T8 locks y and performs r8(y).
In the above schedule, there are two conflicts between the operations on x and y, respec-

tively, but both conflicts are in the same direction. Thus an equivalent serial schedule is where

T7 precedes T8. More generally, 2PL can only produce a serializable schedule.

11.1.3.2 Variations of 2PL

Two variations of 2PL are worth mentioning. The first, conservative 2PL is like 2PL except

that a transaction must acquire all of the locks that it might need prior to beginning. Thus, if a

transaction has obtained one lock, then that means it has obtained all the locks it would need.

Such a transaction would never have to wait for a lock during its computation. However,

conservative 2PL is excessively pessimistic. A transaction would be delayed from starting

because all of the locks were not available at the outset. Further, a DBMS cannot determine

the entire set of locks a transaction might need, so the programmer would need to request the

locks explicitly.

The second variation of 2PL, strict 2PL, is one in which the locks acquired by a transac-

tion are held until the transaction has ended, i.e., committed or aborted. This is conceptually

straightforward to implement: a DBMS lets the transaction keep its locks until receiving a

commit or abort notification from the transaction (or aborting the transaction, if necessary).

Strict 2PL ensures that the schedules realized using it are strict and even rigorous. Such

schedules make it easier to maintain the integrity of the database while reducing the number

of transactions the DBMS would have to abort to ensure integrity. For this reason, strict 2PL

is common in practice.

11.1.4 Distributed Transactions
The transaction concept as introduced above applies to an individual DBMS in which all

transactions are executed. It offers guarantees for the integrity of the information on the

DBMS provided the individual transactions are correct. This is a powerful feature and one



11.1 Transactions 203

we would like to ensure for transactions distributed over more than one database, information

system, or, in general, information resource.

In the above, a transaction, also called a flat transaction, consists of a set of operations, all

executing on a single database. For distributed settings, we need to put together a transaction

whose constituents are also transactions. Such a transaction is called a distributed transaction
or a nested transaction. Table 11.3 describes the ACID properties as applied to distributed

transactions.

Table 11.3: The ACID properties for closed nested distributed transactions

Property Meaning Example

Atomicity All or nothing All component transactions of a composed

transaction complete successfully or none does,

e.g., if paying to purchase a product, either the

product ships and is paid for, or neither hap-

pens, meaning there are no unpaid shipments

and no extra payments

Consistency Integrity preserving If each constituent transaction is individually

correct, then the composed transaction with its

constituents executing concurrently is also cor-

rect

Isolation Hidden partial results Different composed transactions are unaware of

one another, e.g., a business deal with one cus-

tomer is either entirely before or entirely after a

business deal with another customer

Durability Permanent committed

results

The composed transactions are durable, e.g.,

once the inventory and payment databases are

modified, the modifications are durable

Figure 11.2 illustrates a nested transaction. For the same reasons as for flat transactions,

we would like nested transactions to support the ACID properties. However, the fact that we

now have distributed databases causes a complication. The data items on which the operations

are performed reside on different databases. Thus a single lock manager cannot ensure that

all accesses to the various data items satisfy a protocol such as 2PL.

It is customary to separate the ACID properties into two main aspects. One aspect empha-

sizes atomicity and durability, and ensures the all-or-none behavior of a transaction. The

other aspect deals with isolation and consistency and ensures that the concurrent execution

of distributed transactions is correct. Traditionally, the first aspect is termed recovery and

the second is termed concurrency control. A conventional DBMS provides both recovery

and concurrency control. However, for distributed settings, the two aspects often behave

differently. It is easier and more common to ensure atomicity than to ensure isolation.



204 Transaction Concepts

Move money transaction

Withdraw

transaction

Deposit

transaction

LDB1 LDB2

Figure 11.2: An example of a distributed, nested transaction. Move-money is composed of

the deposit and withdraw subtransactions on different databases

11.1.4.1 Two-Phase Commit

A well-known means to ensure atomicity over distributed transactions is the two-phase com-
mit (2PC) protocol. In a 2PC protocol, the model for each subtransaction of a given transac-

tion consists of a small number of important states.

Figure 11.3 illustrates the skeleton or life cycle of a transaction that may participate as a

subtransaction in 2PC. Each such transaction, upon starting, enters a state in which it carries

out its local computation. The transaction may encounter an internal error or decide because

of its program logic to abort. Otherwise, the transaction is deemed ready to commit. However,

the transaction does not commit just yet. Instead, at the conclusion of its local computation,

the transaction participates in a voting protocol. According to its skeleton, a subtransaction

would commit only if the voting protocol concludes with a vote to commit.

The above transaction skeleton indicates that a transaction obeying this skeleton may par-

ticipate in a 2PC execution. Each 2PC execution requires a coordinator, which intuitively

corresponds to the main transaction. When a subtransaction starts, it should be registered

with the coordinator. The coordinator may start and register a subtransaction, or a subtrans-

action may register itself. When a transaction completes its main computation, it indicates (or

the application program behind it indicates) to the coordinator whether it is ready to commit

or abort. These indications are treated as votes by the coordinator. If the registered subtrans-

actions vote unanimously to commit, then the coordinator announces a commit decision to

each participating subtransaction. Otherwise, the coordinator announces an abort decision

to each participating subtransaction. Figure 11.4 illustrates a possible execution of the 2PC

protocol where two subtransactions of a transaction both commit. Other complexities might

arise in practice, e.g., the handling of time-outs, but these are not necessary for our purposes.



11.1 Transactions 205

precommitted

aborted

forgotten

failure

computing

committed

initialized

done

success

Internal error

start

Figure 11.3: A transaction skeleton showing the main states in its life cycle

Subtransaction 1 Coordinator Subtransaction 2

register

vote

register

vote

decision
decision

Figure 11.4: An example execution of 2PC



206 Transaction Concepts

11.1.4.2 Transaction Processing Monitors

A transaction processing monitor (TP monitor) seeks to provide transactional guarantees over

all the resources that it controls. TP monitors are an important part of enterprise information

systems, because they are used to manage disparate resources. In modern practice, TP mon-

itors are intimately associated with application servers and provide some of the same kinds

of functionality, such as hosting applications, managing threads and processes, and pooling

connections to databases. However, TP monitors are more powerful than application servers,

because they, in effect, control their underlying resources fully. Such control is necessary

to make guarantees about the ACID properties, but also makes TP monitors cumbersome to

design and administer.

Figure 11.5 shows a TP monitor schematically controlling different databases. A TP

monitor provides concurrency control and recovery across processes. Transaction control is

flexible, because a client determines if an operation is part of a transaction. Further, a client

can invoke transactional and nontransactional objects, and objects can specify the transaction

behavior of interfaces.

TP monitor

applicationapplication

user

LDB1 LDB2

Figure 11.5: A schematic architecture involving a TP monitor

As an example of a TP monitor, consider the CORBA Object Transaction Services (OTS).

OTS supports online transaction processing, with the following characteristics:

• The transactions are ACID, and can be either flat or nested.

• Existing systems can be enabled to participate via wrapping.

• Interoperability occurs by coordinating (1) single transactions over ORB and nonORB

applications, (2) access to nonobject programs and resources, and (3) access to objects

from existing programs.

• Via network interoperability, there can be multiple OTSs, each running over one or

more ORBs.



11.2 Transactions over Composed Services 207

11.2 Transactions over Composed Services

Now let us consider how we might formulate transactions over composed services. A clas-

sical example would be the following. A service provider (say, expedia.com) provides a trip

service by composing an existing airline service (say, United Airlines) and an existing hotel

service (say, Sheraton). Expedia would want the composed service to offer the usual trans-

actional guarantees so that two customers of the composed service would not inadvertently

interfere with each other. For example, both customers might be told that there is a seat avail-

able (only one is left) and a room available (only one), but one customer’s transaction might

reserve the seat, while the other’s transaction reserves the room, so that neither customer can

travel.

11.2.1 Architecture for Composed Services

Let us consider a possible architecture for performing transactions over composed services.

We are given a number of existing services, each of which can be thought of as fronting a

local database (LDB), as shown in Figure 11.6. The composed service itself runs a transaction

manager (CTM) that manages the composed transactions that are visible to the customers of

the composed service.

Composed Transaction

Manager

Service2Service1

user1

user2 user3

LDB1 LDB2

Figure 11.6: Transactions over composed services

We can imagine that we are given application servers corresponding to each of the par-

ties in this example: Expedia, Sheraton, and United. The application servers capture the

business logic of their respective sites. The specific approach may be that of J2EE or of

.NET, discussed in Sections 4.2 and 4.3, respectively. In either case, the CTM (i.e., Expedia)

would send requests to participating sites and possibly attempt to ensure their transactional

properties.



208 Transaction Concepts

Referring to Figure 11.6, two main kinds of service-level agreements are possible, which

reduce autonomy and heterogeneity, respectively:

• Autonomy, where a local site gives up some control on the execution of its local tran-

sactions, so that the CTM can help decide whether a local transaction may commit.

• Heterogeneity, where the construction of a local site is constrained.

In the absence of any service-level agreements whatsoever, it is clear that no compositional

properties may be assured, because a local site may act absolutely arbitrarily.

In simple terms, composition can work only because each participating service guarantees

some behavior to the CTM and is willing to let the CTM guide its behavior (within limits, of

course). An example of an autonomy agreement is that the local service is willing to abort

a transaction initiated by the CTM upon the CTM’s request. No viable service would let the

CTM decide about transactions that the CTM did not initiate, because that would potentially

cause interference with other customers. Likewise, a service would not promise to commit

any CTM-initiated transaction, because it may have local reasons to abort such a transaction.

However, it is common for participating services to withhold committing a CTM-initiated

transaction until a CTM gives the go ahead (and to abort such transactions otherwise).

computing

failed

initialized

succeeded

start

Figure 11.7: A skeleton for a typical OS task, e.g., the execution of a shell script or application

program. This is isomorphic to the skeleton for a transaction on a legacy or other database

that commits or aborts, but does not expose an internal precommit state

This loss of autonomy also means that some of the states of the execution of such tran-

sactions be revealed. In other words, the local site would expose a skeleton such as that of

Figure 11.3. Instead if the service represents a typical operating system task or a database that



11.2 Transactions over Composed Services 209

is not configured to participate in a voting protocol such as 2PC, Figure 11.7 would be a more

accurate description of its skeleton. In such a case, control information (e.g., the precommit

state) may not be revealed or the database may unilaterally commit or abort. Clearly, such a

skeleton cannot participate in 2PC. Considerations of this nature affect what interactions are

possible.

Exposing such skeletons is a loss of heterogeneity. Further, local services may expose

additional properties of their implementations so that the CTM may proceed effectively in

carrying out composed transactions.

11.2.2 Properties of Composed Transactions
Let us consider some important properties for composed transactions. These are analogous to

the properties for traditional transactions, but the above architecture makes them much harder

to ensure than in traditional databases.

11.2.2.1 Compositional Atomicity and Durability

Compositional atomicity refers to atomicity at the compositional level, i.e., the entire com-

position of operations is atomic and cannot be performed partially. Compositional atomicity

can succeed only if the participating service instances restrict their autonomy through service-

level agreements. Otherwise, the services may not release their prepare-to-commit state and,

consequently, may not participate in a mutual commit protocol.

It is easy to construct compositional scenarios in which a deadlock occurs. Assume that

LDB1 and LDB2 each use two-phase locking (2PL). As an example, consider our travel

scenario again. Assume that a customer, Alice, wishes to get a hotel booking before getting

an airline booking, whereas another customer, Bob, wants the bookings made in the reverse

order. Now Alice’s transaction obtains a hotel ticket before Bob’s transaction. If the hotel

uses strict 2PL, Alice’s subtransaction there will relinquish its lock on the ticket only after it

commits. This means Bob’s hotel booking subtransaction cannot proceed until after Alice’s

hotel booking is over. And, Alice’s hotel booking will commit only when the CTM tells it

to do so. But the CTM will tell it to commit only after Alice’s airline booking has also been

received. However, for the same reasons, Alice’s airline booking is waiting for Bob’s airline

booking to be over. Thus each waits for the other. That is, we have a deadlock.

The CTM cannot detect such a deadlock, because it has no knowledge of why a subtrans-

action waits at a particular site. Sharing such knowledge would violate the autonomy of the

participating local sites. However, the CTM can use heuristics such as time-outs to abort

some of the composed transactions in the hope that progress will be made. If a deadlock is

formed solely of composed transactions, then the CTM may potentially detect it, but even

then it would not know which transaction was waiting for which transaction, and would need

to know the implementational detail of the local sites. In any case, if a deadlock is formed

by a combination of local and composed transactions, then the CTM will not know about it

directly. And, because the LDBs might not share control information (because they want to

preserve their autonomy), the CTM will not be able to find it from them.



210 Transaction Concepts

So what happens when a CT fails? First, each service will ensure the atomicity and

durability of its local subtransactions. Second, with 2PC, the CTM can guarantee that all or

none commit. Otherwise, only weaker atomicity and durability are possible.

11.2.2.2 Compositional Serializability

For traditional databases, serializability corresponds to correctness of execution. For this

reason, DBMSs are designed to ensure the serializability of the transactions running on them.

One might require that transactions throughout the system should be serializable.

In Figure 11.6, let us assume that each of the transaction managers involved ensures the

serializability of the transactions that run through it. Thus, the CTM ensures that the com-

posed (upper-level) transactions are serializable; LDB1 ensures that all transactions execut-

ing on LDB1 are serializable; and LDB2 ensures that all transactions executing on LDB2 are

serializable. In terms of our example, this means that Expedia, United Airlines, and Sheraton

each ensures the serializability of the transactions that it runs.

11.2.3 Difficulty with Compositional Serializability
Interestingly, exemplary behavior by each of the parties involved does not guarantee compo-
sitional serializability, because of indirect conflicts. As an example from our travel scenario

consider the following situation, which is formalized using the notation of Section 11.1.2:

• Alice wishes to determine the availability of rooms at a specific hotel (say, a specific

room such as the presidential suite in the Manhattan Sheraton on June 15) and the

availability of seats on a specific flight (say, UA 1 on June 15). The CTM performs T1:

r1(a); r1(c) to serve Alice’s needs.

• Bob wishes to determine the availability of rooms at a specific hotel (say, a specific

room such as the presidential suite in the Manhattan Sheraton on June 16) and the

availability of seats on a specific flight (say, UA 1) on June 16. The CTM performs T2:

r2(b); r2(d) to serve Bob’s needs.

• Vladimir goes to the Sheraton site directly and changes his booking for the presiden-

tial suite in the Manhattan Sheraton from June 15 to June 16. In other words, LDB1

performs T3: w3(a); w3(b). Notice that the data item a corresponds to the booking of

June 15 and b to June 16; both are affected.

• Wlodek goes to the United site directly and changes his booking for UA 1 from June

15 to June 16. In other words, LDB2 performs T4: w4(c); w4(d).

• Since T1 and T2 are read-only, they have no conflicts with each other. Hence, any

schedules involving just T1 and T2 are automatically serializable. This stands to reason:

two different customers asking about two different dates should have no conflicts with

each other.



11.2 Transactions over Composed Services 211

• Let us assume that the operations take place on Sheraton in the following order. That

is, LDB1 sees the schedule S1 = r1(a); w3(a); w3(b); r2(b).

• Let us assume that the operations take place on United in the following order. That is,

LDB2 sees the schedule S2 = w4(c); r1(c); r2(d); w4(d).

• Thus, each LDB has a serializable schedule

• Yet the schedule at LDB1 puts T1 before T2 and the schedule at LDB2 puts T1 after
T2, which is inconsistent. The schedule is not compositionally serializable.

In other words, correct local actions by all parties yield incorrect outcomes. This should be

thought of as a major impossibility result. Below are the main approaches that have been

proposed to fix this problem.

11.2.4 Achieving Compositional Serializability
Achieving compositional serializability presupposes the composed transaction manager has

some level of control over the local services that it invokes. In particular, if the services

execute fully autonomously, it is not possible to ensure compositional serializability, because

each service could unilaterally take a decision (about serialization) and the decisions of the

services may be incompatible with each other. Section 11.2.1 describes the skeletons that the

local services should support so as to expose their precommit states. Given such skeletons,

the CTM could serve as the coordinator for an execution of the 2PC protocol (as described in

Section 11.1.4) among the composed services.

However, the point of the above impossibility result is that the CTM simply would not

know whether the observed schedule was serializable or not. Compositional serializability

fails because of local conflicts that the CTM does not see. So we need to find a way to work

around this challenge.

11.2.4.1 Tickets

It is not possible to make the local conflicts visible without seriously compromising the auton-

omy of the local services. However, the problem of hidden local conflicts can be corrected

by always causing visible conflicts among the composed transactions.

The idea is that whenever two composed transactions execute at a site, they must conflict

there. Assuming that each LDB allows only serializable schedules, this means that the sched-

ules produced by the LDB are compatible with the new conflicts. In other words, if there

were any previously hidden local conflicts, they would have to be consistent with the newly

introduced conflicts. Consequently, the newly introduced conflicts would provide sufficient

information to the CTM.

A simple way to generate such visible conflicts is to require that each composed transac-

tion takes a ticket at each site. A ticket is simply implemented as a counter, which is read and

modified by each transaction. Because the counter is a data item, and each transaction writes



212 Transaction Concepts

it, the transactions must conflict. If the counter is always increased by each transaction, the

order of conflicts is reflected in the value of the counter read by each transaction.

The CTM, thus, simply runs the subtransactions of the composed transactions and builds

a graph representing the executed schedule. In this graph, each composed transaction is a

vertex. If two composed transactions have subtransactions at a common site, then there is an

edge from one composed transaction to the other depending on the values of the tickets that

their subtransactions read at a site where they both are run. (The edge is directed from the

smaller ticket value to the larger ticket value.) Now the composed schedule is serializable if

and only if this graph is acyclic. If the composed schedule is serializable, all the composed

transactions participating in it that have completed may commit; otherwise, enough of them

must be aborted and removed from the graph, so that the resulting graph is not cyclic.

In essence, the idea is to run 2PC over the subtransactions to ensure that all or none of the

subtransactions of a composed transaction commit. This is the same as atomicity. However,

what enables this procedure to handle serializability as well as atomicity is that the decision

on whether to commit or abort is made by the CTM based on its reasoning about the tickets.

This is a so-called optimistic approach, because it works well when the transactions yield

a schedule that is in fact serializable; otherwise, a lot of work may be lost. The aborted

transactions would eventually be restarted. Vertices corresponding to the transactions that

commit are kept in the graph long enough for it to be clear that there would not be any rami-

fications on serializability because of those transactions. A simple test is that all transactions

active concurrently with the given committed transaction should have committed (or aborted,

in which case they would have been removed from the graph), and the vertex for the given

transaction has no in-edges.

Implementing this scheme is not difficult provided it is possible to add a data item for the

ticket to each local site. Then the CTM, which can be thought of an application server, can

be implemented always to insert a read and write operation on the given ticket data item. The

application program underlying the transactions would not be affected. In some cases, the

local site may have an already existing data item that can function as a ticket.

Let us briefly consider the matter of where in the execution of a transaction the ticket

operations (say the write on the ticket, to be specific) may be inserted. Assume that the sites

use strict 2PL. If the ticket operation is the first operation, then that means the subtransac-

tions of the composed transactions are essentially executed serially. This is because, when a

subtransaction locks the ticket data item in strict 2PL, it would not relinquish the lock until

after it had committed or aborted. That is when the next subtransaction may lock the ticket.

If the ticket operation is the last operation prior to commit or abort, then only the ending of

subtransactions is constrained. Thus, in general, greater concurrency is achieved, because

the subtransactions would be able to proceed simultaneously unless they conflict on some

other data item: that is, tickets would not have caused their concurrency to be reduced. The

serialization order produced by a (strict) 2PL scheduler is consistent with the order in which

the various transactions commit. Making the order of tickets consistent with this order avoids

additional conflicts and maximized concurrency.

If the sites individually also use an optimistic approach, such as timestamp ordering, then



11.2 Transactions over Composed Services 213

the opposite relative timing is desirable for the ticket operations. The details of timestamp

ordering are not relevant here, and it suffices to know that it serializes transactions in an order

that is consistent with the order of their timestamps (i.e., the system clock values when they

begin). In such a case, the tickets are compatible with the natural serialization order of the

transactions and do not cause local cycles.

11.2.4.2 Strict Scheduling

In this scheduling approach, sometimes called rigorous scheduling, the CTM works essen-

tially as above, but does not employ tickets and assumes that each site employs an approach

such as strict 2PL that guarantees rigorous schedules. That is, as for tickets, this strategy

is possible only if the LDBs involved in the composed transaction expose their precommit

states. On the one hand, it does not require tickets. On the other hand, the sites must guar-

antee rigorous schedules: in this manner, it reduces the heterogeneity of the participating

sites. With a suitable service-level agreement, it might be acceptable, especially since many

practical sites employ strict 2PL.

This approach exploits two ideas: one, as above, that the tickets should ideally be con-

sistent with the serialization order of the local site; and two, that when the sites all use strict

2PL, the kinds of insidious conflicts discussed in Section 11.2.2.2 cannot arise.

Notice that strict 2PL at each site does not guarantee compositional serializability. The

example of Section 11.2.3 uses strict 2PL at LDB1 but not LDB2. We can define a scenario

where each local site follows strict 2PL, but compositional serializability fails to hold.

• The CTM performs T1: r1(a); r1(c) (for Alice).

• The CTM performs T2: r2(b); r2(d) (for Bob).

• LDB1 performs T3: w3(a); w3(b) (for Vladimir).

• LDB2 performs T4: w4(c); w4(d) (for Wlodek).

• LDB1 sees the schedule S1 = r1(a); c1; w3(a); w3(b); c3; r2(b); c2.

• LDB2 sees the schedule S9 = r2(d); c2; w4(c); w4(d); c4; r1(c); c1.

• Thus, each LDB has a rigorous, serializable schedule (in fact, each schedule is serial).

• Yet the schedule at LDB1 puts T1 before T2 and the schedule at LDB2 puts T1 after
T2, which is inconsistent. The schedule is not compositionally serializable.

However, if no subtransaction of a composed transaction commits until all of them have

completed, then compositional serializability is attained.



214 Transaction Concepts

11.2.4.3 Performance of Compositional Serializability

Ticketing causes all subtransactions of a transaction to go through a local hotspot. The com-

posed transactions are serialized, but at a huge price: there is a high probability of the tran-

sactions being aborted. Exercise 11.10 asks you to perform a simple analysis of the chances

of a composed schedule not suffering any aborts due to ticketing.

Moreover, system-wide deadlocks are also possible when the local sites use pessimistic,

i.e., lock-based, serialization approaches. The example of Section 11.2.2.1 applies unchanged

in the present case as well.

Strict scheduling, being a pessimistic approach, is not subject to as many aborts after all

the work of a schedule has been performed. However, it requires transactions to be held up

until they can be committed in the correct order. In effect, strict scheduling causes sites to be

held up until all of them are ready to commit, which is essentially like a two-phase commit

(2PC) approach. For our travel example, the hotel, airline, and car rental agency would all

have to keep a reservation open until all were ready to commit. That is, United Airlines might

have to wait for Sheraton to reach an agreement with the traveler. Further, this approach is

also susceptible to system-wide deadlocks of the kind explained above.

11.3 Limitations of Traditional Transactions
Traditional transactions are highly effective in homogeneous and centralized databases. In

the above, we discussed why the ACID properties of transactions are difficult to attain. More

importantly, the ACID properties may not even be desirable for service-oriented architectures,

which are geared toward open environments consisting of autonomous and heterogeneous

components. Table 11.4 reviews the limitations of traditional transactions in terms of the

ACID properties.

Table 11.4: The ACID properties reviewed in the context of service-oriented architectures

Property Meaning Undesirable when

Atomicity All or nothing Legacy systems or nonterminating processes

are involved

Consistency Integrity preserving Integrity conditions cannot be defined or data

values expire

Isolation Hidden partial results Collaboration is desired

Durability Permanent committed

results

Backing out is necessary

ACID transactions are applicable for brief, simple activities (involving just a few updates

that occur within a few seconds) on centralized architectures. By contrast, open environments

require tasks that



11.4 Relaxing Serializability 215

• Run forever or for long durations (e.g., months rather than seconds for many business

processes). Isolation requires locking data items at one partner based on the behavior

of another, remote partner.

• Are prone to failure. Rolling back is usually impossible but proceeding in the face of

error may appear to violate database integrity.

• Update data across systems with consistency requirements that might be quite subtle.

• Are cooperative, i.e., involve several applications and humans, which are not isolated
from one another.

• Execute over autonomous and heterogeneous partners. Atomicity requires the com-

ponent databases to expose their internal control states and operations, violating their

autonomy and heterogeneity.

11.4 Relaxing Serializability
One of the potential problems caused by removing isolation is that inconsistencies may be

introduced.

The notion of serializability can potentially be relaxed depending on the application

domain. This relaxation can be valid based on the data types that the application uses. As

a classical example, consider the case of a bank. Assume that there are is data type called

Account and operators on accounts to deposit, withdraw, and transfer money, and to check the

balance. The first three operators each involve a write operation in the sense of Section 11.1.2;

the last involves a read operation. Therefore, deposit, withdraw, and transfer would be taken

to conflict with each of the other operators. However, the operators are specific combinations

of reads and writes, and may not truly conflict.

For instance, deposit would not conflict with deposit, because the outcome is the addition

of the sum of the deposited money to the account (regardless of the order in which the oper-

ators are performed). Deposit would conflict with withdraw and transfer, because the money

being deposited may determine whether a withdrawal or a transfer can occur. However, the

conflict is “partial” in the sense that if a withdrawal followed by a deposit executes without

exceptions, then clearly the deposit followed by the withdrawal would also execute without

exceptions.

In a similar spirit, we can consider an airline flight reservation data type representing

the bookings made on a given flight, and supporting operators such as book and cancel,

which involve reads and write on the underlying database. The cancel of a reservation on a

flight does not conflict with the cancel of another reservation on the same flight, because the

seats are simply released by each cancellation. If we assume that the specific seats do not

matter (what matters is if you can get on the flight), then book may still conflict with book.

However, if the second book operator does not throw an exception, then the order does not

matter. Likewise, if a book succeeds prior to a cancel, then the book will definitely succeed

after a cancel.



216 Transaction Concepts

Thus, if the database underlying such a service were aware of the data types being

accessed and manipulated by the transactions, it may be able to avoid some possible con-

flicts. Consequently, a larger number of schedules would be allowed, meaning that there

would be more composed schedules that were acceptable.

A downside of such an approach is that it requires careful, advance consideration of the

data types involved. Unless the operations on the various data types are carefully formalized,

it is difficult to take advantage of such improvements. Moreover, the formalized behavior of

the data types would need to be exposed as part of the interface of a service. We can imagine

that such behaviors may be standardized in specific industries. However, in general settings,

that is not the case, and data type considerations are not used in current practice.

When no cross-service constraints apply, local serializability may be adequate. For exam-

ple, if there were no relationships between the bookings you make on a hotel and an airline,

it might be satisfactory (for a given application) to simply ensure that each site is locally con-

sistent. We may still need a protocol such as 2PC to ensure atomicity, but we may not care

about violations of compositional serializability.

When cross-service constraints apply, data is split into local data and shared data, such

that each LDB controls its local data and the CTM controls shared data. For the shared data,

this approach allows local reads, but data can be written only via the CTM. For independently

existing services, this would be an onerous restriction, and not likely to be feasible in practice.

The disadvantage of an approach based on cross-service constraints is that it does not work in

all cases: because all shared data are managed through a special service, only the most trivial

compositions are feasible. Such approaches are not found in practice.

11.5 Extended Transaction Models
One of the main motivations behind services is that they naturally accommodate the hetero-

geneity and autonomy of business partners. However, we still need higher-level abstractions

to capture the complexity and cooperative nature of the tasks.

The extended models seek to capture weaker specifications of the ACID properties that

would be acceptable in different application scenarios and yet are easier to implement. Ide-

ally, various mathematical properties of these specifications may also be proved.

In simple terms, approximations to the atomicity requirements of transactions may be

ensured by following a strategy based on one or a combination of the following:

Redo. Rerun the writes from a transaction log, meaning that the specific values written pre-

viously are attempted to be written again. This would work only if the given data items

were not accessed in the meanwhile. For example, in a travel setting, you would get

the same seat on the same flight as you would have gotten originally.

Retry. Rerun all of a subtransaction, meaning that the program is reapplied from scratch.

Different data values might be read, different conditional branches may be taken, and

different results may be written or presented to users. For example, you may get a

different seat or a reservation on a different flight.



11.5 Extended Transaction Models 217

Contingency. Define contingency transactions for selected, typically crucial, subtransac-

tions. When one such subtransaction fails, run one of the contingency transactions

instead. There could be multiple layers of contingency transactions. A classical exam-

ple in the travel domain is to try for bookings on a second airline if the first airline is

sold out, and on a third if the second airline is also sold out.

Compensation. Semantically undo all subtransactions that completed before the failure,

meaning that if some subtransactions completed even as the main transaction failed,

they must be undone so that there are no residual effects on the data. For example, if a

traveler booked a hotel, a car, and a flight, but the airline seat assignment failed, then

all bookings would be cancelled instead of retrying to find another seat.

Compensation is different from the effects of undoing an operation from the database

log, because the previous value (as recorded on the log would, in general, be invalid).

For example, you can compensate for an erroneous withdrawal from a bank account by

depositing the erroneously withdrawn amount back into the same account. Say, there

were $1 000 in the account and you withdrew $700 in error. The database log would

say that the value of the given account prior to the operation was $1 000. When the

error is detected, it would be risky simply to restore the account to the amount in the

log, because there could have been intervening transactions, which would thus be lost.

For instance, after you withdrew $700 in error, say, someone deposited $400 into the

same account. To compensate for the erroneous withdrawal, you would have to change

the account value to $1 400, not to $1 000.

Vital subtransaction. Given a transaction consisting of one or more subtransactions, the

vital subtransactions are identified as being critical to the successful completion of the

upper-level transaction. In other words, the vitality of a subtransaction is considered as

key to the atomicity of the upper-level transaction: no execution of it can be considered

“all” if one of the vital subtransactions fails.

Numerous extended transaction models have been proposed that relax the ACID properties

in different ways. These are built on combinations of the above. They consider features such

as the following:

• The type of nesting allowed: traditional distributed transactions require the nesting to

be closed (ACID), while newer models permit it to be open (non-ACID).

• The constraints that must be enforced among subtransactions, such as commit depen-

dencies and abort effects.

• Atomicity variations, in the form of the contingency procedures needed to ensure an

effect similar (under various assumptions) to the all-or-none of traditional transactions.

• The procedures that are needed to restore consistency, e.g., compensation techniques.



218 Transaction Concepts

Several extended transaction models were defined in the late 1980s and the early 1990s.

These are now drawing attention again for modeling Web service transactions. There is also

earlier relevant work on generic schemes for capturing transactions that is being adapted, e.g.,

in CORBA Activity Services. We describe some of this work below, and relate it to problems

that arise in Web service transactions.

11.5.1 Sagas

A saga is a sequence of steps, where each step is a transaction. These transactions are exe-

cuted in sequence: one transaction commits before the next one begins. The motivation

behind sagas is to improve concurrency by reducing isolation, while still assuring atomicity.

Thus the results of a subtransaction are not locked until the saga ends. However, a saga satis-

fies the all-or-none atomicity requirement in the following manner. If all the subtransactions

of a saga commit, then the saga succeeds and clearly we have the “all” branch. On the other

hand, if one of the subtransaction fails, we must undo the effects of the previous subtransac-

tions (which we know have committed, because otherwise, the given subtransaction would

not have been started). To undo those subtransactions, we must simply run their compensa-

tion transactions. To ensure that the compensates apply properly, they are run in the reverse
order of the original execution.

Thus a saga presupposes that compensation transactions are defined for all its subtransac-

tions except the last. Further, it presupposes that the compensates are guaranteed to succeed.

A variation is when compensates are defined for the first several subtransactions and it is

guaranteed that the remaining subtransactions will succeed after a finite number of retries.

In such a case, once enough subtransactions have succeeded, we can guarantee that the saga

will take the “all” branch; otherwise it takes the “none” branch.

Typically, the subtransactions of a saga should be as independent as possible so there are

few data dependencies between them. As a result, there would be fewer problems in exposing

the results of a subtransaction, which would be analogous to the partial results of the saga.

Not sharing the data item does not entail that there would be no problems, because there could

be constraints among the data items accessed by the different subtransactions. For example,

if a saga consists of a hotel booking followed by an airline booking, it is conceivable that a

hotel booking may appear to have succeeded even though the airline booking fails (and thus

the saga is undone).

11.5.2 Flex Transactions

The Flex transaction model assumes that we are given functionally equivalent subtransactions

for achieving some specified tasks. If one subtransaction fails, then an alternative subtrans-

action may be used to accomplish the same task.

The flex model relies upon rules for processing under different circumstances. Each rule

is in restricted syntax and is termed a dependency. The dependencies may involve either the

failure or success of a subtransaction, or can involve external events.



11.6 Notes 219

11.5.3 DOM Transactions

The distributed object management (DOM) transaction model goes beyond the flex model in

considering a richer variety of constraints among transactions. It also considers details spe-

cific to distributed objects, which are not germane here. At the outermost level, DOM defines

a long-running activity, which is called a multitransaction. A multitransaction consists of a

set of top transactions, some of which are declared vital. The top transactions may optionally

be assigned a mutual order.

Each top transaction is a nested transaction and may have any number of subtransactions.

The subtransactions would generally have contingency and compensation transactions—also

part of the same top transaction.

DOM allows two main kinds of precedence dependencies. It may be stated that a trans-

action may not begin before the commit of another transaction, or that a transaction may not

commit before the commit of another transaction. The former causes the transactions to run

serially; the latter allows additional ordering.

The commit of a multitransaction entails the commit of all the vital top transactions.

The abort of a multitransaction entails the abort of all its top transactions. If a component

subtransaction has committed, then it must be compensated (in reverse order of the order of

commitment).

11.6 Notes

The discussion of compositional transactions is based on previous work on distributed tran-

sactions, which were originally studied in the context of distributed, heterogeneous database

systems. The impossibility result for ensuring serializability is discussed in Breitbart et
al. [1994]. Tickets are discussed in Georgakopoulos et al. [1994].

Extended transaction models developed in the late 1980s and the early 1990s have gradu-

ally converged to those that can be expressed using dependencies. The saga model was intro-

duced in Garcia-Molina and Salem [1987] and open nested transactions in Traiger [1983].

Davies [1978] presents an early account of transactions.

11.7 Exercises

11.1. What is the difference between a serial schedule and a serializable schedule?

11.2. Verify that the strict 2PL scheduling of composed transactions as well as local tran-

sactions prevents the failure of compositional serializability in the example of Sec-

tion 11.2.

11.3. Verify that the strict 2PL scheduling of composed transactions as well as local tran-

sactions prevents the failure of compositional serializability in general.



220 Transaction Concepts

11.4. The notation ri(A) means that in transaction Ti, a read of database A occurred. Sim-

ilarly, w refers to a database write. Suppose that the sequence of actions below is

followed by an abort for transaction T1. State which, if any, transactions need to be

rolled back.

r2(A); r3(A); r1(A); w1(B); r2(B); r3(B); w2(C); r3(C);

11.5. Consider a transaction T initiated at a home computer H that asks Bank X to trans-

fer $100 000 from an account at X to an account at Bank Y . Assume that the home

computer wants to perform a two-phase commit operation. Let the notation (i, j, M)
mean that site i sends the message M to site j, where the value of M can be P (pre-

pare), R (ready), D (don’t commit), C (commit), or A (abort). In this notation, one

possible sequence of messages that would lead to a successful two-phase commit of

the transaction would be

(H, X, P ); (H,Y, P ); (Y, H, R); (X, H,R); (H,Y, C); (H, X, C);

Give an example of a sequence of messages that could occur if Bank X wants to

commit and Bank Y wants to abort. Draw a UML sequence diagram for this sequence

of messages.

11.6. The components of transactions T1, T2, and T3 are scheduled in the following order:

r2(A); r3(A); r1(A); w1(B); r2(B); r3(B); w2(C); r3(C); a1;

Notice that the last action is an abort of transaction T1. Because of this abort, which

transactions need to be rolled back?

11.7. The process of uninstalling software can be thought of as a compensating transaction

for the action of installing the same software. Suppose that an installing action consists

of loading a .dll file from a CD-ROM on to a hard disk. To load a file f , we copy f
from the CD-ROM, replacing the file with the same path name f , if there was one.

What is the compensating transaction for the action that loads file f? Consider both

the case where no file with that path name existed, and where there was a file f ′ with

the same path name.

11.8. What is the smallest number of composed and local transactions that is required for

there to be a deadlock that cannot by detected by the CTM or any individual LDB?

11.9. What is the smallest number of composed and local transactions that is required for

there to be a violation of composed serializability due to indirect conflicts. The exam-

ple in Section 11.2.2 involves two composed and two local transactions, so consider

numbers smaller than those numbers. Hint: there is a solution where there are two

composed transactions running on two local sites, and one local transaction on one of

those sites.



11.7 Exercises 221

11.10. An approach such as tickets achieves compositional serializability, but by causing

conflicts to abort many transactions. Suppose there are c composed transactions, each

executing at the same s sites. Suppose these transactions are started concurrently and

executed in random interleavings at the s sites. A composed transaction commits if

and only if there is no violation of ticketing serializability at any site. In particular,

when aborts happen, it is only because of ticketing violations.

• What is the probability that n of these composed transactions will commit? Make

additional assumptions if necessary.

• What does the above result say about the practicality of ticketing when c, s, and

n are all equal to 3?

11.11. Describe a scenario involving two local databases, each using 2PL, where composi-

tional serializability is violated. Consider one or two composed transactions and one

or two local transactions.

11.12. Describe a scenario where compositional serializability is violated. This scenario

should involve two composed transactions (T1 and T2) and one local transaction (T3),

running on two local databases, at least one of which uses 2PL. T1 should complete

before T2 begins.

11.13. You are given a local database that uses strict 2PL for locking. In one or two sentences

each, describe the ramifications (e.g., on correctness and performance) of the following

approaches:

• All composed transactions that run on the database take a ticket just before they

begin their lock-acquisition phase.

• All composed transactions that run on the database take a ticket just before they

begin their lock-relinquishing phase.

• All composed transactions that run on the database take a ticket just after they

release all their locks.

11.14. Draw a state diagram for a three-phase-commit protocol for database transactions.

11.15. Assume you have a system with two stateful services, R1 and R2, that must be kept

consistent. R1 contains travel reservations in the format 〈travel-agent, reservation-id〉.
R2 contains a summary of R1 in the format 〈travel-agent, number-of-reservations-for-
that-travel-agent〉. Assume that the available operations are

Delete a reservation from R1

Insert a reservation into R1

Decrement the summary in R2

Increment the summary in R2



222 Transaction Concepts

We want to define a transaction that attempts to perform a delete on R1 by doing the

following three things concurrently:

Start the delete on R1

Start the decrement on R2

Ask the user for confirmation

Complete the table below such that the consistency of R1 and R2 is maintained. Also,

please list the key assumption necessary to guarantee eventual consistency.

User Says: Delete on R1 Decrement on R2 Actions

Abort

OK Abort Commit

Abort

Commit Commit

Abort None

Cancel Abort Commit

Abort

Commit Commit

11.16. Produce a conflict matrix involving the operations read, write, inc, and dec. That is,

consider all possible pairs of these operations.

11.17. Specify the following supply chain scenario where assembly is understood as a saga

(hence, its atomicity is required).

• An assembly saga consists of transactions for procuring hoses, valves, and cou-

pling sleeves.

• The valves are not needed without hoses.

• The coupling sleeves are not needed without valves.

• Assume that the valves are not needed for the saga to complete.

Describe what compensation transactions are needed (and what they would compen-

sate) for the above to work. State any assumptions you need to make about the com-

pensation transactions. Order the above subtransactions into an appropriate saga.

11.18. Extend the scenario of Exercise 11.17 to be a multitransaction as in DOM.



11.7 Exercises 223

• When an assembly multitransaction starts (because of an order being received),

subtransactions for procuring hoses, valves, and coupling sleeves are started con-

currently.

• The subtransaction for procuring hoses is vital to the assembly multitransaction.

• The coupling sleeves are not needed without valves.

Write the start, commit, and failure dependencies for the above cases.

11.19. Recall that the inc database operation atomically increments the value of an integer

data item by a given amount (for simplicity, let us take this to always be 1). Tickets

could thus possibly be implemented using the inc operation on the ticket data item.

Based on the conflict matrix entry for inc with itself, what would be the main advan-

tages or disadvantages of doing so? In particular, consider whether this approach will

work and, if so, how. Describe briefly (in up to five sentences).

11.20. Implement a simple TP monitor. Your TP monitor will not only manage distributed

transactions, but also simulate transaction failures and recoveries. For this, you will

need to implement two related databases: one database will contain base-level data

and the other will contain summary data. For example, a travel office might have one

database containing sales transactions and a second database containing a summary of

the performances of the sales force. Your TP monitor can use whatever transaction

semantics you prefer. Simulate the failure of an update on either of your two databases

and implement a recovery mechanism. For example, a salesman might record a sale

in a sales-transaction database, but the update to the salesman’s monthly sales totals

in the second database might fail. If possible, use two different database management

systems, such as Microsoft Access and Oracle. For this exercise, you may assume that

the TP monitor has exclusive control of the underlying databases.

11.21. Imagine a distributed information system for the Widget Manufacturing Co. consisting

of an on-line database server containing records of widget sales and sales representa-

tives who use PDAs to enter new sales at WiFi “hot spots.” When the sales represen-

tatives are visiting a customer, the PDAs are not connected to the server. Discuss the

architecture of this information system in terms of the CAP Principle.





Chapter 12

Coordination Frameworks for
Web Services

Government, commercial, and standards organizations have all recognized the importance

of agreed-upon representations for activities within an enterprise and among enterprises.

These organizations have produced a variety of specifications for different aspects of service

activities. The specifications cover distributed computations (CORBA), interactions among

heterogeneous systems (WS-Coordination), conversations (WSCL and WSCI), transactions

(WS-AtomicTransaction, WS-BusinessActivity, and BTP), business processes (BPEL4WS),

workflows (WfMC), and electronic business-to-business interactions (ebXML).

This chapter describes, analyzes, and provides examples of the specifications that are

based on transaction concepts. These extend the key transaction concepts, ranging from sin-

gle databases to distributed databases, that are presented in the previous chapter. The notions

of distributed transactions, in particular, are potentially applicable in service-oriented archi-

tectures. In practice, the benefits vary depending on how much these approaches interfere

with the autonomy and heterogeneity of the services.

The following chapter discusses the specifications that are geared toward processes, focus-

ing on interactions among services, as opposed to models of the services themselves. As

shown in Figure 12.1, the specifications are defined mostly above WSDL, the layer for

describing basic, individual Web services. We present them from lower-level descriptions

to higher-level descriptions.

The leading transaction frameworks being developed for Web services are also presented

in this chapter. Based on the discussion in Section 11.3, however, it is advisable to apply

these frameworks judiciously. They assume open nested models of transactions. They seek

to ensure varying kinds of atomicity, but largely disregard isolation (serializability), which as

we saw in Section 11.2 is not feasible in open settings.

For business partners to interact effectively via Web services, the following business inter-

change requirements must be satisfied:

225



226 Coordination Frameworks for Web Services

BPEL4WS
OWL-S Service

Model

ebXML

CPA

Process and workflow

orchestrations

QoS: Service

descriptions and bindings

Contracts and

agreements

XLANG

WSCL

WSDL
ebXML

CPP

ebXML

BPSS

XML, DTD, and XML Schema

HTTP, FTP, SMTP, SIP, etc.

SOAP
ebXML

messaging

OWL

UDDI
ebXML

Registries

WSCL

WSCI

WS-Coordination

WS-AtomicTransaction and WS-

BusinessActivity

OWL-S Service

Grounding

OWL-S Service

Profile

BTP

BPML

Discovery

Messaging

Transport

QoS: Conversations

QoS: Choreography

QoS: Transactions

Encoding

WS-Policy

WS-Security

WS-Reliable

Messaging

PSL

RDF

Figure 12.1: The relationships among the different proposed standards and methodologies for

describing activities and business processes

• The parties must agree on the documents to be exchanged, and the semantics of the

documents as defined by XML, XML Schema, RDF, or OWL.

• The parties must agree on the protocol used to transmit a document (such as SOAP-

RPC, asynchronous SOAP, or ebXML transport), the routing for the transmission, and

the packaging of the document.

• The parties must know each other’s location.

• An ordering of the documents to be transmitted must be specified, in the form of a

conversation.

Note that the conversation does not specify any internal implementation or mapping to back-

end applications within the various enterprises that are interacting.

12.1 WSCL: Web Services Conversation Language
The Web Services Conversation Language, allows the business level conversations or public

processes supported by a Web service to be defined. The W3C Web Service Choreography

(WS-Chor) Working Group’s emerging specifications such as the Conversation Definition

Language are slated to replace WSCL and WSCI (discussed next), but it is worth studying

WSCL and WSCI to get an understanding of the basic challenges involved.

WSCL specifies the sequencing of XML documents—as well as specifications for the

documents themselves—being exchanged between a Web service and a user of that service.



12.1 WSCL: Web Services Conversation Language 227

WSCL conversation definitions are themselves XML documents and can therefore be inter-

preted by Web service infrastructures and development tools. When used in conjunction with

a service description language such as WSDL, WSCL can provide protocol binding infor-

mation for abstract interfaces or can specify the abstract interfaces supported by a concrete

service. Unlike BPEL4WS (see Section 13.4.1), which describes the connections and inter-

actions among more than one service, WSCL describes the interactions with just one service.

As a standard, WSCL is no longer being pursued, but is useful for the purposes of illustration,

because it provides a simple example of how conversations can be encoded and applied.

Conversation

Transition

Interaction

+ID

+InteractionType

DocumentGroup

SendReceive ReceiveSend Send Receive Empty

XMLDocumentType

+name

finalInteraction

initialInteraction

1..1 1..1

1..1
n

n
SourceInteraction

DestinationInteraction

1..1

1..1

contains

n

(disjoint, complete)

nn n n n n

@Runtime

one doc

out, then

one doc in

@Runtime

one doc

in, then

one doc

out

1..n 1..n 1..n

1..n

1..n 1..n

0..1

+name

+hrefSchema : uriReference

@Runtime

one doc

out

Condition

concerning

document

exchanged in

SourceInteraction

@Runtime

one doc in

Figure 12.2: Concepts in WSCL

A WSCL specification, using the concepts shown above in Figure 12.2, consists of the



228 Coordination Frameworks for Web Services

following four parts:

1. Document type definitions, which specify what types of XML documents will be

exchanged by the parties.

2. Interactions, which are exchanges of documents between a service and a client. Each

interaction is one of the following five types:

• Empty.

• Send meaning that the given party sends a message to another asynchronously.

• Receive meaning that the given party receives a message sent asynchronously by

another.

• SendReceive meaning that the given party sends a message and then receives a

message. This is analogous to a remote procedure call.

• ReceiveSend meaning that the given party receives a message and then sends a

message. This is analogous to a stimulus-response specification.

The above types recall the WSDL operation types introduced in Section 2.3.2. For

example, the following SendReceive interaction specifies that an Invoice document is

sent and a Payment document is received.
� �

< I n t e r a c t i o n i n t e r a c t i o n T y p e ="SendReceive"

i d ="Payment">
<OutboundXMLDocument i d ="Invoice"

hrefSchema ="http://sc.edu/InvoiceRS.xsd"/>
<InboundXMLDocument i d ="Payment"

hrefSchema ="http://ncsu.edu/Payment.xsd">
</InboundXMLDocument>

</ I n t e r a c t i o n >
� �

3. A set of transitions, which specifies the order of the interactions. A transition speci-

fies a source interaction, a destination interaction, and, optionally, a document type of

the source interaction. For example, the two transitions below specify that a “Quote”

interaction can be followed by either a “Purchase” interaction or a “CatalogInquiry”

interaction.
� �

<T r a n s i t i o n >
<S o u r c e I n t e r a c t i o n h r e f ="Quote"/>
<D e s t i n a t i o n I n t e r a c t i o n h r e f ="Purchase"/>

</ T r a n s i t i o n >
<T r a n s i t i o n >
<S o u r c e I n t e r a c t i o n h r e f ="Quote"/>
<D e s t i n a t i o n I n t e r a c t i o n h r e f ="CatalogInquiry"/>

</ T r a n s i t i o n >
� �



12.1 WSCL: Web Services Conversation Language 229

4. A name for the conversation, a list of all interactions and transitions in it, a starting

interaction, and an ending interaction.

WSCL models only business-level interactions and not how an exchange of business-level

documents is carried out by lower-level messaging protocols. For example, the exchange of

one business document might require several actual messages to be exchanged.

WSCL is based on the notion of a well-formed conversation, which is defined as follows:

• All interactions must be reachable from the initial interaction. Otherwise, the conver-

sation would have some irrelevant interactions.

• The final interaction must be reachable from every other interaction. Otherwise, a

conversation may dangle in an incomplete state.

• If a transition from interaction A to interaction B specifies a source interaction condi-

tion, then all transitions from A to B specify source interaction conditions. Otherwise,

the given transition with a source interaction condition would be a null operation as it

could always be avoided during a conversation.

• The final interaction and transitions to the final interaction unambiguously clarify for

each participant when a conversation is finished. The rationale is to ensure that the par-

ticipants agree on when a conversation is over and can garbage-collect its components.

However, unambiguously determining the end of a conversation is not trivial. We must

assume that the underlying messaging infrastructure is reliable; otherwise, one party

may send a message that the other never receives.

A conversation differs from an interface as defined by CORBA IDE or a Java interface,

because it also specifies the possible sequences in which documents may be exchanged. A

complete example of a WSCL specification for a conversation about on-line purchasing from

a catalog is shown in Figure 12.3.

Listing 12.1: A WSCL specification for the conversation in Figure 12.3
� �

<?xml v e r s i o n ="1.0" e n c o d i n g ="UTF-8"?>
<C o n v e r s a t i o n name="StoreFrontServiceConversation"

xmlns="http://www.w3.org/2002/02/wscl10"

i n i t i a l I n t e r a c t i o n ="Start" f i n a l I n t e r a c t i o n ="End" >
<C o n v e r s a t i o n I n t e r a c t i o n s >

< I n t e r a c t i o n i n t e r a c t i o n T y p e ="ReceiveSend" i d ="Login">
<InboundXMLDocument

hrefSchema = h t t p : / / s c . edu / LoginRQ . xsd

i d ="LoginRQ"/>
<OutboundXMLDocument

hrefSchema = h t t p : / / ncsu . edu / Val idLoginRS . xsd

i d ="ValidLoginRS"/>
<OutboundXMLDocument

hrefSchema = h t t p : / / ncsu . edu / I n v a l i d L o g i n R S . xsd



230 Coordination Frameworks for Web Services

i d ="InvalidLoginRS" / >
</ I n t e r a c t i o n >

. . .

< I n t e r a c t i o n i n t e r a c t i o n T y p e ="Empty" i d ="Start" / >
< I n t e r a c t i o n i n t e r a c t i o n T y p e ="Empty" i d ="End" / >

</ C o n v e r s a t i o n I n t e r a c t i o n s >
� �

<<ReceiveSend>>

Registration

in: RegistrationRQ

out: RegistrationRS

<<ReceiveSend>>

Login

in: LoginRQ

out:ValidLoginRS

out: invalidLoginRS

<<ReceiveSend>>

CatalogInquiry

in: CatalogRQ

out: CatalogRS

<<Send>>

Shipping

out: ShippingInformation

<<ReceiveSend>>

Logout

in: LogoutMessage

InvalidLoginRS

InvalidLoginRS

ValidLoginRS

<<ReceiveSend>>

Quote

in: QuoteRQ

out: QuoteRS

InvalidPaymentRS
<<ReceiveSend>>

Purchase

in: PurchaseRQ

out: PurchaseAcceptedRS

out: InvalidPaymentsRS

out: OutOfStockRS

PurchaseAcceptedRS

OutOfStockRS

InvalidPaymentRS

Figure 12.3: A WSCL definition for a conversation about on-line purchasing



12.2 WSCI: Web Service Choreography Interface 231

Listing 12.2: A WSCL specification (cont.)
� �

<C o n v e r s a t i o n T r a n s i t i o n s >
<T r a n s i t i o n >

<S o u r c e I n t e r a c t i o n h r e f ="Start"/>
<D e s t i n a t i o n I n t e r a c t i o n h r e f ="Login"/>

</ T r a n s i t i o n >
. . .

<T r a n s i t i o n >
<S o u r c e I n t e r a c t i o n h r e f ="Login"/>
<D e s t i n a t i o n I n t e r a c t i o n h r e f ="Registration"/>
<S o u r c e I n t e r a c t i o n C o n d i t i o n h r e f ="InvalidLoginRS"/>

</ T r a n s i t i o n >
<T r a n s i t i o n >

<S o u r c e I n t e r a c t i o n h r e f ="Logout"/>
<D e s t i n a t i o n I n t e r a c t i o n h r e f ="End"/>

</ T r a n s i t i o n >
</ C o n v e r s a t i o n T r a n s i t i o n s >

</ C o n v e r s a t i o n >
� �

WSCL has several limitations for describing the interactions that can occur between the

participants in a conversation. Most significantly, the conversation is limited to two partic-

ipants. Additional conversations can occur concurrently among more than two participants,

but there is no support for aligning or reconciling the conversations. Other limitations of

WSCL are

• It provides excellent graph primitives for describing control flows, but does not have

specific constructs for iteration or recursion (i.e., for conditionally terminating itera-

tions).

• Conversations are modeled as scripted procedures (graphs), but the procedures are not

flexible.

• Cooperation is not supported.

• Exception handling is done only at a low level, and it is syntactic, not semantic.

12.2 WSCI: Web Service Choreography Interface
The Web Service Choreography Interface, an interface description language for business pro-

cesses, provides a global message-oriented view of the choreographed interactions among a

collection of Web services. It describes the flow of messages exchanged by a Web service

that is interacting with other services according to a choreographed pattern. By capturing

the temporal and logical dependencies among the messages, WSCI characterizes the exter-

nally observable behavior of the Web service, not its internal operation. WSCI is a common



232 Coordination Frameworks for Web Services

denominator to BPML and BPEL4WS (described in Chapter 13), and offers interoperability

across these two languages, as well as ebXML’s BPSS and WfMCs XPDL.

WSCI is an enhancement to WSDL, and a WSCI specification is intended to be part of

a WSDL document describing a Web service. Listing 12.3 builds on the WSDL description

of an example stock-quotation Web service that is specified in Exercise 2.8. Listing 12.3

includes the WSCI snippet that specifies the order in which the log-in and stock-quote oper-

ations must proceed.

Listing 12.3: An example WSDL document for a stock-quotation Web service, enhanced by WSCI
� �

<!−− Assume t h e d e f a u l t namespace i s
xmlns ="http://www.w3.org/2002/07/wsci10" −−>

<!−− WSCI S e l e c t o r s −−>
<c o r r e l a t i o n name="quotationCorrelation"

p r o p e r t y ="tns:quotationID">
</ c o r r e l a t i o n >
< i n t e r f a c e name="StockQuoteWS">

<p r o c e s s name="ProvideStockQuote" i n s t a n t i a t i o n ="message">
<sequence>

<a c t i o n name="ReceiveLogin"

r o l e ="tns:StockQuoteWS"

o p e r a t i o n ="tns:QuoteToUser/LogIn"/>
<a c t i o n name="ReceiveStockQuoteRequest"

r o l e ="tns:StockQuoteWS"

o p e r a t i o n ="tns:QuoteToUser/ProvideQuote">
<c o r r e l a t e c o r r e l a t i o n ="tns:quotationCorrelation"/>
<c a l l p r o c e s s ="tns:LookupPrice"/>

</ a c t i o n >
<a c t i o n name="ReceiveLogout"

r o l e ="tns:StockQuoteWS"

o p e r a t i o n ="tns:QuoteToUser/LogOut"/>
</ sequence>

</ p r o c e s s >

<p r o c e s s name="LookupPrice" i n s t a n t i a t i o n ="other">
<a c t i o n name="QueryNYSE"

r o l e ="tns:StockQuoteWS"

o p e r a t i o n ="tns:QuoteToUser/QueryNYSE"/>
</ p r o c e s s >

</ i n t e r f a c e >
</ w s d l : d e f i n i t i o n s >

� �

The static (i.e., non-WSCI) portion of Listing 12.3 describes the data types supported

by the stock-quotation service, the messages it can send or receive, and the operations it

provides. The dynamic (i.e., WSCI) portion uses its action construct to make each operation

(login, stock-quote request and response, and then logout) into an atomic unit of work. Using



12.2 WSCI: Web Service Choreography Interface 233

sequence, these are then specified to be part of an ordered sequence with a user. Notice

that the “ReceiveStockQuoteRequest” action invokes a separate Web service with the NYSE.

Although not used in this example, choices among actions and repeated actions are allowed

in WSCI interfaces as complex activities.

A service can participate in several different conversations at the same time, with the

correlate element used to manage them and associate messages with the proper conversa-

tion. WSCI also supports both atomic transactions and open-nested transactions, the latter

of which can be compensated when exceptions occur, as shown in the partial specification of

Listing 12.4. This example also shows a repeated action in the form of a while-loop.

Listing 12.4: An example of WSCI specifying a transaction, its compensation, and a while-loop

� �

<sequence>
<c o n t e x t >

< t r a n s a c t i o n name="buyStock" t y p e ="atomic">
<compensa t ion>

<a c t i o n name="NotifyUnavailable"

r o l e ="NYSE"

o p e r a t i o n ="tns:NYSEtoBroker/NotifyUnavailable"/>
</ compensa t ion>

</ t r a n s a c t i o n >
</ c o n t e x t >
<a c t i o n name="BuyShare"

r o l e = "Broker"

o p e r a t i o n ="tns:BrokerToNYSE/BuyShare"/>
<w h i l e name="BuyShares">

<c o n d i t i o n >d e f s : f u n d s R e m a i n </ c o n d i t i o n >
<a c t i o n name="BuyShare"

r o l e = "Broker"

o p e r a t i o n ="tns:BrokerToNYSE/BuyShare">
<c o r r e l a t e c o r r e l a t i o n ="defs:buyingCorrelation"/>

</ a c t i o n >
</ whi le>

</ sequence>
<!−− Compensat ing B e h a v i o r f o r t h e Above T r a n s a c t i o n −−>
<e x c e p t i o n >

<onTimeout p r o p e r t y ="tns:expiryTime"

t y p e ="duration"

r e f e r e n c e ="tns:BuyShares@end">
<compensa te t r a n s a c t i o n ="tns:buyStock"/>

</ onTimeout>
</ e x c e p t i o n >

� �



234 Coordination Frameworks for Web Services

12.3 WS-Coordination: Specifying Coordination
Multiparty business processes whose components are Web services require the Web services

to operate in a consistent context and to be coordinated. One way to achieve this is to provide

a coordination service, i.e., a service whose job it is to coordinate the activities of the Web

services that are part of the business process. WS-Coordination is a specification for just

such a coordination service. The service might be provided by a dedicated coordinator, or

by one of the component Web services that would assume the role of coordinator in addition

to providing its own service. Using WS-Coordination, multiple participants can hide their

proprietary protocols and reach agreement on the outcome of their activities. It is helpful to

define the following terminology:

Protocol. A set of well-defined messages that are exchanged between the Web services par-

ticipating in a process. The WS-Coordination specification describes a general, exten-

sible, framework for defining such coordination protocols, which then can support a

variety of activities. For example, WS-AtomicTransaction and WS-BusinessActivity,

described in Section 12.4, use WS-Coordination to define coordination types for short-

running atomic transactions and long-duration business transactions, respectively (the

long durations might be caused by business or network latencies or having to wait for

user inputs).

Context. A uniquely identified, conceptually coherent activity that includes the services

being coordinated. A context identifier is passed from one application-level compu-

tation to the next to ensure that they remain in the scope of the same context.

Application. An executing program instance at one site. This could be a service viewed as a

proactive entity that can initiate coordination requests and cause a coordination context

to be launched.

12.3.1 Coordination Service
As shown in Figure 12.4, a coordination service (or coordinator) is an aggregation of the

following services:

• An activation service, which defines a CreateCoordinationContext operation that allows

a CoordinationContext to be created. The exact semantics is defined in the specification

for the coordination type. An activation service is optional.

• A registration service, which defines a Register operation that allows a Web service

to register its participation in a coordination protocol. A coordinator must support a

registration service.

• A coordination protocol service for each supported coordination type. These are defined

in the specification for the coordination type.



12.3 WS-Coordination: Specifying Coordination 235

Coordinator

Activation

Service

Registration

Service

Protocol

Service X

Protocol

Service Y

CreateCoordinationContext Register

Protocol YProtocol X

Figure 12.4: A coordination service for Web services

Once an application creates or acquires a coordination context, it can send the context

to another application. The context contains the necessary information for a receiving appli-

cation to register itself into the activity. The application can choose either the registration

service of the original application or one that is specified by another coordinator, which can

then be interposed into the coordination. The application then follows the specified coordi-

nation behavior.

A possible reason for a service to prefer its own coordinator is that it might not trust

the other party’s coordinator. This is like bringing your own lawyer to a tough negotiation.

When the coordinator is an independent authority, it can help ensure the compliance of the

other party to the selected protocol and, outside of the protocol, to the business deal that

emanates from the protocol.

Suppose a travel agency would like its Web service (WStravel) for arranging travel pack-

ages to interact with a hotel’s Web service (WShotel) for room reservations. Because they

interact with many other Web services, WStravel and WShotel each make use of their own

coordinators, CoordinatorT and CoordinatorH, respectively. WStravel and WShotel need

coordination, because WStravel expects to receive an ACK for each message it sends, but

WShotel does not send or expect to receive ACKs.

As shown in Figure 12.5, an interaction might proceed as follows. It begins with WStravel

asking its coordinator to create a coordination context for an ACID-transaction type of coor-

dination. WStravel does this by sending CreateCoordinationContext for coordination type

ACIDTransaction to the activation service of CoordinatorT. CoordinatorT returns a context,

Ct, with an activity identifier A1 and the PortReference where its registration service, RSt,

can be found.

WStravel then sends a ReserveRoom message to WShotel containing the context Ct.

WShotel prefers CoordinatorH, so it uses CreateCoordinationContext with Ct as an input

to interpose CoordinatorH. CoordinatorH creates its own CoordinationContext Ch that con-

tains the same activity identifier and coordination type as Ct, but with its own registration

service RSh. WShotel determines the coordination protocols supported by the coordina-

tion type ACIDTransaction and then registers for the coordination protocol TwoPhaseCommit
at CoordinatorH, sending PortReferences for WShotel and receiving the protocol service



236 Coordination Frameworks for Web Services

WStravel CoordinatorT CoordinatorH WShotel

CreateCoordContext(ACIDTrans)

Ct(A1,ACIDTrans,RSt)

ReserveRoom(Ct)

CreateCoordContext(Ct)

Ch(A1,Ct,RSh)

Reg(2PC,PortH)

Register(2PC,PortPSh)

RegisterResponse(AddACK,PortPSt)

RegResponse(RemoveACK,PortPSh)

Activation

Service

Activation

Service

Registration

Service

Registration

Service

Protocol

Service

Protocol

Service

RoomConfirmation(2PC)

2PC Protocol

ReservationConfirmed

Figure 12.5: Coordination between two Web services with their own coordinators

AddACK. This forms a logical connection between these PortReferences that the protocol

TwoPhaseCommit can use. This registration causes CoordinatorH to forward the registration

to CoordinatorT’s Registration service RSt, exchanging PortReferences for AddACK and the

protocol service RemoveACK. This forms a logical connection between these PortReferences
that the travel agency and hotel Web services can use for the TwoPhaseCommit.

Note that the registration services, activation services, and protocol services are all Web

services, so they can be invoked by SOAP messages containing WSDL descriptions. We next

describe each of the messages that are exchanged in terms of the travel agency example and

the following namespaces:

� �

xmlns :u ="http://schemas.xmlsoap.org/ws/2002/07/utility"

xmlns :wsc ="http://schemas.xmlsoap.org/ws/2003/09/wscoor"

xmlns :wsa ="http://schemas.xmlsoap.org/ws/2003/03/addressing"

xmlns:WSt="http://TravAgency.com/WStravel"
� �



12.3 WS-Coordination: Specifying Coordination 237

12.3.2 Activation Service
The Activation service definition requires a port type on the coordinator side for the request

and on the requester side for the response. The coordinator’s Activation service is defined as:
� �

<w s d l : p o r t T y p e name="ActivationCoordinatorPortType">
<w s d l : o p e r a t i o n name="CreateCoordinationContext">

<w s d l : i n p u t message="wsc:CreateCoordinationContext"/>
</ w s d l : o p e r a t i o n >

</ w s d l : p o r t T y p e >
� �

The requester’s Activation service is defined as:
� �

<w s d l : p o r t T y p e name="ActivationRequesterPortType">
<w s d l : o p e r a t i o n name="CreateCoordinationContextResponse">
<w s d l : i n p u t message="wsc:CreateCoordinationContextResponse"/>

</ w s d l : o p e r a t i o n >
<w s d l : o p e r a t i o n name="Error">
<w s d l : i n p u t message="wsc:Error"/>

</ w s d l : o p e r a t i o n >
</ w s d l : p o r t T y p e >

� �

The CreateCoordinationContext message is used to create a coordination context that sup-

ports a coordination type, that is, a set of coordination protocols. Here is an example message

sent from the travel agency to its coordinator to create a context supporting a two-phase com-

mit protocol:
� �

<w s c : C r e a t e C o o r d i n a t i o n C o n t e x t >
<w s c : A c t i v a t i o n S e r v i c e >

<wsa:Address>
h t t p : / / C o o r d i n a t o r T . com / a c t i v a t i o n

</ wsa :Address>
<WSt:MyState>1234</WSt:MyState>

</ w s c : A c t i v a t i o n S e r v i c e >
<w s c : R e q u e s t e r R e f e r e n c e >

<wsa:Address>
h t t p : / / TravAgency . com / WStrave l

</ wsa :Address>
</ w s c : R e q u e s t e r R e f e r e n c e >
<w s c : C o o r d i n a t i o n T y p e >

h t t p : / / schemas . xmlsoap . o rg / ws / 2 0 0 2 / 0 8 / wstx

</ w s c : C o o r d i n a t i o n T y p e >
</ w s c : C r e a t e C o o r d i n a t i o n C o n t e x t >

� �

The ActivationService tag provides the activation service port reference. The Requester-
Reference provides the caller port reference, enabling the response to be sent when using



238 Coordination Frameworks for Web Services

one-way messaging. The CoordinationType provides the identifier for the desired coordina-

tion type for the activity, in this case a URI (http://schemas.xmlsoap.org/ws/2002/08/wstx) to

the ACIDTransaction coordination type.

The CreateCoordinationContextResponse message returns the coordination context that

was created. Here is an example response message sent from the travel agency’s coordinator:
� �

<w s c : C r e a t e C o o r d i n a t i o n C o n t e x t R e s p o n s e >
<w s c : R e q u e s t e r R e f e r e n c e >

<wsa:Address>
h t t p : / / TravAgency . com / WStrave l

</ wsa :Address>
</ w s c : R e q u e s t e r R e f e r e n c e >
<w s c : C o o r d i n a t i o n C o n t e x t >

<u : I d e n t i f i e r >
h t t p : / / C o o r d i n a t o r T . com / c o n t e x t 1 2 3 4

</ u : I d e n t i f i e r >
<w s c : C o o r d i n a t i o n T y p e >

h t t p : / / schemas . xmlsoap . o rg / ws / 2 0 0 2 / 0 8 / wstx

</ w s c : C o o r d i n a t i o n T y p e >
<w s c : R e g i s t r a t i o n S e r v i c e >

<wsa:Address>
h t t p : / / C o o r d i n a t o r T . com / r e g i s t r a t i o n

</ wsa :Address>
<W S t : P r i v a t e I n s t a n c e >

1234

</ W S t : P r i v a t e I n s t a n c e >
</ w s c : R e g i s t r a t i o n S e r v i c e >

</ w s c : C o o r d i n a t i o n C o n t e x t >
</ w s c : C r e a t e C o o r d i n a t i o n C o n t e x t R e s p o n s e >

� �

The RequesterReference tag provides the port reference of the caller that invoked Cre-
ateCoordinationContext. The resultant CoordinationContext is given the URI

http://CoordinatorT.com/context1234.

12.3.3 Registration Service
The Registration service definition requires a port type on the coordinator side for the request

and on the requester side for the response. The coordinator’s Registration service is defined

as:
� �

<w s d l : p o r t T y p e name="RegistrationCoordinatorPortType">
<w s d l : o p e r a t i o n name="Register">

<w s d l : i n p u t message="wsc:Register"/>
</ w s d l : o p e r a t i o n >

</ w s d l : p o r t T y p e >
� �



12.3 WS-Coordination: Specifying Coordination 239

The requester’s Registration service is defined as:
� �

<w s d l : p o r t T y p e name="RegistrationRequesterPortType">
<w s d l : o p e r a t i o n name="RegisterResponse">

<w s d l : i n p u t message="wsc:RegisterResponse"/>
</ w s d l : o p e r a t i o n >
<w s d l : o p e r a t i o n name="Error">

<w s d l : i n p u t message="wsc:Error"/>
</ w s d l : o p e r a t i o n >

</ w s d l : p o r t T y p e >
� �

The Register message enables

• A participant to select and register for a particular coordination protocol of the type

supported by the coordination service.

• A participant and the coordinator to exchange port references.

Participants can register for multiple coordination protocols by issuing multiple Register
operations. The following is an example registration message:

� �

<w s c : R e g i s t e r >
<w s c : R e g i s t r a t i o n S e r v i c e >

<wsa:Address>
h t t p : / / C o o r d i n a t o r T . com / r e g i s t r a t i o n

</ wsa :Address>
<WSt:TravCode>T9876</WSt:TravCode>

</ w s c : R e g i s t r a t i o n S e r v i c e >
<w s c : R e q u e s t e r R e f e r e n c e >

<wsa:Address>h t t p : / / TravAgency . com</ wsa :Address>
</ w s c : R e q u e s t e r R e f e r e n c e >
<w s c : P r o t o c o l I d e n t i f i e r >

h t t p : / / schemas . xmlsoap . o rg / ws / 2 0 0 2 / 0 8 / wstx / 2 PC

</ w s c : P r o t o c o l I d e n t i f i e r >
<w s c : P a r t i c i p a n t P r o t o c o l S e r v i c e >

<wsa:Address>
h t t p : / / TravAgency . com / t r a v e l 2 P C s e r v i c e

</ wsa :Address>
</ w s c : P a r t i c i p a n t P r o t o c o l S e r v i c e >

</ w s c : R e g i s t e r >
� �

The RegistrationService tag provides the registration port reference. The RequesterRef-
erence tag is the port reference where WStravel wants the registration service CoordinatorT

to return status information. The ProtocolIdentifier is the URI that identifies the coordination

protocol selected for registration. The ParticipantProtocolService tag is the port reference that

WStravel wants CoordinatorT to use for the coordination protocol.



240 Coordination Frameworks for Web Services

The RegistrationResponse message indicates that registration has completed successfully.

The following is an example of a RegisterResponse message:
� �

<w s c : R e g i s t e r R e s p o n s e >
<w s c : R e q u e s t e r R e f e r e n c e >

<wsa:Address>
h t t p : / / TravAgency . com

</ wsa :Address>
</ w s c : R e q u e s t e r R e f e r e n c e >
<w s c : C o o r d i n a t o r P r o t o c o l S e r v i c e >

<wsa:Address>
h t t p : / / C o o r d i n a t o r T . com / c o o r d i n a t o r

</ wsa :Address>
</ w s c : C o o r d i n a t o r P r o t o c o l S e r v i c e >

</ w s c : R e g i s t e r R e s p o n s e >
� �

The RequesterReference tag is the port reference where the application wants the regis-

tration service to return status information. This should include enough information to corre-

late a request with a response. The CoordinatorProtocolService tag is the port reference that

CoordinatorT wants the registered participant, WStravel, to use for the coordination protocol.

Next we describe a coordination type, as specified by WS-AtomicTransaction.

12.4 Web Service Transaction Types
WS-AtomicTransaction and WS-BusinessActivity leverage WS-Coordination by defining two

particular coordination types: a short-term atomic transaction and a long-duration business
activity. For ACID transactions, WS-Transaction supports a single participant as well as a

multiple-participant model (leveraging a two-phased commit). It also supports the automatic

notification of transaction results to interested parties. For a long-running transaction, such

as a saga or a business activity, WS-Transaction uses a compensation scheme where partici-

pants provide an undo operation that is used if the transaction does not complete. (This undo

is better understood as the compensation operation introduced in Section 11.5.)

Figure 12.6 illustrates the interaction flows for the WS-Coordination protocols for an

atomic transaction involving a travel agency, an airline, and a museum. The travel agency is

arranging a flight for a customer who wants to visit a museum—if the museum is closed, then

an airline reservation should not be made. Arbitrarily, two of the three participants (travel

agency and airline) have their own coordinators, each containing an activation service and

a registration service. Each application service also has its participant end of the Activation

and Registration services.

The travel agency service triggers coordination protocols for a volatile two-phase commit

for the museum, in which the museum is not notified of the final result of the transaction,

and a durable two-phase commit for the airline, which is notified of the final result. The

difference is because the museum will be open even if the customer cancels the trip and the



12.4 Web Service Transaction Types 241

WSmuseum

Pm-2PC-v

Museum Server

WStravel

Pb-CP

Ct-CP

Ct-2PC-d

Travel Agency Server

WSairline

Pc-2PC

CoordA

Ca-2PC

Pa-2PC-d

Airline Server

Ct-2PC-v

(10) Committed

(9) Commit

(2) Prepare

(7) ReadOnly

(1) Commit T

(12) Committed T (4) Prepare

(5) Prepared

(8) Commit

(11) Committed

(3) Prepare

(6) Prepared
CoordT

Figure 12.6: The protocol flows for an atomic transaction defined according to WS-

Coordination

transaction aborts, but the airline does not want to hold a reservation for a customer that has

decided not to travel. The messages exchanged by the participants are the following:

1. First, WStravel tries to commit a transaction T using the simple Completion protocol

of WS-AtomicTransaction (indicated by message 1 in Figure 12.6).

2. Its coordinator, CoordT, begins executing the coordination protocols for its two reg-

istered participants. It sends the PREPARE message for all volatile 2PC participants

(museum) first and then the PREPARE message for all durable 2PC participants (air-

line). Specifically, message 2 is sent from CoordT to the museum’s 2PC participant

protocol service Pm-2PC-v and message 3 is then sent from CoordT to the airline

coordinator’s 2PC participant protocol service Pa-2PC-d.

3. CoordA tells the airline service (WSairline) to prepare (4), which means that this per-

sistent service will be capable of either committing or aborting later, depending on the

outcome decision.

4. WSmuseum optionally decides to respond with a READONLY message (7), instead of

PREPARED, indicating that WSmuseum votes to commit and has forgotten the transac-

tion.

5. After returning successfully from phase one of the 2PC (messages 5, 6, and 7), CoordT

commits and makes the decision durable. At this point, the transaction is committed,

and the participants need to be notified, which includes both 2PC and Completion

participants. The commit notification travels through the same path as the prepare

flow:

6. CoordT sends the Commit message (8) to CoordA.



242 Coordination Frameworks for Web Services

7. CoordA tells WSairline to commit T. When WSairline receives the COMMIT message

(9), it commits.

8. When the Committed message returns (10, 11, and 12), the 2PC protocol has ended.

If WSairline had been unable to prepare to commit, the flows would be the same, except for

the following:

1. The PREPARED notification messages (5 and 6) would be replaced by ABORTED noti-

fication messages.

2. Because WSairline reported ABORTED, the phase two 2PC messages and replies (mes-

sages 8 through 11) would be unnecessary. The coordinator would send ABORT noti-

fication messages to other participants who voted PREPARED (none in this example).

3. Message 12 to WStravel would be replaced by ABORTED.

If a Web service is not a resource manager but wants to vote on the outcome of a transaction, it

can register for the 2PC protocol and respond to a phase one PREPARE with either ReadOnly

(vote for commit) or Aborted (vote for abort).

The problem of deciding that all the actions requested as part of a transaction have com-

pleted is not part of the WS-AtomicTransaction specification. Instead, it is the responsibility

of the application to determine this prior to attempting to commit or rollback the transaction.

12.5 BTP: Business Transaction Protocol
The Organization for the Advancement of Structured Information Standards (OASIS) has

developed the Business Transaction Protocol to automate and manage long-running, Web-

based, collaborative business applications. BTP is designed to support interactions that

cross application and administrative boundaries, thus requiring extended transactional sup-

port beyond the classical ACID properties. BTP relaxes the ACID properties via two sub-

protocols: (1) atoms, where isolation is relaxed, and (2) cohesions, where both isolation and

atomicity are relaxed.

Figure 12.7 shows an example of a cohesion transaction in which an investment manager

tries to satisfy the goal of a balanced portfolio, in this case defined as at least two different

kinds of investment. A BTP composer service coordinates the processing of the transaction

and ensures that it reaches a successful conclusion, even when some of the participating

services cancel unilaterally or are cancelled by the composer.

After establishing a context for the transaction with the composer, the investment manager

begins the transaction by notifying the potential services of its interest in making an invest-

ment. Some of these services agree to participate by enrolling in the transaction and returning

their price. Based on the prices, the manager chooses the services to be used and the services

to be cancelled. The composer then handles the termination of the business transaction by

obtaining acknowledgments of either confirmation or cancellation.



12.5 BTP: Business Transaction Protocol 243

Investment

Manager

BTP

Composer

Dell Stock

Preferred

Ford Stock

Preferred

IBM Stock

Preferred

Federal

TBond

Century

Real Estate

Begin

Begun(context)

BuyStockRequest(context)

BuyBondRequest(context)

BuyRealEstateRequest(context)

EnrollPrice

Enroll
Enroll

Enroll

Price Price Price

Confirm Dell & Century

Cancel Ford & TBond

Prepare

Prepared

Confirm(context)
Confirm(context)

Cancel(context) Cancel(context)

Confirmed(context)
Confirmed(context)

Cancelled(context)

Cancelled(context)

Confirmed(context)

Figure 12.7: An example of the Business Transaction Protocol for cohesions among an invest-

ment manager and several different kinds of financial instruments

Compared to WS-Transaction, BTP is more suitable for loosely coupled applications,

because it relaxes isolation. For example, a service providing travel packages (flight, hotel,

and car) could take advantage of relaxed isolation by getting a confirmed airline seat and

hotel room while negotiating for a car; depending on the location of the hotel, the car might

not be needed. All reservations could be cancelled later if an acceptable rate for a hotel

room is not obtained. BTP provides slightly finer-grained control over which parts of an

overall transaction commit and which are aborted, and over the timing of these actions. WS-

Transaction is dependent on Web services, whereas BTP is an XML message protocol with a

SOAP binding. Both can be used to support business process execution environments, such

as BPEL4WS, WSFL, WSCI, and BPML.



244 Coordination Frameworks for Web Services

12.6 Notes
A paper by Francisco Curbera and colleagues [2003] provides a nice description of WS-

Coordination and WS-Transaction in the context of evolving standards for composed Web

services. BTP is described in Dalal et al. [2003] and Little et al. [2003]. Specifications for

WS-Coordination and WS-Transaction can be found at

http://www-106.ibm.com/developerworks/library/ws-coor/ and

http://www-106.ibm.com/developerworks/webservices/library/ws-transpec/,
respectively. There is currently industry pressure to unify the BTP and WS-Coordination

specifications, because they address similar problems and in a largely similar manner.

WSCL, currently found at http://www.w3.org/TR/wscl10, and WSCI, currently found at

http://www.w3.org/TR/wsci, are both designed to specify conversations among services. We

expect that they will be unified soon.

12.7 Exercises
12.1. How does a conversation as defined in WSCL differ from a CORBA IDE or a Java

interface?

12.2. Study the WSCL and WSCI specifications. Construct a comparison that considers, for

example, their features for describing: abstract conversations, conversation instances,

control flow, nested conversations, multiparty conversations, exceptions in conver-

sations, more than one simultaneous conversation among some of the same parties,

explicit timing of conversational steps, a formal semantics for conversations, and trans-

actional support in conversations.

12.3. Assume that a student has a personal software agent that behaves like a Web service and

that helps in enrolling for courses on-line at NSCU. The university provides a coordina-

tor (CoordNSCU), as defined by WS-Coordination, that ensures an ACID transaction

between the student’s agent and the NSCU course enrollment Web service. Show in a

UML sequence diagram (similar to Figure 12.5) the coordination between the student’s

agent and the Web service for enrollment.

12.4. For the course enrollment scenario in Exercise 12.3, construct the WSCL specifications

for the two conversations between the student’s agent and the coordinator, and between

the coordinator and the Web service for enrollment.

12.5. Draw a UML sequence diagram for the example of WS-Transaction shown in Fig-

ure 12.6, assuming that all operations commit successfully.

12.6. Draw a UML sequence diagram for the example of WS-Transaction shown in Fig-

ure 12.6, assuming that DB is unable to commit and all participants need to abort.



Chapter 13

Process Specifications

No service is an island. The key point about service-oriented computing is that it involves

extended, loosely coupled activities among two or more autonomous business partners. Such

activities can be thought of as (business) processes that engage several services in a man-

ner that brings about the desired (business) outcome. The previous chapter described the

underpinnings of processes from the perspective of transactions. This chapter covers process

specifications, discussing their modeling and enactment, as well as key emerging standards.

13.1 Processes
A process is an activity. Generally a process would be a composite activity and be geared to

serve some purpose. Depending on the specific process, its tasks could be some combination

of services that correspond to queries, transactions, applications, and administrative activities.

These services may be distributed within or across enterprises and would be coordinated by

constraining control and data among them. The services may themselves be composite, i.e.,

implemented as processes. The following discussion emphasizes business processes consist-

ing of services, but the concepts developed could apply equally well to scientific computing

and other settings. Examples of settings where processes apply include intraenterprise envi-

ronments (i.e., within an enterprise), such as production scheduling and inventory control,

and interenterprise environments (i.e., across enterprises), such as supply-chain management

and purchase negotiation. Clearly, intraenterprise and interenterprise processes need to cor-

relate with each other, because intraenterprise activities are needed to support interenterprise

interactions.

Processes present a number of technical challenges. First, we must be able to model a

process, incorporating correctness of executions with respect to the model, and respecting the

constraints of the underlying services and their resources. The normal executions of a process

are often easy, since they can be as simple as a partial order of the activities in the process.

By contrast, the exception conditions can be difficult to model and handle. More importantly,

245



246 Process Specifications

because interesting business processes are often long running, their mutual interactions are

nonatomic, leading to the prospect that the information they take as input may be subject to

revision and thereby causing their own results to be invalidated. Exceptions and revisions are

the main sources of complication in the modeling of a process.

Second, we must be able to interface a process to underlying functionalities. In the case

of database systems, these would include a suitable model of transactions that incorporates

constraints on the concurrency control and recovery mechanisms of a DBMS. A transaction

model provides the necessary abstractions and shields process models from the implementa-

tional details of DBMSs.

Because processes are used in a number of places by an enterprise to support its inter-

nal functioning as well as its interactions with its business partners, processes can end up

being modeled in several different ways, typically based upon process representations that

are proprietary to the software vendors and applications involved. For example, if production

scheduling software employs a different modeling formalism than purchase order process-

ing software, then the enterprise’s participation in a supply chain may be adversely affected.

However, interoperation among processes, while clearly an important need in practical set-

tings, is nearly impossible without some kind of translator among process models. The chal-

lenges of heterogeneity that Section 5.1 discussed in the context of information sharing apply

equally to process model interaction.

Before we get into the details, it is worth describing the main perspectives we can have

on processes and the distinctions between them.

Orchestration. This takes the view of a process as a program or a partial order of operations

that need to be executed. This view is logically centralized in that it views a process

from the perspective of one “orchestrating” engine. It is as if the process specification

is being executed under the control of or on behalf of a specific party. Orchestra-

tion corresponds best to the workflow representations discussed in Section 13.3 and to

process languages such as BPEL4WS. Representations such as OWL-S (introduced in

Section 15.5.2) enable the right orchestrations to be produced, given the requirements

for a desired process and the functionalities of the available services.

Choreography. This takes the view of a process as being a set of message exchanges between

participants. The message exchanges are constrained to occur in various sequences and

may be required to be grouped into various transactions. Choreography corresponds

best to languages such as WSCL and WSCI.

Collaboration. This takes the view of a process as a collaboration among business partners.

The business partners not only send messages to one another, but also enter into busi-

ness relationships such as contracts and obligations. They generate flexible message

exchanges depending on the evolving circumstances and their local policies, e.g., to

handle business exceptions. Collaboration is emerging as a serious approach for carry-

ing out large-scale business processes.



13.2 Describing Dynamics with UML 247

13.2 Describing Dynamics with UML
UML provides graphical constructs that can be used to describe (1) actions and activities, and

(2) their temporal precedences and flows of control. The allowable control constructs are:

• Sequence, which is a transition from one activity to the next in time.

• Branch, which is a decision point among alternative flows of control.

• Merge, where two or more alternative flows of control rejoin.

• Fork, which is a splitting of a flow of control into two or more concurrent and indepen-

dent flows of control.

• Join, which is a synchronization of two or more concurrently executing flows of control

into one flow.

These control constructs are a sufficient set for describing an arbitrary process or workflow.

As such, they can also describe a composite Web service. A particular process is shown on

an activity diagram, an example of which is shown in Figure 13.1.

A UML sequence diagram is used to show the interactions among concurrently exist-

ing objects or concurrently executing threads and process instances. It focuses on the time

ordering of the messages between such entities. Figure 12.5 is an example of a sequence

diagram.

13.3 Workflows
A workflow is an activity that addresses some business need by carrying out specified control

and data flows among subactivities that involve information resources and possibly humans.

A classic example of a workflow is loan processing: when you apply for a loan, you fill out a

form, a clerk reviews it for completeness, an auditor verifies the information, and a supervisor

invokes an external credit agency or uses a credit risk assessment tool. Each person in the

loan process receives information concerning your application, modifies or adds to it, and

forwards the results.

There is a fine line between processes and workflows. Some research seems to treat these

as isomorphic. A lot of the research on processes is based on previous research on workflow.

For example, one of the inputs to the current leading standard for processes, BPEL4WS

(discussed in Section 13.4.1), is the Web Services Flow Language (WSFL), which was closely

based on IBM’s Flowmark workflow product.

For the purposes of this book, workflows are a narrower concept than processes. Pro-

cesses may be realized through workflows, but possibly through other means as well, e.g.,

business protocols or conversations among agents, which are introduced in later chapters.

The above definition of workflows emphasizes the control and data flow among subactivities

that are the essence of workflows. These flows are necessary to realize the desired processes.



248 Process Specifications

Receive PO

Get Items from InventoryUpdate Customer Profile

Compute Subtotal

Compute Shipping Cost

Compute Export Tax

Compute International Shipping

Compute Total

[ship within
US]

[ship outside
US]

Ship Order

Fork

Join

Branch

Merge

Figure 13.1: An example UML activity diagram showing the allowable control constructs that

can be used to describe workflows and processes



13.3 Workflows 249

Ultimately, no matter how you specify a process, control and data flows will occur when it

is enacted. The key point is that in workflow technology, such control and data flows are

directly specified from a logically central perspective. This modeling assumption accounts

for both the strengths and the weaknesses of workflow technology. Service providers can

manage workflows that are used to implement the given service. An implementation based

on workflow techniques can help manage potential exception conditions better than a tradi-

tional application, which would hide the necessary reasoning. However, workflows too have

their limitations as discussed below.

Take
sevice

request

Check
hardware
availability

&
Schedule

service
installation

Install
service

Stop&
Create
billing
record

Check
credit

(Ok)

(Available)

Figure 13.2: A workflow for processing a telecommunications service order

Figure 13.2 illustrates an example of a workflow that is executed when you order a ser-

vice from a telecommunications provider. You initiate the order by interacting with a sales

representative from the provider, who fills out a form on your behalf. The sales representative

checks with a provisioning database to determine whether the necessary hardware is in place.

If it is, you receive an estimate of when the service will be ready for your use. A local service

installer is dispatched to install your service, while the telecommunications provider checks

your credit history.

13.3.1 Exceptions
If all goes well, the installer successfully installs the service, the auditors find your credit

history acceptable, the billing department is notified to begin charging you, and the workflow

concludes successfully. However, things do not always go that smoothly. For example, in

checking whether you already have an account, the telecommunications provider might dis-

cover that you have an unpaid and overdue balance—or that someone else previously at the

same address has an unpaid balance. Such discoveries would raise a red flag.

Perhaps the service installer for your area calls in sick, requiring a revision in the instal-

lation schedule. Or the installer might discover that the available hardware is unusable and

must be replaced. Each of these situations can lead to modified behavior, as illustrated in

Figure 13.3. Such modifications might lead to an additional change in schedule or possibly

even cause you to cancel the order altogether because you do not want to wait indefinitely.

These occurrences are instances of exceptions that can arise during process execution.

The number of possible exceptions is extremely large; their scope and the great variety of



250 Process Specifications

Check

credit

Cancel

service

installation

&

Notify

customer

Cancel

billing

record

(Not ok)

(Ok)

Figure 13.3: Exceptions—unexpected occurrences that interrupt and possibly alter a

workflow—can arise during workflow execution

possible contexts make it practically impossible to specify all exceptions statically and in

advance. Unfortunately, the only sure thing about exceptions is that they are far from excep-

tional. As a consequence, most natural processes are inherently incomplete.

Exceptions are not just alternative flows of control; indeed, the two are conceptually

distinct. Attempting to include all exceptions is not only futile, but also would clutter the

workflow so much as to render it incomprehensible. For the same reasons that programming

languages such as Java treat exceptions separately, it is preferable to think of exceptions

as parasitic on the main workflow. Of course, if some exceptions occur often enough to

become almost routine, they will be incorporated as explicit alternatives within the workflow,

as illustrated in Figure 13.4.

In many cases, multiple workflows can arise and interact with each other. For exam-

ple, in a telecommunications setting, a channel assignment workflow must wait until enough

channels have been created by another workflow. Workflow interactions necessarily occur

when business partners collaborate. By design, these interactions are intended to be useful,

although some might be pernicious in that one workflow could cause the failure of another.

The challenge is to identify the potential interactions and to control them appropriately.

13.3.2 Workflow Interoperability

Workflows interact by sharing data or functionality. An interaction can occur (1) directly, (2)

via message passing, (3) through a gateway that translates protocols, or (4) by mutual use of a

common repository. For each of these means of interaction, there are three primitive patterns



13.3 Workflows 251

Schedule

hardware

installation

Install

hardware

Check

hardware

availability
&

(Not available)

Figure 13.4: An exception that occurs often enough to be considered routine can be incorpo-

rated into the workflow as an alternative flow of control

for the interoperability—chained, nested, and synchronized—as depicted in Figure 13.5.

In a chained pattern, one process triggers the creation and enactment of another. The

triggering process either terminates at this point or continues independently and concurrently

with the second. In a nested pattern, a triggering process creates and enacts the other, and then

waits for the other to return results and terminate. The triggering process can also execute

concurrently with the other process, and receive its results at a later step [Jung et al., 2004].

In a synchronized pattern, two concurrently executing processes synchronize at a specified

point in their respective executions. Only after both reach that point do they continue inde-

pendently.

13.3.3 A Metamodel for Workflow
The following terms and meanings are defined and advocated by the Workflow Management

Coalition (WfMC):

• A process, typically a business process, is a collection of tasks organized into a graph.

This reflects the workflow view of processes.

• A task is an atomic work item.

• A service implements a task and may be implemented.

• An actor is a human or machine that performs a task by fulfilling a service.

• A role abstracts a set of tasks.

• A workflow is an instance of a process that binds and consumes resources in fulfilling

the tasks of a process.



252 Process Specifications

Process 1 Process 2

Process 1 Process 2Process 2Process 1

ActionState 1

ActionState 2

ActionState A

Chained Interoperability

ActionState 1

ActionState 2

ActionState A

Nested Interoperability

ActionState 1

ActionState 2

ActionState C

Synchronized Interoperability

ActionState 3

ActionState B

ActionState A

ActionState 3

Figure 13.5: Three primitive patterns for workflow interoperability

A metamodel that shows the relationship among some of these terms is depicted in Fig-

ure 13.6. Figure 13.7 shows the states and state transitions that can occur during the execution

of a typical workflow.

13.3.4 Interoperation

A workflow represents the interoperation of, possibly, several applications and databases.

This interoperation can be achieved by building an appropriate workflow from scratch. How-

ever, standards activities, such as those being led by the WfMC, attempt to define a reference

model for workflow management. The reference model describes how workflow engines

ought to be connected to applications, databases, development tools, runtime tools, and each

other. Figure 13.8 shows the WfMC reference model, depicting the major components and

their interfaces within a workflow architecture. Agents can contribute to achieving interoper-



13.3 Workflows 253

Role Activity Workflow Relevant Data

Workflow Type Definition

Invoked Application

Transition Conditions

1
*

Consists of

* *

uses

* *

may refer to

* *

uses

* *
uses

*

*

may refer to

1

*

has

*

*

may have

Figure 13.6: A basic metamodel for the definition of a workflow and its terminology [WfMC]

Initiate
Initiated

Start

Restart

Restart

Suspend/

Resume

Running

Suspended

Terminate/

Abort

Terminated

Active

Completed

(1 or more activity

instances)

Iterate through

all active

activities

Figure 13.7: A state-transition diagram for an activity or a workflow [WfMC]



254 Process Specifications

ation among the different resources while satisfying the resources’ local constraints.

Other Workflow

Enactment

Service(s)

Process

Definition Tools

API and Interchange Formats

Workflow Enactment Service

Administration

& Monitoring

Tools

Workflow

Client

Applications

API

Workflow

Engine

Invoked

Applications

API

API

A
P

I

Figure 13.8: A reference model for workflow management systems, showing their major com-

ponents and interfaces [WfMC]

Another, more profound, kind of interoperation occurs among different workflows. A

workflow represents a meaningful unit of processing that affects a number of people and

information resources. Clearly, multiple units must interact with each other, because some

people participate in more than one, and the units inevitably share resources. Workflow

designers must understand, model, and manage these interactions properly. If they do not, all

manner of chaos may ensue—and indeed often does. For example, one workflow of the above

communications provider might be underway to upgrade wiring with a view to discarding the

old wiring, while another workflow might treat the old wiring as freely available and be

actively assigning new telephone circuits to it.

This requires an ability to communicate and negotiate. Such coordination benefits from

standards that enable workflows modeled and managed by tools from different vendors to

be related. One standard is the Simple Workflow Access Protocol (SWAP) announced by

WfMC and the IETF. SWAP governs both the control and monitoring of workflows. Control

means instantiating the workflow, starting it, stopping it, being informed of exceptions, being

informed of completions, and obtaining the results. Monitoring means checking on the cur-



13.3 Workflows 255

rent status of the workflow and obtaining its history. SWAP’s protocol for basic interaction

is:

• The client invokes createProcessInstance command on the workflow server.

• The server returns the URI of the workflow instance.

• The client sends its own URI to the instance.

• When it is done, the workflow instance invokes the completed command on the client.

Other commands can be invoked by both the client and server during execution to provide

status, exception, and result information. The resultant protocol is lightweight and, although

it has largely been superseded by business process protocols such as BPEL4WS, it is repre-

sentative of the capabilities needed to describe, control, and monitor a workflow.

13.3.5 State of the Art
There are many workflow tools available in the marketplace—at least 100, or by some counts

as many as 250. Each tool provides some type of modeling mechanism coupled with an exe-

cution framework. In general, the metamodels underlying most workflow tools are based on

a variant of activity networks, which show different activities as nodes and use links to rep-

resent various temporal and exception dependencies among the nodes. Figures 13.2 to 13.4

reflect this general idea.

System analysts design workflows on the basis of their understanding of the given orga-

nization and the abstractions the chosen workflow tool supports. Once designed, the work-

flow can be executed automatically by the tool, typically resulting in improved efficiency.

For example, when workflows involve human workers, the workers can be automatically

informed of the tasks they should be performing and given the resources they need to com-

plete the tasks, thereby reducing idle time.

13.3.6 Challenges Facing Workflow Technology
Workflow technology is not universally acclaimed, and many CIOs are not convinced of its

capabilities and benefits. One problem is that current workflow technology is often too rigid.

Because workflows are constructed prior to use and are enforced by some central authority,

this rigidity is inevitable. However, the lack of freedom accorded to human participants

causes workflow management systems to appear unfriendly. As a result, workflows are often

ignored or circumvented.

This rigidity also causes productivity losses by making it harder to accommodate the flex-

ible, ad hoc reasoning that is the strong suit of human intelligence. This need for flexibility

is most apparent when an exception occurs and rigid workflow management tools behave

incorrectly. In our earlier example, if the credit bureau is unresponsive, a poorly designed

workflow might just wait indefinitely, whereas a flexible one would let a human make a deci-

sion based on available information.



256 Process Specifications

Another challenge is that system requirements are rarely static. A workflow’s design

context might not remain applicable in every detail over the workflow’s lifetime. Dynamic

requirements can necessitate arbitrary extensions not recorded in the workflow model itself.

Suppose our telecommunications provider makes a special offer at the start of an academic

year whereby it waives credit-history checks of full-time students. Would this change require

the workflow to be redesigned and reinstalled?

In the future, much as they enable databases to interoperate today, agents (discussed in

Chapter 15) will enable Internet-wide workflow processes to be coordinated and executed

flexibly.

13.4 Business Process Languages
Business processes are distinguished by being possibly long-running, involving multiple

autonomous participants, and having correctness and completion guarantees. Such guaran-

tees might have contractual and even legal implications.

Business processes can be described in two ways. Executable business processes model

the actual behavior of a participant in a business interaction. Business protocols, in contrast,

use process descriptions that specify the mutually visible message exchange behavior of each

of the parties involved in the protocol, without revealing their internal behavior. That is, the

descriptions specify interfaces. The process descriptions for business protocols are called

abstract processes and cannot be executed.

13.4.1 BPEL4WS

The Business Process Execution Language for Web Services (BPEL4WS) can serve as both

an implementation language for executable processes and a description language for nonex-

ecutable business protocols. It defines a model and a grammar for describing how multiple

Web service interactions among the process’s participants, termed partners, are coordinated

to achieve a business goal, as well as the state and the logic necessary for the coordination

to occur. Interactions with each partner occur through lower-level Web service interfaces,

as might be defined in WSDL. BPEL4WS can define mechanisms for dealing with excep-

tions and processing faults, including how individual or composite process components are

to be compensated when exceptions and faults occur or when a partner requests an abort.

Figure 13.9 shows the metamodel for BPEL4WS.

A BPEL4WS document uses XML to describe the following aspects of a business pro-

cess:

• partners: a list of the Web services invoked as part of the process.

• containers: the data containers used by the process, providing their definitions in terms

of WSDL message types. Containers are needed to store state data and process history

based on messages exchanged among the component processes.



13.4 Business Process Languages 257

-name

-property

CorrelationSet
CompensationHandler

-name

Process Activity

-myRole

-serviceLinkType

-name

Partner

-messageType

-name

Container

-faultContainer

-faultName

FaultHandler
Reply

Figure 13.9: The BPEL4WS metamodel, specifying that a process consists of an activity, a

number of partners and containers with specific correlation sets, fault handlers, and compen-

sation handlers

• variables: the variables that are used and flow through the process.

• faultHandlers: the exception handling routines.

• compensationHandler: compensation to perform when a transaction rollback occurs.

• eventHandlers: routines for handling external (asynchronous) events.

• correlationSets: precedences and correlations among Web service invocations that can-

not be expressed as part of the main process logic.

• main process logic: a series of nested control flow structures that combine primitive

activities into more complex algorithms. The control structures include:

– sequence, for serial execution;

– while, to implement a loop;

– switch, for multiway branching;

– pick, for choosing among alternative paths based on an external event;



258 Process Specifications

– flow, for parallel execution. Within activities executing in parallel, execution

order constraints are indicated by using service links.

• The control structures relate the following atomic actions:

– invoke, invoking a specific Web service;

– receive, a server waiting to receive a message from a client, which would invoke

the server’s service;

– reply, generating the response to an invocation request;

– wait, waiting either for a deadline or some amount of time;

– assign, assigning a value, which might have come from a received message, to a

variable;

– throw, indicating that something went wrong;

– terminate, terminating an entire service instance;

– empty, doing nothing.

In modeling a business protocol as an abstract process, BPEL4WS describes just public

aspects of the protocol. For example, in a supply-chain protocol, BPEL4WS would describe

the roles of a buyer and a seller as abstract processes, with their relationship modeled as a

service link. Abstract processes are restricted to manipulation of values contained in message

properties, and use nondeterministic values to reflect the results of hidden private behavior.

In modeling an executable business process, BPEL4WS does not necessarily define a

partner’s individual implementation completely, but it does define a portable execution format

for business processes. Such processes execute and interact with their partners in a consistent

way regardless of the supporting platform or the programming model used by a particular

implementation.

The result of using BPEL4WS to model an executable business process is a new Web

service composed of existing services. The interface of the composite service is a collection

of WSDL portTypes, just like any other Web service. Figure 13.10 illustrates this external

view of a BPEL4WS process.

13.4.1.1 Transaction Flow

BPEL4WS provides a compensation protocol that is a variant of earlier work on sagas and

open nested transactions (see Section 11.5). It enables flexible control of rollbacks and rever-

sals through application-specific definitions for fault handling and compensation, resulting in

a Long-Running (Business) Transaction (LRT).

An LRT can be undone by reversing individual operations, using business rules that typ-

ically depend on the application. Scope elements delineate the parts of a behavior that are

allowed to be reversible by a compensation handler. Scopes can be nested to an arbitrary

depth.



13.4 Business Process Languages 259

Web Service

portType

portType

portType

<receive>

<receive>

<reply>

<reply>

BPEL4WS
Process

Figure 13.10: A BPEL4WS process is a composite Web service with an interface that is a

collection of WSDL portTypes, just like any other Web service

An LRT occurs within a single business process instance, and there is no distributed

coordination among the partners regarding an agreed-upon outcome. Achieving distributed

agreement is outside the scope of BPEL4WS, to be solved by using protocols described

in WS-Transaction (see Section 12.4). In essence, WS-Transaction uses WS-Coordination

to extend BPEL4WS to provide a context for transactional agreements between services.

Different agreements may be described in an attempt to achieve consistent, desirable behavior

while respecting service autonomy.

13.4.1.2 Implementing a BPEL4WS Web Service

A BPEL4WS process is an algorithm expressed as a flow chart, where each step is an activ-

ity. Information is passed between activities through data containers and the use of 〈assign〉
statements. For example, a customer’s address would be copied from a purchase order to a

shipping request by the following:
� �

<a s s i g n >
<copy>

<from c o n t a i n e r ="PO" p a r t ="customerAddress"/>
<t o c o n t a i n e r ="shippingRequest" p a r t ="customerInfo"/>

</copy>
</ a s s i g n >

� �

A service link is used to define the relationship between two partners and the role that

each partner plays. For example, a service link between a buyer and seller might be



260 Process Specifications

� �

<s e r v i c e L i n k T y p e name="BuySellLink"

xmlns="http://schemas.xmlsoap.org/ws/2002/07/service-link/">
< r o l e name="Buyer">

<p o r t T y p e name="BuyerPortType"/>
</ r o l e >
< r o l e name="Seller">

<p o r t T y p e name="SellerPortType"/>
</ r o l e >

</ s e r v i c e L i n k T y p e >
� �

The following is a complete example of an executable BPEL4WS process for the imple-

mentation of a stock quoting service:
� �

<!ENTITY BPEL

"http://schemas.xmlsoap.org/ws/2002/07/business-process"

<p r o c e s s name="simple"

t a r g e t N a m e s p a c e ="urn:simple:stockQuoteService"

x m l n s : t n s ="urn:simple:stockQuoteService"

x m l n s : s q p ="http://tempuri.org/services/stockquote"

xmlns=&BPEL;/ >

<c o n t a i n e r s >
<c o n t a i n e r name="request"

messageType="tns:request"/>
<c o n t a i n e r name="response"

messageType="tns:response"/>
<c o n t a i n e r name="invocationRequest"

messageType="sqp:GetQInput"/>
<c o n t a i n e r name="invocationResponse"

messageType="sqp:GetQOutput"/>
</ c o n t a i n e r s >

<p a r t n e r s >
<p a r t n e r name="caller"

s e r v i c e L i n k T y p e ="tns:StockQuoteSLT"/>
<p a r t n e r name="provider"

s e r v i c e L i n k T y p e ="tns:StockQuoteSLT"/>
</ p a r t n e r s >

<s e q u e n c e name="sequence">
<r e c e i v e name="receive" p a r t n e r ="caller"

p o r t T y p e ="tns:StockQuotePT"

o p e r a t i o n ="wantQuote" c o n t a i n e r ="request"

c r e a t e I n s t a n c e ="yes"/>
<a s s i g n >

<copy>



13.4 Business Process Languages 261

<from c o n t a i n e r ="request" p a r t ="symbol"/>
<t o c o n t a i n e r ="invocationRequest" p a r t ="symbol"/>

</copy>
</ a s s i g n >
<i n v o k e name="invoke" p a r t n e r ="provider"

p o r t T y p e ="sqp:StockQuotePT"

o p e r a t i o n ="getQuote"

i n p u t C o n t a i n e r ="invocationRequest"

o u t p u t C o n t a i n e r ="invocationResponse"/>
<a s s i g n >

<copy>
<from c o n t a i n e r ="invocationResponse" p a r t ="quote"/>
<t o c o n t a i n e r ="response" p a r t ="quote"/>

</copy>
</ a s s i g n >
<r e p l y name="reply" p a r t n e r ="caller"

p o r t T y p e ="tns:StockQuotePT"

o p e r a t i o n ="wantQuote" c o n t a i n e r ="response"/>
</ sequence>

</ p r o c e s s >
� �

This process is a simple five-step sequence that begins when a request for a quote is

received from the caller. The request is copied to an invocation container, the getQuote oper-

ation is invoked with the parameters of the request, the result is copied to a result container,

and a reply is returned to the requester.

13.4.1.3 UML to BPEL4WS Translation

The Unified Modeling Language (UML) is a popular representation and methodology for

characterizing software and information processes, so we consider its use here for describing

business processes. BPEL4WS processes are stateful and can have instances, so the appro-

priate UML construct for modeling them is a class with stereotype �Process� and whose

attributes are the state variables of the process. The behavior of the class is described using

an activity diagram. Other aspects of a mapping from UML to BPEL4WS are shown in

Table 13.1.

13.4.2 BPML
The Business Process Modeling Language (BPML) and BPEL4WS share similar roots in

Web services (SOAP, WSDL, and UDDI), take advantage of the same XML technologies

(XPath and XML Schema), and are designed to leverage other specifications (WS-Security

and WS-Transaction). Beyond these areas of commonality, BPML supports the modeling

of real-world business processes through its support for advanced semantics, such as nested

processes and complex compensated transactions. BPML builds on the foundation of WSCI

for expressing public interfaces and choreographies.



262 Process Specifications

Table 13.1: UML to BPEL4WS mappings

UML Construct BPEL4WS Concept

�process� class BPEL process definition

Activity graph on a �process� class BPEL activity hierarchy

�process� class attributes BPEL variables

Hierarchical structure BPEL sequence and flow activities

Control flow BPEL sequence and flow activities

�receive� activities BPEL activities

�reply� activities BPEL activities

�invoke� activities BPEL activities

13.4.3 ebXML

The Electronic Business Extensible Markup Language (ebXML) has been established by the

United Nations CEFACT (Centre for Trade Facilitation and Electronic Business) and the

OASIS (Organization for the Advancement of Structured Information Standards) group to

provide specifications for defining standard business processes and trading agreements among

different organizations. It also specifies the business messages that are exchanged as part of

a business process. The objective is for ebXML to be a global standard for governmental and

commercial organizations of all sizes to find business partners and interact with them.

Suppose you are the owner of a disk-drive manufacturing company that sells its disk

drives to the computer industry, and you decide that your company should receive purchase

orders electronically. To implement this as an ebXML business process, you could follow the

typical three-step procedure described in Figure 13.11.

According to this procedure, the recommended way for you to design an ebXML process

is to first construct a model of one of your business processes, using a process modeling

language. For example, you might use the UN/CEFACT Modeling Methodology (UMM),

which is a qualified UML notation for business processes, or you might use the Process

Specification Language (PSL). Based on your process model and using the ebXML Business

Process Specification Schema (BPSS), you would then extract and format the set of elements

necessary to configure an ebXML runtime system that will be able to execute the required set

of ebXML business transactions. The result is an ebXML Process-Specification Document,

which might be a RosettaNet Partner Interface Process (PIP) as introduced in Section 13.4.4.

The following example describes a transaction whereby a customer (buyer) issues a request

for a purchase order (PO) and your company, the seller, confirms the purchase order.

Listing 13.1 is the Process-Specification Document corresponding to a well-known Roset-

taNet PIP for purchase orders and acknowledgments. RosettaNet has given this PIP an iden-

tifier 3A4, hence the use of that string in the document.



13.4 Business Process Languages 263

Business

Organization A

ebXML Process

Specification

Document

Implement

ebXML

CPA and CPP

Specifications

ebXML Business

Service Interface

Configuration

Publis
h

Colla
bora

tio
n

Pro
to

col Pro
fil

e

Request ebXML

Specs

Receive ebXML

Info

Business

Process

Business

Scenarios

Business

Profiles

ebXML Repository

Business Process

and Information

Model

(UMM or PSL)

Business

Organization B

ebXML Process

Specification

Document

Implement

ebXML

CPA and CPP

Specifications

ebXML Business

Service Interface

Configuration

Business Process

and Information

Model

(UMM or PSL)

Request ebXML

Specs

Receive ebXML

Info
P

ublish
C

ollaboration

Protocol Profile

CPA Information

Figure 13.11: The design of an ebXML system typically follows the steps shown here, from

modeling a business process to constructing the CPP and CPA specifications

Listing 13.1: An example ebXML Business Process Specification Schema document
� �

<P r o c e s s S p e c i f i c a t i o n

xmlns="http://www.ebxml.org/BusinessProcess"

name="PIP3A4RequestPurchaseOrder">

<!−− The r e q u e s t document and i t s XML Schema −−>
<BusinessDocument name="PO Request"

nameID="Pip3A4PORequest"

s p e c i f i c a t i o n L o c a t i o n ="PurchaseOrderRequest.xsd"/>

<!−− The c o n f i r m a t i o n document and i t s XML Schema −−>
<BusinessDocument name="PO Confirmation"

nameID="Pip3A4POConfirmation"

s p e c i f i c a t i o n L o c a t i o n ="PurchaseOrderConfirmation.xsd"/>



264 Process Specifications

<!−− T h i s p r o c e s s s p e c i f i c a t i o n has one b u s i n e s s −−>
<!−− t r a n s a c t i o n c o n s i s t i n g o f a r e q u e s t i n g and −−>
<!−− a r e s p o n d i n g b u s i n e s s a c t i v i t y−−>
<B u s i n e s s T r a n s a c t i o n name="Request PO"

nameID="RequestPO_BT">
<R e q u e s t i n g B u s i n e s s A c t i v i t y

name="PO Request Action"

nameID="PORequestAction"

i s A u t h o r i z a t i o n R e q u i r e d ="true"

i s N o n R e p u d i a t i o n R e q u i r e d ="true"

t imeToAcknowledgeRece ip t ="PT2H">
<DocumentEnvelope

bus ines sDocumen t ="PO Request"

bus inessDocument IDRef ="Pip3A4PurchaseOrderRequest"/>
</ R e q u e s t i n g B u s i n e s s A c t i v i t y >
<R e s p o n d i n g B u s i n e s s A c t i v i t y

name="PO Confirmation Action"

nameID="POConfirmationAction"

i s A u t h o r i z a t i o n R e q u i r e d ="true"

i s N o n R e p u d i a t i o n R e q u i r e d ="true"

t imeToAcknowledgeRece ip t ="PT2H">
<DocumentEnvelope

bus ines sDocumen t ="PO Confirmation"

bus inessDocument IDRef ="Pip3A4PurchaseOrderConfirmation"/>
</ R e s p o n d i n g B u s i n e s s A c t i v i t y >

</ B u s i n e s s T r a n s a c t i o n >

<!−− The b i n a r y c o l l a b o r a t i o n a s s e r t s t h a t t h e buyer i s −−>
<!−− t h e i n i t i a t o r o f t h e above b u s i n e s s t r a n s a c t i o n and −−>
<!−− t h e s e l l e r i s t h e responder , and t h e p r o c e s s b e g i n s −−>
<!−− i n t h e R e q u e s t PO s t a t e −−>
<B i n a r y C o l l a b o r a t i o n name="Request PO"

nameID="RequestPO_BC">
< I n i t i a t i n g R o l e name="Buyer" nameID="BuyerId"/>
<RespondingRole name="Seller" nameID="SellerId"/>
<S t a r t t o B u s i n e s s S t a t e ="Request PO"/>
<B u s i n e s s T r a n s a c t i o n A c t i v i t y name="Request PO"

nameID="RequestPO_BTA"

b u s i n e s s T r a n s a c t i o n ="Request PO"

b u s i n e s s T r a n s a c t i o n I D R e f ="RequestPO_BT"

f r o m A u t h o r i z e d R o l e ="Buyer"

f romAutho r i zedRo le IDRef ="BuyerId"

t o A u t h o r i z e d R o l e ="Seller"

t o A u t h o r i z e d R o l e I D R e f ="SellerId"

t imeToPer fo rm ="PT1D"/>
</ B i n a r y C o l l a b o r a t i o n >



13.4 Business Process Languages 265

</ P r o c e s s S p e c i f i c a t i o n >
� �

This example specifies two business documents—a purchase order request and a purchase

order confirmation—whose format has been defined by RosettaNet, one business transaction

named “Request PO” that your company will support, and a choreography for this transaction

into a binary collaboration with buyer and seller roles and associated parameters, such as

timeToPerform. The various times are encoded as strings such as “PT1D” and “PT2H”—

these use the XML Schema duration syntax adopted from the ISO 8601 standard and mean

periods of time equal to one day and two hours, respectively.

You and your customers use this ebXML Process-Specification Document to form ebXML

Collaboration-Protocol Profiles (one for you (as the seller) and one for each customer (as a

buyer)). Finally, you would construct a Collaboration-Protocol Agreement, which links you

with any one of your customers. Listing 13.2 is an example of the CPP for one of your

customers, named PCInc and identified by its DUNS number.

Listing 13.2: An example of an ebXML Collaboration Protocol Profile
� �

<c p : C o l l a b o r a t i o n P r o t o c o l P r o f i l e

x m l n s : c p ="http://www.ebxml.org/specs/cpp-cpa-v2_0.xsd">
<c p : P a r t y I n f o cp :pa r tyName ="PCInc"

c p : d e f a u l t M s h C h a n n e l I d ="asyncChannelA1">
<c p : P a r t y I d

c p : t y p e ="urn:ebxml-cppa:partyid-type:duns">
123456789

</ c p : P a r t y I d >
<c p : P a r t y R e f

x l i n k : h r e f ="http://PCInc.com/about.html"/>
<c p : C o l l a b o r a t i o n R o l e c p : i d ="BuyerId">

<c p : P r o c e s s S p e c i f i c a t i o n c p : v e r s i o n ="2.0"

cp:name="PIP3A4RequestPurchaseOrder"

x l i n k : t y p e ="simple"

x l i n k : h r e f =

"http://www.rosettanet.org/processes/3A4.xml"/>
<c p : R o l e cp:name="Buyer"

x l i n k : h r e f =

"http://www.rosettanet.org/processes/3A4.xml#Buyer"/>
<c p : S e r v i c e B i n d i n g >

<c p : S e r v i c e >
b p i d : i c a n n : r o s e t t a n e t . org :3A4v2 . 0

</ c p : S e r v i c e >
<cp:CanSend>

<c p : T h i s P a r t y A c t i o n B i n d i n g c p : i d ="PCInc_ABID1"

c p : a c t i o n ="PO Request Action"

c p : p a c k a g e I d ="PCInc_RequestPackage">
<c p : C h a n n e l I d >asyncChannelA1 </ c p : C h a n n e l I d >
<c p : B u s i n e s s T r a n s a c t i o n C h a r a c t e r i s t i c s



266 Process Specifications

c p : i s N o n R e p u d i a t i o n R e q u i r e d ="true"

c p : i s S e c u r e T r a n s p o r t R e q u i r e d ="true"

c p : i s A u t h o r i z a t i o n R e q u i r e d ="true"

cp : t imeToAcknowledgeRece ip t ="PT2H"

c p : t i m e T o P e r f o r m ="PT1D"/>
</ c p : T h i s P a r t y A c t i o n B i n d i n g >

</ cp:CanSend>
</ c p : S e r v i c e B i n d i n g >

</ c p : C o l l a b o r a t i o n R o l e >
</ c p : P a r t y I n f o >

</ c p : C o l l a b o r a t i o n P r o t o c o l P r o f i l e >
� �

Listing 13.3 provides a feel for the additional practically important, but conceptually

trivial details that must be worked out in a collaboration protocol profile to make it effective.

These details involve message delivery, transport protocol (the following is a wordy way of

specifying HTTPS), reliable messaging, and security, including nonrepudiation.

Listing 13.3: Additional details to include within the partyInfo element of Listing 13.2 to make it

complete
� �

<c p : D e l i v e r y C h a n n e l c p : c h a n n e l I d ="asyncChannelA1"

c p : t r a n s p o r t I d ="transportA2"

c p : d o c E x c h a n g e I d ="docExchangeA1">
<c p : M e s s a g i n g C h a r a c t e r i s t i c s

cp:syncReplyMode ="none"

c p : a c k R e q u e s t e d ="always"

c p : a c k S i g n a t u r e R e q u e s t e d ="always"

c p : d u p l i c a t e E l i m i n a t i o n ="always"/>
</ c p : D e l i v e r y C h a n n e l >
<c p : T r a n s p o r t c p : t r a n s p o r t I d ="transportA2">

<c p : T r a n s p o r t S e n d e r >
<c p : T r a n s p o r t P r o t o c o l c p : v e r s i o n ="1.1">

HTTP

</ c p : T r a n s p o r t P r o t o c o l >
<c p : T r a n s p o r t C l i e n t S e c u r i t y >

<c p : T r a n s p o r t S e c u r i t y P r o t o c o l c p : v e r s i o n ="3.0">
SSL

</ c p : T r a n s p o r t S e c u r i t y P r o t o c o l >
</ c p : T r a n s p o r t C l i e n t S e c u r i t y >

</ c p : T r a n s p o r t S e n d e r >
</ c p : T r a n s p o r t >
<cp:DocExchange c p : d o c E x c h a n g e I d ="docExchangeA1">

<cp:ebXMLSenderBinding c p : v e r s i o n ="2.0">
<c p : R e l i a b l e M e s s a g i n g >

<c p : R e t r i e s >3</ c p : R e t r i e s >
<c p : R e t r y I n t e r v a l >PT2H</ c p : R e t r y I n t e r v a l >
<cp :MessageOrde rSeman t i c s >



13.4 Business Process Languages 267

G u a r a n t e e d

</ c p :MessageOrde rSeman t i c s >
</ c p : R e l i a b l e M e s s a g i n g >
<c p : S e n d e r N o n R e p u d i a t i o n >

<c p : N o n R e p u d i a t i o n P r o t o c o l >
h t t p : / /www. w3 . org / 2 0 0 0 / 0 9 / xmlds ig #

</ c p : N o n R e p u d i a t i o n P r o t o c o l >
<c p : H a s h F u n c t i o n >

h t t p : / /www. w3 . org / 2 0 0 0 / 0 9 / xmlds ig # sha1

</ c p : H a s h F u n c t i o n >
<c p : S i g n a t u r e A l g o r i t h m >

h t t p : / /www. w3 . org / 2 0 0 0 / 0 9 / xmlds ig # dsa−sha1

</ c p : S i g n a t u r e A l g o r i t h m >
</ c p : S e n d e r N o n R e p u d i a t i o n >
<c p : S e n d e r D i g i t a l E n v e l o p e >

<c p : D i g i t a l E n v e l o p e P r o t o c o l c p : v e r s i o n ="2.0">
S /MIME

</ c p : D i g i t a l E n v e l o p e P r o t o c o l >
<c p : E n c r y p t i o n A l g o r i t h m >

DES−CBC

</ c p : E n c r y p t i o n A l g o r i t h m >
</ c p : S e n d e r D i g i t a l E n v e l o p e >

</ cp:ebXMLSenderBinding>
</ cp:DocExchange>

� �

The CPP specifies the buyer role for this customer in a RosettaNet PIP, with a service
binding element specifying the customer’s ability to send a purchase order request. A delivery
channel element defines characteristics of the business transaction and the messaging. The

transport element defines the buyer’s network communication capabilities. Together, the

CPA and CPP agreements serve as configuration files (e.g., messaging headers) for ebXML

Business Service Interface software.

To summarize, the vocabulary used for an ebXML specification consists of the following

three parts:

1. A Process-Specification Document describing the activities of the parties in an ebXML

interaction.

2. A Collaboration Protocol Profile (CPP), which describes an organization’s profile,

i.e., which business processes it supports, its roles in those processes, the messages

exchanged, and the transport mechanism for the messages.

3. A Collaborative Partner Agreement (CPA), which is an intersection of two CPP’s, rep-

resenting a technical agreement between two or more partners, and potentially negoti-

ated as shown in Figure 13.12. It may have legal binding.



268 Process Specifications

Request

Information on

Organization B

Business

Organization A

Negotiate

Terms

Business

Organization B

Negotiate

Terms

Request Organization B’s

Profiles and Scenarios

Receive Organization B’s

Information

Business

Process

Business

Scenarios

Business

Profiles

ebXML Repository
Exchange

Partner Agreem
ent

(CPA)
Accept Partner

Agreem
ent

Figure 13.12: Discover partner information and negotiate

13.4.3.1 Implementing ebXML

ebXML is just a set of specifications, and an enterprise may build and deploy its own ebXML

compliant application. In addition, ebXML compliant applications and components are com-

mercially available as shrink-wrapped products. ebXML can also be implemented by a Busi-
ness Service Interface (BSI), a wrapper that enables a noncompliant party to properly partic-

ipate in an ebXML exchange. As shown in Figure 13.13, a Business Service Interface can

interface with a legacy system, is aware of its own Collaborative Protocol Profile, and handles

transactions based on all of the current agreements (CPAs).

Listing 13.4: The general form of an ebXML Collaboration Protocol Agreement
� �

<C o l l a b o r a t i o n P r o t o c o l A g r e e m e n t

xmlns="http://www.ebxml.org/namespaces/tradePartner"

x m l n s : c p ="http://www.ebxml.org/specs/cpp-cpa-v2_0.xsd"

xmlns:bpm="http://www.ebxml.org/namespaces/businessProcess"

x m l n s : d s ="http://www.w3.org/2000/09/xmldsig#"

x m l n s : x l i n k ="http://www.w3.org/1999/xlink"



13.4 Business Process Languages 269

ebXML World
Legacy

Application

Transform

Layer

Business

Service

Interface

Message

Layer

(TR & P)

CPA

Document

Business

Process

Figure 13.13: Business Service Interface

c p : c p a i d ="OurMutualCPA" c p : v e r s i o n ="2.0">
<c p : S t a t u s v a l u e ="proposed"/>
<c p : S t a r t >2004−04−07 T08 :30 :00 </ c p : S t a r t >
<cp:End>2006−04−07 T23 :59 :59 </ cp:End>
<!−−C o n v e r s a t i o n C o n s t r a i n t s MAY appear 0 or 1 t i m e−−>
<c p : C o n v e r s a t i o n C o n s t r a i n t s c p : i n v o c a t i o n L i m i t ="100"

c o n c u r r e n t C o n v e r s a t i o n s ="4"/>
<c p : P a r t y I n f o > <!−−my i n f o r m a t i o n as i n CPP −−>

. . .

</ c p : P a r t y I n f o >
<c p : P a r t y I n f o > <!−−your i n f o r m a t i o n as i n CPP −−>

. . .

</ c p : P a r t y I n f o >
<c p : P a c k a g i n g i d ="N20"> <!−−one or more−−>

. . .

</ c p : P a c k a g i n g >
<!−−d s : s i g n a t u r e MAY appear 0 or more t i m e s−−>
<d s : S i g n a t u r e >any c o m b i n a t i o n o f t e x t and e l e m e n t s

</ d s : S i g n a t u r e >
<!−− cp:Comment may appear 0 or more t i m e s−−>
<cp:Comment xml: lang ="en-gb">any t e x t </cp:Comment>

</ C o l l a b o r a t i o n P r o t o c o l A g r e e m e n t >
� �

The PartyInfo element consists of the following child elements:

• One or more REQUIRED PartyId elements that provide a logical identifier for the

organization (Party).

• A REQUIRED PartyRef element that provides a pointer to more information about the

Party.

• One or more REQUIRED CollaborationRole elements that identify the roles that this

Party can play in the context of a Process Specification.



270 Process Specifications

• One or more REQUIRED Certificate elements that identify the certificates used by this

Party in security functions.

• One or more REQUIRED DeliveryChannel elements that define the characteristics of

each delivery channel that the Party can use to receive Messages. It includes both

the transport level (e.g., HTTP) and the messaging protocol (e.g., ebXML Message

Service).

• One or more REQUIRED Transport elements that define the characteristics of the trans-

port protocol(s) that the Party can support to receive Messages.

• One or more REQUIRED DocExchange elements that define the message-exchange

characteristics, such as the messaging protocol, that the Party can support.

Listing 13.5: The PartyInfo field for an ebXML Collaboration Protocol Agreement
� �

<P a r t y I n f o >
<P a r t y I d t y p e ="..."> <!−−one or more−−>

. . .

</ P a r t y I d >
<P a r t y R e f x l i n k : t y p e ="..." , x l i n k : h r e f ="..."/>
<C o l l a b o r a t i o n R o l e > <!−−one or more−−>

. . .

</ C o l l a b o r a t i o n R o l e >
<C e r t i f i c a t e > <!−−one or more−−>

. . .

</ C e r t i f i c a t e >
<D e l i v e r y C h a n n e l > <!−−one or more−−>

. . .

</ D e l i v e r y C h a n n e l >
<T r a n s p o r t > <!−−one or more−−>

. . .

</ T r a n s p o r t >
<DocExchange> <!−−one or more−−>

. . .

</DocExchange>
</ P a r t y I n f o >

� �

Listing 13.6: The CollaborationRole field for an ebXML Collaboration Protocol Agreement
� �

<C o l l a b o r a t i o n R o l e i d ="N11">
<P r o c e s s S p e c i f i c a t i o n name="BuySell" v e r s i o n ="1.0">

. . .

</ P r o c e s s S p e c i f i c a t i o n >
<Role name="buyer" x l i n k : h r e f ="..."/>
<C e r t i f i c a t e R e f c e r t I d ="N03"/>



13.4 Business Process Languages 271

<!−−pr imary b i n d i n g w i t h p r e f e r r e d D e l i v e r y C h a n n e l−−>
<S e r v i c e B i n d i n g name="aProc"

c h a n n e l I d ="N02" p a c k a g e I d ="N06">
<!−−o v e r r i d e d e f a u l t D e l i v e r y C h a n n e l−−>
<O v e r r i d e a c t i o n ="OrderAck"

c h a n n e l I d ="N05" p a c k a g e I d ="N09"

x l i n k : t y p e ="simple" x l i n k : h r e f ="..."/>
</ S e r v i c e B i n d i n g >
<!−− t h e f i r s t a l t e r n a t e b i n d i n g −−>
<S e r v i c e B i n d i n g c h a n n e l I d ="N04" p a c k a g e I d ="N06">

<O v e r r i d e a c t i o n ="OrderAck"

c h a n n e l I d ="N05" p a c k a g e I d ="N09"

x l i n k : t y p e ="simple" x l i n k : h r e f ="..."/>
</ S e r v i c e B i n d i n g >

</ C o l l a b o r a t i o n R o l e >
� �

Based on the above CPA and CPP documents, the following would be an example of a

message header for sending a Purchase Order Request document from a buyer to a seller.

Listing 13.7: An example SOAP message header for sending a Purchase Order Request document
� �

<SOAP:Envelope

xmlns:SOAP="http://schema.xmlsoap.org/soap/envelope/">
<SOAP:Header

x m l n s : e b ="http//www.ebxml.org/msg-header-2_0.xsd">
<eb :MessageHeader i d ="123" e b : v e r s i o n ="2.0"

SOAP:mustUnderstand="1">
<eb:From><e b : P a r t y I d >123456 </ e b : P a r t y I d ></ eb:From>
<eb:To>

<e b : P a r t y I d e b : t y p e ="someType">987654 </ e b : P a r t y I d >
<eb :Ro le>

h t t p : / / r o s e t t a n e t . o rg / p r o c e s s e s / 3 A4 . xml# s e l l e r

</ eb :Ro le>
</ eb:To>
<eb:CPAId>uri :companyA−and−companyB−cpa </ eb:CPAId>
<e b : C o n v e r s a t i o n I d >987654321 </ e b : C o n v e r s a t i o n I d >
<e b : S e r v i c e e b : t y p e ="anyURI">

b p i d : i c a n n : r o s e t t a n e t . org :3A4v2 . 0

</ e b : S e r v i c e >
<e b : A c t i o n >P u r c h a s e Order Reques t A c t i o n </ e b : A c t i o n >
<eb:MessageData>

<eb :MessageId>UUID−2</ eb :MessageId>
<eb:Timestamp>2000−07−25 T12 :19 :05 </ eb:Timestamp>
<eb:RefToMessageId>UUID−1</ eb :RefToMessageId>

</ eb :MessageData>
<e b : D u p l i c a t e E l i m i n a t i o n />

</ eb :MessageHeader>



272 Process Specifications

</SOAP:Header>
<SOAP:Body

x m l n s : e b ="http//www.ebxml.org/msg-header-2_0.xsd">
<e b : M a n i f e s t e b : v e r s i o n ="2.0">

. . .

</ e b : M a n i f e s t >
</SOAP:Body>

</SOAP:Envelope>
� �

All things considered, ebXML’s BPSS enables us to express collaboration protocols and

agreements about protocols in a nice manner. This facilitates interoperation in cross-enterprise

settings. However, despite its overall appealing structure, BPSS is quite limited in what it can

express. In particular, it suffers from two main limitations:

Expressiveness. BPSS is limited to simple request-response protocols. Business interac-

tions can be quite complex and, as we saw in the context of extended transactions,

can be long lived. It is important to understand the contents of the states of an ongo-

ing interaction, so that exceptions can be accommodated in a manner that respects the

participants’ local constraints as well as the context in which they are doing business.

Semantics. BPSS lacks a formal semantics and, thus, it is not clear if specifications con-

structed by one party would have the same interpretations by another party. Such dis-

agreements are common and expensive. The motivation behind the development of

ontologies as discussed in the context of describing services also applies to describing

processes involving services.

Both of these limitations are being addressed in emerging approaches, some of which are

introduced later in this book.

13.4.4 RosettaNet
RosettaNet is a consortium of information technology, semiconductor manufacturing, and

telecommunications companies working to create and implement open e-business process

standards. These standards comprise a common e-business language that can align the inter-

actions among supply-chain partners on a global basis. The address topics ranging from

business documents, such as purchase orders, to processes , such as purchasing. Each pro-

cess is expressed as a Partner Interface Process (PIP). As exemplified in Figure 13.14, a PIP in

RosettaNet defines the process of exchanging messages between two partners. Unfortunately,

after a message departs a partner’s computer system, it is impossible to find out whether it

was received and correctly processed by the partner organization. All RosettaNet offers is

a fixed time-out for the confirmation of each message. If the message is not confirmed dur-

ing this time (e.g., 2 hours), the original partner (recognizing that the message has been sent

already) resends the message to the same or another partner.

Companies need to monitor the processes and status of messages not only internally, but

also externally. It means that they must know not only the status of the order from their own



13.4 Business Process Languages 273

perspective (e.g., that the PO has been sent 1 hour ago), but also the status of the order from

the perspective of their partners (e.g., the order has been scheduled for acceptance 10 minutes

ago). Distributed information systems remain isolated entities and do not allow for this level

of visibility within supply chains.

Back-end application

Create Order Log order confirmation

Order instance

(object)

Semantic Web enabled RosettaNet

Semantic Web enabled RosettaNet

Send PO Receive PO Ack

PO instance
PO Ack

instance

Create PO Request Analyze PO Ack

PO instance
PO Ack

instance

Receive PO Send PO Ack

Analyze PO Create PO Ack

Back-end application

Confirm PO (some or all line

items may be rejected)

Ontologies of

data structures,

business logic

and message

exchange

protocols

Mediation of

data structures,

business logic

and message

exchange

protocol

Figure 13.14: Creating a purchase order in accordance with a RosettaNet PIP

Some organizations are adopting proprietary business protocols that are not machine

interpretable. For example, RosettaNet uses UML diagrams to describe PIPs and relation-

ships among the messages exchanged as part of the PIPs. The meaning of the UML diagrams

is informal and no direct machine interpretation is possible. Electronic Data Interchange

(EDI) does not define any standard processes at all: industrial applications of EDI are based

on best practices. However, there is no recognized way to describe the process of exchanging



274 Process Specifications

EDI messages.

We saw above how ebXML’s BPSS could be used to define a RosettaNet PIP. An impor-

tant distinction between RosettaNet PIPs and ebXML BPSS is that PIPs define specific pro-

cesses (like a purchase-order process), whereas BPSS is a language for defining processes.

ebXML as such does not define processes and RosettaNet does not provide a process model-

ing or definition language.

13.5 The Process Specification Language
The Process Specification Language (PSL) is designed for describing or exchanging infor-

mation among models of discrete processes, i.e., processes consisting of individually distinct

events, tasks, or service invocations [Gruninger, 2003]. Examples of such processes are

production scheduling, resource planning, workflows, and project management. PSL is not

appropriate for continuous processes, whose behavior might be more appropriately described

by differential equations.

PSL is intended to be a process representation that is common to all business and man-

ufacturing applications, and powerful enough to represent the processes in any given appli-

cation. This representation would facilitate interoperation by serving as an interlingua (i.e.,

a lingua franca) for process models. To achieve this, PSL has a formally defined semantics

in the language of first-order logic and represented using the Knowledge Interchange For-

mat (KIF). (KIF is now included in the proposed ISO standard called Common Logic.) The

semantics consist of a set of KIF definitions that enable PSL statements about processes to

be understood. For example, the KIF statement

(between ?task1 ?task2 ?task3)

is given semantics by the definition

(defrelation between (?a ?b ?c) ≡
(and (before ?a ?b)(before ?b ?c)))

which defines between in terms of before. The semantics of before is provided by axioms,

such as

(forall (?x) (not (before ?x ?x)))

which states that nothing can be before itself.

A first-order semantics for PSL has several advantages. First, we can specify and imple-

ment inference techniques that are sound and complete with respect to models of the theories,

i.e., a theory is consistent if and only if there exists a model that satisfies the axioms of the

theory. Second, a process ontology with a first-order axiomatization can be more easily inte-

grated with other ontologies. Third, a first-order semantics allows a simple characterization

of incomplete service specifications.

There are six basic things that are important to consider for an ontology of business and

manufacturing processes, such as PSL:



13.5 The Process Specification Language 275

• Objects, which are concepts in the world that have identity. An example is Mike’s

credit card.

• ActivityOccurrences, which are actions or events that have a temporal extent and involve

specific objects. An example is checking Mike’s credit rating beginning at 10:00 a.m.

and ending at 11:00 a.m. on October 24.

• TimePoints, which are instances that separate discrete states. An example is the instant

between Mike’s account having a balance of $1 000 and a balance of $900.

Each of these can be typed, i.e.,

• the type of an Object is a Class;

• the type of an ActivityOccurrence is an Activity;

• the type of a TimePoint is Time.

Next, we can define relationships between some of the pairs of these six basic things. Ignor-

ing Time and TimePoint for the moment, out of the ten possibilities for domain-independent

relationships among the remaining four things, the following seven are meaningful:

1. instanceOf between Object and Class.

2. subclass between Class and Class.

3. subclass between Activity and Activity.

4. occurrenceOf between ActivityOccurrence and Activity.

5. partOf between Object and Object.

6. subactivityOf between ActivityOccurrence and ActivityOccurrence.

7. participatesIn between Object and ActivityOccurrence.

A relationship between Activity and Class is not meaningful, e.g., between all hammering

ActivityOccurrences and all hammers. Similarly, relationships between Object and Activity
and between Class and ActivityOccurrence are not meaningful. Note that the binary rela-

tions subclass, partOf, and subactivityOf are partial orders (transitive, antisymmetric, and

reflexive) as described in Section 6.5.

Each of the seven basic relationships, shown in Figure 13.15 leads to a form of infer-

ence: classification and instantiation for things related by instanceOf, subsumption for things

related by subclass, aggregation for things related by occurrenceOf, subactivityOf, and partOf,
and association for things related by participatesIn.

When Time and TimePoint are included, there are 21 possible binary relationships. In

addition to the seven above, the following are meaningful:

1. existsAt between Object and TimePoint.



276 Process Specifications

2. existingFor between Object and Time.

3. occursAt between ActivityOccurrence and TimePoint.

4. occurringFor between ActivityOccurrence and Time.

5. subset between Time and Time.

6. instanceOf between TimePoint and Time.

7. equality, lessThan, and greaterThan between TimePoint and TimePoint.

subClass

subActivityOf

Activity
Occurrence

Activity Class

occurenceOf

subClass

Object

partOf

instanceOf

Time subSet

TimePoint equality,
less than,

greater than
participatesIn

instanceOf

existsAt

existingFor

occursAt

beginOf, endOf (unique)

occursFor

Figure 13.15: The key concepts and relationships of PSL

Class and Time, Class and TimePoint, Activity and Time, and Activity and Timepoint do not

participate in meaningful relationships. Finally, PSL provides the two functions beginOf and

endOf, which return the TimePoints that define the temporal extent of an ActivityOccurrence.

In the PSL conceptual model, time is understood as discrete. This is based on the intuition

that measurable time is essentially discrete, although mathematically approximated via a con-

tinuous set, such as the real numbers. A Time can then be represented by a linearly ordered



13.6 Notes 277

set of integers. Hence, the correct relationship between TimePoint and Time is instanceOf,
not partOf.

PSL consists of the core set of concepts listed above and several extensions. The PSL

core includes axioms specifying the semantics of the core concepts. An example axiom is

that everything is either an ActivityOccurrence, an Object, or a TimePoint, and that each of

these are distinct.

There are five defined extensions: durations, activities and duration, temporal ordering

relations, reasoning about state, and interval activities. Within these extensions are definitions

for:

Ordering. ActivityOccurrences can take place in sequences delimited by TimePoints.

Concurrency. ActivityOccurrences can take place at the same time, i.e., during the same time

interval.

Resource. A Resource is an Object that is used or consumed during an ActivityOccurrence.

PSL also provides support for you to define your own extensions for specific domains or

applications. More importantly, PSL can be used to define translations among different pro-

cess ontologies. For example, we can specify that the composedOf property in OWL-S is

equivalent to the subactivity relation in PSL by the following KIF statement:

(forall (?activity1 ?activity2)
(iff (composedOf ?activity1 ?activity2)

(subactivity ?activity2 ?activity1)))

For another example, a CompositeProcess in OWL-S (see Section 15.5.2) is a PSL activity
that is not primitive:

(forall (?activity)
(iff (CompositeProcess ?activity)

(and (activity ?activity)
(not (primitive ?activity)))))

Via PSL, specifications for Web services in workflows, BPEL4WS (see Section 13.4.1),

OWL-S, and others can be given a sound and complete axiomatization, and interoperation

among services specified in different formalisms can be facilitated.

13.6 Notes
In 2003, BPEL4WS was submitted to the OASIS Web Services Business Process Execu-

tion Language (WSBPEL) Technical Committee. The committee is working on refining the

specification for the language.

Piccola is an experimental composition language that has been developed recently [Acher-

mann and Nierstrasz, 2001]. It is based on the π-calculus, and represents an attempt to define

a formal execution semantics for workflows composed from Web services.

Information on RosettaNet is available from http://www.rosettanet.org.



278 Process Specifications

13.7 Exercises
13.1. Construct a UML activity diagram for a process with which you are familiar, such as

withdrawing money from an ATM, paying for a purchase with a credit card, registering

for classes, paying tuition and fees, or obtaining a student or visitor visa. Imagine

that each is a two-party interaction: you and the other participant (bank, merchant,

university registrar, university cashier, foreign consulate, respectively).

13.2. For the scenario described in Exercise 13.1, construct an equivalent BPEL4WS descrip-

tion.

13.3. Repeat Exercise 13.1 but model three parties for each case. For example, add in the

ATM network, credit card company, university department, financial aid office, and

host (who provides you with an invitation letter for a visa), respectively.

13.4. For the scenario described in Exercise 13.3, construct an equivalent BPEL4WS descrip-

tion.

13.5. A bank manager must be able to monitor a customer’s account to make sure the cus-

tomer has not transferred any money to terrorists. For this use-case, the detailed inter-

actions between the manager and the system are:

manager starts the monitoring system;

monitoring system asks for customer ID;

manager enters customer ID;

monitoring system retrieves customer information from account database;

monitoring system requests table of terrorist names from FBI database;

FBI database sends table of terrorist names to monitoring system;

monitoring system compares customer information with table from FBI;

monitoring system notifies manager if there is a match;

manager halts the monitoring system.

Construct a UML activity diagram for this scenario.

13.6. For the scenario described in 13.5, construct an equivalent BPEL4WS description.

13.7. Consider the workflow for recording student registration in Figure 13.16. As shown,

some of the tasks require operations on databases. Assume that each database man-

agement system implements the two-phase commit protocol for transactions. When

student Bob registers, Task #2 is a check with the Graduate Coordinator to verify that

he has completed the necessary prerequisites for the courses for which he is registering.

Assume that Tasks #3, #4, and #5 succeed, but that Task #2 fails.

• As the system administrator, what operations would you have to perform in order

to restore consistency to your system?



13.7 Exercises 279

• How would you modify the workflow in order to prevent problems such as this

from occurring in the future?

1. Record
registration
information

2. Check for
prerequisites

3. Verify
student in

good
standing

4. Issue bill
for tuition
and fees

5. Record
fee payment

6. Record
student as
registered

Student
submits
course

registration
information

Student
pays fees

Graduate
coordinator

Course
enrollment DB

Student
records DB

Billing DB

Figure 13.16: An example workflow for student registration

13.8. Compare the procedure for designing an ebXML system in Figure 13.11 with the

design procedure for a system based on a service-oriented architecture, as described

in Section 5.2.

13.9. Develop an OWL representation of PSL’s conceptual model as captured in Figure 13.15.

13.10. PSL: Two time intervals meet if the end time of the first equals the start time of the

second. This can be represented by the following defrelation:

(defrelation meet (?task1 ?task2) ≡
(equal (endOf ?task1)(beginOf ?task2)))

Assuming that the temporal predicate before has not already been defined in PSL,

define before in terms of meet.



280 Process Specifications

13.11. PSL has a foundation in the situation calculus, which has the primitives situation,

action, and fluent (a fluent is a relation that might vary over time). It has been claimed

that if a situation involves more than one process and if information about the exact

timings of the steps in the processes is unavailable, then a situation-calculus reasoner

will fail. Discuss why this claim might or might not be true.



Chapter 14

Formal Specification and
Enactment

Services are most valuable when composed in novel ways. Two key aspects of realistic

scenarios are that the services are inherently autonomous and their compositions are often

long-lived. For example, a long-lived interaction occurs in e-business when you try to change

an order because of some unexpected conditions or try to get a refund for a faulty product.

Further, specific configurations may impose their own requirements. Even short-lived settings

may require flexibility, e.g., routing an order differently in some cases or checking if the

service requester is authenticated and properly authorized before accepting its order.

Given the autonomy of the partners and the long-lived exception-prone nature of their

interactions, hard-coded, procedural abstractions prove quite limiting, because they are inflex-

ible. Thus they impinge upon the autonomy of the partners. A declarative approach would

have the advantage of flexibility. But how expressive should the declarative approach be? Its

expressiveness will determine how easy it is to use and to implement.

Based on the foregoing chapters, we can reasonably consider two bodies of work. One

body of work deals with process specification. Leading process approaches such as BPEL4WS

(introduced in Section 13.4.1) specify compositions of services in the form of flows. Typical

process approaches such as BPEL4WS capture the flows procedurally in terms of branch and

join primitives indicating the specific orderings of the different tasks. BPEL4WS specifica-

tions orchestrate invocations of services from a central engine, but do not readily accommo-

date the kinds of flexibility described above.

The other body of work deals with extended transaction models, as discussed above.

These provide a means to organize the tasks of different partners in a manner that offers a

level of atomicity. Whereas the earliest extended transaction models considered the semantics

of the operations on the data items in detail, this body of work soon converged into a set

of abstractions dealing with the existence and ordering of various subtransactions. Clearly,

there are considerations of business logic that come into play in defining contingency and

281



282 Formal Specification and Enactment

compensating transactions and determining whether a certain subtransaction is vital for a

given transaction. However, once suitable services exist, the transaction models come down

to stating whether or not a given transaction is a contingency procedure for another, a given

transaction compensates another, or a given transaction is a vital subtransaction of another.

Recall from Section 13.1 that orchestration views a process from a central perspective; it

involves specifying the steps that the different partners may perform. By contrast, choreo-

graphy involves specifying how the partners may interact. Interestingly, the two approaches

come together in the approach of this chapter. Because orchestration takes a central perspec-

tive, it can yield more natural specifications. And, because choreography takes a distributed

perspective, it can yield more natural execution, where each partner need know and consider

only its own interactions.

The approach in this chapter can capture the flow aspects of the process models, as well as

the dependencies of the extended transaction models, which are also akin to flow constraints.

This approach has two key features. First, the desired service compositions are specified

declaratively and enacted automatically by an engine. Second, the engine itself can be dis-

solved into the partners themselves. In this manner the specification is like an orchestration,

but the enactment is like a choreography. Formal specifications yield greater flexibility, which

enhances the autonomy and heterogeneity of the partners.

Because of the inherent nature of service-oriented computing, it relies more upon narrow

interfaces (to maximize heterogeneity) and flexible descriptions of behavior (to maximize

autonomy). Both these aspects emphasize the importance of formal specifications. Suc-

cessful practitioners of service-oriented computing will need a deeper grounding in formal

methods than do those interested in more conventional programming. This chapter serves the

pedagogical purpose of helping you refresh and build on your knowledge of logic.

14.1 Scheduling with Dependencies
The basis for scheduling is an expression of the requirements on the occurrence and ordering

of various tasks and transactions. It is not always appropriate to specify activities simply as

black boxes. Although black box specifications can be appropriate in some cases, it is gen-

erally helpful to provide more structure for the tasks in question. For example, a pure black

box specification would model a task merely in terms of its start and finish. Simple process

models would find such a characterization adequate to be able to chain various activities. But

it is almost always essential to distinguish between successful and unsuccessful terminations

of tasks. In other circumstances it is necessary to model tasks in even greater detail.

By providing more detailed models of task structures, we are able to coordinate the tasks

better. However, the more details that are required, the less the heterogeneity. There is a

trade-off between reducing heterogeneity and enabling complex coordination. Reducing the

heterogeneity excessively would be inappropriate for an open environment and would violate

the basic tenets of service-oriented architectures.

However, in many applications, it is quite reasonable that a small amount of structure be

revealed. Such structure is represented quite simply through a set of what are called signif-



14.2 Specifying Service Composition 283

icant events. Examples of significant events are the start, commit, or abort of a transaction;

or the receipt of a purchase order by a service; or the sending of an update notification by a

service. “Significant” means that the events are relevant for coordination. Thus a complex

activity may be reduced to a single state and termination of that activity to a significant event.

Workflows can then be modeled in terms of dependencies among the significant events of

their tasks. For example, if a transaction for booking a hotel room fails, then a compensating

transaction for the billing transaction would be scheduled.

Thus, significant events can be used to capture succinctly various kinds of flow primitives

as needed by the process models or dependencies as needed by the extended-transaction

models. For example, we can capture the following kinds of requirements quite naturally in

terms of dependencies:

• Chaining tasks in a process: state that the second task is started after the commit of the

first task (and not otherwise).

• Joining multiple flows in a process: state that the following task is started only after all

tasks preceding it have occurred.

• Failure dependency in a transaction model: state that the start of the dependent trans-

action follows the abort event of the first transaction.

• Vital subtransactions: the abort of a vital subtransaction causes the abort of the con-

taining transaction.

The significant events can be thought of as being organized into a finite state skeleton. Fig-

ures 11.3 and 11.7 show two examples of skeletons; the former for a transaction that can par-

ticipate in 2PC and the latter for an OS task that resembles the black box mentioned above.

The edges of these skeletons are the significant events. Skeletons can be used as abstractions

to guide the interactions of desired services. Alternatively, they can be used to decide how to

structure the implementations of the services based on the skeletons that they must present to

others.

Section 14.2 describes the specification language. Section 14.5 shows how flows are

enacted, and the enactment is formalized via a series of sophisticated and provably correct

strategies in Section 14.6. Section 14.7 discusses relevant literature and research directions.

14.2 Specifying Service Composition
Let us now discuss how to compose services by specifying constraints on events (described

below) of the different services. We must begin with a language in which specifications can

be expressed. Such a language would for practical purposes be given an XML rendition.

However, our present interest is in understanding the concepts that underlie the syntax. For

this, a more succinct, conventional logical notation is preferable.

To this end, let us consider I, an event-based linear temporal logic. I is interpreted

as dealing with the occurrences of events. It is temporal, because it includes support for



284 Formal Specification and Enactment

capturing some temporal properties. It is linear, because the underlying model of time is

linear, where time is understood as flowing in sequence. As a result, the units of meaning

are individual computations over the significant events. Multiple such computations can be

considered, but the language considers them one at a time. This contrasts with languages

whose models of time consider branching computations.

Among the temporal languages, I is quite unassuming and simple. It is nothing more

than propositional logic augmented with one temporal operator, the before (written as center

dot ·).
Despite its simplicity, I can capture a remarkable variety of coordination requirements,

for example, those of the process and extended transaction models mentioned above. Because

of its simplicity, I can be readily compiled and executed in a distributed manner. I’s atoms

are significant events. A dependency, D, is an expression in I. A flow, F , is a set of depen-

dencies. Technically, even a flow is a dependency and, hence, can be seen as an expression

in I.

We specify the syntax of I through the following BNF specification with start symbol

I. Here, slant indicates nonterminals; −→ and | are metasymbols of BNF; the remaining

symbols are all terminals. This syntax can be understood as conjunctive normal form, as

familiar from introductory studies of logic.

L1. I −→ dep | dep ∧ I

An expression or sentence produced from I is a dependency or a conjunction of depen-

dencies. In other words, such an expression may include zero or more conjunctions

of expressions. A typical dependency will involve a small number of conjuncts. Each

conjunct is as produced from dep according to the next production.

Conjunction behaves in essence as interleaving, since for a conjunction to hold, both

conjuncts must occur on the same linear computation.

L2. dep −→ seq | seq ∨ dep

An expression produced from dep is a set of zero or more disjuncts, each disjunct as

produced by the next production. The disjunction operator behaves as choice meaning

that it requires that at least one of its arguments hold.

L3. seq −→ bool | event | event · seq

An expression produced from seq captures a single event literal or a sequence of event

literals. (Here, it is useful to make a distinction between an event (what may happen in

the world) and an event literal (what we talk about).) As a base case, this production

also allows mapping to a constant as defined in the next production. The before operator

forces an ordering between the event that is its first argument and the sequence that is

its second argument.

L4. bool −→ 0 | �
These constants behave simply like the Boolean constants false and true of proposi-

tional logic. Dependencies that are specified would never need to explicitly use these



14.2 Specifying Service Composition 285

constants. However, when dependencies are simplified, the simplification processes can

yield the constants. The constants can be readily eliminated unless the dependency

equals 0 or �, but it is convenient to allow them in the language.

L5. event −→ any member of Γ

This is not formally a production but it is convenient to list it here for pedagogical pur-

poses. Here, Γ �= ∅ is the set of event literals used in I. That is, any of the dependencies

that we consider are based on event literals in Γ. Γ delineates our universe of discourse.

It helps to define the concept of event complementation. The latter part of this chapter returns

to this topic. The main idea is nothing more than a simplified form of negation. The initial

idea is that some significant events fall naturally into complementary pairs. For example, the

commit of a transaction is complementary with the abort of the same transaction. However,

it is useful to extend this idea to all events. For example, we can define the complement even

of events such as the start of a service method. If a specific service instance fails to start

(perhaps it was not even attempted), then we can take it to mean that the complement of its

start event occurred.

This formal notion of complementation enables us to state a variety of important depen-

dencies. For example, we can capture that the start of the hotel booking service must be

accompanied by the start of the airline booking service by stating that either the start of the

hotel booking does not occur or the start of the airline booking does occur. In propositional

logic, the “does not occur” above would be captured via negation. In the present event logic,

we do not wish to define negation for all expressions, but we must still define negation for

events. This is what event complementation captures. Since complementation here applies

only to events, we can write it with an overline: for example, the complement of event e
can be written as e. Both e and e are event literals in equal right. Thus either of the forms

could be used anywhere that one of them can be used. Informally, we can think of e as being

equivalent to e.

The formal semantics for I is based on runs or computations. As remarked above, these

are modeled simply as sequences of events. Legal runs satisfy the following requirements:

(1) event instances and their complements are mutually exclusive and (2) an event instance

occurs at most once in a computation.

Let us consider I as the set of expressions produced from the above grammar, based

implicitly on event literals taken from a nonempty set Γ. The universe of discourse in which

I functions is defined as UI . The universe contains all legal runs involving event instances

from Γ.

For τ ∈ UI and I ∈ I, τ |= I means that I is satisfied over the run τ . This notion can

be formalized as follows. Here, τi refers to the ith item in τ and τ[i,j] refers to the subrun of

τ consisting of its elements from index i to index j, both inclusive. |τ | is the last index of τ
and may be ω for an infinite run. We use the following conventions: e, f , e, f , and so on are

literals; D, E, and so on are dependencies; i, j, k, and so on are temporal indices; and τ , and

so on are runs.



286 Formal Specification and Enactment

M1. τ |= e if and only if (∃i : τi = e)

A run τ satisfies a dependency consisting of a single event literal provided the specified

event occurs somewhere on the run. For example, if the dependency requires that the

hotel service commits, then precisely those computations will satisfy it on which the

hotel service does in fact commit.

M2. τ |= I1 ∨ I2 if and only if τ |= I1 or τ |= I2

A run satisfies a disjunctive dependency provided it satisfies at least one of the disjuncts.

For example, if our dependency is that the hotel service must start or the airline service

must start, then at least one of the two services must start.

M3. τ |= I1 ∧ I2 if and only if τ |= I1 and τ |= I2

A run satisfies a conjunctive dependency provided it satisfies both of the conjuncts. For

example, if our dependency is that the hotel service must commit and the airline service

must abort, then the first must commit and the second must abort.

M4. τ |= I1 · I2 if and only if (∃i : τ[0,i] |= I1 and τ[i+1,|τ |] |= I2)

A run satisfies an ordering dependency provided it satisfies both parts and in the correct

order. For example, if our dependency is that the hotel service must commit prior to the

airline service committing, then both must commit and the hotel should commit first;

otherwise, it is a violation.

The semantics of individual events has no temporal component. The idea is that the

specifier does not care about when an event occurs except for the restrictions specified using

the · operator.

The denotation of a dependency I is the set of runs that satisfy I . The purpose of specify-

ing a dependency is to discriminate between the computations that satisfy it and the compu-

tations that do not. The denotation characterizes the good computations precisely. Formally

we write [[I]] = {τ : τ |= I}. Thus we can define equivalence of two dependencies as D ≡ E
if and only if [[D]] = [[E]].

14.2.1 Coordination Relationships

As running examples, we use two dependencies due to Klein [1991]. In Klein’s notation,

e < f means that if both events e and f happen, then e precedes f . In other words, f disables

e. Also in Klein’s notation, e → f means that if e occurs then f also occurs (before or after

e). That is, e requires f . The reason these dependencies are important is that < orders events

without any presumption of occurrence and → asserts the conditional occurrence without any

presumption of ordering. However, although Klein’s work was pioneering, the above notation

becomes cumbersome and confusing: it lacks a formal semantics, for instance. (This chapter

does not follow Klein’s notation.) The following examples formalize these dependencies.



14.2 Specifying Service Composition 287

Example 1 Let D< � e∨ f ∨ e · f . To understand this expression, let us consider a possible

run that would satisfy it. Let τ ∈ UI satisfies D<. If τ satisfies both e and f , then e and f
both occur on τ . Thus, neither e nor f can occur on τ . Hence, τ must satisfy e · f , which

requires that an initial part of τ must satisfy e and the remainder must satisfy f . In other

words, if e and f both occur on τ , then e must precede f on τ .

Example 2 Let D→ � e ∨ f . In the same vein as the above, let τ ∈ UI satisfy D→. If τ
satisfies e, then e occurs on τ . Thus, e cannot occur on τ . Hence, f must occur somewhere

on τ . In other words, the occurrence of e must be accompanied by the occurrence of f . There

is no implication about the mutual ordering of the two events.

Now that we have worked through a couple of the dependencies in some detail, we can more

easily see how the above approach would capture a variety of other coordination requirements

as dependencies. These are summarized below. You are encouraged to study these to be

convinced that the formulations are correct.

D1. e feeds or enables f . f requires e to occur before: e · f ∨ f

D2. e conditionally feeds f . If e occurs, it feeds f : e ∨ e · f ∨ f

D3. Guaranteeing e enables f . f can occur only if e has occurred or will occur: e ∨ e ∧ f

D4. e initiates f . f occurs if and only if e precedes it: e ∧ f ∨ e · f

D5. e and f jointly require g. If e and f occur in any order, then g must also occur (in any

order): e ∨ f ∨ g

D6. g compensates for e failing f . If e happens and f does not, then perform g : (e ∨ f ∨
g) ∧ (g ∨ e)∧ (g ∨ f)

The above dependencies are mostly self explanatory. Dependency D6 is an interesting

one, however. It captures requirements such as that if e occurs, but is not matched with f , then

g must occur, and g must not occur otherwise. This is a typical requirement in information

applications with data updates, where g corresponds to an action to restore the consistency of

the information (potentially) violated by the success of e and the failure of f . Hence the need

to run a compensation transaction for e if f does not occur.

14.2.2 Example Scenario
Armed with the above background, we can now attempt to formalize a more realistic situa-

tion. For this purpose, consider the following simple scenario inspired by supply chains. Here

an assembly service composes three services that supply hoses, valves, and elbow joints. The

assembly service orders a matching hose and valve to create a requested assembly. For sim-

plicity, each service (A, V , H , E) can be started and might complete successfully or might

fail. The elbow-joint service supports cancellation (undo), which always succeeds. Thus, the



288 Formal Specification and Enactment

events defined are As, Ac, Vs, Vc, Hs, Hc, Es, Ec, and Eu (the subscripts s, c, and u indicate

start, successfully complete, and undo, respectively), and their complements. The failure of a

service is the complement of its successful completion. For example, the failure of the valve

service is given by Vc.

• If (and only if) an assembly is started, start the valve and hose services: (As∨Vs∧Hs)
∧ (Vs ∨ As) ∧ (Hs ∨ As).

• As soon as the hose service completes successfully, start the elbow-joint service, except

that if the valve service has failed before the elbow-joint service is started, do not start

the elbow-joint service: (Hc ∨ Es ∧ Vc ∨ Vc · Es ∨ Es · Vc).

• If the valve service has failed, but the elbow-joint service has completed successfully,

then and only then undo the elbowjoint service: (Vc∨Ec∨Eu)∧(Eu∨Vc)∧(Eu∨Ec).

14.3 Residuation
Given a specification as a set of dependencies, we must ensure that the right events occur, each

at the right time, and that the wrong events do not occur. To this end, imagine a scheduler that

somehow causes events to satisfy all the stated dependencies. Notice that the partners whose

significant events we are considering are autonomous, so no scheduler may be able to cause

events to occur or not occur. Section 14.6.3 returns to this consideration, but for now let us

assume that the events can in fact be controlled by a scheduler.

Let us attempt to model the scheduler as a state machine. In practical terms, we can

characterize the state of the scheduler by the runs it can allow. The scheduler’s changing

state determines which events may or may not occur from now on. As remarked above,

a dependency is satisfied when a run in its denotation is realized. Therefore, initially, the

allowed runs are given by the stated dependencies. As events occur, the set of allowed runs

is progressively narrowed. If the set of allowed runs should ever become empty, that means

we have hit an inconsistency: there is no way to satisfy the dependencies now. Thus, the

scheduler should take care never to enter such an unsatisfiable state.

Intuitively, two questions must be answered for each event under consideration: (a) can it

happen now? and (b) what will remain to be done later? The answers can be determined from

the stated dependencies and the history of the system. One can examine the runs allowed by

the original dependencies, select those compatible with the actual history, and infer how to

proceed. However, the present approach achieves this effect symbolically, without examining

the runs. This is important, because it makes our reasoning depend on the finite specifications,

not on the potentially infinite runs.

The dependencies stated in a flow fully describe the initial state of the scheduler; succes-

sive states are computed symbolically. Figure 14.1 shows how the states and transitions of the

scheduler may be captured symbolically. The state labels give the corresponding obligations,

and the transition labels name the different events. An event that would make the scheduler

obliged to 0 cannot occur.



14.4 Symbolic Calculation of Residuals 289

�
�

�
�

�
���

�
�

�
�

�
���

�

�
�

�
�

�
���

�
�

�
�

�
��� �

D< = e ∨ f ∨ e · f

f ∨ f e

� 0

e f

e, f

f, f
e e

Figure 14.1: Scheduler states and transitions for D<

For a source state given by an expression and transition labeled with event, the target state

is given by an operation termed residuation. For an expression D and event e, the residuation

is written D/e. The key property is that residuation yields the largest set of runs satisfying

the given expression after the given event has occurred. Importantly, the result of residuating

an expression by an event is also an expression.

M5. ν ∈ [[D/e]] if and only if (∀υ : υ ∈ [[e]] ⇒ (υν ∈ UI ⇒ υν ∈ [[D]]))

Example 3 (Figure 14.1) If e or f happens, then D< is necessarily satisfied: this is why the

resulting state in each case is �. If e happens, then either f or f can happen later, either of

which would take the state to �. But if f happens, then only e must happen afterwards (e
cannot be permitted any more, since that would mean that f precedes e).

14.4 Symbolic Calculation of Residuals
As discussed above, M5 characterizes the evolution of the state of a scheduler, but offers

no suggestions about how to determine the transitions. Fortunately, a set of equations exists

using which the residual of any dependency can be computed symbolically. Importantly,

dependencies not mentioning an event have no direct effect on it. Consequently, the reasoning

with respect to different dependencies can be performed modularly.

The symbol
.= is used to indicate that the equations legitimize our simplifying the expres-

sion on the left with the expression on the right. Of course, the
.= would correspond to = so

that the equations are sound.

The equations below seek to capture the independence of the scheduler’s behavior with

respect to an event that does not feature in a given dependency. For this purpose, it helps

to define ΓD as the set of literals mentioned in a specific D and their complements. For

example, e is a trivial dependency consisting of just the event literal e, and thus Γe = {e, e}.



290 Formal Specification and Enactment

E1. 0/e
.= 0

No events are allowed by an impossible dependency.

E2. �/e
.= �

All events are allowed by the � dependency.

E3. (E1 ∧ E2)/e
.= ((E1/e) ∧ (E2/e))

Residuation distributes over ∧, meaning that e is allowed by a conjunction if it is allowed

by each conjunct.

E4. (E1 ∨ E2)/e
.= (E1/e ∨ E2/e)

Residuation distributes over ∨, meaning that e is allowed by a disjunction if it is allowed

by at least one disjunct.

E5. D/e
.= D, if e �∈ ΓD

A dependency in which e or e do not occur has no bearing on whether e is allowed.

However, the dependency itself still remains obligated, hence, we still have D in the

result.

E6. (e · E)/e
.= E, if e �∈ ΓE

For a sequence expression beginning with e, if e occurs first, then the rest of the sequence

must still materialize.

E7. (e′ · E)/e
.= 0, if e ∈ ΓE (e′ is any event literal)

For a sequence expression not beginning with e (assume e �= e′), but where e occurs

sometime later, e is not allowed now because that would violate the stated order. If the

sequence begins with e and e occurs in the rest of it as well, then we would have multiple

occurrences of e, which are not allowed anyway. Thus the result of the residuation is 0
in either case.

E8. (e · E)/e
.= 0

For a sequence expression that begins with the complement of an event, that event can-

not occur.

Example 4 The reader can verify that the above equations yield the transitions shown in

Figure 14.1.

The scheduler can take a decision to accept, reject, or trigger an event only if no depen-

dency is violated by that decision. There are several ways to apply the above algebra. The

relationship between the algebra and the scheduling algorithm is similar to that between a

logic and the proof strategies for it. For scheduling, the system accepts, rejects, or triggers

events to determine a run that satisfies all dependencies. Equations E1–E8 can be proved to

be sound and complete.



14.5 Distributed Scheduling 291

14.5 Distributed Scheduling
One requirement for a service-oriented architecture is that the agents act as autonomously

as possible, constrained only by their coordination relationships. This presupposes that the

decisions on events be taken based on local information. Further, distribution is attractive

because it promises greater scalability and reliability by placing decision-making functional-

ity right where the decision needs to be made. We can potentially implement such distributed

processing using a reliable messaging framework such as message queues.

To enable sound local decisions, we place a guard on each event. The guard on an event

is a condition such that when the guard is true, it is correct to let the event happen. The guards

depend on the dependencies that have been specified. We want the guards to be as general as

possible. Moreover, as some events occur, other events can become enabled or disabled, i.e.,

the guards of the latter events can become true or false. This means that the guards of events

can be modified based on messages from other events.

In other words, this approach requires (a) initially determining the guards on each event,

(b) arranging for the relevant information to flow from one event to another, and (c) modifying

the guards to assimilate the information received from other events.

14.5.1 Temporal Logic for Internal Reasoning

The guard on an event is the weakest condition whose truth guarantees correctness if the event

occurs. Guards must be temporal expressions, so that decisions taken on different events can

be sensitive to the state of the system. The guards are compiled from the stated dependencies;

in practice, they are quite succinct.

T is a temporal language used for expressing guards. �E means that E will always hold;

�E means that E will eventually hold (thus �e entails �e); and ¬E means that E does not

(yet) hold. E · F means that F has occurred preceded by E. For simplicity, we assume the

following binding precedence (in decreasing order): ¬; ·; � and �; ∧; ∨. The syntax of T is

given in BNF with T as the start symbol.

L6. T −→ conj | conj ∧ T

L7. conj −→ disj | disj ∨ conj

L8. disj −→ bool | � seq | � seq | ¬ event

The semantics of T is given with respect to a run (as for I) and an index into that run

(unlike for I). In addition, we need an auxiliary notion of semantics, which requires two

indices. The semantics given next characterizes progress along a given computation to deter-

mine the decision on each event. For 0 ≤ i ≤ k, u |=i,k E means that E is satisfied over

the subsequence of u between i and k. For k ≥ 0, u |=k E means that E is satisfied on u at

index k—implicitly, i is set to 0. A run u is maximal if and only if, for each event, either the

event or its complement occurs on u. The universe, UT , is the set of maximal runs.



292 Formal Specification and Enactment

M6, which involves just one index i, invokes the semantics with the entire run until i. In

effect, the second index is interpreted as the present moment. M10 introduces a nonzero first

index. M7 and M10 capture the dependence of an expression on the immediate past, bounded

by the first index of the semantic definition. M8, M9, M11, M12, M13, and M14 are as in

traditional semantics. M13 and M14 involve looking into the future. M7 implicitly treats

events as being in the scope of a past-time operator. Consequently, M12 interprets ¬ as not
yet.

Truth at an index corresponds to truth from the beginning to that index. An event is true

in a range if and only if it occurs within that range. A sequence formula is true over a range

if and only if its first component is true before the second component and both components

are true within the same range.

M6. u |=i E if and only if u |=0,i E

This simply considers the entire interval up to the given moment.

M7. u |=i,k f if and only if (∃j : i ≤ j ≤ k and uj = f), where f ∈ Γ

The given event occurs within the specified range.

M8. u |=i,k E ∨ F if and only if u |=i,k E or u |=i,k F

Disjunction as always.

M9. u |=i,k E ∧ F if and only if u |=i,k E and u |=i,k F

Conjunction as always.

M10. u |=i,k E · F if and only if (∃j : i ≤ j ≤ k and u |=i,j E and u |=j+1,k F )

Split the interval into two parts where the first part of the given interval must satisfy the

first argument of the · operator and the second part must satisfy the second argument of

the · operator.

M11. u |=i,k �
Always satisfiable.

M12. u |=i,k ¬E if and only if u �|=i,k E

Negation as traditionally in logic.

M13. u |=i,k �E if and only if (∀j : k ≤ j ⇒ u |=i,j E)

�E is satisfied if E is always satisfied going into the future.

M14. u |=i,k �E if and only if (∃j : k ≤ j and u |=i,j E)

�E is satisfied if E is satisfied at least once going into the future.



14.5 Distributed Scheduling 293

There are some important motivations for the above semantics. The approach includes

two kinds of negation: a strong kind applied on events as in e, and a weak one as in ¬e.

Logical frameworks with two negations have been studied before in the context of reasoning

about action. However, the existing frameworks use the weak negation as a default, epistemic,

or nonmonotonic negation, along the lines of negation as failure [Kowalski and Sergot, 1986].

By contrast, we describe a purely monotonic system: although ¬e indicates less information

than e, the decisions made during scheduling are cautious and do not have to be withdrawn.

For the approach to work well, it must assume that events are stable; i.e., once an event

instance has occurred, it remains occurred forever. Stability is important for distributed sys-

tems to accommodate message delay [Francez and Forman, 1996], because stable events are

not sensitive to message delay. However, stability is in tension with the semantics of before.

Specifically, if e and f hold forever, then a run that satisfies e · f would also satisfy f · e,

thereby losing ordering information. The above semantics avoids this undesirable effect.

We define E ∼= F if and only if E and F are true over the same index pairs over the same

runs.

Example 5 The possible maximal runs for Γ = {e, e} are {〈e〉, 〈e〉}. On different runs, e or

e may occur. Initially, neither e nor e has happened, so runs 〈e〉 and 〈e〉 both satisfy ¬e and

¬e at index 0. Run 〈e〉 satisfies �e at 0, because event e will occur on it; similarly, run 〈e〉
satisfies �e at 0. After event e occurs, �e becomes true, ¬e becomes false, and �e and ¬e
remain true.

14.5.2 Deriving Guards from Specifications

As explained above, our objective is to determine the guards purely symbolically. However,

for expository ease, and to establish the correctness of the above approach formally, we begin

with an obvious but inefficient approach and improve it step by step until we obtain the

desired approach. Here this approach uses T to compile guards from dependencies.

Since the guards must yield precisely the computations that are allowed by the given

dependencies, a natural intuition is that the guard of an event covers each computation in the

denotation of the specified dependency, and no more.

We associate a set of paths, Π(D), with a dependency D. A path ρ ∈ Π(D) is a sequence

of event symbols (no two of which are equal or complements) that residuate D to �—the

dependency is satisfied if the events in the path occur in the order of residuation. We require

that Γρ ⊇ ΓD, i.e., all events in D (or their complements) feature in ρ. Each path is effectively

a correct execution for its dependency. A path may have more events than those explicitly

mentioned in a dependency. This is not a problem: Section 14.6.2 develops an equivalent

approach that looks only at the dependency itself, not at the paths. Clearly, the paths in Π(D)
satisfy D. Moreover, we can show that there is a unique dependency corresponding to any

set of paths.

Since each path ρ in a dependency D satisfies D, if an event e occurs on ρ, it is clearly

allowed by D, provided e occurs at the right time. In other words, e is allowed when (1) the



294 Formal Specification and Enactment

events on ρ up to e have occurred in the right sequence, and (2) the events of ρ after e have

not occurred, but will occur in the right sequence.

We define a series of operators to calculate guards as G : I × Γ �→ T . Gb(ρ, e) denotes

the guard on e due to path ρ (b stands for basic). Gb(D, e) denotes the guard on e due to

dependency D. To compute the guard on an event relative to a dependency D, we sum

the contributions of different paths in D. Gb(F , e) denotes the guard due to flow F and is

abbreviated as Gb(e) when F is known. This definition redundantly repeats information about

the entire path on each event. Below, we remove this redundancy to obtain a semantically

equivalent, but superior, solution.

Definition 1 Gb(ρ, e) � if e = ei, then �(e1 · e2) ∧ . . .∧ �(ei−2 · ei−1) ∧ ¬ei+1 ∧ . . . ∧
¬en ∧ �(ei+1 · ei+2) ∧ . . . ∧ �(en−1 · en), else 0.

Gb(D, e) �
∨

ρ∈Π(D) Gb(ρ, e).
Gb(F , e) �

∧
D∈F Gb(D, e).

�
�

�
�

�
���

�
�

�
�

�
���

�
�
�
�
�
���

�
�
�
�
�
��	

�
�

�
�

�
���

�
�

�
�

�
���

�
�
�
�
�
��	

�
�
�
�
�
���

¬e ∧ ¬e ∧ ¬f ∧ ¬f

�e

�e �f

�f

�

e, e

f
f

e

e

f, f

f, f

e

Figure 14.2: Guards with respect to D< = e ∨ f ∨ e · f

Figure 14.2 illustrates the above procedure for the dependency of Example 1. The figure

implicitly encodes all paths in Π(D<) (here, for simplicity, Γ = ΓD). The initial node is

labeled ¬e ∧ ¬e ∧ ¬f ∧ ¬f to indicate that no event has occurred yet. The nodes in the

middle layer are labeled �e, etc., to indicate that the corresponding event has occurred. To

avoid clutter, labels like �e and ¬e are not shown after the initial state.

Example 6 Using Figure 14.2, we can compute the guards for the events in D<. Each path

on which e occurs contributes the conjunction of a � term (what happens before e) and a ¬
and a � term (what happens after e).

• Gb(D<, e) = (¬f ∧ ¬f ∧ �(f ∨ f)) ∨ (�f ∧ �). But �(f ∨ f) ∼= �. Hence,

Gb(D<, e) = (¬f ∧ ¬f) ∨ �f , which reduces to ¬f ∨ �f , which equals ¬f .

• Gb(D<, e) = (¬f ∧ ¬f ∧ �(f ∨ f)) ∨ (�f ∧ �) ∨ (�f ∧ �), which reduces to �.



14.6 Formalization 295

• Gb(D<, f) = �.

• Gb(D<, f) = (¬e ∧ ¬e ∧ �e) ∨ �e ∨ �e ∼= �e ∨ �e.

Thus e can occur at any time, e can occur if f has not yet happened (possibly because f will

never happen), f can occur any time, but f can occur only if e has occurred or e is guaranteed.

14.5.3 Scheduling with Guards

To execute an event e, check if its guard is � (execute e), 0 (reject e), or neither (make e
wait). Whenever an event e occurs, notify all events depending on e that �e now holds,

thereby causing their guards to be updated.

Example 7 Using the guards from Example 6, if e is attempted and f has not already hap-

pened, e’s guard evaluates to �. Consequently, e is allowed and a notification �e is sent to f
(and f ). Upon receipt of this notification, f ’s guard is simplified from �e∨�e to �. Now if

f is attempted, it can happen immediately.

If f is attempted first, it must wait because its guard is �e ∨ �e and not �. Sometime

later if e or e occurs, a notification of �e or �e is received at f , which simplifies its guard to

�, thus enabling f . The guards of e and f equal �, so they can happen at any time.

The above development shows how we can compute the semantics of T , i.e., realize

the appropriate runs, incrementally. But in some situations potential race conditions and

deadlocks can arise. To ensure that the necessary information flows to an event when needed,

the execution mechanism should be more astute in terms of recognizing and resolving mutual

constraints among events. This reasoning is essentially encoded in terms of heuristic graph-

based reasoning. Although these heuristics can handle many interesting cases, they are not

claimed to be complete.

14.6 Formalization
There are two main motivations for carrying out a formalization of an approach for scheduling

(as for any other purpose). Formalization can help in proving the correctness of an approach

and in justifying improvements in efficiency, e.g., in updating guards incrementally as mes-

sages are exchanged and to simplify guards prior to execution.

Correctness is a concern when (a) guards are compiled, (b) guards are preprocessed, and

(c) events are executed and guards updated. Correctness depends on how the guards are used

to yield actual computations. That is, correctness depends on the evaluation strategy, which

determines how events are scheduled. We formalize evaluation strategies by stating what

initial values of guards they use and how they update the guards. We begin with a strategy that

is simple but correct and produce a series of more sophisticated, but semantically equivalent

(hence correct), strategies.



296 Formal Specification and Enactment

The idea is that an evaluation strategy incrementally generates the given run. At any index

in the run, an event may take place if its guard is true at the preceding index in the run. That

is, an event may be allowed only at a specified index in the run. A given partial run may be

completed in various ways, all of which would respect the stated dependencies.

Although the guard is verified at the designated index on the run, its verification might

involve future indices on that run. That is, the guard may involve � expressions that happen

to be true on the given run at the index of e’s occurrence. Because generation looks into the

future, it is more abstract than execution.

14.6.1 Evaluating Guards
At run time, a guard equal to � means the given event can occur; a guard equal to 0 means

the given event cannot occur. For all guards in between, we would potentially have to modify

them in light of messages about other events. The operator ÷ captures the processing required

to assimilate different messages into a guard. This operator embodies a set of “proof rules”

to reduce guards when events occur or are promised. Table 14.1 defines these rules. Because

the sequences are limited to two literals, we do not need to consider longer sequences. This

leads to an improved guard definition, which creates only two-sequence guard expressions,

because it works straight from the dependency syntax.

Table 14.1: Assimilating messages

Old Guard (G) Message (M ) New Guard (G ÷ M )

G1 ∨ G2 M G1 ÷ M ∨ G2 ÷ M
G1 ∧ G2 M G1 ÷ M ∧ G2 ÷ M

�e �e �
�e �e or �e 0
�e �e or �e �
�e �e or �e 0

�(e1 · e2) �(e1 · e2) �
�(e1 · e2) �(e2 · e1) 0
�(e1 · e2) �ei or �ei 0

�(e1 · e2) �(e1 · e2) or �(e1 · e2) �
�(e1 · e2) �(e2 · e1) or �(e2 · e1) 0

�(e1 · e2) �ei or �ei 0

¬e �e 0
¬e �e or �e �
G M G, otherwise

When the dependencies involve sequence expressions, the guards may also have sequence

expressions, which indicate ordering of the relevant events. In such cases, the information



14.6 Formalization 297

that is assimilated into a guard must be consistent with that order. For this reason, the updates

in those cases are more complex.

The repeated application of ÷ to update the guards corresponds to a new evaluation strat-

egy. This strategy permits possible runs on which the guards are initially set according to the

original definition, but may be updated in response to expressions verified at previous indices.

It does not require that every M that is true be used in reducing the guard. This enables us

to accommodate message delay, because notifications need not be incorporated immediately.

This is because when �e and �e hold at an index, they hold on all future indices.

It can be established that the evaluation of the guards according to ÷ is sound and com-

plete. All runs that could be generated by the original guards are generated when the guards

are updated (completeness) and any runs generated through the modified guards could be

generated from the original guards (soundness).

The main motivation for performing guard evaluation as above is that it enables us to col-

lect incrementally the information necessary to make a local decision on each event. How-

ever, executability requires, in addition, that we can take decisions without having to look

into the future. The above theorem does not establish that the guards for each event will

be reduced to � and ¬ expressions (which require no information about the future). That

depends on how effectively the guards are processed.

14.6.2 Simplification
Computing the guards as given in Definition 1 is cumbersome and involves looking at the

paths at a lot of detail. Fortunately, the guards can be computed in a much more straightfor-

ward and efficient manner. Let us define a symbolic calculation for guards as below. These

cases cover all of the syntactic possibilities of I. Importantly, this definition distributes over

∧ and ∨: using the above normalization requirement, each sequence subexpression can be

treated separately. Thus the guards are quite succinct for the common cases, such as the

relationships of Section 14.2.1.

Definition 2 The guards are given by the operator G : I × Ξ �→ T :

(a) G(D1 ∨ D2, e) � G(D1, e) ∨ G(D2, e)

(b) G(D1 ∧ D2, e) � G(D1, e) ∧ G(D2, e)

(c) G(e1 · . . . · ei · . . . · en, ei) � �e1 ∧ . . . ∧ �ei−1 ∧ ¬ei+1 ∧ . . .¬en ∧ �(ei+1 ·
ei+2) ∧ . . . ∧ �(en−1 · en)

(d) G(e1 · . . . · en, e) � �(e1 · . . . · en), if {e, e} �⊆ {e1, e1, . . . , en, en}

(e) G(e1 · . . . · ei · . . . · en, ei) � 0

(f) G(0, e) � 0

(g) G(�, e) � �



298 Formal Specification and Enactment

Example 8 We compute the guards for the events in D<:

• G(D<, e) = (�f ∨ (¬f ∧ �f)) ∼= ¬f

• G(D<, e) = �

• G(D<, f) = �e ∨ �e

• G(D<, f) = �

Thus f and e can occur at any time. However, f can occur only if e has occurred or never

will. Similarly, e can occur only if f has not yet occurred (it may occur in the future).

14.6.2.1 Eliminating Irrelevant Guards

It is fairly straightforward to show that the guard on an event e due to a dependency D in

which e does not occur can be set to �, provided D is entailed by the given flow—an easy

test of entailment is that D is explicitly a member of the given flow. Thus dependencies in

the flow that do not mention an event can be safely ignored for that event. This makes sense,

because the events mentioned in D will ensure that D is satisfied in any generated run. Thus,

at all indices of any generated run, we will have �D anyway.

Consequently, we can establish that the guard on an event e due to a conjunction of

dependencies is the conjunction of the guards due to the individual dependencies that mention

e. Thus, we can compile the guards modularly and obtain expressions that are more amenable

to processing.

14.6.3 Formalizing Event Classes

Not all events are alike. We consider four classes of events, which have different properties

with respect to coordination. Because the significant events are visible, the service always

knows of their occurrence (some interesting results deal with distributing this knowledge

requirement over the agents). When an agent is willing to delay or omit an event, it is on

the basis of constraints provided by the service, which in turn involve the occurrence or

nonoccurrence of other events. The event classes are

• Flexible, which the agent is willing to delay or omit.

• Inevitable, which the agent is willing only to delay.

• Immediate, which the agent performs unilaterally, i.e., is willing neither to delay nor to

omit.

• Triggerable, which the agent is willing to perform if requested.



14.6 Formalization 299

The first three classes are mutually exclusive and exhaustive; each can be conjoined with

triggerability. We do not have a category where an agent will entertain omitting an event, but

not delaying it, because unless the agent performs the event unilaterally, there must be some

delay in receiving a response from the service. This is because the above event classes apply

to the interface between an agent and a logical coordinator.

Event classes do not replace the dependencies, which specify the constraints among dif-

ferent agents. For example, it is possible that a postal service agent may offer to deliver at

two addresses in a particular order, but let the residents at the two addresses decide whether

delivery should be made there at all. Thus at the conceptual level, it is possible that an agent

may appear to another agent to be willing to cancel an action but not to delay it. However,

this requirement is captured through dependencies. If p1 and p2 are the postal deliveries and

a1 and a2 are the addressees’ permissions, then, following Examples 1 and 2, we would have

p1∨p2∨p1 ·p2 (if both deliveries occur, they are ordered), and p1∨a1 and p2∨a2 (deliveries

are only made if permitted).

For inevitable and immediate events, the dependencies must be strengthened. The basic

idea for strengthening is to eliminate paths whose prefixes lead to a state where an inevitable

event may have to be denied, or an immediate event denied or delayed. An algorithm to

derive strengthened dependencies proceeds by iteratively removing unsafe paths; it is iterative

because removing one path to make a dependency safe for one event can make it unsafe for

another.

The strengthened dependencies are then used in all reasoning, e.g., in computing the

guards. Below, we show revised representations for some relationships.

�
�

�
�

�
���

�
�

�
�

�
���

�
�
�
�
�
���

�
�
�
�
�
��	

�
�

�
�

�
���

�
�

�
�

�
���

�
�
�
�
�
��	

�
�
�
�
�
���

¬e ∧ ¬e ∧ ¬f ∧ ¬f

�e

�e �f

�f

�

e, e

f
f

e

e

f, f

f, f

e

��
��
��
��
��
��
��
��

������������

Figure 14.3: Guards from D< assuming e is inevitable

Example 9 Figure 14.3 shows the dependency of Figure 14.2. The path 〈fe〉 is deleted

because if f occurs first, e must not occur. We can verify that Gb(D<, e) is unchanged but

Gb(D<, f) is stronger: since e cannot be rejected, we cannot let f happen unless e or e has

already happened. Figure 14.3 still holds when e is immediate. Thus the same guards are

obtained as before.

Example 10 Starting with e ∨ f , if e is inevitable, the path 〈fe〉 must be deleted (because if



300 Formal Specification and Enactment

f occurs first, e would be prevented). Thus e∨f strengthens to e ·f ∨e ·f ∨e ·f ∨f ·e∨f ·e,

which simplifies to e · f ∨ f , i.e., slightly stronger than the original dependency. Similarly,

referring to Figure 14.4, we can check that if e is immediate, then e ∨ f · e strengthens to 0.

�
�

�
�

�
���

�
�
�
�
�
���

�
�
�
�
�
��	

�
�

�
�

�
���

�
�
�
�
�
��	

�
�
�
�
�
���D = e ∨ f · e

¬e ∧ ¬e ∧ ¬f ∧ ¬f

�e �f

�f

�

e, e

f
f

e
f, f

e

��
��
��
��
��
��
��
��

������������

























��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

























Figure 14.4: Extreme example of an immediate event (e)

Example 11 Referring to Figure 14.4, we can readily see that the guards for all the events

are 0. However, if e is inevitable, then the guards are nonzero, as can be readily checked.

14.7 Discussion
The above is a generic approach for achieving service composition. It hones in on the struc-

ture of the composed computations and can thus facilitate the design and enactment of coor-

dinated behavior by hiding low-level details. By separating the specification language from

the internal representation language, we can begin with declarative specifications (ignoring

the implementation aspects) and then derive operational decision procedures from them. The

semantics of I considers entire runs to reflect the intuition that the specifier only cares about

good versus bad runs, not how to achieve them. By contrast, the semantics of T involves

indices into the runs to reflect the intuition that decisions on events are sensitive to what

exactly has transpired when a decision is made. The above approach requires neither unnec-

essary control over agents’ actions nor detailed knowledge of the agents’ construction.

As we saw above, the partners can dynamically and with maximum flexibility bring about

the right events with just enough constraints to satisfy the stated orchestration. Such a generic

facility for coordination can be used by a higher-level reasoner to achieve collaboration, that

is, to bring about the interactions that it deems fit without having to contend with the details

of distributed events.

Concurrent METATEM, an executable temporal logic, has been used to specify and build

agents and multiagent systems [Wooldridge, 1997]. It enables the specification of the behav-

ior of the various agents, somewhat like reactive systems in traditional logics of programs.

This is a major difference from the above approach, because it only formalizes the coor-

dination requirements and leaves the internal details to the implementors. However, both



14.8 Notes 301

approaches use linear models with a bounded past and infinite future. The · (before) oper-

ator is related to the until and since operators. Concurrent METATEM has a greater range

of operators. Wooldridge assumes that the agents execute in lock-step synchronization, and

that they always choose the “right” path, which would lead to the stated rules being satisfied

(assuming the rules are consistent) [Wooldridge, 1997]. These assumptions are relaxed in the

above approach, where the partners can execute asynchronously, and must be serialized only

when necessary.

Chapter 22 addresses the challenge of how the required declarative specifications are

created in the first place.

14.8 Notes
Greater formal detail on the approach of this chapter is available in a series of papers by one

of the authors, especially in Singh [2003].

The before operator is formally a dual of the more conventional “until” operator; it was

studied as the “chop” operator [Barringer et al., 1984]. Because of its similarity with sequence

composition in imperative programming languages, the chop facilitates compositional spec-

ifications. Here, before is used to state minimal ordering requirements so as to facilitate

compositionality.

The above approach has important differences from traditional linear temporal logics

[Emerson, 1990]. One, the runs are sequences of events, not of states. Two, the main semantic

definitions are given in terms of a pair of indices, i.e., intervals, rather than a single index.

14.9 Exercises
14.1. Verify that the dependencies given in Section 14.2.1 are formulated correctly.

14.2. Formalize the saga of Exercise 11.17. Assume the same start-commit-abort skeleton

for assembly and its subtransactions. Specify the classes for all events. State the saga

dependencies in the language I.

14.3. Formalize the saga of Exercise 11.17. Assume the same start-commit-abort skeleton

for assembly and its subtransactions. Specify the classes for all events. State the DOM

dependencies in the language I.

14.4. Specify the following supply-chain scenario. This supply chain functions as follows:

• When an assembly is ordered, order a valve and order a hose.

• As soon as the hose is received, order elbow joints, except that if the valve is

aborted before elbow joints are ordered, do not order elbow joints.

• If the valve is aborted but elbow joints have been ordered, cancel the order for

elbow joints.



302 Formal Specification and Enactment

Describe the skeletons for assembly, hose, and valve tasks, specifying the significant

events of each. For each event, state its event class and briefly explain why (in ≤ 1
sentence each). Next state the dependencies in the language I.

14.5. Specify the following supply-chain scenario. This supply chain functions as follows:

• When an assembly is ordered, matching valves and hoses are ordered.

• If exactly one of the hose and valve requests is aborted, cancel the one that com-

mitted.

• If the hose and valve requests both commit, but the assembly finds that the hoses

and valves fail to match, return the hoses and order new hoses.

Describe the skeletons for assembly, hose, and valve tasks, specifying the significant

events of each. For each event, state its event class and briefly explain why. Next state

the dependencies in the language I.

14.6. Describe all legal traces involving the events e, f , g, and their complements that satisfy

the following dependencies:

• e ∨ f ∨ e · f · g
• e ∨ e · f ∨ g · f
• e ∨ e · f

14.7. We are given two dependencies as follows. Formalize them to determine if both can

be satisfied together.

• If e and f both occur, then e precedes f .

• If e and f both occur, then f precedes e.

14.8. Compute the guards for the events (and their complements) that feature in the following

dependencies:

• e ∨ f ∨ e · f
• e · f ∨ e · f
• e · f ∨ e · f ∨ f · e

14.9. Compute the revised dependencies corresponding to the dependency: e∨f∨e·f under

the following conditions:

• e is immediate

• f is immediate

• e is inevitable



14.9 Exercises 303

14.10. Compute the revised dependencies corresponding to the dependency: e ·f ∨e ·f ∨f ·e
under the following conditions:

• e is immediate

• f is immediate

• e is inevitable

14.11. Compute the revised dependencies corresponding to the dependency: e ∨ e · f under

the following conditions:

• e is immediate

• f is inevitable

14.12. Compute guards for the events (and their complements) that feature in the following

dependency. Simplify the guard expressions.

• e · f ∨ f · e

14.13. Compute the revised dependencies corresponding to the following dependency: e ·f ∨
e ∧ f under the following conditions:

• e is immediate

• f is inevitable





Part IV

Collaboration

305





Chapter 15

Agents

Given that we are now able to to build and use individual services, it is only natural that

we should want to put services together to create more sophisticated and valuable services.

Service composition is about putting together services to create new functionality. Often, the

composed functionality would itself be exposed as a new service with a standard interface.

Let us consider some challenges faced while composing services. Imagine that a mer-

chant would like to enable a customer to be able to track the shipping of a sold item. Cur-

rently, the best that the merchant can do is to point the customer to the shipper’s Web site, and

the customer can then go there to check on delivery status. If the merchant could compose

its own production notification system with the shipper’s Web services, the result would be a

customized delivery notification service by which the customer—or the customer’s agents—

could find the status of a purchase in real time.

The foregoing chapters have referred informally to agents and multiagent systems. The

next sections introduce agents at a technical level. They describe the intellectual background

behind agents, the principles that underlie them, and the technologies to realize them.

It is helpful to distinguish three fundamental aspects of agents: (1) individual agents, (2)

systems of agents and their interactions, and (3) the environment in which agents operate.

This chapter describes individual agents and their environments, and discusses how to imple-

ment and apply them. Multiagent systems and their architectures are deferred to the next

chapter.

15.1 Agents Introduced
The term agent in computing covers a wide range of behavior and functionality. In general,

an agent is an active computational entity that

• has a persistent identity;

• can perceive, reason about, and initiate activities in its environment;

307



308 Agents

• can communicate with other agents, including humans.

Agents act with varying levels of autonomy, depending on environmental constraints and

their ongoing interactions, e.g., as reflected in their previous commitments. Because services

are best modeled as being autonomous and heterogeneous, they can be naturally associated

with agents. Agents make it possible to capture the interactions among the services and the

creation of new services as subtle compositions of others.

Agents can balance cooperation with self-interest. Agents also have the property of per-

sistence, which is necessary to carry out business transactions, handle exceptions, and to build

a history of interactions, itself necessary to establish trust. Moreover, agents typically interact

via the exchange of declarative messages.

The currently popular way of thinking about Web services is based on procedural abstrac-

tions using the interaction facilities of CORBA, .NET, or RMI. The history of computing has

shown that declarative approaches are ultimately favored because of their benefits of produc-

tivity and requirements gathering. For example, databases are queried declaratively through

the Structured Query Language (SQL), instead of through procedures as they previously

were, and formal grammars are specified through notations such as the Backus Naur Form

(BNF), instead of through procedural code. More obviously, literally hundreds of XML-

based markup languages exist and continue to be proposed to specify not only documents or

knowledge, but also functions as diverse as network administration and data center manage-

ment. In each case, the development of a declarative (and preferably standardized) language

leads to clearer specifications, easier exchange of models, enhanced tools, and improved pro-

ductivity in programming and administration. The same considerations yield a trend that is

inherently biased in favor of declarative agent languages.

Agents are not a panacea, however. But, applying agents enables us quite naturally to

(1) capture deeper constraints on what services are willing to offer, thereby capturing richer

requirements for service composition, (2) discover trustworthy services, (3) negotiate within

teams of providers, and (4) judge the compliance of service providers with their contracts

regarding specific compositions.

15.2 Agent Environments

Agents, as well as services, do not exist and operate in isolation, but rather in some physical

or computational environment. There are an unlimited number of environments, but they can

be described in terms of the following six characteristics [Russell and Norvig, 2003]:

Observability. An environment is fully observable by an agent if its sensors can detect all

aspects that are relevant to its choice of action; it is partially observable otherwise.

Determinism. An environment is deterministic, from the point of view of an agent, if its next

state is completely determined by the current state and the agent’s action; otherwise, it

is stochastic.



15.2 Agent Environments 309

History Freedom. An episode is a single cycle of an agent perceiving its environment and

taking an action. If the choice of action depends only on the episode itself and not

previous episodes, then the environment is episodic. If the current decision affects

future decisions, as in deciding on a move in chess, then the environment is sequential.

Dynamism. An environment is dynamic if it can change while an agent is deciding on the

action it should take; otherwise, it is static.

Continuity. From the point of view of an agent, an environment is discrete if the agent

perceives it as being in one of a finite number of distinct states, if the agent has a finite

number of possible actions, and if there is a distinct set of time points at which it is

perceived or actions are taken. If the perceived variables can have a continuous range

of values, then the environment is continuous.

Multiagent. From the point of view of an agent, if there are other agents that can affect its

environment and of which the agent is aware, then the environment is considered to be

multiagent.

From an implementation standpoint, environments for agents consist of: a communication

infrastructure and protocols for interaction, security services for authentication and authori-

zation, remittance services for billing and accounting, and operations support for logging,

recovery, and validation.

For an agent to act properly in an environment, some combination of its data structures

and program must reflect the information it has about its environment. Because this infor-

mation would reflect the state of the environment according to the agent, it can be termed its

knowledge or a set of its beliefs. (The distinction between knowledge and beliefs is stronger in

ordinary language than it is in the literature about agents, where knowledge is usually treated

simply as “true belief.” Some researchers represent the relationship between the two using

additional attributes, such as justifications, but we will just accept the simpler definition.) An

agent’s desires correspond to the state of the environment the agent prefers. And, an agent’s

intentions correspond to the state of the environment the agent is trying to achieve, which

should be a consistent subset of the agent’s desires and directly connected to the agent’s

actions.

Notice that it is the human designer who determines the agent’s beliefs, desires, and

intentions in an environment. However, to make sense, these beliefs, desires, and intentions

must be related to the agent’s perceptions and actions. The relationship can be captured in an

agent architecture such as the one shown in Figure 15.1.

The relationship is mediated by the agent’s reasoning system. For simplicity and as is

customary, we assume that the agent’s desires are given. The cognitive concepts can then be

used in two ways:

• Means-ends reasoning. The agent must decide what intentions to adopt or revise, and

what actions to perform.



310 Agents

Beliefs, Desires, Intentions

Reasoner

Effectors

Sensors

Perceptions

Actions

Agent Alice

Beliefs, Desires, Intentions

Reasoner

Effectors

Sensors

Perceptions

Actions

Agent Bob

Communication

Infrastructure

Communication

Interfaces

Figure 15.1: An architecture for an agent that captures the beliefs, desires, and intentions

ascribed to the agent, and relates them to the agent’s perceptions and actions in an environ-

ment

• Plan recognition. The agent must infer the beliefs, desires, and intentions of other

agents in order to cooperate or compete with them.

For example, suppose Agent Alice desires both ice cream and soup, but given the cold

weather (and based on beliefs not mentioned here) Alice intends to have only soup. Means-

end reasoning causes Alice to get soup from the pantry and heat it in the microwave oven.

Next, Alice observes Bob perform actions or hears Bob’s statements indicating that Bob is

opening the refrigerator door. From this action, Alice uses plan recognition to infer that Bob

is about to get ice cream. Knowing Bob to be “rational,” Alice decides that Bob does not

believe that it is cold outside. Since Alice is a helpful agent, she informs Bob that it is cold

outside.

Although the example describes only two agents in a kitchen, the agents are reasoning

about each other’s actions, which could be actions to access information when the agents are

in a Web environment.

A somewhat limited, but widely employed, class of logical models, called truth mainte-

nance systems (TMS), involves the single abstraction of belief. The models capture relation-

ships among the beliefs of an agent, which enables maintaining consistency of the beliefs.

Section 16.5 describes a distributed version of a TMS.

15.3 Agent Descriptions
Agents can be described at three different levels of abstraction:

• Knowledge Level (or Epistemological Level)—the agent is described by saying what it

knows.

• Logical Level—the level at which the knowledge is encoded into sentences.



15.3 Agent Descriptions 311

• Implementation Level—the level that runs on the agent architecture; this level is impor-

tant only for efficiency.

An agent can be built by telling it what it needs to know, which is a declarative approach.

This presupposes a suitable reasoning engine that can operationalize what the agent is being

told. An agent can also be built by giving it an ability to interact with its environment and a

mechanism for learning, and then placing it in an environment where it can learn for itself,

which is an inductive approach. With either approach, the agent needs a means for repre-

senting its knowledge, i.e., a knowledge-representation language. Such a language has two

aspects:

• Syntax—how each sentence appears or is recorded in the agent’s memory.

• Semantics—how the agent’s sentences correspond to (facts in) the real world. For

example, if x and y are expressions denoting numbers, then x ≥ y syntactically is a

sentence about natural numbers in the language of arithmetic expressions. The seman-

tics of the language says that x ≥ y is false when y is a bigger number than x, and true

otherwise.

If the syntax and semantics are defined precisely, then the language is called a logic. A

knowledge-representation language imposes a systematic relationship between sentences and

facts. Most such languages have a compositional semantics, so that the meaning of a sentence

is a function of the meaning of its parts. Since the syntax is typically given via a context-free

grammar using a notation such as BNF, a compositional semantics is readily generated by

giving a separate meaning rule for each production in the grammar.

15.3.1 Reasoning
A knowledge base (KB) is a set of sentences expressed in a knowledge representation lan-

guage. Reasoning is the process of constructing new sentences from existing ones in the KB

of an agent. If the existing sentences are true, the process of generating new ones that are

necessarily true is called entailment, written

KB |= α

A reasoning, or inference procedure, can do either of the following:

• given a KB, generate new sentences that are entailed by the KB;

• given a KB and a sentence, determine whether or not the sentence is entailed by the

KB.

There are two important properties that inference procedures can have. Soundness means that

the given procedure generates only entailed sentences. Completeness means that the given

procedure can generate all entailed sentences. The record of operation of a sound inference

procedure is called a proof . The key to soundness is to have the procedure generate only



312 Agents

new sentences that correspond to facts that follow from the facts represented by the KB.

Sound reasoning is also called logical inference or deduction. A description of an agent at

the knowledge level is shown in the following listing:
� �

f u n c t i o n : KB−Agent ( p e r c e p t )

s t a t i c : KB − a d e s c r i p t i o n o f t h e c u r r e n t wor ld

t − a c o u n t e r , i n i t i a l l y 0 , i n d i c a t i n g t ime

T e l l (KB , Make−P e r c e p t−S e n t e n c e ( p e r c e p t , t ) )

a c t i o n <− Ask (KB , Make−Act ion−Query ( t ) )

T e l l (KB , Make−Act ion−S e n t e n c e ( a c t i o n , t ) )

t <− t +1

r e t u r n a c t i o n
� �

The function Tell adds new sentences to the KB, and the function Ask is used to query the

KB.

15.3.2 Internal Architectures

Agents are implemented according to a few common architectures. Agent features relevant

to implementation are unique identity, proactivity, persistence, autonomy, and sociability. An

agent inherits its unique identity simply by being an object. To be proactive, an agent must be

an object with an internal event loop similar to that possessed by an object in a derivation of

the Java thread class. Here is simple pseudocode for a typical event loop, where events result

from sensing the environment:
� �

Envi ronment e ;

R u l e S e t r ;

w h i l e ( t r u e ) {
s t a t e = s e n s e E n v i r o n m e n t ( e ) ;

a = c h o o s e A c t i o n ( s t a t e , r ) ;

e . a p p l y A c t i o n ( a ) ;

}
� �

This is an infinite loop, which also provides an agent with persistence. Persistence is a

prerequisite for agents to participate in long-term interactions, such as long-lived business

transactions, and to detect and handle exceptions that may occur long after a traditional trans-

action would be over. Ephemeral agents would find it difficult to converse, making them, by

necessity, asocial. Additionally, persistence makes it worthwhile for agents to learn about

and model each other. To benefit from such modeling, they must be able to distinguish one

agent from another, hence the need for unique identities.

Agent autonomy is akin to human free will and enables an agent to choose its own actions.

For an agent constructed as an object with methods, autonomy can be implemented by declar-

ing all of the methods private. With this restriction, only the agent can invoke its own meth-

ods, under its own control, and no external object can force the agent to do anything it does



15.3 Agent Descriptions 313

not intend. Other objects can communicate with the agent by creating events or artifacts

(especially messages) in the environment that the agent can perceive and react to.

Enabling an agent to converse with other agents achieves sociability. The conversations,

normally conducted by sending and receiving messages, provide opportunities for agents

to coordinate their activities and cooperate, if so inclined. We can achieve sociability by

generalizing the input class of objects an agent might perceive, as shown in Figure 15.2.

Events serving as input are simply reminders the agent sets for itself. For example, an agent

wanting to wait 5 minutes for a reply would set an event to fire after 5 minutes. If the reply

arrives before the event, the agent can disable the event. If it receives the event, then it knows

it did not receive the reply in time and can proceed accordingly.

+Input()

+getTimestamp() : long(idl)

+setTimestamp() : long(idl)

-timestamp : long(idl)

Input

+SensorInput()

SensorInput

+Message()

-contents : string(idl)

Message

+Event()

+isBefore() : boolean(idl)

-name : string(idl)

Event

Figure 15.2: An agent’s input can be a piece of sensory information, a message from another

agent, or an event defined by the agent

A reactive agent is the simplest kind to build, since it does not maintain information

about the state of its environment, but simply reacts to its current perceptions. A reactive
architecture is shown in Figure 15.3.

A belief-desire-intention (BDI) architecture includes and uses an explicit representation

for an agent’s beliefs, desires, and intentions. The BDI architecture shown in Figure 15.4

uses a voluntary multitasking method whereby the environment thread constantly checks to

make sure the current intention is applicable. If it finds that it is not, it will tell the intention

to stop itself, which the intention does by calling stopCurrentPlan(). This method in turn will

call stopExecuting(). Thus the plan is responsible for stopping itself and cleaning up. By

giving each plan this capability, we eliminate the possibility of a deadlock resulting from the

plan’s having some resource reserved when it was stopped. The pseudocode in Listing 15.1

illustrates the two main loops, one for each thread, of our BDI architecture.

Listing 15.1: Pseudocode for voluntary multitasking in the BDI architecture
� �



314 Agents

Perceive

Environment

Select Action

Environment

Condition-

Action Rules

Effectors

Sensors

percepts

action

world

model

outputs

inputs

Reactive

Agent

Figure 15.3: An architecture for a reactive agent, which simply reacts to the current observable

state of its environment

A g e n t : : r u n ( ) {
P e r c e p t i o n p ;

p . run ( ) ; / / s t a r t p e r c e p t i o n sys tem i n i t s own t h r e a d

w h i l e ( t r u e ) {
I = g e t B e s t P l a n ( ) ;

i f ( I . e x e c u t e ( ) ) / / t r u e i f g o a l was a c h i e v e d

D. remove ( I . g o a l ) ;

}

P e r c e p t i o n : : r u n ( ) {
w h i l e ( t r u e ) {

a . B . i n c o r p o r a t e N e w O b s e r v a t i o n s ( g e t I n p u t (w ) ) ;

i f ( ! a . c u r r e n t P l a n I s A p p l i c a b l e ( ) )

a . s t o p C u r r e n t P l a n ( ) ;

s l e e p ( someShortTime ) ;

}
� �

The agent’s run method consists of finding the best applicable plan and executing it to

completion. If the plan returns true, it means the goal was achieved, so the goal is removed

from the desire (goal) container. If the thread for perceiving the environment finds that an

executing plan is no longer applicable and calls for a stop, the plan will promptly return

from the execute() call with a false. Notice that the perception thread modifies the agent’s

set of beliefs. The belief container needs to synchronize these changes with any changes the



15.3 Agent Descriptions 315

+run()
+currentIntentionIsOK() : boolean(idl)
+stopCurrentIntention()
+chooseIntention()
+perceiveEnvironment()
+takeAction()

-B : BeliefSet
-D : DesireSet
-P : IntentionSet
-I : Intention
-e : Environment
-name: String
-a : Action

Agent

+run()
+applyAction(in a : Action)

-a : AgentSet

Environment

+add(in a : Agent)
+remove(in a : Agent)

-elements: Vector

AgentSet

+includeObservation()

-elements: Vector

BeliefSet

+getApplicable(in B : BeliefSet) : DesireSet

-elements: Vector

DesireSet

+getApplicable(in D : DesireSet, in B : BeliefSet) : IntentionSet

-elements: Vector

IntentionSet

+satisfies(in d : Desire) : boolean(idl)
+execute(in a : Agent) : boolean(idl)
+context(in B : BeliefSet) : boolean(idl)
+stopExecuting()

-id: String
-priority: int
-d: Desire
-a : Agent

Intention

-id: String
-value: String

Belief

+context(in B : BeliefSet) : boolean(idl)

-id: String
-priority: int

Desire

Action

Figure 15.4: A belief-desire-intention (BDI) architecture for an agent, which enables the agent

to plan or deliberate about its present and future actions in order to achieve its desires

plans make to the set of beliefs. Finally, the perception thread’s sleep time can be modified,

depending on the system’s real-time requirements. If we do not need the agent to change

plans rapidly when its perception of the environment changes, the thread can sleep longer.

Otherwise, a short sleep will make the agent check the environment more frequently, using

more computation. A more efficient callback mechanism could easily replace the current run

method if the agent’s input mechanism supported it.

Most popular agent architectures include a set of behaviors and a method for scheduling

them. A behavior is distinguished from an action in that an action is an atomic event, while

a behavior can span a longer period of time. In multiagent systems, we can also distinguish

between physical behaviors that generate actions, and conversations between agents. We can

consider behaviors and conversations to be classes inheriting from an abstract activity class.

We can then define an activity manager responsible for scheduling activities.



316 Agents

This general activity manager design lends itself to the implementation of several different

agent architectures, while maintaining the proper encapsulation and decomposability required

in good object-oriented programming. Specifically, activity is an abstract class that defines

the interface to be implemented by all behaviors and conversations. The behavior class can

implement any helper functions needed in the particular domain (for example, subroutines

for triangulating the agent’s position). The conversation class can implement a finite-state

machine for use by the particular conversations. For example, by simply filling in the appro-

priate states and adding functions to handle the transitions, an agent can define a contracting

protocol as a class that inherits from conversation. Details of how this is done depend on

how the conversation class implements a finite-state machine, which varies depending on the

system’s real-time requirements.

Defining each activity as its own independent object and implementing a separate activity

manager has several advantages. The most important is the separation between domain and

control knowledge, a feature first popularized by blackboard systems. The activities will

embody all the knowledge about the particular domain the agent inhabits, while the activity

manager embodies knowledge about the deadlines and other scheduling constraints the agent

faces. By implementing each activity as a separate class, we compel the programmer to

separate the agent’s abilities into encapsulated objects that other activities can then reuse. The

activity hierarchy forces all activities to implement a minimal interface, which also facilitates

reuse. Finally, placing the activities within the hierarchy provides many opportunities for

reuse through inheritance. For example, the conversation class can implement a general error-

handling procedure for lost messages that all the conversations can use.

Of course, a complete agent-based system requires an infrastructure to provide for mes-

sage transport, directory services, and event notification and delivery. These are usually pro-

vided as operating system services or, increasingly, in an agent friendly form by higher level

distributed protocols such as FIPA’s (the Foundation of Intelligent Physical Agents) emerg-

ing standards. Agents can also benefit from having their knowledge encoded in a declarative

form, such as in the form of rules as we describe in Section 15.7.

15.4 Abstractions for Composition
When we treat desired service compositions as workflows, the execution model of the com-

positions is trivial. This form of composition, procedural composition, is exactly what you

would see in a closed environment. The main compositional operation here is calling the

methods corresponding to the constituent services. Procedural composition is best suited to

programming in the small. It yields a graph whose vertices are existing services or filters

and whose edges represent data flows. The graph would typically be executed when its root

vertex invokes its children; it could also be executed when the children push up results to the

root.

When the execution model is trivialized, any complexity that remains lies primarily in

how the data connectors are built. The Web simplifies the data connectors by standardizing

the protocol as HTTP and the data representation as XML (or HTML). Aligning the seman-



15.5 Describing Compositions 317

tics of the information exchange is still a challenge, of course. However, once you choose

a uniform description framework such as RDF, the main problem is in agreeing about the

terms—typically resolved through domain-specific standardization efforts.

So how should abstractions for service composition differ to accommodate open environ-

ments? Desirable abstractions would recognize certain special features of open environments

and add in the abilities to exploit the opportunities offered by those features.

• Because services are autonomous, we should not require them to be subservient to other

services. In fact, we should enable them to be proactive and interact flexibly on their

own terms. Their autonomy would be captured by expressing contractual guarantees

among them regarding the quality of service they offer.

• Because services are heterogeneous, we should develop expressive, standardizable rep-

resentations: presently, this is done for data, but not for processes and policies. For

example, to be able to compare travel services, it would help if the processing detail

that hotel bookings are refundable and cheap airline fares are nonrefundable could be

standardized.

• Because services are long-lived and evolving, and operate in environments that produce

exceptions, our representations should handle such situations. For example, how would

flight cancellations be handled by our travel service? Would the airline service suggest

alternatives?

• Because services can be (and ought to be) cooperative, our abstractions would repre-

sent how they behave in the awareness of the behaviors of other services. For example,

if the airline service has to reschedule a flight, would the hotel service accommodate

the change so your trip would not be ruined?

15.5 Describing Compositions

No good means exist for describing desired compositions of services. Currently, the best

descriptions are procedural, typically based on previous ideas on workflow modeling and

enactment, e.g., as discussed in Section 13.3. As explained there, current process languages

are intimately related to workflow models. Such specifications tell us only how different

services ought to be invoked, e.g., in terms of ordering and parallelism among them.

While current approaches for service invocation represent much progress, they carry the

baggage of traditional distributed object approaches. Current approaches are geared for

low-level invocation of services—they are not specially geared for enabling composition.

Services are integrated through method invocation without regard to any higher-level con-

straints. WSDL enables us to capture the various methods, but does not support constraints

among those methods. Often, either too many methods will be enabled or too few. However,

WSDL’s functionality is required to specify the methods supported by a service.



318 Agents

Method invocation may be appropriate for closed systems, but services are inherently

autonomous and often to be used in long-lived interactions. For example, a long-lived inter-

action occurs in e-commerce when you try to change an order because of some unexpected

conditions or try to get a refund for a faulty product. Even short-lived settings involve certain

kinds of protocols, e.g., checking if the service requester is authenticated and properly autho-

rized before accepting its order. Consequently, interesting service compositions will often

involve subtle constraints on interactions among the participating services. The services will

not simply be invoked as methods by an aggregator, but will engage each other using rich

protocols for potentially long-lived interactions.

Composing services clearly involves overcoming the challenges of semantic disparities,

as well as of invoking services correctly. The previous chapters have examined these topics in

some detail. Further challenges involve ensuring that the autonomous interests represented by

the services can be suitably captured and respected, that the services are able to collaborate,

comply with their collaboration, and confirm their collaboration, that exception conditions

can be detected and resolved, and lastly that the services can be selected (or can select each

other) so that the right behavior is obtained and trust is engendered.

15.5.1 Representing and Reasoning about Action
Several formalisms for representing and reasoning about action have been developed in com-

puter science. The recent representations of services that are intended to support automatic

planning of the execution of individual or composed services are typically based on these

formalisms. The execution of a service corresponds to performing an action; when a service

is composite, so is the corresponding action.

Some of the most common action languages are the imperative programming languages.

In particular, some of the primitives that originated with Algol-60, and reflected in modern

languages such as Java and C#, are still relevant. These include the classical notions of

sequence (;), conditional branching (if then else), and conditional iteration (while), and the

well-known constructs for parallel execution (fork and join).

To illustrate a practical application of the above ideas, we consider the OWL-S language

next. OWL-S develops richer representations than previous approaches and its expected

usage would exploit the ability of agents to reason flexibly and plan. However, although

it is placed in this chapter, it does not use the collaborative aspects of agents, which the

following chapter elaborates.

15.5.2 OWL-S
OWL for Services makes use of prior work done in workflow management systems, artifi-

cial intelligence approaches to planning, formal process models, multiagent planning, and

description logic. The objectives for the development of OWL-S are to enable reasoning

about Web services, planning compositions of Web services, and automating the use of ser-

vices by software agents. The goal is to make Web services unambiguously interpretable by

a computer.



15.5 Describing Compositions 319

OWL-S provides an OWL ontology for describing Web services. Using OWL-S, a Web

service can advertise its functionality to potential users. A request for a service would then be

matched against the Web service’s advertisement via a matchmaking process (which OWL-S

does not specify).

An OWL-S description for a service consists of three components—a service profile,

a service model, and a service grounding—as shown in the upper ontology for services in

Figure 15.5.

Service

ServiceGrounding

Resource

ServiceModel

ServiceProfile

provides

supports presents

describedBy

Figure 15.5: An upper ontology for services, describing a service in terms of what it does,

how it works, and how it can be accessed

A service profile is an abstract characterization of what a service can do. It is similar to

the yellow-page entry for a service and is used for entries in directories and service registries,

from where the service can be discovered and matched to requirements. It relates and builds

upon the type of content in UDDI, describing properties of a service necessary for automatic

discovery, such as what the service offers, and its inputs, outputs, preconditions, and side-

effects. From the profile, which presents information about the provider, the functionality,

and the functional attributes of the service, service advertisements and service requests can

be constructed. Table 15.1 compares the OWL-S service profile to UDDI.

The functionality is specified by the inputs, outputs, preconditions, and effects of the

service. These are together known as the IOPEs of the given service. For example, an online

bookstore could have as inputs the book title, customer’s address, and customer’s credit card

number, with the precondition being the validity of the credit card. The output would be an

electronic receipt, and the effects would be a debiting of the credit card and the shipping of

the book with a corresponding transfer of ownership. The functional attributes might describe

the quality of the service, such as the bookstore’s average time-to-ship and the fee for an order



320 Agents

Table 15.1: OWL-S service profile compared to UDDI

OWL-S Profile UDDI Business Service

Name
contactInformation Contact

name ←→ personName
title
phone ←→ phone
fax
email ←→ email
physicalAddress ←→ address
webURL ←→ discoveryURLs

businessKey

UDDI Business Entity

businessKey
serviceName ←→ name
textDescription ←→ description

categoryBag
hasProcess ←→ hasProcess TModel
serviceCategory ←→ serviceCategory TModel
serviceParameter ←→ serviceParameter TModel
qualityRating ←→ qualityRating TModel
input ←→ input TModel
output ←→ output TModel
precondition ←→ precondition TModel
effects ←→ effect TModel

bindingTemplates

cancellation.

As illustrated in Figure 15.6, the process model of a service, i.e., an instance of its service

model, provides a computer-interpretable description of a service provider’s behavior. It tells

a user’s application how and when to interact with the service, via the sending and receiving

of messages. As such, it can be used for invoking, planning, and composing services. It also

can be used for service monitoring by supporting status queries.

A service’s behavior is described in terms of its process model’s constituent subprocesses,

organized as a process graph. The functionality of each subprocess can be described by its

IOPE. There are three kinds of subprocesses in a graph: (1) atomic processes, which have

no subprocesses and are invocable, (2) simple processes, which do not have subprocesses,

but might be invocable, and (3) composite processes, which have subprocesses linked by

control constructs, such as sequence, split, split and join, choice, iteration, and if-then-else.



15.5 Describing Compositions 321

Resource Service

ServiceProfile ServiceGrounding

ProfileProcess

AtomicProcess SimpleProcess CompositeProcess

ControlConstruct

ServiceModel

ProcessComponent

input

precondition

output

effect

provides

presents describedBy supports

hasProfile

realizes expand

components

computedInput

computedEffect

invocable

computedOutput

composedBy

computedPrecondition

Sequence Split RepeatUnit. . .

QualityRating

ServiceCategory
Actor

ParameterDescription

ServiceParameter

Figure 15.6: A model describing how a service works can be used for invoking, monitoring,

and interoperating with it

Figure 15.7 shows an example of a composite process for an online bookstore [Bansal, 2002].

In this example, a user or the user’s agent would follow the sequential process of logging

in, choosing one or more books, and then paying with a credit card. Login would involve the

subprocess of either creating a new account or loading an existing account. Choosing books

would be an iterative subprocess. The IOPEs for this example are shown in Table 15.2.



322 Agents
Ta

bl
e

15
.2

:
T

h
e

IO
P

E
s

fo
r

an
ex

am
p
le

b
o
o
k
st

o
re

se
rv

ic
e

Pr
oc

es
s

In
pu

ts
O

ut
pu

ts
Pr

ec
on

di
tio

ns
E

ff
ec

ts

B
oo

ks
to

re
C

om
po

si
te

N
am

e,
P

as
sw

o
rd

,
IS

B
N

s,

C
re

d
it

ca
rd

ty
p
e,

C
re

d
it

ca
rd

n
o
.

O
rd

er
n
u
m

b
er

,

A
m

o
u
n
t,

O
K

?

V
al

id
cr

ed
it

ca
rd

A
cc

o
u
n
t

d
eb

it
ed

,
S

h
ip

b
o
o
k
s,

T
ra

n
sf

er
o
w

n
er

-

sh
ip

Lo
gi

n
Se

le
ct

io
n

N
am

e,
P

as
sw

o
rd

,

A
d
d
re

ss

V
al

id
ad

d
re

ss
A

cc
o
u
n
t

ex
is

ts

O
rd

er
It

er
at

io
n

T
it

le
O

rd
er

n
u
m

b
er

,

A
m

o
u
n
t

In
v
en

to
ry

d
ec

re
as

ed

C
re

at
e

A
cc

ou
nt

N
am

e,
P

as
sw

o
rd

,

A
d
d
re

ss

A
cc

o
u
n
t

d
o
es

n
o
t

ex
is

t,
V

al
id

ad
d
re

ss

A
cc

o
u
n
t

ex
is

ts

Lo
ad

A
cc

ou
nt

N
am

e,
p
as

sw
o
rd

A
cc

o
u
n
t

ex
is

ts

C
ho

os
e

B
oo

k
T

it
le

IS
B

N
,
C

o
st

B
o
o
k

in
st

o
ck

A
dd

to
O

rd
er

IS
B

N
,
C

o
st

O
rd

er
n
u
m

b
er

,

A
m

o
u
n
t

In
v
en

to
ry

d
ec

re
as

ed

Se
le

ct
C

re
di

tC
ar

d
T

y
p
e

V
al

id
ty

p
e?

D
eb

it
C

re
di

tC
ar

d
C

re
d
it

ca
rd

n
o
.,

A
m

o
u
n
t

O
K

?
A

cc
o
u
n
t

d
eb

it
ed

,
S

h
ip

b
o
o
k
s,

T
ra

n
sf

er
o
w

n
er

-

sh
ip



15.5 Describing Compositions 323

Create

Account

Load

Account

Choose

Book

Add to

Order

Select

Credit Card

Charge

Credit Card

Book Store

Sequence Process

Selection Process Iteration Process Choice Process

Choice Process

Figure 15.7: A composite service for an online bookstore. The leaf nodes of the graph are

simple processes, and the other nodes are composite processes

Selected parts of the OWL-S description of the example in Figure 15.7 are shown in the

follow listing. Chapter 8 introduces the constructs used here.
� �

<!−− DATATYPE −−>
< r d f : r d f

x m l n s : s e r v i c e ="http://www.daml.org/services/owl-s/0.9/Service.daml#"

x m l n s : p r o c e s s ="http://www.daml.org/services/owl-s/0.9/Process.daml#"

x m l n s : p r o c ="http://www.daml.org/services/owl-s/0.9/Process.owl#">

<o w l : C l a s s r d f : I D ="CreditCardType">
<owl :oneOf r d f : p a r s e T y p e ="owl:collection">

<C r e d i t C a r d T y p e r d f : I d ="MasterCard"/>
<C r e d i t C a r d T y p e r d f : I d ="Visa"/>
<C r e d i t C a r d T y p e r d f : I d ="AmericanExpress"/>

</ owl:oneOf>
</ o w l : C l a s s >

<o w l : C l a s s r d f : a b o u t ="#Bookstore">
<p r o c e s s : c o m p o s e d O f r d f : r e s o u r c e ="#Bookstore1"/>

</ o w l : C l a s s >

< r d f s : C l a s s r d f : I D ="#Bookstore1">
<r d f s : s u b C l a s s O f r d f : r e s o u r c e ="proc:Sequence"/>
</ r d f s : C l a s s >

<o w l : C l a s s r d f : a b o u t ="#Bookstore1">



324 Agents

<p r o c e s s : c o m p o n e n t s r d f : r e s o u r c e ="#LoginSelection"/>
<p r o c e s s : c o m p o n e n t s r d f : r e s o u r c e ="#OrderIteration"/>
<p r o c e s s : c o m p o n e n t s r d f : r e s o u r c e ="#CreditCardChoice"/>
<p r o c e s s : c o m p o n e n t s r d f : r e s o u r c e ="#DebitCreditCard"/>

</ o w l : C l a s s >
� �

� �

<o w l : C l a s s r d f : I D ="Login">
<r d f s : s u b C l a s s O f r d f : r e s o u r c e ="proc:CompositeProcess"/>
<p r o c e s s : c o m p o s e d O f r d f : r e s o u r c e ="#Login1"/>
<r d f s : s u b C l a s s O f r d f : r e s o u r c e ="#Login1"/>
<r d f s : s u b C l a s s O f >

<o w l : R e s t r i c t i o n o w l : c a r d i n a l i t y ="1">
<o w l : o n P r o p e r t y r d f : r e s o u r c e ="#Name"/>

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f >
<r d f s : s u b C l a s s O f >

<o w l : R e s t r i c t i o n o w l : c a r d i n a l i t y ="1">
<o w l : o n P r o p e r t y r d f : r e s o u r c e ="#Password"/>

</ r d f s : s u b C l a s s O f >
<r d f s : s u b C l a s s O f >

<o w l : R e s t r i c t i o n o w l : c a r d i n a l i t y ="1">
<o w l : o n P r o p e r t y r d f : r e s o u r c e ="#Address"/>

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f >
<r d f s : s u b C l a s s O f >

<o w l : R e s t r i c t i o n o w l : c a r d i n a l i t y ="1">
<o w l : o n P r o p e r t y r d f : r e s o u r c e ="#ValidAddressPrecondition"/>

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f >
<r d f s : s u b C l a s s O f >

<o w l : R e s t r i c t i o n o w l : c a r d i n a l i t y ="1">
<o w l : o n P r o p e r t y r d f : r e s o u r c e ="#AccountExistsEffect"/>

</ o w l : R e s t r i c t i o n >
</ r d f s : s u b C l a s s O f >

</ o w l : C l a s s >
� �

� �

< r d f s : C l a s s r d f : I D ="#Login1">
<r d f s : s u b C l a s s O f r d f : r e s o u r c e ="proc:Choice"/>

</ r d f s : C l a s s >

<o w l : C l a s s r d f : a b o u t ="#Login1">
<p r o c e s s : c o m p o n e n t s r d f : r e s o u r c e ="#CreateAccount"/>
<p r o c e s s : c o m p o n e n t s r d f : r e s o u r c e ="#LoadAccount"/>

</ o w l : C l a s s >
� �



15.5 Describing Compositions 325

Processes may be characterized via their function (and data flow) or action. If the pro-

cesses are composite, they comprise both control flow and data flow.

The service grounding portion of the upper-level model for services describes how to

access and use a service. It is generally implementation-specific. It includes descriptions for

message formatting, transport mechanisms, protocols, and serializations of types. A service

model plus a specification of the grounding provide everything needed for using a service.

The OWL-S service grounding model builds upon WSDL. An OWL-S atomic processe cor-

responds to WSDL operation, and inputs and outputs correspond to WSDL messages.

There are many formalisms for describing a business process, such as BPMI and BPML,

and OWL-S was designed to be neutral with respect to a particular formalism. It instead just

provides the necessary vocabulary and properties for a process model. In this way, OWL-S

enables different process models to be described and compared, much as NIST’s PSL (see

Section 13.5) does for general processes and activities.

Both the OWL-S service model and BPEL4WS provide a mechanism for describing a

business process model. However, they can be contrasted in terms of their expressiveness,

representations, semantics, discovery support, execution support, and fault handling, as fol-

lows:

Expressiveness. OWL-S augments the input and output specifications of BPEL4WS with

preconditions and effects: this enables the side effects of services to be encoded. Appli-

cations can then reason about how services may be composed to achieve a desired goal,

while determining the changes the services will make to their environment.

Representations. Because OWL-S is written in OWL, which supports inheritance and other

reasoning about relationships, constraints, and property ranges, OWL-S classes can

draw properties from each other, resulting in more easily generated and concise rep-

resentations. Moreover, the representations for services can then be searched and rea-

soned over more efficiently. BPEL4WS describes services using structured XML con-

tained in WSDL port type definitions, which is constrained only by XML schema.

XML schemas support only limited inferencing.

Semantics. BPEL4WS is not based on a formal semantics, whereas the interpretation of

the OWL-S process model is defined in three ways: (1) by a translation to first-order

logic, (2) by a translation to an operational semantics using Petri Nets, and (3) by

a comparable translation to a subtype polymorphism. Further, the OWL-S service

profile and service model provide sufficient information to enable automated discovery,

composition, and execution based on well-defined IOPE descriptions and a process

model.

Fault Handling. BPEL4WS defines a mechanism for catching and handling faults that is

similar to the mechanism in Java. One may also define a compensation handler for

actions that cannot be explicitly undone. OWL-S does not define recovery protocols,

but Petri Net translations of OWL-S descriptions may be extended to support them.



326 Agents

Execution Monitoring. Neither BPEL4WS nor OWL-S directly support query mechanisms

to expose the state of executing processes, although BPEL4WS lists this as future work.

Petri Net translations of OWL-S descriptions may be extended to support execution

monitoring.

Transactions. BPEL4WS may be extended with WS-Coordination (see Section 12.3) and

WS-Transaction (see Section 12.4) to provide a context for predefined transactional

semantics.

15.6 Composition as Planning
The composition of Web services is similar to the planning problem that has been investigated

extensively in artificial intelligence. Classical planners, using STRIPS-style operators, are

ill-suited for Web service composition, because two of the key assumptions are not satisfied:

(1) the world is static except for the actions of the planner, and (2) the planner is omniscient.

However, there are several recent AI planners that are appropriate, because they can deal with

the situation calculus semantics of the OWL-S process model. Such planners would proceed

as follows in constructing a composition of Web services that satisfies a requirement:

1. Start by specifying an initial plan, which combines aspects of state requirements and

aspects of activity performance.

2. Using a library of process descriptions in the form of partial plans, standard operating

procedures, or descriptions of activities that are considered executable, automatically

or with user guidance or control, refine the initial outline plan to get a more detailed

plan.

3. Support execution and execution monitoring of the partial plans, making selections of

undecided parts at run-time.

4. Recognize variances to the expected and required outcomes of the plan steps and begin

repairing or replanning to recover dynamically.

O-Plan [Tate and Dalton, 2003] is an example of a planner that follows this procedure.

The Plan Domain Description Language (PDDL) is a unified language for specifying

actions. It is intended to be a basic planning language that specific planners can extend in

different ways. PDDL includes the ability to represent preconditions and effects of actions

(STRIPS-style), conditional effects, hierarchical actions composed of subactions and sub-

goals, universal quantification, and safety constraints. For a given domain it can express the

predicates, the actions, the structure of compound actions, and the effects of actions.

An important research problem is how to decide how deeply to plan, that is, how many

Web services should be identified during planning and how many should be discovered during

plan execution. A solution will likely involve a model for the run-time execution context,

which is difficult to determine at plan-time in advance of the plan’s use, especially for a large

open environment such as the Web.



15.7 Rules 327

15.7 Rules

In simple terms, it is helpful to distinguish between two main kinds of knowledge: knowing
that and knowing how. Know-that deals with concepts and is static; know-how deals with

processing information and is active. Ontologies are a mechanism for making our systems

know that, whereas rules are a mechanism for making our systems know how.

Rules are needed for expressing the individual decision making of interacting parties, as

well as the contracts that bind them to each other. Nailing down the desired decisions is not

trivial and often involves augmenting a given specification incrementally. Likewise, contracts

are frequently partial, especially early in the process of being designed. This is the reason that

rules are highly suited to specifying such decision making and contracts. The apparent per-

spicuity and naturalness of rules is the main reason why they are becoming popular in modern

practice. Rules are increasingly being used to specify a variety of situations, such as busi-

ness needs, conventional behavior, and policies. Consequently, rule engines are becoming a

routine component of software architectures.

In particular, rules are desirable because they

• Can be created in a modular manner. You can add rules incrementally. As you do

so, the set of rules being developed becomes more complete and potentially yields

behavior that is closer to what is desired.

• Are inspectable. Unlike imperative programming languages, rules are declarative.

Thus, they can be read and understood in terms of their explicit content. You can

modify a rule and expect the modifications to have an obvious effect.

• Are executable. Unlike textual descriptions or even some formal specifications, rules

can be directly executed. Thus, behavior specified using rules is attained by execut-

ing those rules. There is no additional step of converting specifications into formally

executable implementations.

For the above properties to hold, it is natural that rules may conflict with each other. There-

fore, an approach that can accommodate conflict handling, especially using priorities, is desir-

able. Grosof and colleagues [2004] have developed one such approach, known as courteous
logic programming.

Further, it helps to support procedural attachment, which means that the rule engine may

invoke procedures external to itself. This is a valuable feature, because it means that rules

can be used for specifying the top levels of the desired behavior (decision rules or contracts),

while leaving the detailed aspects of the behavior to be specified by existing programs. The

procedures invoked based on the rules could be Web services and other transactions that are

required by the given business process. Rule engines that support procedural attachments are

sometimes called situated.

In the Semantic Web vision, rules are a higher-level abstraction than ontologies.



328 Agents

15.7.1 Applying Rules
Rules have a natural match with services, especially with regard to their composition. Just

as rules can be used to encode plans, they can be used to encode how services may be put

together. The following are some potential uses of rules for service computing:

• Rules can be used to express derived concepts in an ontology. For example, whereas

the class Customer may be declared in an ontology, the class GoodCustomer may not

be declared explicitly. Instead, if it is defined in terms of some rules, we would be

able to determine whether a given customer is good or not. Rules are needed not only

for the above kinds of settings where the concepts involve some subtlety, but also in

some apparently simple cases that cannot be addressed via description logic alone.

For example, whereas the relationship of parent and child can be expressed directly in

an ontology, the relationship of sibling cannot be expressed using a description logic

such as OWL DL. Two persons are siblings if they have the same parents. Intuitively,

expressing this requires using more than one variable, which places it beyond the reach

of description logic. Section 8.8 discusses some expressive limitations of OWL, which

can be addressed through rules.

• Rules can be used to express the traditional process model primitives, which are often

employed to capture how services may be composed. That is, rules can be used to cap-

ture the normal control and data flows in the composition of services. This application

of rules would in general not be desirable, because a traditional process engine would

be adequate for such a purpose.

• Rules can be used to express the private policies of the different participants in a service

composition that would capture how a given participant decides to compose services.

For example, a given service may be invoked only if its preconditions have been met.

Capturing such policies as rules enables them to be modified at run-time and to be

evolved dynamically.

• Rules can be used to express how exception conditions of various types are detected

and handled. Here too the flexibility and upgradeability of rules is a distinct advantage.

The rules can be used to encode, in essence, flexible transaction models that would

otherwise (e.g., in a distributed database system) not be possible to encode.

• Rules can be used to express the business protocols under which various services inter-

act. Rules can help make the protocols more flexible than if they were hard coded as

traditional step-by-step processes.

The above illustrations are elaborated elsewhere in this part.

15.7.2 Kinds of Rules
There are four major families of rules: Prolog, production rules such as Jess, event-condition-

action (ECA) rules, and SQL. Among these four families, there are two main kinds of rules:



15.7 Rules 329

reaction rules and inference rules. Reaction rules have the classical ECA form, where the

event is a triggering condition. When the event specified in a rule occurs, the specified con-

dition is checked. If the condition is true, the specified action is performed. In English, such

rules can be read as

on event if condition then (perform) action

Another form of reaction rule is a derivation rule, which does not possess a truth value but

has the purpose of generating new sentences. Integrity constraints can be modeled as special

kinds of derivation rules whose action merely signals inconsistency. That is, the condition

part of a constraint states what is impossible.

Inference rules are rules that are interpreted to carry out inference rather than action. In

English, inference rules take the form of

if antecedent then consequent

An inference rule authorizes drawing some logical conclusions given its premises. It can

thus be treated as a special kind of derivation rule where the action is the assertion of the

consequent. However, inference rules go beyond reaction rules in that they yield other com-

putational strategies. Whereas reaction rules are only executed in the forward direction (when

the stated event occurs and the given condition holds), inference rules can be run in the for-

ward or the backward direction (to infer a particular consequent, establish that the antecedent

conditions hold).

15.7.2.1 Reaction Rules

Reaction or ECA rules are intimately tied to action and reflect the know-how involved in

carrying out some activity. ECA rules are related to the triggers in commercial database

management systems, but can be applied in other settings as well. They apply in encoding

processes, such as are used for composing services. Another natural place for these rules is in

exception detection and handling or, more generally, in managing commitments (as explained

in Section 17.2).

Let us consider some examples of ECA rules from a service perspective.

• If a customer requests an air ticket and the customer is authenticated, then order the

requested ticket. In this example, the customer’s request is the event, the customer’s

being authenticated is the condition, and the ordering is the action.

• If a customer’s payment has arrived, then ship the ticket to the customer. Here, the

arrival of the payment is the event, the condition is true, and the action is shipping the

ticket.

In practice, ECA rules would be combined with inference rules. For example, where the

above example refers to authentication, we can compute whether a customer is authenticated

based on an inference rule such as the following: “if a customer was registered and has



330 Agents

signed on, then the customer is considered authenticated.” Thus, when a request is received,

the variables are bound and a query is generated so as to determine whether the customer is

authenticated.

An interesting and important aspect of ECA rules is in how the events are modeled and

described. If the event sublanguage is restricted to individual events, it is still useful, but

its usefulness might be quite restricted. The above examples involve simple events. Com-

posite events are needed to ensure that the right subtle occurrences of interest are detected

and responded to. However, if the event sublanguage is made complex, then the specified

composite events can become difficult to detect.

When the actions performed by one rule yield events that trigger further rules, a theo-

retical challenge is determining whether the set of rules would ever terminate under certain

circumstances.

15.7.2.2 Inference Rules

We can think of an inference rule as an if-then statement whose antecedent (the part before

then) and consequent (the part after then) are treated as logical formulas. Typically, for a

rule to have some general import, the antecedent would use one or more free variables. To

specify the desired conclusions unambiguously, the consequent would use variables that are

introduced in the antecedent. In essence, the antecedent declares the variables, which the

consequent then uses.

There are some restrictions on the logical forms of the antecedent and consequent. The

antecedent of a rule must be a conjunction of zero or more clauses. That is, if all the

antecedent clauses hold, then the consequent can be legitimately inferred. There is no loss in

disallowing disjunctions, because they could be captured by having multiple rules. That is, if

you wish to capture something like

if a1 or a2 then c

you can capture it via a pair of rules

if a1 then c

if a2 then c

This works because if one of a1 and a2 hold, then the corresponding rule would yield the

consequent c.

The consequent of a rule is also restricted to be a conjunction of one or more clauses.

Disjunctions are disallowed because they would greatly increase the complexity of reasoning:

the interpreter would not know which of the consequent clauses may be inferred and thus

would need to maintain a set of branching possibilities.

Technically, facts are simply inference rules whose antecedent happens to be true. This

corresponds to the case where there are zero clauses in the antecedent.

There are two main ways in which to apply inference rules. First, in forward chaining,

the rules justify what conclusions can be drawn from the given premises. The process begins



15.7 Rules 331

when some premises are asserted as facts. A rule matches when its antecedent becomes true

for some binding of the variables occurring in it. When a rule matches, its consequent is

then asserted for the given bindings of any variables in it. The consequent is separated into

its conjuncts so each can be asserted. Often the new assertions would cause further rules to

be matched and their consequents to be asserted. The computation spreads (forward) in this

manner.

Second, in backward chaining, the rules justify reasoning about what must be true so

that a given conclusion can be drawn. The process begins when some target conclusion

is posed as a query or goal. A rule matches when a binding of the variables occurring in

its consequent would make the given query true. This leads to the antecedent of the rule

being considered a query in the next step. The antecedent would in effect be separated into

subqueries (subgoals) corresponding to its logical structure. Typically, these new subqueries

would match with additional rules or with facts. The process bottoms out either when enough

of the subqueries have matched with facts so that the original query can be answered as true

(with the discovered variable bindings as the key answer) or when the search has exhausted

the possibilities and the original query cannot be answered as true.

Let us consider some examples of inference rules from a service perspective.

• If Alice is trusted and Alice has given an endorsement to Bob, then Bob is also trusted.

In the forward chaining sense, this rule would fire when the two base facts in the

antecedent begin to hold regardless of their order. Assume that Alice is initially not

trusted. Now, if Alice endorses Bob, nothing would happen. Later if Alice begins

to be trusted, the antecedent would match and Bob would begin to be trusted. In the

backward-chaining sense, suppose we wish to find out if Bob can be trusted. The rule

suggests that we establish both of the following facts: Alice is trusted and Alice has

endorsed Bob. These facts could be established merely because they are given as such

or because they may be inferred from further rules whose antecedents can be estab-

lished.

In general, however, the above kind of rule would not be expressed with specific

names of the people in whom trust might or might not be placed. Instead, it would

be expressed using variables. In other words, we would state something along the lines

of “if a party is trusted and it endorses another party, then the second party is trusted

as well.” Now the rule would match with any number of facts and queries and could

even be chained with itself. For example, if we know that Alice is trusted, then Alice

becomes the first party of the antecedent, and if Alice endorses Bob, then Bob becomes

the second party of the antecedent. In the meanwhile, if Bob has endorsed Charlie, then

(given that Bob is now trusted) Charlie would be trusted as well. And, of course, the

rule could be chained with other instantiations of itself.

• If a transaction has been initiated, it will be completed.

• If a transaction has been initiated, it will be completed. However, if an exception

occurs, then it will not be completed (and this rule overrides the previous rule).



332 Agents

• If a transaction has been initiated, it will be completed. However, if an exception

occurs, then it will not be completed. But if there is a compensating operation for the

exception, then it will be completed (and this rule overrides the previous rule).

15.7.3 Jess
Jess is a fast and lightweight rule engine written in Java. It provides to services and agents an

ability to reason declaratively using knowledge expressed in rules and facts. To process rules,

Jess uses the Rete algorithm, which is an efficient mechanism for solving the many-to-many

matching problem between facts and rules [Forgy, 1982]. Jess supports both forward and

backward chaining, working memory queries, and the ability to manipulate and reason about

Java objects directly.

The features, capabilities, and usage of Jess are best seen through examples. To construct

a Jess system, you should first specify the structure for facts using deftemplate. For example,

a system for reasoning about automobiles and their relationships might have facts with the

following form:
� �

( d e f t e m p l a t e a u t o m o b i l e

‘ ‘A g e n e r a l r e p r e s e n t a t i o n o f a c a r . ’’

( s l o t m a n u f a c t u r e r )

( s l o t model )

( s l o t y e a r ( t y p e INTEGER ) )

( m u l t i s l o t a c c e s s o r i e s )

( s l o t c o l o r ( d e f a u l t s i l v e r ) )

)
� �

This would allow you to define facts like this:
� �

( d e f f a c t s example−f a c t s ‘ ‘ S p e c i f i c c a r s . ’’

( a u t o m o b i l e ( m a n u f a c t u r e r Ford )

( y e a r 1 9 6 6 )

( model Cobra )

( a c c e s s o r i e s r a d i o t a c h o m e t e r CD−p l a y e r )

( c o l o r b l u e ) )

( a u t o m o b i l e ( m a n u f a c t u r e r BMW)

( model 3 2 8 )

( y e a r 1 9 3 6 ) )

( a u t o m o b i l e ( m a n u f a c t u r e r Mercedes−Benz )

( model 3 0 0 SL Gul lwing Coupe )

( y e a r 1 9 5 5 ) )

)
� �

which represents a silver (the default color) 1936 BMW 328 Roadster, a blue 1966 Ford

Cobra, and a silver 1955 Mercedes-Benz 300 SL Gullwing Coupe. Notice that the slots can

be used in any order, or not used at all.



15.7 Rules 333

Rules can be used to take actions based on available facts. For example, consider the

following definition of a rule:
� �

( d e f r u l e p a i n t−c a r ‘ ‘ Make a l l c a r s s i l v e r . ’’

? f a c t <− ( a u t o m o b i l e ( y e a r ? y ) ( c o l o r ? c ) )

( t e s t ( neq ? c s i l v e r ) )

=>
( modify ? f a c t ( c o l o r s i l v e r ) )

( p r i n t o u t t ‘ ‘ R e p a i n t e d a ’’ ? y ‘ ‘ c a r s i l v e r . ’’ c r l f )

)
� �

When Jess is run, this rule would be matched with each of the three facts about automobiles

and, for those whose value for the color slot is not already silver (the Ford Cobra), the color

would be changed to silver and a message about the change would be printed.

15.7.4 SWRL: Semantic Web Rule Language
The Semantic Web Rule Language is a markup language for expressing rules in a standard-

ized manner and melding them with ontologies. It is best used for communicating rules

among different services or agents. SWRL can be mapped to the proprietary formats of var-

ious rule engines that different services might internally employ. By incorporating inference

and reaction rules, SWRL covers the major rule families of interest.

SWRL extends the set of OWL axioms to include a kind of rules (Horn clauses, described

in Section 15.7.5), thus enabling rules to be combined with an OWL knowledge base. SWRL

rules are in the form of an implication between an antecedent and a consequent. Atoms

in these rules can be of the form C(x), P (x, y), or sameAs(x, y), where C is an OWL

description, P is an OWL property, and x, y are either variables, OWL individuals, or OWL

data values. The following is an example rule written in the Jess and CLIPS Lisp-like syntax

followed by the SWRL XML syntax, which borrows several constructs from RuleML. This

example captures the idea that a parent’s parent is a grandparent.
� �

( d e f r u l e g r a n d P a r e n t R u l e −1

( p a r e n t ? k ? p )

( p a r e n t ? p ? g )

==>
( g r a n d P a r e n t ? k ? g )

)
� �

� �

< r u l e m l : r u l e b a s e l a b e l ="grandParentRule">
<r u l e m l : i m p >

<r u l e m l : b o d y >
<s w r l x : i n d i v i d u a l P r o p e r t y A t o m

s w r l x : p r o p e r t y ="hasParent">
<r u l e m l : v a r >k</ r u l e m l : v a r >



334 Agents

<r u l e m l : v a r >p</ r u l e m l : v a r >
</ s w r l x : i n d i v i d u a l P r o p e r t y A t o m >
<s w r l x : i n d i v i d u a l P r o p e r t y A t o m

s w r l x : p r o p e r t y ="hasParent">
<r u l e m l : v a r >p</ r u l e m l : v a r >
<r u l e m l : v a r >g</ r u l e m l : v a r >

</ s w r l x : i n d i v i d u a l P r o p e r t y A t o m >
</ r u l e m l : b o d y >
<r u l e m l : h e a d >

<s w r l x : i n d i v i d u a l P r o p e r t y A t o m

s w r l x : p r o p e r t y ="hasGrandparent">
<r u l e m l : v a r >k</ r u l e m l : v a r >
<r u l e m l : v a r >g</ r u l e m l : v a r >

</ s w r l x : i n d i v i d u a l P r o p e r t y A t o m >
</ r u l e m l : h e a d >

</ r u l e m l : i m p >
</ r u l e m l : r u l e b a s e >

� �

The SWRL syntax, like most XML-based syntaxes, is more verbose, but also has some

additional expressiveness in making the conjunctions of clauses explicit and marking the

variables and constants explicitly. This simplifies transforming it into other syntaxes of inter-

est. In general, SWRL would be used for exchanging rules. However, the rules would be

processed via tools such as XSLT to produce the syntax desired by one’s rule engine or appli-

cation.

15.7.5 Complexity and Expressiveness
Rules correspond to the so-called Horn clauses in logic, which are defined as follows. A

literal is either an atomic proposition (such as p) or the negation of an atomic proposition

(such as ¬p). A clause is a literal or a disjunction of literals, e.g., p ∨ q ∨ ¬r ∨ ¬s. A Horn

clause is a clause in which at most one of the literals is positive, e.g., p ∨ ¬q ∨ ¬r ∨ ¬s.

In essence, by converting the disjunction into implications, we see that in a Horn clause a

conjunction of zero or more literals implies no literal or a single literal (the one that was

negative). For the above example, this would be (q ∧ r ∧ s) → p, more commonly written as

p ← (q ∧ r ∧ s). Recall that a conjunction of no literals is true. If there is no positive literal,

then the conjunction of literals is false.

Programming with rules of the kind discussed here is better known as logic program-
ming or LP. Importantly, LP does not support concluding a formula that is a disjunction or is

existentially quantified. For example, we cannot express a rule that states that a transaction

must either be ongoing or be aborted. By contrast, the predicate calculus enables such con-

clusions, but is intractable: decision procedures might never terminate for false conclusions.

Even if the predicate calculus is restricted to just its propositional fragment, the resulting

logic remains intractable for practical purposes.

The datalog restriction applies to the syntax and prevents logical functions of nonzero



15.7 Rules 335

arity. Given a set of Horn rules, if the number of logical variables per rule is bounded by a

constant, the complexity of computing the conclusions from the set of rules is polynomial in

the number of rules. That is, it is tractable.

However, the predicate calculus has the shortcoming that it is monotonic and thus cannot

easily express defeasible reasoning. Defeasible reasoning involves what can be informally

thought of as jumping to conclusions. The classic example is to express that birds can fly.

Knowing that Tweety is a bird you can conclude that Tweety can fly. But this conclusion is

defeasible. When you learn that Tweety is a penguin, you might change your expectation

about whether it can fly. Similar situations arise in contracts. For example, we might require

that a buyer may not return goods for a refund. However, if the goods were received damaged

and are returned within three days of receipt, then the buyer would be given a full refund. A

rule-based language can capture such requirements perspicuously.

Description logic, on which OWL DL is based, obeys the datalog restriction. It is decid-

able but intractable. However, as explained above, description logic has some expressive

limitations. Consequently, formalisms such as rules are essential.

15.7.6 Negation, Nonmonotonicity, Priorities
It is helpful to distinguish between two kinds of negation:

• Weak negation (termed “not”), which indicates nontruth, but does not indicate falsity.

For example, “not raining” means that the truth of “raining” has not been established,

but does not mean that it is definitely dry. That is, weak negation roughly corresponds

to not knowing that the given proposition is true.

• Strong negation (termed “neg”), which indicates falsity and hence also nontruth. For

example, “neg raining” means that it is dry. Thus, “neg raining” entails “not raining,”

but not the other way around.

Strong negation corresponds to the negation in classical binary or two-valued logic. Not

true means false—this is popularly known as the law of the excluded middle. However,

weak negation is often essential in practice, because we may simply lack the knowledge to

establish that something is definitely false. For complete predicates, weak negation collapses

into strong negation.

Weak negation turns out to be especially useful, because it enables us to capture know-

ledge in a flexible, elaboration-tolerant, manner. Such knowledge representations are defea-

sible in the sense introduced above. Consider the previous example. Suppose we wish to

record that birds fly (by default) and that penguins do not fly (by default). We could simply

state that birds fly unless we know for a given bird that it cannot fly, and that penguins do not

fly unless we know for a given penguin that it can fly.

Rules may conflict. In such cases, there are usually few or no principled reasons for

choosing between the rules. Some of the few domain-independent means for prioritizing rules

are as follows. One, prefer rules whose antecedents use predicates that are more selective.

For example, since penguins are birds, a rule that is stated in terms of penguins would have



336 Agents

priority over a (potentially conflicting) rule that is stated in terms of birds. Two, a rule whose

antecedent consists of a superset of the clauses in the antecedent of another rule would have

priority over the second rule. In both these cases, the intuition is that the rule that applies

more rarely is given priority over a rule that applies more often. Clearly, the more specific

rule is better informed about the cases where it applies. Further, if the priorities were the

other way around, the more specific rule would never apply and so there would be no point

in having it in the first place.

Many practical situations do not readily fit into the above kinds of settings, because the

preferences among the rules are based on some domain-specific criteria. For example, it may

be reasonable (in a particular setting) to take advance payment from customers with billing

addresses in Europe but not from customers with billing addresses in other continents, and

to give discounts to customers requesting shipments to Europe but not to those requesting

shipments elsewhere. Or, we may require that the customer’s credit card billing address be

the same as the requested shipping address.

To handle such ad hoc conflicts, it is convenient to assign priorities to the rules such that

in case of a conflict, the rule with higher priority can be selected. The priorities can be stated

quantitatively as numeric weights or qualitatitively in terms of which rule overrides another.

The qualitative approach is more explicit with regard to the intended effect of the priorities.

The main challenge with using priorities is coming up with the correct ones, so that under all

possible conflicts the right rule is selected.

15.8 Notes

Additional information about agent tools and architectures is at http://www.multiagent.com.

Our previous book provides a collection of research papers from the 1990s that address

various key aspects of agents [Huhns and Singh, 1998a].

Comparisons between OWL-S and BPEL4WS can be found at

http://www.ksl.stanford.edu/projects/DAML/Webservices/DAMLS-BPEL.html. Besides OWL-

S, other emerging approaches add structure to service descriptions through the use of onto-

logies, e.g., Trastour et al. [2001]. Klein and Bernstein develop a richer approach for describ-

ing and indexing services based on process models [2001].

The predicate calculus is also known as first-order logic. Common Logic is a proposed

ISO standard that provides a unified framework for formal languages based on the predicate

calculus. Common Logic has an abstract syntax and can take concrete syntaxes to capture

various languages of practical importance, such as RDF, OWL, RuleML, and UML.

Several rule systems exist. The earliest expert systems, which had varying success in

domains such as medicine and computer system configuration, involved rule systems. NASA’s

CLIPS is a popular rule-based system that has been used for a variety of applications. How-

ever, CLIPS has largely been supplanted by the Jess expert system shell, which is backward-

compatible with the rule syntax of CLIPS. Jess, described above, is a complete programming

language, and more information about it can be found at http://herzberg.ca.sandia.gov/jess/.



15.9 Exercises 337

Algernon is a rule-based knowledge representation system geared toward efficient (though

limited) reasoning (http://algernon-j.sourceforge.net/).

15.9 Exercises

15.1. Which one of the following describes how an OWL-S service works?

• serviceModel

• serviceProfile

• serviceGrounding

• serviceInternals

• serviceDetails

15.2. What is the significance of the fact that OWL-S uses IOPEs?

• We can use AI planners to put together services.

• There is no conflict with WSDL.

• They allow for the automatic generation of code to execute the service.

• They determine the time it will take for the service to execute.

• We can have more fine-grained access control to services.

15.3. Which one of the following is not one of the control structures for OWL-S?

• Some-of

• Sequence

• Split

• Choice

• If-Then-Else

15.4. For the scenario described in Exercise 13.1, construct an equivalent OWL-S descrip-

tion.

15.5. For the scenario described in Exercise 13.3, construct an equivalent OWL-S descrip-

tion.

15.6. For the scenario described in Exercise 13.5, construct an equivalent OWL-S descrip-

tion.



338 Agents

15.7. Suppose you are developing a Semantic Web service that can provide a client with the

weather forecast for a city, and can also provide a list of tourist attractions for a city.

Both of these are described within a single WSDL file.

If you document this using OWL-S, should you create two atomic processes and com-

bine them into a composite process using the choice-element? Or should you create

two separate OWL-S descriptions? Or is there a better way to describe your service(s)?

Please explain what you think is the best OWL-S representation.

15.8. Imagine that there are two existing and deployed Web services as described in Exer-

cises 4.2 and 4.3. Would it make sense for one of these to make use of the other? If so,

describe the composition using OWL-S.

15.9. Imagine that there are two services you would like to compose: service S1 followed

by service S2. However, there is a mismatch in the data types. S1 produces results as

data type D1, but S2 requires an input of type D2, where D1 �= D2. Fortunately, you

discover a translation service, S3, that will convert without loss data from type D1 to

type D2. Write an OWL-S description of the resultant composed service. You may

assume that all services are atomic processes.

15.10. Situation Calculus:
In the situation calculus, axioms that describe how the world changes when actions

are performed are called effect axioms. A frame axiom describes how the world stays

the same. Consider the “blocks world” domain, whose objects are blocks, tables, and

situations. The predicates in this domain are

On(x, y, s), which states that object x is on top of object y in situation s.

ClearTop(x, s), which states that there is nothing on top of object x in situation s.

Block(x), which states that x is a block.

Table(x), which states that x is a table.

There is only one action, PutOn, whose effect axiom is

∀x, y, z, s ClearTop(x, s) ∧ ClearTop(y, s) ∧ On(x, z, s)
=⇒
On(x, y, Result(PutOn(x, y), s))
∧[Table(z) ∨ ClearTop(z,Result(PutOn(x, y), s))]

Write a frame axiom that describes the predicate ClearTop, i.e., a block will remain

clear if nothing is put on it.

15.11. Consider the examples of agents and their percept, action, goal, and domain descrip-

tions given in the table below. Which type of agent architecture (simple reflex, goal-

based, or utility-based) is appropriate for each? Explain your choices.



15.9 Exercises 339

Application Percepts Actuators Goals Domain

Medical diag-

nosis

Symptoms,

findings,

patient’s

answers

Questions,

tests,

treatments

Healthy

patient,

minimize

cost

Patient,

hospital

Part-picking

robot

Pixels of

varying

intensity

Pick up parts

and sort into

bins

Place parts

in correct

bins

Conveyer belt

with parts

15.12. Suppose you are constructing agents that will operate in each of the following appli-

cations: (a) an assembly-line welding robot, (b) a triage-nurse agent that classifies

incoming patients, (c) a homework-grading agent, (d) a traffic-light controller, (e) a

subway train controller, and (f) a gate agent that assigns arriving airplanes to gates at

an airport. For each agent, state what would be its (i) goals, (ii) environment in terms of

being fully or partially observable, deterministic or stochastic, episodic or sequential,

static or dynamic, continuous or discrete, and single agent or multiagent, (iii) per-

ceived inputs, (iv) actions, (v) reasoning ability in terms of being logical, utility-based,

or goal-based, and (vi) architecture in terms of being reactive or deliberative.

15.13. Consider the following composed service. A customer (a prospective traveler) con-

tacts a travel agent to book a trip. The traveler specifies a destination, a departure date,

and an arrival date. A trip consists of an air ticket to the specified destination, a hotel

reservation while the traveler is in the destination city, and a rental car. The travel agent

would request an air ticket, a hotel reservation, and a car rental reservation from the

corresponding services. Assume each service responds with a success or failure. The

air ticket and hotel are both necessary in order to complete the trip. The car rental is

desirable but not essential.

Write a set of rules, preferably in SWRL syntax, to capture the above composition

from the perspective of the travel agent.

15.14. Augment the problem of Exercise 15.13 so that the air ticket, hotel, and car rental

services can carry out conversations. In particular, allow each of these services to send

back a cancellation to the travel agent after they have sent a success message. The

cancellation indicates that the corresponding reservation is no longer valid, presumably

because of circumstances beyond their control. A cancellation leads to the remaining

reservations being canceled and a cancellation message being sent to the traveler.

Write a set of rules to capture the augmented composition from the perspective of the

travel agent.

15.15. Construct a small knowledge base for a rule-based inferencing engine, such as Jess or

Algernon. Your knowledge base should contain at least 10 forward rules. At least one



340 Agents

of the rules should ask for (read) input from a user and at least one should write results

back to the user. Turn in a listing of the rules and a sample of their execution.

15.16. Construct a Web service front-end to the Jess or Algernon inferencing engine and your

rule base. Your overall system should be able to receive a SOAP message, parse it to

find a fact or query from the sender, apply that fact or query to your rule base and

execute the rules using the inferencing engine, retrieve the result from the inferencing

engine, and return the result to the sender as a SOAP message. Turn in all source code

and examples of the SOAP messages.

15.17. Using PSL’s conceptual model as captured in Figure 13.15, develop a rule that asserts

that objects that existFor a time existAt all time-points that are instances of the given

time.

15.18. Using PSL’s conceptual model as captured in Figure 13.15, develop a rule to capture

that an object participating in an activity occurrence that occurs for a time exists at at

least one of the time-points that are instances for the given time.



Chapter 16

Multiagent Systems

As Web uses become more complex, it will be increasingly difficult for one server to pro-

vide a total solution and increasingly difficult for one client to integrate solutions from many

servers. Web services, in current practice, involve a single client accessing a single server.

A conceptually simple way to compose services is to construct individual composed services

that hide the existence of the services they compose. Chapter 15 discussed such an approach;

indeed as did Chapter 13 with respect to processes. An alternative is to construct collaborative

services that retain their identity, but are more explicitly able to interact with other services.

Such collaborative services will respect the following characteristics. They must be able

to operate asynchronously, they must allow a choice of services, they must be able to engage

in negotiation, and they must be describable declaratively, not procedurally, in terms of high-

level abstractions. In essence, they must be agent-based and able to function in a multiagent

system.

Chapter 13 pointed out that no service is an island. Agents provide a high-level means to

deal with services. As you can imagine, no agent is an island either. To benefit maximally

from services we need a means to reason about them flexibly and to compose them. To benefit

maximally from agents, we need a means to enable them to interact with each other at a high

level. Multiagent systems provide such a setting.

A multiagent system consists of a number of agents. The agents carry out potentially

complex protocols of interaction so as to ensure that they can produce coherent computations

despite changes in the underlying environment.

Multiagent systems have a number of useful attributes, specifically that they offer a decen-

tralization of knowledge and computing power, help model complex components that behave

adaptively, and potentially participate in complex interactions while maintaining coordination

with others. Tables 16.1 and 16.2 summarize the key dimensions of multiagent systems.

341



342 Multiagent Systems

Table 16.1: Dimensions of MAS: Agent

Property Meaning

Adaptivity Ability of an agent to learn, from teachable to autodidactic

Autonomy Independent to controlled

Interactions Direct or via facilitators or mediators; declarative or procedural

Sociability Interest in others: autistic, aware, responsible, or a team player

Friendliness Cooperative to competitive to antagonistic

Table 16.2: Dimensions of MAS: System

Property Meaning

Dynamism Changing membership

Scale Number of agents

Control Structure Hierarchy to democracy

Coordination Self interest

Uniqueness Homogeneous to heterogeneous

Interface Autonomy Communication: specify vocabulary, language, and protocol

Intellect: specify goals, beliefs, and ontologies

Skills: specify procedures and behaviors

16.1 Applicability in Service-Based Systems

As explained in Chapter 1, the World Wide Web is evolving into the Semantic Web. The

idea behind the Semantic Web is to enable automation so that Web pages are accessed pro-

gramatically. This transition from human users to software would enable greater productivity

by supporting more precise search for information and enabling more flexible and robust

business processes.

Web services are central to the above vision. Agents further advance the vision, because

they provide greater flexibility in how services are used and created. There are agents that

make use of the Web as it is now. A typical kind of such agent is a shopbot, an agent that

visits the on-line catalogs of retailers and returns the prices being charged for an item that

a user might want to buy. Shopbots operate by a form of “screen-scraping,” in which they

download catalog pages and search for the name of the item of interest, and then the nearest

set of characters that has a dollar-sign, which presumably is the item’s price. The shopbots

also might submit the same forms that a human might submit and then parse the returned

pages that merchants expect are being viewed by humans.

However, such techniques are not easy to apply for developing and maintaining large

interacting systems. The Semantic Web will make the Web more accessible to agents by

making use of semantic constructs, such as ontologies, so that agents can understand what is

on a page.



16.2 Multiagent Architecture 343

Typical agent architectures have many of the same features as service-oriented archi-

tectures. Agent architectures provide yellow-page and white-page directories, where agents

advertise their distinct functionalities and where other agents search to locate the agents in

order to request those functionalities. However, agents extend Web services in several impor-

tant ways:

• A service knows only about itself, but not about its users, clients, or customers. Agents

are often self-aware at a metalevel, and through learning and model building gain

awareness of other agents and their capabilities as interactions among the agents occur.

This is important, because without such awareness a Web service would be unable

to take advantage of new capabilities in its environment, and could not customize its

service to a client, such as by providing improved services to repeat customers.

• Services, unlike agents, are not designed to use and reconcile ontologies. If a client and

the provider of a service happen to use different ontologies, then the result of invoking

the Web service would be incomprehensible to the client. Agents can mediate such

differences.

• Agents are inherently communicative, whereas services are passive until invoked. As

new information becomes available, agents can provide alerts and updates. Current

standards and protocols make no provision for different interaction patterns, such as

subscribing to a service to receive periodic updates.

• For services to apply naturally in open environments, they should be modeled as being

autonomous. Autonomy is a natural characteristic of agents, and it is also a character-

istic of many envisioned Internet-based services. Among agents, autonomy generally

refers to social autonomy, where an agent is aware of its colleagues and is sociable,

but nevertheless exercises its independence in certain circumstances. Autonomy is in

natural tension with coordination or with the higher-level notion of a commitment. To

be coordinated with other agents or to keep its commitments, an agent must relinquish

some of its autonomy. However, an agent that is sociable and responsible can still be

autonomous. It would attempt to coordinate with others where appropriate and to keep

its commitments as much as possible, but it would exercise its autonomy in entering

into those commitments in the first place.

• Agents are cooperative, and by forming teams and coalitions can provide higher-level

and more comprehensive services. Current standards for Web services provide limited

support for composing functionalities.

16.2 Multiagent Architecture
As natural loci of autonomy and decision, agents promise to address these challenges. They

perceive, reason about, and affect their environment. They can be designed to be adaptive and

communicative. Agents in an information environment can play a number of distinct roles.



344 Multiagent Systems

The roles of greatest interest to a workflow setting are agents that represent users, agents that

represent resources, and brokers that keep track of users and resources and help them find

and interact with each other.

When a workflow is constituted in terms of distinct roles that agents can instantiate, the

agents can be set up to respect the constraints of their users and resources. Being aware

of their local situation enables agents to adapt to a workflow. User agents negotiate with

one another and with resource agents to ensure that global constraints are not violated and

that global efficiencies can be achieved. Agents can include functionality to identify differ-

ent kinds of exception conditions and react appropriately, possibly by negotiating a special

sequence of actions. More importantly, agents can learn from repeated instances of the same

kinds of exceptions. With this learning ability, agents can process the updated set of con-

straints that emerge when system requirements change.

Relaxed transaction processing refers to modeling and flexible execution of transactions

for which the ACID properties are suitably relaxed. Workflow agents can implement a form

of relaxed transaction processing. Relaxed or extended transactions are activities consist-

ing of several tasks, or operations, that do not satisfy one or more of the ACID properties.

Implementing ACID transactions makes stringent demands that cannot be met in an open

environment, such as the Internet. For example, if the workflow in Figures 13.2–13.4 were

modeled as an ACID transaction, we would have to ensure that the user could not be told the

order was received until after it had been processed—or worse, that an order was received

only if it was completed. Of course, these are not reasonable behaviors. Moreover, they are

impractical, because they require delaying one task until another task, which might not occur

until much later, catches up.

So without transactions how can we ensure consistency? Resource agents working in

conjunction with user agents can contribute to a solution. By keeping track of their inter-

actions and how stored data is being accessed and updated, these agents can help maintain

overall system consistency. They do not do this in the lock-step manner of an ACID trans-

action, but they can ensure consistency at intervals sufficient for the particular workflow. By

describing at a high level how different components of a workflow ought to be treated, relaxed

transactions serve as the basis for designing the behavior of such agents. However, additional

functionalities, such as negotiation, become necessary.

16.3 Agent Types
To support an architecture in which heterogeneous components can interoperate, negotiate,

and achieve periodic consistency, a variety of agent roles are needed. Each agent role corre-

sponds to the different software components. Figure 16.1 shows a multiagent system archi-

tecture in which each agent has a specialized function. The agents communicate using an

agent communication language such as FIPA ACL (introduced in Section 18.1), whose sen-

tences wrap sentences from a content language such as SQL. Such an architecture could

provide a user with the appearance of homogeneity among heterogeneous resources, and act

as a cooperative partner in finding and managing information.



16.3 Agent Types 345

User Agents
Application Programs

Directory and Broker

Agents

Execution or Data

Manager Agents
Ontology Agents

Database Resource

Agents
Internet Data Agents

Structured Data

Unstructured Data

Figure 16.1: Agent-based system architecture showing the de facto standard agent types

User agent. User agents act as an intermediary between users and information systems, pro-

viding access to such information resources as data analysis tools, workflows, and

concept-learning tools. They support a variety of interchangeable user interfaces (for

example, query forms, graphical query tools, menu-driven query builders, and query

languages), result browsers, and visualization tools.

User agents maintain models of the other agents in their environment, in order to be

able to interact with them more effectively. For example, a user agent might contain a

mechanism to select an ontology from an ontology agent. The ontology would enable

the user agent to present a customized interface that contains terminology familiar to

the end user.

Broker agent. Broker agents implement directory services for locating appropriate agents

with appropriate capabilities. They manage a namespace service and may store and

forward messages and locate message recipients. Brokers might also function as com-



346 Multiagent Systems

munication aides by managing communications among the various agents, databases,

and application programs in an environment. A broker agent works in cooperation with

a directory service. Brokers simplify the configuration of multiagent systems. An agent

requests the broker to recruit one or more agents who can provide a service. The broker

then uses knowledge about the requirements and capabilities of registered agents to:

• Determine the appropriate agents that can be requested to act as providers for a

desired service.

• Negotiate with these agents to determine a suitable set of service providers.

• Potentially learn about the properties of the responses. For example, a broker

might determine that advertised results from an agent are incomplete and so seek

out a substitute for this agent.

Resource agent. Resource agents provide access to information stored in legacy systems.

The three common types are classified by the resource they represent. Wrappers imple-

ment common communication protocols and translate commands and results into and

from local access languages. For example, a wrapper agent may use a local data-

manipulation language such as SQL to communicate with a relational database or OQL

for an object-oriented database. Database agents (e.g., those able to apply SQL) man-

age specific information resources, and data-analysis agents apply machine learning

techniques to form logical concepts from data or use statistical techniques to perform

data mining.

Resource agents apply the mappings that relate each information resource to a com-

mon context for purposes of translating messages meaningfully. At most n sets of

mappings and n resource agents are needed for interoperation among n resources and

applications, as opposed to n(n−1) mappings that would be needed for direct pairwise

interactions among n resources without agents.

Workflow agent. Workflow agents are a kind of resource agent that apply to different work-

flows. The idea of treating a workflow as a resource was discussed in Section 13.3.4.

Workflow agents can coordinate the workflows they manage and thereby provide for

larger, possibly enterprise-wide, workflows.

Execution agent. Execution agents supervise query execution, operate as script-based agents

to support scenario-based analyses, or monitor and execute workflows. This third func-

tion can extend over the Web and be expressed in a format such as the one specified by

the Workflow Management Coalition (WfMC). Such agents might be implemented as

rule-based knowledge systems.

Mediator agent. Mediator agents are specialized execution agents. Mediators work with

brokers to determine which resources might have relevant information. They also

decompose queries to be handled by multiple agents, combine the partial responses

obtained from multiple resources, and translate between ontologies.



16.4 Life Cycle Management for Agents and Multiagent
Systems 347

Security agent. Security agents provide system-wide authentication and authorization, and

can be used to enforce appropriate usage policies for information resources.

Ontology agent. Ontology agents manage the distributed evolution and growth of onto-

logies. (Chapter 6 introduces ontologies and their uses in information systems.) They

provide a common context as a semantic grounding, which agents can use to relate

their individual terminologies. A third function of ontology agents is providing remote

access to multiple ontologies.

16.4 Life Cycle Management for Agents and Multiagent
Systems

An agent management system, as shown in Figure 16.2, handles agent creation, registration,

location, communication, migration, and retirement. It provides the following services:

Software

Agent

Agent

Management

System

Directory

Facilitator

Message Transport System

Message Transport System

Agent Platform

Agent Platform

Figure 16.2: The components of an agent management system

White pages. These include support for agent location, naming, name resolution services,

and access control services. Agent names are represented by a flexible and extensi-



348 Multiagent Systems

ble structure called an agent identifier, which can support a human-friendly name and

transport address, among other things.

Yellow pages. These offer support for service location and registration services, which are

provided by the Directory Facilitator (DF).

Agent message transport services. Originally these were standardized based on CORBA’s

IIOP, but HTTP bindings are now more popular. For example, the ACL message of the

following listing
� �

( i n f o r m

: r e c e i v e r A l i c e

: c o n t e n t [ some message c o n t e n t ]

)
� �

is mapped to the following HTTP POST:
� �

t e l n e t f i p a c l i e n t . example . o rg 8 0

POST f i p a : / / nscu . edu / a g e n t / A l i c e HTTP / 1 . 1

H o s t : nscu . edu

Conten t−Type: a p p l i c a t i o n / x−f i p a

i n f o r m

[ some message c o n t e n t ]
� �

Mobility. Agents can also be mobile, wherein their code, their data, and the state of their exe-

cution may move from one platform or execution environment to another. Mobility is a

component of agent management: moving code to remote computers for installation or

update purposes is a useful way in which to disseminate code fixes. In other cases, we

might treat computational resources themselves as something a service implementor

may choose to exploit. This would be the case with supercomputers, for instance, and

with computing over what is known as the Grid (Section 10.6 discusses this is greater

detail). The service being offered by a remote supercomputer is the running of code,

and the code you send it is essential for the service being run. This is different from

sending code to a typical database or Web server and trying to have it run. As an aside,

the Grid is also moving into a Web service-like model, where resources can be more

easily accessed and bound.

Although the idea of mobility has had a lot of appeal to some, it is ultimately inappro-

priate in open environments where autonomous services exist. Moving code, data, and

state at run-time is a major security risk—potentially the code could be malicious or

the data and state could be compromised. Moreover, it is an unnecessary risk, because

if we modeled the autonomous entities as services, they should be making requests to

and negotiating with each other, not trying to send code. Communication is a hands-off

interaction, like talking, and unlike brain surgery.



16.5 Consistency Maintenance 349

FIPA is the Foundation for Intelligent Physical Agents. FIPA specifies standards for het-

erogeneous, interoperating agent-based systems. The FIPA standards are concerned with

agenthood as it relates to autonomy (goal-driven) and communal integration (primarily com-

munication, but also including cooperation). In particular, FIPA standardizes an agent man-

agement framework, which specifies how agent platforms should be built. The agent com-

munication aspects of FIPA’s standards are discussed in Section 18.1.

16.5 Consistency Maintenance
A desirable characteristic of services is that they act in a logically rational or correct man-

ner. For example, if a service has provided some piece of information to its user, it would

help if the service could first ensure that the information provided was somehow correct or

justifiable, and second inform the users of any changes to its original basis for that piece of

information. Specifically, imagine that a service could send you corrections or updates to

the information it had previously provided. For instance, if a service tells you that a certain

seat was being held for you on a flight, it might later let you know if the seat changed (say

because of an upgrade to first class) or if the flight was canceled. To support such reasoning

presupposes that the service is able to track dependencies among facts a certain way. For

example, the cancellation of a flight causes all bookings on it to be canceled (and possibly)

rebooked on another flight.

The above kind of reasoning is clearly desirable. In particular, in many application set-

tings, we would want to develop services that performed such reasoning, because such ser-

vices would appear to be more helpful. However, that is a matter of how an individual service

is designed. A more general usage of the above kind of reasoning arises when we consider

the case of services being able to interact with other services. In other words, regardless of

how a service is implemented internally, we might like to have a veneer of sociability on top.

As an example, let us consider a hotel reservation and an airline reservation service,

which might be built on top of some legacy reservation services. Let us assume that the two

services are designed to collaborate to offer a complete trip to a prospective passenger. The

obvious idea is that the reservations be consistent, meaning that the hotel booking be for the

same city as the passenger is flying to and for the same nights as he or she is going to be

at in that city. In this case, the two services would need to share information and to ensure

that consistency is maintained. For instance, if it turns out that a flight is canceled and the

passenger rebooked, then the airline service should notify the hotel service and let it modify

its booking accordingly. Similar modifications should occur if the hotel service goes through

a change. Notice that here too there is a lot of domain reasoning that is needed about how the

hotel should be rebooked, but the idea is that the mutual dependencies should somehow be

represented and reasoned with.

In this broader sense, an ability to represent and reason about dependencies applies not

only for information sharing, but also for carrying out extended transactions. This leads

to the idea of dependency maintenance that emerged in artificial intelligence in the 1970s.

Since dependency maintenance is generic functionality for maintaining the consistency of



350 Multiagent Systems

a knowledge base, it is convenient to place it in the knowledge base apart from any other

domain-specific problem-solving knowledge. A reasoner, typically a rule-based system of the

sort described in Section 15.7.2.2, would work on the knowledge base, drawing and retracting

conclusions based on changing percepts. The conclusions drawn and the justifications for

them would be recorded by the knowledge base; as appropriate, even the conclusions that are

no longer valid may be recorded in the knowledge base (suitably annotated so they are not

confused with the valid conclusions).

16.5.1 Truth Maintenance Concepts

There are two main views of logical consistency. One is well-foundedness, which states that

all beliefs, except premises, should be justified by other beliefs, and these justifications should

be acyclic. The other view is coherence, which states that the beliefs should hold together as

a coherent body, even if they lack external justification. Under well-foundedness, an agent

cannot hold unsupported beliefs, but under coherence it can. It is recognized that human

behavior is often closer to coherence than well-foundedness, although traditional logic favors

the latter. Both approaches are used successfully for agents through a kind of tool called a

truth maintenance system (TMS). The well-founded view is implemented in a justification-
based TMS and the coherent view in an assumption-based TMS. This book considers only

justification-based TMSs.

The above motivations leads us to an architecture of a TMS-based agent as shown in

Figure 16.3. Here, the problem solver represents domain knowledge, e.g., in the form of

rules and procedures, and chooses what to focus on next. The TMS keeps track of the current

state of the search for a solution. It uses constraint satisfaction to maintain consistency in the

inferences made by the problem solver.

Problem Solver TMS

justifications

beliefs

Figure 16.3: The architecture of a TMS-based agent

A truth maintenance system performs a form of propositional deduction. Importantly, it

does so in an incremental manner meaning that the beliefs are updated as the data (premises

or rules) are added or removed. Because a TMS maintains justifications for the conclusions it

supports (and for some that it does not support: typically those that a client had queried for),

it can often update the beliefs in an efficient manner. This is because, with each change, only

the logically connected parts of the knowledge base are affected. As a further benefit of the

data structures, a TMS can also explain its reasoning. For a supported conclusion, it can tell

us why, i.e., what premises and rules support that conclusion.

TMSs support a form of atomic update to a knowledge base. When an update is applied



16.5 Consistency Maintenance 351

to a knowledge base, its TMS will propagate the changes throughout the knowledge base

before it returns control. At that point, the knowledge base will be consistent (unless an

inconsistency is detected and declared). Likewise, a few updates may be applied as a group.

When the effects of all have been propagated, then the new state of the knowledge base is

exposed to other clients.

Table 16.3 shows how the integrity of knowledge should be maintained by an agent.

Table 16.3: Knowledge integrity

Property Meaning

Stability Believe everything justified validly

disbelieve everything justified invalidly

Well-Foundedness Beliefs are not circular, meaning the justifications

bottom out

Consistency No contradictions

Completeness Find a consistent state, if any

Table 16.4 illustrates some varieties in which inconsistency may be manifested.

Table 16.4: Knowledge inconsistency

Form of Inconsistency Example

Both a fact and its negation are
believed

Believe the goods have been delivered and

believe the goods have not been delivered

A fact is both believed and disbe-
lieved

Believe the goods have been delivered and

not believe the goods have been delivered

An object is believed to be of two
incompatible types

Believe PO-99 is a purchase order and

believe PO-99 is a request for a quote

Two different objects are believed to
be the same

Believe PO-99 and PO-98 are the same

resource when they are not

The cardinality constraints of rela-
tionships are violated, e.g., by giv-
ing multiple values to a single-valued
relationship

Believe C’s shipping address is A1 and

believe C’s shipping address is A2 and

believe that A1 �= A2 and

believe that shipping addresses are unique

16.5.2 Multiagent Truth Maintenance
Single-agent TMSs meet all the requirements of Table 16.3. However, additional problems

arise when knowledge is distributed, and different agents must achieve consistency.



352 Multiagent Systems

In light of the above, different degrees of logical consistency in a multiagent system may

be defined. Table 16.5 shows the main degrees of inconsistency that may arise in a multiagent

system.

Table 16.5: Degrees of logical consistency

Degree Meaning

Inconsistency One or more agents are inconsistent

Local Consistency Agents are locally consistent

Local-and-Shared Consistency Agents are locally consistent and all agents are con-

sistent about any data they share

Global Consistency Agents are globally consistent

Local consistency leaves open the possibility that the different agents may be in serious

disagreement. However, global consistency is typically not tractable or even essential. In

many cases, it is enough that the agents be in agreement about the data that they share. For

this reason, the distributed JTMS (DTMS) maintains local-and-shared consistency and well

foundedness [Huhns and Bridgeland, 1991b]. In this approach, each agent has a justification-

based TMS, but the justifications can be external, i.e., based on what another agent said.

Agents keep track of what they told to whom, so they can suggest updates when their original

assertions are no longer supported.

16.5.3 Consistency Maintenance for a Long-Lived Service

Figures 16.4–16.6 show an example of the use and operation of multiagent truth maintenance

as two agents interact.

Figure 16.4 shows the initial state of the knowledge bases for the two agents, an investor

and a stockbroker. First, the investor asks the stockbroker to recommend a stock. The stock-

broker recommends XCorp, which causes the investor to believe that he should buy that stock,

as shown in Figure 16.5. However, the stockbroker then learns (not shown) that the basis for

his recommendation, namely, that XCorp is cash-rich, is no longer valid. He revises his

beliefs and notifies the investor that he has retracted his recommendation for XCorp. The

final knowledge bases for the agents are shown in Figure 16.6.

16.5.4 Conflicts among Agents

It is interesting to note that the agents maintain different beliefs about whether or not they can

afford to buy XCorp stock. Allowing the difference in belief—this global inconsistency—is

useful here. It allows different viewpoints to be represented, it simplifies the representation of

knowledge, in that the predicate afford really should have an additional argument indicating

which agent can or cannot afford the stock, and it eliminates the interactions that would be



16.5 Consistency Maintenance 353

Investor

f3: afford(XCorp Yes)

r3: Infer buy(?X) from query(Agent2 recommend(?X)) and afford(?X Yes)

Stockbroker

f1: afford(XCorp No)

f2: cash-rich(XCorp)

r1: Infer recommend(?X) from takeover-bid(?X)

r2: Infer takeover-bid(?X) from cash-rich(?X)

�
? recommend(?X)

Figure 16.4: Initial knowledge bases of two interacting TMS-based agents, before the investor

queries the stockbroker for a recommendation

Investor

f3: afford(XCorp Yes)

r3: Infer buy(?X) from query(Agent2 recommend(?X)) and afford(?X Yes)

f4: recommend(XCorp)

Status - EXTERNAL; Justification - (); Shared with - Agent2

f5: buy(XCorp)

Status - IN; Justification - (f3 f4 r3)

Stockbroker

f1: afford(XCorp No)

f2: cash-rich(XCorp)

r1: Infer recommend(?X) from takeover-bid(?X)

r2: Infer takeover-bid(?X) from cash-rich(?X)

f3: recommend(XCorp)

Status - IN; Justification - (f1 r1 r2); Shared with - Agent1

�
recommend(XCorp)

Figure 16.5: Knowledge bases of two interacting TMS-based agents after the stockbroker has

replied to the investor’s query



354 Multiagent Systems

Investor

f3: afford(XCorp Yes)

r3: Infer buy(?X) from query(Agent2 recommend(?X)) and afford(?X Yes)

f4: recommend(XCorp)

Status - OUT; Justification - (); Shared with - Agent2

f5: buy(XCorp)

Status - OUT; Justification - (f3 f4 r3)

Stockbroker

f1: afford(XCorp No)

f2: cash-rich(XCorp) −→ OUT

r1: Infer recommend(?X) from takeover-bid(?X)

r2: Infer takeover-bid(?X) from cash-rich(?X)

f3: recommend(XCorp)

Status - OUT; Justification - (f1 r1 r2); Shared with - Agent1

�
Relabel recommend(XCorp)

Figure 16.6: Final knowledge bases of two interacting TMS-based agents after the stockbroker

has notified the investor that a fact must be relabeled

needed to resolve the difference. Of course, the multiagent TMS would detect, and subse-

quently correct, the difference if the agents ever share or discuss this predicate.

The above is a case where the predicate used by each agent is the same, but its inter-

pretation is clearly different, since each agent applies the predicate to itself. The same steps

could be performed if the agents had differing beliefs about the same fully instantiated pred-

icate. For example, the agents may differ in their treatment of the cash-rich observation for

the same company. As a possible scenario, say the investor deals with two stockbrokers,

one who believes that XCorp is cash-rich and the other who believes that it is not. Such a

situation may arise if each stockbroker has some proprietary data and rules for concluding

whether a company is cash-rich. The above formulation simply would not work in such a

case. Instead, it would be necessary to record the beliefs explicitly, so that our investor could

capture the facts that stockbroker Charlie believes XCorp to be cash-rich, while stockbroker

Diane believes the opposite.

16.6 Modeling Other Agents
Software agents being deployed to implement Web services are typically designed to operate

independently and are only minimally aware of their own environment and capabilities. They

fail to take advantage of each other’s abilities or results.

For example, a shopping agent might periodically access several online Web services to



16.6 Modeling Other Agents 355

find the best price for a music CD and then purchase it if the price falls below its user’s

threshold. Other agents might be tracking prices for the same CD, duplicating each other’s

work.

To be more effective, agents must be aware of each other; therefore they must acquire

models of each other. One way to do this is by exchanging messages. (“Hi, agent 87 knows

about CD prices.”) A second form of awareness involves the state of the agent’s own envi-

ronment, including characteristics of the computer on which it is executing and its network

connection. (“How many bytes can I send in one second?”) A third involves self-awareness—

knowing its own name, age, provenance, ontology, goals, areas of expertise and ignorance,

and reasoning abilities.

A model of an agent can have many possible forms and amounts of detail, and it can be

used in many ways—for example, to plan a partial order of actions that minimizes contentions

for resources with other agents or to decide on a course of action once another agent is

actually encountered. If an environment has too many agents to be modeled individually,

then an agent might act in accord with social conventions, such as that agents working on

more important tasks have higher priority for using resources.

Another possibility, if the other agents are organized, is for an agent to learn about that

organization. This could simplify its modeling task because it would need to model only

a subset of the agents—those with whom it interacts and those that are representative of a

particular agent role. Moreover, it would know a priori something about the agents on the

basis of their role in the organization. For example, it would expect subordinate agents to

try to satisfy its requests and commands, and it would expect to receive commands from

managers or superiors.

How should one agent represent another, and how should it acquire the information it

needs to construct a model in that representation? This question has a simple and elegant

answer: the agent should presume that unknown agents are like itself, and it should choose

to represent them as it does itself. As it learns more about them, it has only to encode any

differences it discovers. This can make the resultant representation concise and efficient.

Here are some other advantages:

• An agent has a head start in constructing a model for an unknown or just-encountered

agent.

• An agent has to manage only one kind of model and one kind of representation.

• The same inference mechanisms used to reason about its own behavior can reason

about the behavior of other agents. An agent trying to predict what another will do has

only to imagine what it would do itself in a similar situation.

One ramification of such a representation is that an agent constructed with a belief-desire-

intention, i.e., a BDI architecture, would attribute intentions to other agents even if they

lacked a BDI architecture or any explicit intentions at all. This is consistent with the inten-
tional stance, which is introduced in the next section.



356 Multiagent Systems

16.7 Cognitive Concepts

The intentional stance is the philosophical view underlying the use of cognitive concepts for

agents. It was first promulgated by the computer scientist John McCarthy [McCarthy, 1979]

and developed further by the philosopher Daniel Dennett [Dennett, 1987]. The intentional

stance simply states that cognitive concepts can be ascribed to any physical system and that it

is beneficial to do so for complex systems. Indeed, if a system is sufficiently complex—such

that complete physical details can never be known—the intentional stance might be the only

one that enables us to understand how it acts.

People often use cognitive concepts to understand how others behave. For example, we

try to anticipate the actions of other drivers on the road by inferences about their beliefs and

intentions. We could never function as car drivers if we had to reason about the neural states

of the other drivers just to figure out if they were about to change lanes. In fact, even though

neuroscience has not yet developed to the stage where human brains can be mathematically

modeled, people and even animals have always been able to figure out each other’s beliefs

and intentions to more or less correctly predict each other’s actions. The idea, then, is to use

cognitive concepts to talk about the states of computational agents without needing to know

how those agents are implemented.

A cognitive basis for an agent is especially applicable when the agent is to serve as a

personal assistant in a user interface. Based on its own intentions and beliefs, the agent can

infer what its user needs by understanding his or her intentions. This facilitates tasking,

allowing users to tell agents what to do rather than how to do it. Such an agent might be able

to solve a user’s problem even if it happens to be formulated incorrectly, which can easily be

the case when the user is asking for assistance.

Although they are intuitive, cognitive concepts often have a number of connotations in the

vernacular. If we are going to build computing systems from cognitive concepts, we must be

sure of our interpretations and how precisely they relate to an agent’s construction. Some of

the properties that cognitive theories seek to capture are the relationships among the concepts.

For example,

• Beliefs are mutually consistent. (This can be a demanding property to realize in a

practical system and usually requires an agent’s beliefs to be restricted in some way.)

• An agent will intend an action only while it believes the action is possible.

• An agent need not intend something that would happen anyway.

These kinds of properties have long been under development. Much progress has been made,

but not every important aspect has been worked out. However, developers are proceeding with

practical systems based on these concepts, providing valuable input in refining the theories.



16.8 Applying the Cognitive Concepts 357

16.8 Applying the Cognitive Concepts
Three broad approaches have been defined for implementing cognitive concepts. Different

agent architectures reflect these approaches.

In the first approach, designers use cognitive concepts to model an agent’s reasoning. The

agent represents its beliefs, desires, and intentions in modular data structures and performs

explicit manipulations on those structures to carry out means-ends reasoning or plan recog-

nition. When the cognitive concepts are defined formally, the explicit manipulations can be

accomplished through the application of a suitable theorem prover.

In the second approach, designers can still use explicit representations of cognitive con-

cepts, but the concepts are processed procedurally, rather than via theorem proving. The pro-

cedural approaches have better performance than theorem proving, but performance comes at

the expense of implementation simplicity and the superior semantic basis of theorem provers.

Most practical agent architectures based on cognitive concepts fall into the procedural cate-

gory.

The third approach uses cognitive concepts only for design and analysis. A designer

can think of an agent’s behavior in cognitive terms, but the agent itself would not have any

explicit representations of the cognitive concepts. The agent might be just a simple finite-state

machine operating in a restricted environment. There is continuing interest in such a “situated

automata” approach, and it is especially promising in settings where higher performance is

desired, but the agent’s construction does not have to be highly complex.

In each of these approaches, the designer ascribes cognitive concepts to the agent. The

designer considers not only the agent’s data structures, but also how these structures are

linked to its sensors and effectors (see Figure 15.1), and how the sensors and effectors in

turn are linked to the real environment. This is difficult, however, and the agent’s resultant

behavior might not fully reflect the designer’s intentions. An agent might still have false

beliefs, inappropriate desires, or impossible intentions. Such eventualities can occur, for

example, if the agent is operating outside its normal design range. In such a situation, the

intentional stance can help designers and users understand and analyze why the agent is

behaving in an apparently inappropriate manner.

16.9 Notes
Justification-based TMSs were proposed in Doyle [1979] and assumption-based TMSs in

deKleer [1979]. Multiagent truth maintenance was introduced in [Huhns and Bridgeland,

1991a].

FIPA’s Web site at www.fipa.org hosts their specifications. The following are popular

FIPA-compliant agent frameworks:

• JADE, http://sharon.cselt.it/projects/jade/

• FIPA-OS, http://fipa-os.sourceforge.net/



358 Multiagent Systems

• Zeus, http://zeus.enhydra.org/

• CoABS Grid, http://coabs.globalinfotek.com/

Of these, JADE is the most actively developed and maintained.

16.10 Exercises
16.1. What are some of the advantages and disadvantages of synchronous versus asyn-

chronous communication among agents?

16.2. Multiagent Truth Maintenance. A single agent who knows A and A ⇒ B would have

its knowledge labeled as follows:
� �

f a c t 1 : A

s t a t u s : ( IN )

s h a r e d w i t h : ( NIL )

j u s t i f i c a t i o n : ( PREMISE )

r u l e 1 : A = > B

s t a t u s : ( IN )

s h a r e d w i t h : ( NIL )

j u s t i f i c a t i o n : ( PREMISE )

f a c t 2 : B

s t a t u s : ( IN )

s h a r e d w i t h : ( NIL )

j u s t i f i c a t i o n : (<f a c t 1 , r u l e 1 >)
� �

If the agent shares fact1 with another agent, fact1’s shared with label records the name

of the agent, and the agent receiving the knowledge labels its new fact as having status

EXTERNAL. Now consider the following situation in which the knowledge is initially

local to each agent:

Agent 1 Agent 2 Agent 3

f1: P r1: P ⇒ Q f1: R

r1: S ⇒ T r2: R ⇒ Q

r3: R ⇒ S

r4: Q ⇒ W

• Suppose that Agent 1 shares f1 with Agent 2, who uses forward chaining to make

all possible conclusions from its knowledge. Show the effect of Agent 1 sharing

f1 on the status, shared with, and justification fields for all data in each agent.

• Now suppose Agent 3 shares f1 with Agent 2. Show the effect of sharing this

knowledge on the status, shared with, and justification fields for all data in each

agent.



16.10 Exercises 359

• Now suppose that Agent 1 retracts f1 by making f1 have status OUT. Show the

changes on the status, shared with, and justification fields for all data in each

agent.

16.3. In an agent-based two-phase commit protocol, a coordinating agent sends a Prepare

message to each resource agent, which is managing a database. Each resource agent

responds to the coordinator with either a Ready message or a Don’t Commit message.

The first phase of the protocol ends when each agent has responded. During the second

phase, the coordinator sends either a Commit message or an Abort message to each of

the resource agents.

Consider a simple scenario where Agent 0 is the coordinator and Agents 1, 2, and 3

are the resource agents. Use the notation (M, i, j) to mean that message M is sent

from Agent i to Agent j, where M can be P (prepare), R (ready), D (don’t commit), C

(commit), or A (abort).

(a) Show a possible sequence of messages that could occur if Agent 2 wants to abort

and Agent 1 and Agent 3 want to commit.

(b) How many possible sequences of messages are there if the overall transaction com-

mits successfully?

(c) If Agents 1 and 3 want to commit, but Agent 2 does not, how many sequences of

messages are there, assuming no failures occur?

(d) If Agents 1 and 3 want to commit, but Agent 2 is busy and does not respond to

messages, how many sequences are there?

16.4. In a corporate department, database DB1 stores information about hardware expendi-

tures and database DB2 stores information about software expenditures. Your job is to

construct an agent that can deal with these two systems on behalf of a user.

DB1: Hardware Expenses

Item Price Unit Date

ID1 27.50 $ Oct

ID2 13.25 Euro Dec

ID3 8.20 Yen Dec

ID4 86.45 $ Jan

DB2: Software Expenses

ID Cost($) User Month

ID1 18.50 Smith Nov

ID2 11.20 Jones Dec

ID3 68.99 Huhns Apr

ID4 47.30 Singh Dec

The user, who wants to find the total expenditures for December, sends the following

query to YourAgent:

SELECT Sum(Cost) FROM Expenditures WHERE Month=’Dec’;

(a) What FIPA message should YourAgent send to DB1?

(b) What FIPA message should YourAgent send to DB2?



360 Multiagent Systems

(c) What FIPA message would YourAgent receive from DB1?

(d) What FIPA message would YourAgent receive from DB2?

(e) What FIPA message should YourAgent send to the User?

(f) List all of the semantic mappings that YourAgent might need to make in order to tie

all of the components of the system into a cooperative information system.

(g) Every purchase has exactly one hardware expenditure and exactly one software

expenditure, which you keep track of by using the same ID in each table. Suppose

you want the system to obey the ACID properties for transactions (from the user’s

standpoint). Specifically, the following message is sent from the user to YourAgent:

DELETE FROM Expenditures WHERE ID=’ID3’;

What FIPA messages would be sent and received between YourAgent and DB1 and

DB2 to implement a two-phase-commit (2PC) protocol? For each message, include

both the message type (performative) and the content field. You can assume that both

DB1 and DB2 individually understand the commands in a 2PC protocol.

(h) What additional restrictions must be imposed on DB1 and DB2 in order to guarantee

ACIDity of the system?



Chapter 17

Organizations

Organizations emerge whenever agents work together in a shared environment. Organizations

reflect the structure of the interactions of their participating agents. Typically, organizations

are engaged in tasks and are goal oriented. Because organizations are larger-scale than single

agents, they have reasoning, knowledge, and capabilities beyond those of individual agents.

The main motivation for organizations is that they help overcome the limitations of agents in

these three respects (recall the definition of an agent), as follows:

Reasoning. The members of an organization promote different concerns and capture diverse

heuristics and reasoning approaches. For example, one agent may seek to optimize a

traveler’s trip in terms of price, another in terms of convenience; if their organization

can combine these results properly, the result can be better than optimizing just a single

objective.

Capabilities. The members of an organization bring different capabilities to bear on its tasks.

For example, one agent may specialize in business accommodations and another in

leisure and sight-seeing; together they can create a trip for their customer that offers a

better hotel stay and more interesting excursions.

Perception. Different agents may be able to perceive a richer variety of conditions than either

one alone. For example, one agent may be able to monitor hotel vacancies; another one

may track a possible strike by air traffic controllers.

Lifetime and persistence. Organizations generally last longer than individual agents. Just

as a human travel agency retains its identity and character as gradually all of its staff

change, so can an organization of software components, each of which is upgraded in

due course. An “organizational” memory might outlast that of any of its members.

Shared context. Organizations, being multiagent systems, can embody considerations such

as shared context in their organizational memory that would otherwise be recorded

separately and likely differently by each member. The shared context is essential for

361



362 Organizations

effective communication among agents. This is where the long lifetime of an organi-

zation can pay off the most.

There are subtleties in human organizational theory, but this book concentrates on the simple

ideas that fit in well from a computational perspective. It mainly uses organizations as a

source of metaphors for how to structure systems of collaborative services, each modeled as

an agent, into a coherent whole.

Coherence is how well a system of agent-based services behaves as a unit. It depends

on agents that act in accord with the roles they assume, the authorizations of those roles,

and the commitments among them. The commitments of the agents lend coherence to their

interactions over time. Organizations serve the purpose of packaging these commitments into

well-defined bundles. Further, they provide a locus for resolving inconsistencies.

17.1 Contracts
Traditional computing approaches to actions focus on their causes and effects. But with

agents, we also need to distinguish between right and wrong, and legal and illegal. We need

to make this distinction as agent developers, and we might also want the agents to make the

distinction about themselves. This is so they can be trusted to act according to a set of pro-

scribed ethics and laws, thereby properly representing humans in contractual settings. With

emerging applications in mind, we review some of the essential concepts of agent jurispru-

dence.

17.1.1 Legal Concepts
The law involves the interactions of entities with one another. Thus legal concepts are inher-

ently multiagent in orientation. Arguably, much of corporate law is about the creation and

manipulation of contracts among legal entities (people, corporations, and governmental agen-

cies). Contracts, e.g., service agreements, are about behavior and are crucial in open environ-

ments.

A contract represents a legal relation among specified parties. Contracts can also exist

among agents, as representatives of human actors. For simplicity, we consider contracts that

involve no more than two agents at a time, although some recent work treats more general

settings.

Interesting legal ideas for agents originate from the work of the American jurist, Wesley

Newcomb Hohfeld (1879-1918) [Hohfeld and Cook, 2001]. Hohfeld observed that terms

such as “right” are used ambiguously in the vernacular and proposed a uniform terminology to

distinguish the various situations. (Notice that this discussion is about legal rights as opposed

to the right (ethical) thing to do.)

Each of Hohfeld’s terms has a paired correlate term, which applies when the same relation

is viewed from the perspective of the other agent. Some correlate pairs are claim and duty,

privilege and exposure, power and liability, and immunity and disability.



17.1 Contracts 363

Claim. This corresponds to what one agent can demand from another. A claim is the most

common kind of right. For example, an agent Alice who has rendered services to an

agent Bob has a claim to be paid by Bob.

Correlatively, Bob has a duty to pay Alice.

Privilege. This arises when one agent is free from the claims of another. In other words, it

is the absence of a duty to refrain from a given act. You may or may not exercise your

privilege. For example, Alice has a privilege to read Bob’s files if Alice has no duty

not to do so. Alice cannot be forced to read Bob’s file, but if she wishes to read them,

she cannot be prevented (without taking the privilege away).

Correlatively, Bob has an exposure to Alice’s reading his files.

Power. This is the ability of an agent to force (if it so desires) the alteration of a legal relation

between itself and another agent. For example, Alice’s privilege to read Bob’s files may

have arisen because of an explicit access control assignment by Bob. That is, if Bob

owns the files, he has the power to grant anyone a privilege to read them, but may or

may not have the additional power to take away that privilege once granted.

The correlate of power is liability. Let’s assume Bob has the power to take away

Alice’s privilege to read his files. Then Alice is liable to Bob for losing that privilege.

Notice that Alice is also liable for gaining a privilege, which only goes to show that

the technical meanings of terms need not have all the connotations of their informal

meanings.

Immunity. This is a freedom from the power of another agent. For example, if Bob owns

some files, then Alice lacks the power to take away his privilege of reading them. Thus,

by fact of ownership, Bob has immunity from Alice’s taking away his privilege.

Correlatively, Alice has a disability to take away the privilege from Bob.

Hohfeld argued that the above selection of terms covers the legal concepts related to contracts

and the rights and duties of individuals. We can use these concepts to establish the norms of

agent societies, where the agents are aware of the different shades of each other’s rights.

Hohfeld’s concepts can be used wherever the relationship among agents represents a con-

tract. One major arena for applying these concepts is in defining and testing for the compli-

ance requirements of the interactions among different agents. For example, we can say that

an agent who offers to buy a product must pay the amount it originally offered unless the

seller releases the offering agent from this duty.

17.1.2 Deontic Logic
Deontic logic is the logic of obligations, of what conditions ought or ought not to be brought

about (or correspondingly what actions ought or ought not to be performed). The natural

language descriptions are generally easier in terms of actions, but the logic is more obvious

if we deal with conditions or propositions.



364 Organizations

The main operator of deontic logic is O, meaning it is obligatory that. For example, Op
means that it is obligatory that p be performed or brought about. Specifically, we could state

that Opay($5), which would mean that it is obligatory that $5 be paid. To identify the parties

involved, we might revise the above predicate to take additional arguments and thus formulate

Opay(A,B, $5), where we understand pay(A,B, $5) as meaning that A pays B $5. The full

expression, therefore, means that it is obligatory that A pays B $5.

Deontic logic enables us to reason about obligations. For example, we might have the

following axioms:

O(p ∧ q) ⇒ (Op ∧ Oq)

Op ⇒ ¬O¬p

Such axioms can enable us to reason about what is obliged or not.

Although there is value in being able to reason formally, traditional deontic logic proves

to be quite limited in terms of its modeling assumptions. It has no notion of agents, so it

may be appropriate only for stating general ethical laws. For example, deontic logic could be

used to express requirements such as the following: “it is a bad thing if an innocent man is

punished” or “it is wrong to tell lies.” But what we are looking for is something more specific

where the parties involved are explicit. The following are consequences of an absence of

agents.

• Deontic logic does not separate the obligations of one party from those of another. In

the above example, we don’t know who it is that is obliged to ensure that A pays B. Is

it A, is it B (who should remind A), or is it some unknown C who is trying to return

his loan from B by using A to carry the money.

• Deontic logic does not state to whom the given obligation is directed. In business

settings, if there is a promise or a contract, there would be a party that is the beneficiary

of the given promise or contract.

17.1.3 Commitments
The first patch to deontic logic is to introduce the notion of directed obligations, which are

obligations directed from one party to another. This is certainly a useful step. However,

as we shall see in discussions of virtual enterprises (Section 17.2.2) and business protocols

(Section 18.3), it is generally the case that the obligation of one party to another is bounded

by the scope of their ongoing interaction. In other words, obligations derived from the virtual

enterprise may last no longer than the virtual enterprise in question. Further, there is always

the element of conflict, which means that the parties to a contract may be in the need for

some adjudication. These considerations suggest that there is an organizational structure to

the obligations, which bounds the scopes of the obligations.

The notion of commitments (for historical reasons, sometimes referred to as social com-
mitments) takes care of the above considerations. Commitments are a legal abstraction.

They subsume directed obligations as well as the Hohfeldian concepts. Importantly, com-

mitments (1) are public, and (2) can thus be used as the basis for compliance (discussed in



17.1 Contracts 365

Section 18.3.2). Commitments support the following key properties that make them a useful

computational abstraction for service-oriented architectures.

Multiagency. Commitments associate one agent or party with another. The party that “owes”

the commitment is called the debtor and the other party is called the creditor. Each

commitment is directed from its debtor to its creditor.

The directionality is simply a representational convenience. In practice, commitments

would arise in interrelated sets. For example, a typical business contract would commit

one party to pay another party and the second party to deliver goods to the first party.

Scope. Commitments arise within a well-defined scope. This scope functions as the social
context of the commitment. In other words, the scope is itself modeled as a multi-

agent system within which the debtor and creditor of the given commitment interact.

For example, the parties to a business contract can be understood as forming and act-

ing in a multiagent system in which they create their respective commitments and act

on them. The multiagent system may have a short or a long lifetime depending on

the requirements of the application. Conceivably, the multiagent system for a one-off

interaction would be dissolved immediately, whereas some multiagent systems may

even last longer than the specific agents that belong to them.

Manipulability. Commitments can be acted upon and modified. In particular, commitments

may be revoked. If we were to prevent modifying or revoking commitments, we would

end up ruling out some of the most interesting scenarios where commitments can be

applied. For example, irrevocability would be too limiting for the kinds of open appli-

cations where service-oriented architectures make sense. Irrevocability would prevent

considering errors and exceptions that may occur outside of the administrative domain

of the given business partner. For instance, it may simply be impossible for a ven-

dor to deliver the promised goods on time if the vendor’s factory burns down or there

are difficulties with shipping. However, we must be careful that commitments are not

revoked willy-nilly, which would make them worthless. When restrictions (sensitive

to a given context) are imposed on the manipulation of commitments, they can support

the coherence of computations.

Services, although collaborative, retain their autonomy. They can exercise their local policies

for most decisions and can be considered as being constrained only by their commitments.

17.1.3.1 Commitments Formalized

We write commitments using a predicate C. A commitment has the form C(x, y, p,G), where

x is its debtor, y its creditor, p the condition the debtor will bring about, and G a multiagent

system, which serves as the organizational context for the given commitment. A base-level

commitment has a simple form, e.g., C(b, s,pay(b, s, $10), D), where b is a buyer, s a seller,

and D is the context denoting the business deal between them.



366 Organizations

17.1.3.2 Operations on Commitments

It helps to treat commitments as an abstract data type. This data type associates a debtor, a

creditor, a condition, and a context. The following operations are then natural for commit-

ments.

• Create: I promise to send you $10.

• Discharge (satisfy): I actually send you $10.

• Delegate (change debtor): now my friend is committed to pay you $10.

• Assign (change creditor): now I am committed to pay $10 to your colleague.

• Cancel: I renege on my promise.

• Release (eliminate): you decide to waive receiving the $10, or the government steps in

to say that our agreement is null and void.

Create and discharge are obvious; delegate and assign add some flexibility to commitments

and are also obvious. Cancel and release remove a commitment from being in effect. Cancel

is essential to reflect the autonomy of an agent; just because it made a commitment does

not mean that the commitment is irrevocable. However, if commitments could be wantonly

canceled, there would be no point in having them, so cancellations of commitments must be

suitably constrained (see below). Release helps capture various subtleties of relationships

among business partners. A partner may decide not to insist that another party discharge its

commitments. Alternatively, the organizational context within which the parties interact may

find that a commitment should be eliminated. For example, ordinarily a buyer is expected to

pay for goods and a pharmacist is expected to ship medicines that are paid for. However, if

the goods arrive damaged then the buyer is released from paying for them (but must return

them instead); if the medicine prescription turns out to be invalid, the pharmacist is released

from the commitment to ship the medications.

17.1.3.3 Metacommitments

Commitments arise in terms of specific conditions at run-time, but when collaborations are

being designed, they are typically formulated as commitments about commitments. Also,

negotiations involve communications such as proposals, which can be interpreted as com-

mitments about commitments. For example, a merchant may send a quote to a prospective

customer. The content of the quote would be something like: if you pay me $10, I will send
you a book. In other words, a commitment (from the merchant to the customer) to send a

book would be created only if the customer pays. This overall commitment is already present

in the message. Such commitments about commitments are termed metacommitments. The

following exemplify some metacommitments from a seller s to its customer b regarding deal

d. Exercise 17.1 returns to these examples.



17.2 Spheres of Commitment 367

• The seller will notify customers of any change to their order, oi:

C(s, b, change order(b, o1, o2) ⇒ notify(s, b, o2), d)

• The seller will guarantee its price quotes, i.e., if the goods (g) are ordered and the

amount quoted is paid, the seller will deliver g goods:

C(s, b, quote(s, b, g, q) ⇒ (pay(b, s, q, g) ⇒ C(s, b, ship(s, b, g))), d)

• The seller will guarantee the quoted delivery date.

• The seller will accept the customer’s requests to update orders that have not yet been

shipped.

Notice that the above descriptions grossly simplify the domain-specific predicates. In prac-

tical settings, these would be replaced by potentially quite extensive documents describing

business deals. Not surprisingly, commitments or any other modeling approach cannot pro-

vide a free lunch in terms of modeling business interactions. However, commitments enable

us to structure the interactions and to apply generic techniques for enacting them, which sim-

plifies key aspects of the modeling and enactment of interactions among autonomous parties.

Metacommitments apply not only to negotiations but to specifying the rules of encounter

more generally. The rules are stated in terms of manipulations of the existing commitments.

For example, an agent may wish to, or must, violate a commitment. Or an agent may del-

egate its commitment to another. Such operations are allowed, but may be constrained via

metacommitments.

Metacommitments can be realized through reaction or ECA rules (as discussed in Sec-

tion 15.7.2.1). Metacommitments help generalize the ideas introduced in Section 16.5 for

consistency maintenance and in Section 16.2 for relaxed transaction processing via interact-

ing agents.

17.1.3.4 Contrast with Database Commit

We previously encountered the word “commit” in connection with the commit of a database

transaction. When a transaction commits, it enables its results to be made permanent in the

database and to be accessed by other transactions. Thus, there is a relationship between

database commits and agent commitments. However, there are two key differences. First,

transaction commits are durable, but only because the lifetime of a transaction does not extend

beyond its commit. Thus a transaction cannot interact with another transaction. Second, the

flow of information from the results of a transaction occurs through the database and does not

recognize any organizational structure.

17.2 Spheres of Commitment
To perform even simple protocols reliably, we must ensure that the parties to an interaction

agree on its current state and where they desire to take it. This requires an element of col-

laboration among the interacting parties. Collaboration can be quite subtle, but it has some



368 Organizations

simple computational ramifications on how we model our software systems. For instance,

to be collaborative, the parties must employ persistent computations. They should be able

to manage the context of their interactions, e.g., by carrying on conversations. In cases of

exceptions, the different parties might have to retry their high-level actions, as well as the

low-level message transmissions.

A Sphere of Commitment (SoCom) is an organization that provides the context or scope

of commitments among the agents. In essence, a SoCom is an agent in its own right. That is,

in C(x, y, p,G), G would be the SoCom. SoComs have the following main uses:

• SoComs witness the commitments being made within their scope.

• SoComs validate commitments and test for compliance.

• SoComs perform compensations to undo any of the actions of the members so as to

ensure that the commitments are met.

Abstractly, organizations consist of roles, with each role requiring certain capabilities and

offering certain authorizations. Organizations involve commitments (primarily metacommit-

ments) among the roles. Concretely, organizations consist of agents, who form commitments

(meta- or base-level) according to the roles they adopt.

17.2.1 Teams of Services
When we construct collaborative systems of services, we end up in a situation where decision

making is naturally distributed across the composed services. Handling such distribution

requires an ability to share information. It also requires intelligent decisions by each service

so the composed services can collaborate and compete appropriately. Our objective is to

achieve the desired composition while accommodating exceptions.

Teams are tightly knit organizations. Team members have shared goals. They have com-

mitments to help other members. In some formulations, they also have commitments to adopt

additional roles and offer capabilities on behalf of a disabled member. Thus a team carries

out some complex activity by negotiating what to do, monitoring actions jointly, providing

mutual support, and repairing plans when necessary.

17.2.2 Virtual Enterprises as Teams
Virtual enterprises are enterprises constructed dynamically as collaborations of existing enter-

prises. They are “virtual” in that, although their customer may treat them as real, they may

not exist in the way that the original enterprises exist in the physical world. Virtual enterprises

can provide aggregated goods and services to customers. A reason to have such enterprises

is that the individual enterprises may have common customers, but the common customers

either face a daunting task in combining the services on their own or are likely to pursue

relationships with competitors of the given enterprises. By forming a virtual enterprise, these

enterprises can offer greater value and thus hope to retain and build their customer base.



17.2 Spheres of Commitment 369

Virtual enterprises provide an example of a scenario where commitments apply naturally.

Imagine each enterprise as providing a service. To construct a virtual enterprise requires

the ability for the services to become organized into teams dynamically, to enter into multi-

party deals involving themselves and their customers, to appropriately handle authorizations

and commitments, especially those made by the virtual enterprise, and thus to incorporate

exceptions that may be generated elsewhere in the virtual enterprise.

Customer Virtual Enterprise Hose Seller Valve Seller

I would like to buy a valve with input

dia of 43,  two matching hoses, and

of price up to $50.00

Order placed; 1 valve idia = 43

Odia = 43. 2 hoses dia = 43

Charge = $14.83 Sell two 43 dia hoses

Order is ready

Order revised; 1 valve idia = 43

odia = 21, hose dia = 43, and

hose dia = 21. Charge = $14.83

Order processed

valve input dia = 43, output dia 43 discontinued

valve input dia = 43, output dia 21 recommended

Cancel previous order

Sell one valve with input dia 43, output dia 21

Order is ready

Yes

Two 43 dia hoses in stock?

One valve with input dia 43, output dia 43 in stock?

Yes

One 43 dia & one 21

dia hose in stock?

Yes

Sell one 43 dia & one 21

dia hose

Order is ready

Figure 17.1: A selling virtual enterprise

Let us consider a simple example. Two sellers of hoses (H) and valves (V ), respectively,

come together with a new proxy agent called VE, which represents the virtual enterprise. The

following are commitments of H to VE (likewise for V ).

• H will notify VE if it is unable to fulfill an order it previously accepted.

• H will accept a modification to an order requested by VE provided H has the requested

goods in stock and VE pays it a penalty.

• H will pay VE a penalty to forward to V if H cancels a commitment to fulfill an order

and this cancellation causes a change in what VE had previously ordered from V .



370 Organizations

Now VE can act as the seller in a trade where the other party is the buyer. Figure 17.1

describes an execution scenario involving VE, its customer, and two service providers H
and V . Here VE accepts an order from the customer to supply a requested assembly based

on goods from H and V . When it turns out that V is unable to fulfill its part of the order,

it notifies VE and recommends an alternative. VE recomputes the assembly based on the

customer’s specifications and determines that H’s order must be modified. VE notifies the

customer that the order has been changed, but honors the previously quoted price.

17.3 Achieving Collaboration via Conventions
A convention [Jennings, 1996] provide a means of managing commitments in changing cir-

cumstances. Commitments provide a degree of predictability so that agents can take the

future activities of others into consideration when dealing with interagent dependencies,

global constraints, or resource utilization conflicts. As situations change, agents must evalu-

ate whether existing commitments are still valid. Conventions constrain the conditions under

which commitments should be reassessed and specify the associated actions that should then

be undertaken: either retain, rectify, or abandon the commitments.

If its circumstances do not change, an agent will endeavor to honor its commitments.

This obligation constrains the agent’s subsequent decisions about making new commitments,

since it knows that it must reserve sufficient resources to honor its existing commitments. For

this reason, an agent’s commitments should be both internally consistent and consistent with

its beliefs.

Conventions help an agent manage its commitments, but they do not specify how the agent

should behave towards others if it alters or modifies its commitments. However, because

agents typically have mutually dependent goals, it is essential that each inform the relevant

agents of any substantial change that affects them. A convention of this type is a social one.

If communication resources are limited, the following convention might be appropriate:
� �

LIMITED−BANDWIDTH SOCIAL CONVENTION

INVOKE WHEN

O p e r a t i o n pe r fo rmed on commitment

ACTIONS

R u l e 1 : IF commitment s a t i s f i e d

THEN in f o r m a g e n t s i n v o l v e d i n r e l a t e d commitments

R u l e 2 : IF commitments dropped b e c a u s e u n a t t a i n a b l e

THEN in f o r m c r e d i t o r a s w e l l a s SoCom
� �

When agents decide to pursue a joint action, they jointly commit themselves to a common

goal, which they expect will bring about the desired state of affairs. The minimum informa-

tion that a team of cooperating agents should share is (1) the status of their commitment to



17.4 Policies 371

the shared objective, and (2) the status of their commitment to the given team. If either of

these changes, then joint commitments require that all team members be informed. Because

joint actions may depend upon the entire team, a change of commitment by one participant

can jeopardize the team’s efforts. Hence, if an agent comes to believe that a team member is

no longer jointly committed, it also needs to reassess its own position with respect to the joint

action. These three basic assumptions are encoded in the following convention that represents

the minimum requirement for joint commitments:
� �

BASIC JOINT−ACTION CONVENTION

INVOKE WHEN

S t a t u s o f commitment t o j o i n t a c t i o n changes

S t a t u s o f j o i n t commitment o f a team member changes

ACTIONS

R u l e 1 : IF S t a t u s o f commitment t o j o i n t a c t i o n changes

OR IF S t a t u s o f commitment t o a t t a i n i n g j o i n t a c t i o n i n

p r e s e n t team c o n t e x t changes

THEN in f o r m a l l o t h e r team members o f t h e s e changes

R u l e 2 : IF S t a t u s o f j o i n t commitment o f a team member changes

THEN Dete rmine whe the r j o i n t commitment s t i l l v i a b l e
� �

Conventions provide a ready computational means to engineer collaboration where the

member agents can be trusted. If a designer can ensure that certain conventions will be

followed, then collaborative behavior can be achieved by having the agents follow suitable

conventions for interactions.

17.4 Policies

To understand fully the results and effects of a business process, it is necessary to consider

the context in which it is executed. One part of the context for an organizational process is

provided by the policies that are applicable to it. For example, we can express a policy that an

employee of NSCU may reserve a coach-class but not a business-class airline seat as follows:

has(X, right(X, reserveBusinessClass, employee(X, NSCU))) ∧
has(X, prohibition(X, reserveFirstClass, employee(X, NSCU)))

The above snippet is in the Rei language, which is based on deontic logic [Kagal et al., 2003].

Besides permissions (rights) and prohibitions, the Rei language allows the specification of

obligations, dispensations, and delegations.

How may policies for security, authentication, and bookkeeping be enforced? Clearly,

insofar as they are the local policies of autonomous entities, each service should apply them



372 Organizations

locally. However, some of the policies may be specified as part of a contract or a service-

level agreement (SLA). In the latter case, we would also need to design a mechanism through

which policies could be evaluated.

A sphere of commitment (SoCom) is an abstract specification of a society, which is made

concrete prior to execution. Policies are related to the nesting of SoComs, and apply when

social actions are performed. Role conflicts can occur when agents play multiple roles, e.g.,

because of nonunique nesting, and might be resolved through policy-mandated negotiation.

17.5 Negotiation
Negotiation is a powerful, general mechanism for resolving conflicts and reaching agree-

ments among autonomous interests, such as Web services. The conflicts typically occur over

the allocation of resources, and the agreements typically concern the costs for services, the

quality of services, or the semantics of the terms used in a negotiation or in a domain. For

negotiating over semantics, the objective is to achieve mutual understanding. A simple exam-

ple arises in the virtual enterprise scenario described above. When an assembly is being or has

been promised to a customer, a question arises about which assembly to select from among

many that might meet the customer’s requirements. Negotiation might be required among the

hose and valve sellers, due to conflicting preferences for such an assembly based on the profit

each will derive from the parts included in the assembly.

Formally, negotiation is a process by which a joint decision is reached by two or more

agents, each trying to reach an individual goal or objective. The agents first communicate

their positions, which might conflict, and then try to move towards agreement by making

concessions or searching for alternatives. To reach such agreements, agents need protocols

that can govern and structure their interactions. This section describes some protocols suitable

for large and small groups of agents representing services.

17.5.1 Negotiation Protocols
In 1789, mutinous seamen aboard the HMS Bounty cast Captain Bligh and his crew of 17

adrift in an open boat. After sailing many days without food, the desperate men managed to

snare a small bird. How could they share it? Captain Bligh wanted the portions, although

meager, to be given out fairly. He carefully cut the bird into 18 equal-sized pieces. Two

crewmen then engaged in the following protocol: the first chose a portion randomly and

called out, “Who shall have this?” The second, with his back to the proceedings, called out a

crewman’s name. This procedure yields a basis for an agreement about how the pieces are to

be apportioned.

This procedure is fair, because everyone has an equal chance of getting any piece. How-

ever, this procedure is not envy free, because (after the fact) a crewman may believe that

someone else got a better deal. In general, envy-freedom is a tougher constraint than fairness,

because an envy-free division is always fair, while in a fair division someone may still end up

with the feet or beak of the bird.



17.5 Negotiation 373

Can a negotiation algorithm be both fair and envy free? Under certain circumstances,

yes. For example, the cake-cutting protocol, which is at least 2800 years old, is both fair and

envy free for two people. One person divides a cake in two, and the other chooses the first

piece. This is fair in that each believes he or she received at least half, and envy free in that

neither would wish to trade. This protocol succeeds even when the parties disagree about

the portions’ value: while one might simply want the largest possible piece, the other might

prefer a smaller piece because it has more frosting.

17.5.1.1 Advanced Cake Cutting

What if there are more than two agents? Let us consider fair apportioning first. One fair

protocol for N agents involves the agents’ successively reducing a slice until they deem it

fair—having a value of 1
N . The last agent to reduce the slice must accept it. The rest of

the agents then repeat this procedure for the remainder of whatever they are dividing. This

trimming protocol is fair, because each agent believes its portion is at least 1
N of the total, but

it is not envy free, because one agent might believe another has received a larger share.

The moving-knife protocol, mediated by an auctioneer, is similar and proceeds as fol-

lows: the auctioneer slowly increases the size of a time slice (or other desired resource) until

one agent assesses the value at 1
N and yells, “Stop!” That agent is awarded the slice. The

auctioneer repeats the protocol for the rest of the N − 1 agents and the remainder of the

resource. The last agent might end up with a larger or smaller piece than everyone else, so

this protocol is not envy free.

In another fair protocol, two of the contending agents would first divide a resource equally.

A third agent would then negotiate with each of them to obtain one third of each one’s half.

A fourth agent would then negotiate with the other three agents to obtain one fourth of each

one’s third. This successive-pairs protocol continues until all N agents have negotiated for

their portions.

Divide-and-conquer, another fair protocol, requires the division of a resource to a point

where it could be easily divided among two or three agents. According to this technique, the

resource is divided by one of the agents first into halves, and the number of contending agents

is also divided into halves. The agents in each half should be happy to get a fair share of their

half of the resource. These halves and the agents are again divided in half, and so on until the

remaining pieces of the resource can be divided among just two or three agents each.

17.5.1.2 An Envy-Free Protocol

A simple envy-free protocol for N agents, which unfortunately works only in restricted

domains, proceeds as follows: assume that three agents wish to reserve the time of a ser-

vice during a fixed interval. Each agent would like to have as much time as possible and also

the earliest time possible. First, each agent is asked to divide the interval into three pieces

that it thinks are fair and that it would be willing to accept. If the agents all value each piece

equally, then they would divide the interval in the same way and the pieces could be assigned

to them arbitrarily. Each would be happy with its share.



374 Organizations

If the agents value pieces differently, then each would divide the interval differently, as

shown in Figure 17.2. In this example, the agent G would be assigned its leftmost piece (from

the start to G1), the agent B would be assigned its rightmost piece (from B2 to the end), and

agent R would be assigned its middle piece (from R1 to R2). Each agent would have one

of the pieces it thought was fair, and the other agents (in its estimation) would have smaller

pieces. No agent would be envious. Amazingly, part of the interval would be left over (from

G1 to R1 and from R2 to B2). This protocol works for any domain that can be linearized and

for any number of agents.

G1

R1

B1

R2

G2

B2

Figure 17.2: Agents R, G, and B divide the interval into what each sees as three fair pieces

(R’s division is from the left end to R1, from R1 to R2, and from R2 to the right end; similarly

for G and B)

17.5.2 Negotiation Fundamentals

As shown above, negotiation is central to adaptive, cooperative behavior. The major features

of negotiation are (1) the language used by the participating agents, (2) the protocol followed

by the agents as they negotiate, and (3) the decision process that each agent uses to determine

its positions, concessions, and criteria for agreement. A variety of approaches have been used

to describe negotiation, but they have several features in common. First, it is assumed that

there are only a small number of negotiating agents, typically two. Second, the actions rele-

vant to negotiation are propose, counterpropose, support, accept, reject, dismiss, and retract.
Third, negotiation requires a common language and a common abstraction of the problem and

its solution. The next subsections discuss environment-centered or agent-centered techniques

for negotiation, respectively.

17.5.2.1 Environment-Centered Negotiation

Environment-centered techniques focus on the following problem: “How can the rules of

the environment be designed so that the agents in it, regardless of their origin, capabilities,



17.5 Negotiation 375

or intentions, will interact productively and fairly?” The resultant negotiation mechanism

should ideally have the following attributes:

Efficiency. The agents should not waste resources in coming to an agreement.

Stability. No agent should have an incentive to deviate from agreed-upon strategies.

Simplicity. The negotiation mechanism should impose low computational and bandwidth

demands on the agents.

Distribution. The mechanism should not require a central decision maker.

Symmetry. The mechanism should not be biased against any agent for arbitrary or inappro-

priate reasons.

In particular, three types of environments have been identified: worth-oriented domains, state-

oriented domains, and task-oriented domains [Rosenschein and Zlotkin, 1994b]. We consider

only task-oriented domains here.

A task-oriented domain is one where agents have a set of tasks to achieve, all resources

needed to achieve the tasks are available, and the agents can achieve the tasks without help

from each other. However, the agents can benefit by sharing some of the tasks. For example,

each agent might be given a list of documents that it must access over the Internet. There is a

cost associated with downloading, which each agent would like to minimize. If a document

is common to several agents, then they can reduce their cost by accessing the document once

and then sharing it. What strategy and protocol should they use?

The environment might provide the following simple negotiation mechanism and con-

straints: (1) each agent declares the documents it wants, (2) documents found to be common

to two or more agents are assigned to agents based on the toss of a coin, (3) agents pay for the

documents they download, and (4) agents are granted access to the documents they download,

as well as any in their common sets. This mechanism is simple, symmetric, distributed, and

efficient (no document is downloaded twice). To determine stability, the agents’ strategies

and protocols must be considered in greater detail.

An optimal strategy is for an agent to declare the true set of documents that it needs,

regardless of what strategy the other agents adopt or the documents they need. Because there

is no incentive for an agent to diverge from this strategy, it is stable.

With the monotonic concession protocol, the agents successively compromise their posi-

tions by agreeing to accept additional tasks. Negotiation ends when neither agrees to com-

promise further.

A Zeuthen strategy, in which each agent must be aware of how the other values each task,

requires the agent having an advantage to make a concession. This process repeats until the

agents reach agreement. The result is an optimum task allocation. Notice, however, that it

requires the agents to be aware of each other’s valuations, which might be a violation of their

autonomy. The degree to which each agent might yield some of its autonomy could itself be

a subject for negotiation, possibly occurring in advance of the real negotiation.



376 Organizations

17.5.2.2 Agent-Centered Negotiation

Agent-centered negotiation mechanisms focus on the following problem: “Given an environ-

ment in which my agent must operate, what is the best strategy for it to follow?” Most such

negotiation strategies have been developed for specific problems, so few general principles

of negotiation have emerged. However, there are two general approaches, each based on an

assumption about the particular type of agents involved.

For one approach, message classifiers together with a semantics are used to formalize

negotiation protocols and their components. This clarifies the conditions of satisfaction for

different kinds of messages. To provide a flavor of this approach, consider the following

example how the commitments that an agent might make as part of a negotiation are for-

malized. (The following Lisp-like snippet shows some predicates that are not defined in this

book, merely to give a flavor of what such formalizations seek to capture [Haddadi, 1995].)

(Intend a (Achieves a φ)) ⇒
(Willing a φ) ∧ (Goal a (Achieves a φ)) ∧ (∀x : x �= a ⇒ ¬(Commita a x (Prevent φ)))

This rule states that an agent a may form and maintain an intention to achieve an objective φ
only if (1) it is willing to achieve φ, (2) it has a goal to achieve φ individually, and (3) it is

not committed to another agent x to prevent φ.

The second approach is based on an assumption that the agents exhibit economic rational-

ity. Under a further assumption that there is a small set of agents with a common language and

common problem abstraction trying to reach a common solution, Rosenschein and Zlotkin

[1994a] developed a Unified Negotiation Protocol. Agents that follow this protocol create a

deal, that is, a joint plan between the agents that would satisfy all of their goals. The utility
of a deal for an agent is the amount it is willing to pay minus the cost of the deal. Each agent

wants to maximize its own utility. The agents discuss a negotiation set, which is the set of all

deals that have a positive utility for each agent.

In formal terms, a task-oriented domain is a tuple 〈T, A, c〉, where T is the set of tasks,

A is the set of agents, and c(X) is a monotonic function for the cost of executing the tasks

X . A deal is a redistribution of tasks. The utility of deal d for agent k is

Uk(d) = c(Tk) − c(dk)

The conflict deal D occurs when the agents cannot reach a deal. A deal d is individually

rational for agent k if Uk(d) > Uk(D). Deal d is Pareto Optimal if there is no deal d′ such

that d′ is better than d for at least one agent and not any worse than d for any of the other

agents. The set of all deals that are individually rational and Pareto Optimal is the negotiation

set. There are two possible situations, and a third for state-oriented domains:

Conflict. The negotiation set is empty.

Compromise. (State-oriented domain only) The agents prefer to be alone, but since they are

not, they will agree to a negotiated deal. For example, agent Alice needing a document

from some site might be able to download it without help, but agent Bob accessing the



17.5 Negotiation 377

same document might lock the site, causing a high cost for Alice. Alice should then

negotiate a deal with Bob about sharing the document.

Cooperation. All deals in the negotiation set are preferred by both agents over achieving

their goals alone.

When there is a conflict, then the agents will not benefit by negotiating—they are better

off acting alone. Alternatively, they can “flip a coin” to decide which agent gets to satisfy its

goals. Negotiation is the best alternative in the other two cases.

17.5.2.3 Requirements and Properties

Good negotiation protocols should offer more than just fair or envy-free distributions. They

should be well-defined and readily available so that they can be easily implemented and used.

Protocols are naturally based on communicative acts (see Section 18.1) and incorporated into

standard agent frameworks such those for FIPA. Adopting a language with precise semantics

will make it easier for agents to use the protocols without misunderstandings.

An efficient algorithm for cake cutting, such as the auctioneer example, requires just

N − 1 cuts—the minimum possible number of cuts required to divide the resource among N
agents. The trimming protocol would require N(N −1)/2 cuts, and the successive-pairs pro-

tocol would use N ! − 1 cuts. The divide-and-conquer protocol would require approximately

N log2N cuts, the minimum number needed for performing the division without auctioning.

17.5.3 Requirements for a Negotiation Language

A semantic correspondence produced by the process of matchmaking is no guarantee that

the client can actually use the service. For instance, the service might not accept the type of

credit card that the client plans to use. Making sure that the client can, indeed, use the service

(i.e., the service satisfies the functional goals of the client) and that the terms of usage are

acceptable to both sides (the qualitative goals) is the purpose of negotiation and contracting.

Negotiation and contracting are enabled by a formal description of the capabilities of a

service. (Note that WSDL is not enough for this purpose either, since it is not capable of

stating what a service does—only how to invoke it.) A description of service capabilities

is similar, but not identical, to an advertisement. Advertisements require different types of

ontologies (for instance, the concept of “cheapness” is less likely to be useful in contracting,

whereas it is obviously useful in advertising). In addition, contracts may have behavioral,

process-like aspects, which would describe what the service will do in response to certain

client actions. For instance, a contract might say that the service will collect escrow if the

client cancels the contract after a certain date.

The language must support, in an extensible manner, the description of a service so as to

support several task aspects of service contracts and negotiation about such contracts. The

task aspects include:



378 Organizations

• Representation of a wide variety of attributes or aspects of a deal (i.e., contract), par-

ticularly pricing and contingent provisions.

– Frequently-needed contract characteristics besides pricing include, for example,

quantity, form and timing of payment, delivery and shipping details including

timing, refunds, cancellation, deposits, methods of recourse, performance penal-

ties or bonuses, quality of service, business partner qualifications, reputation or

rating information, notifications, roles of different parties to the contract (e.g.,

buyer, seller, broker, banker, auditor, notary, and escrow), contract phases and

renegotiation timepoints, choice of security protocols, and currency units.

• Representation of committed or proposed contractual agreements, i.e., of contracts or

contract proposals.

• Representation of business partner qualifications.

• Communication among contracting parties (or relevant other third parties) of proposed

or committed deals, including of bids and offers, and requests for proposals.

• Modification of (proposed or committed) deals, especially during negotiation.

• Execution of contract provisions, including drawing inferences or performing proce-

dural business actions, e.g., making authorizations.

• Monitoring of execution of committed deals, including applying contingent provisions,

e.g., for exception handling or for notifications during long-running services

• Hypothetical reasoning about the proposed contract by contracting parties (or by third

parties, such as adjudicators of disputes), including testing or evaluating a deal during

selection, matchmaking, or negotiation. Such hypothetical reasoning should support

simulation and verification.

A service contract (committed or proposed and partial or complete) is an artifact that may

be the final or an intermediate result of a process of negotiation. Different modes of such

negotiation include: simple “take it or leave it”; bilateral bargaining; auction; and other kinds

of conversation. A negotiation process may itself be another service (possibly a semantic

Web service).

A language for contracting and negotiating about services should

• Complement the development of standard or at least common ontologies for frequently

needed contract characteristics (e.g., those listed above).

• Complement other emerging standards efforts relevant to e-contracting. Candidate

examples of such other emerging standards efforts include ebXML UBL, UN/CEFACT

and ANSI EDI, Oasis Legal XML, and American Bar Association (and their European

counterparts’) proposals on e-contract law.



17.6 Exercises 379

• Represent commitments in such a way as to mesh well with methods of dispute reso-

lution and recourse, both legal and reputational.

• Be compatible with, and ideally extend, the contract aspects of existing industry stan-

dards for Web services, e.g., via concepts of roles and commitments.

Since negotiating agents are autonomous, they can in principle deceive or mislead each

other. Therefore, an interesting research problem is to develop protocols or societies in

which the effects of deception and misinformation can be constrained. Another aspect of

the research problem is to develop protocols under which it is rational for agents to be honest

with each other. The connections of the economic approaches with human-oriented negotia-

tion and argumentation have not yet been fully worked out.

17.6 Exercises
17.1. Formalize the example metacommitments of Section 17.1.3.3 that are not formalized

there. State your assumptions about the other predicates used.

17.2. Formalize the following metacommitments (based on those of Section 17.1.3.3). State

your assumptions about any other predicates you require.

• The seller will ship the goods for which it quotes a price provided the buyer

commits to paying the stated price for the goods (i.e., the buyer need not have

paid up when the shipment is made).

• The seller will refund shipping costs if the delivery date to which it commits is

not met.

• The seller may delegate its commitment to ship to a shipping company for goods

weighing more than 1 ton and, for orders below $10, may assign the buyer’s

commitment to pay to a payment agency; for orders above $1 000, the buyer may

delegate its commitment to pay to its bank.

17.3. Formalize the example metacommitments of Section 17.2.2. State your assumptions

about the other predicates.

17.4. Develop an OWL ontology for commitments and metacommitments such as may be

used to represent the solution of Exercise 17.3.

17.5. Describe how three agents might negotiate to find a common telephone line for a con-

ference call. Assume that Agent A has telephones lines L1, L2, L3; Agent B has L1,

L3; and Agent C has L2, L3.

The negotiation proceeds pair-wise: two agents at a time. The agents negotiate in

order: A, B, C, A, B, C, A, . . . Also, alternate lines are chosen in the order specified

above for each agent.

For example, the following steps can occur:



380 Organizations

• Initially, A proposes L1 to B, and B accepts it.

• Next, B proposes L1 to C, but C rejects it.

Complete the process until all agents have picked a common line.

17.6. Imagine that two agents are negotiating a contract for services. During the course of the

negotiation, they engage in some or all of the following acts: propose, counterpropose,

accept, reject, retract, explain, ask-for-clarification, agree, and disagree. Draw a state

diagram for the negotiation protocol followed by each agent.

17.7. In the discussion of the unified negotiation protocol, it is stated that the agents might

decide to “flip a coin” when the negotiation set is empty. Under what conditions might

this be beneficial to the agents?

17.8. In the early 20th century, the Bedouin tribesmen of Arabia would raid other Bedouin

tribes. After a successful raid, they would divide the spoils, primarily consisting of

camels and rifles, according to the following negotiation protocol: “We divide the

spoil into the required number of shares; a good camel may be worth two or even three

of the others. We then cast lots and each person chooses his share in the order in which

he has drawn his lot [Thesiger, 1959].” Is this protocol fair? Envy free? Explain your

answers.

17.9. Continuing the scenario in Exercise 17.8, state whether the following protocol is fair

or envy free: “Among the Omani tribes a man may ask to keep whatever he himself

captures and take no share in the division, but he will do that only if he already has a

fast camel [Thesiger, 1959].” Explain your answers.

17.10. Continuing the scenario in Exercise 17.8, state whether the following protocol is fair

or envy free: “The weapons of a man who has been killed belong to the man who

has killed him. But the weapons of those who have surrendered are divided with the

rest of the spoil. Only if a man has escaped from the rest of the raiders can the man

who captures him claim his weapons and camel in addition to his share of the booty

[Thesiger, 1959].” Explain your answers.



Chapter 18

Communication

Interactions occur when agents exist and act in close proximity, and contend for resources,

e.g., by bumping into each other. Communications are the interactions that preserve the

autonomy of all parties. That is, at the level at which we model services, the sender decides

autonomously whether to send a message and the recipient decides whether to entertain it.

If a recipient subscribes to a mailbox, it can be made aware of the incoming message, noth-

ing more. Communications may be realized through physical actions that do not respect

autonomy, for example, through shared memory. Communications are possible only against

a backdrop of shared conventions, because however they are realized, the given action must

be interpreted as a communication.

Communications among services are governed by protocols. This book emphasizes high-

level or business protocols, which require services that participate in the protocols to behave

as agents. The services must be able to adopt various roles in the protocols, reason about

appropriate responses, learn about other services, and adapt to changes in the other services

or the environment in which they operate, all of which are agent capabilities.

18.1 Agent Communication Languages
An agent communication language (ACL) provides a domain-independent layer between an

application-specific language and underlying message transport protocols. An ACL encodes

the most common patterns of communications agents are likely to send to each other. It

includes elements for specifying requests, commands, statements of belief, commitments,

and agent management. The most widely used ACL is the one standardized by the Foundation

for Intelligent Physical Agents (FIPA).

FIPA’s goal is to offer standard ways of interpreting communications between agents

in a way that respects the intended meaning of the communications. This is much more

ambitious than, for example, XML, which only aims to standardize the syntactic structure

of documents. FIPA provides specifications for message transport, agent management, agent

381



382 Communication

communication, and agent-based applications.

Of these four, the first two are straightforward. Message transport merely involves the

invocation of a lower-layer functionality. Initially, FIPA was tied to CORBA’s IIOP protocol,

but now bindings for other protocols, such as HTTP, have been added. Agent management

involves the specification of the states that an agent can go through, e.g., to come alive,

register with a naming service, execute, suspend, resume, and die.

Agent communication deals with messages exchanged by the agents. The details of the

messages would depend heavily on the particular application; these are left to be specified

separately, although an XML-like syntax facilitates parsing. An additional level of concep-

tual support can be provided by ontologies and languages such as RDF and OWL (introduced

in Chapters 7 and 8, respectively) that capture more of the declarative content of communica-

tions. A lot of the effort on agent communication has sought specialized primitives through

which messages can be structured.

18.1.1 Speech Act Theory
Communication has been studied by philosophers of language; this work is a natural source

of inspiration for agent communication [Austin, 1962]. The philosophical theory that Austin

originated is called speech act theoryACL, because it views communication as action.

Agent theorists formulate messages as communicative acts. Specifically, by sending a

message, an agent may not only describe the current state of the world, but also change it.

The typical change would be through the commitments of the communicating parties that

get created, discharged, or modified. For example, by pushing the SUBMIT button on an e-

commerce site, you would commit yourself to paying the resulting bill or authorizing your

credit card company to pay it on your behalf. Communicative acts prove challenging because

they deviate from the truth functional norm of traditional logic: actions are just actions and

may be justifiable, rational, authorized, or not, but they are not true or false.

Speech act theory considers three aspects of a message:

Locution. How it is phrased, e.g., “It is hot here” or “Turn on the air conditioner.”

Illocution. How it is meant by the sender or understood by the receiver, e.g., a request to

turn on the air conditioner or an assertion about the temperature.

Perlocution. How it influences the recipient, e.g., the recipient turns on the air conditioner,

opens the window, or ignores the speaker.

Illocution is the core aspect, because it reflects what the given communication itself is while

ignoring its phrasing or how it is treated by the recipient.

Speech act theory also suggests that different communicative acts can be constructed

by combining a given proposition with different message types or communicative act types.

For example, consider the proposition “the door is shut.” An agent may inform another

agent of it, or request it to be made true, or promise to make it true, and so on. In natural

language, inferring the message type can be difficult, because it can involve a variety of



18.1 Agent Communication Languages 383

human psychological and social factors. For Web services, determining the message type is

trivial, because it can be explicitly encoded, but determining the agents’ beliefs and intentions

is impossible, because the internal details of the agents are not known. To emphasize that

ACLs need not be like human languages or spoken, the term communicative act is used

instead of speech act in the modern agents literature.

18.1.2 Semantics

The relevant outcome on agent communication languages is that communicative acts pro-

vide a principled basis for identifying various patterns of communication. The patterns here

describe whether a given message is an assertion (the way the world is claimed to be), a

request (what the sender would like done), a prohibitive (what the sender would like to pre-

vent), a permissive (what the sender authorizes), a promise (what the sender will be obliged

to do), or a declarative (what the sender brings about by fact of saying it).

Declaratives are the most subtle. They apply in settings where something is named: by

saying, “Bob and Alice are now man and wife,” someone could be reporting a fact (i.e., an

assertion) or marrying them (i.e., a declarative). The latter works only if the context is right,

e.g., Alice and Bob have obtained a marriage license, have affirmed their wish to get married,

the ceremony is presided over by a duly authorized person, and so on.

Because of the deviation of communications from traditional logic, it has been difficult to

give a clearcut semantics to agent communication languages. Some approaches, termed the

mentalist approaches, consider the beliefs and intentions of the communicating agents. For

example, an assertion is considered valid if the sender believes its content and a promise is

considered valid if the sender intends to bring it about. These sincerity conditions might be

useful heuristics in some cases, but cannot be enshrined in the semantics of an ACL. Recall

that an ACL is expected to be application independent and used by agents who stand for

autonomous services.

The mentalist approaches, including those that underlie FIPA’s attempt at a standard

semantics, are motivated from traditional artificial intelligence. They are better suited to

understanding communication in user interfaces, where the agent conversing with a human

effectively belongs to the human or at least has the human’s interest at heart. When these

approaches are lifted to the open world with a variety of autonomous parties, they simply

do not apply. Further, these approaches assume that beliefs and intentions can be unambigu-

ously identified from a piece of code implementing an agent. This is impossible to do in any

principled manner. We cannot uniquely ascribe beliefs and intentions to even a trivial agent

(even one built as a one-line Java program), and thus cannot characterize its communication.

Consequently, alternative approaches that give precedence to the social aspects of com-

munication have gained popularity. These approaches, termed the public approaches, char-

acterize communications based on observable behavior as it affects the agents’ commitments.

The public nature of this semantics is better suited to open systems; we cannot see inside an

agent, but we can potentially observe whether its behavior is compliant.



384 Communication

18.1.3 Interaction Patterns

The communicative acts would typically be combined in different ways to enact useful inter-

actions among agents. Commonly used combinations are sometimes called interaction pro-

tocols or patterns. Figure 18.1 shows some common interaction patterns.

Requester

Requester

Requester

Provider

Provider

Provider

Synchronous: a blocking query waits for an expected reply

Provider maintains state; replies sent individually when requested

Asynchronous: a nonblocking subscribe; replies sent as available

Query

Reply

Next

Handle

Query

Reply

Next

Reply

Subscribe

Reply

Reply

Reply

Figure 18.1: Simple agent interaction patterns

18.1.4 Combining ACLs with Web Services

The Web Service Agent Gateway (WSAG) provides a connection between SOAP messages

and the FIPA ACL. The WSAG provides the capability to pass a Web service invocation

request to a target agent. The target agent services the request and responds through the

gateway to the Web service client. The WSAG functions as a translator and buffer between

synchronous SOAP message traffic and FIPA ACL-based asynchronous communicative acts.

Figure 18.2 illustrates the role of a WSAG. Note that the WSAG is itself a set of Web services,

each of which has a WSDL description. WSAG translates the FIPA syntax but ignores the

semantics, which in any case (as explained above) would not apply.



18.2 Contract Net Protocol 385

Web

Service Agent

Gateway

Web Service

Client

SOAP

Request

SOAP

Response

Agent

ACL

Request

ACL

Inform

Figure 18.2: The WSAG enables messages to be sent in the proper formats between Web

services and agents. ACL messages are exchanged asynchronously, whereas SOAP messages

are exchanged synchronously

18.2 Contract Net Protocol
Of the mechanisms for distributing tasks or selecting services, the best known is the Con-

tract Net Protocol (CNP) [Davis and Smith, 1983]. The CNP is modeled on the contracting

mechanism used by businesses to govern the exchange of goods and services. It provides a

solution for the so-called selection problem: finding an appropriate agent or service to work

on a given task. Figure 18.3 illustrates the basic steps in this protocol.

An agent wanting a task solved is called the manager; agents that might be able to solve

the task are called potential contractors. From a manager’s perspective, the process is:

1. Announce a task that needs to be performed.

2. Receive and evaluate bids from potential contractors.

3. Award a contract to a suitable contractor.

4. Receive and synthesize results.

From a contractor’s perspective, the process is:

1. Receive task announcements.

2. Evaluate my capability to respond.

3. Respond by declining or bidding.

4. Perform the task if I make a bid and it is accepted.

5. Report results.

Each potential contractor evaluates unexpired task announcements to determine if it is eligible

to offer a bid. The contractor then chooses the most attractive task (based on its own criteria)

and offers a bid to the corresponding manager. A manager receives and evaluates bids for

each task announcement. Any bid deemed satisfactory may be accepted before the expiration

of the task announcement. The manager notifies the contractor of bid acceptance with an

announced award message, which contains a complete specification for the task.



386 Communication

Manager awards a contact to the most

appropriate agent

Manager announces task via a

(possibly selective) multicast

Agents evaluate the announcement.

Some submit bids

Manager and contractor communicate

privately as necessary

Figure 18.3: The Contract Net Protocol is an important generic protocol, which proceeds in

much the same way as goods and services are contracted for competitively among human

organizations

CNP provides for directed contracts to be issued without negotiation. The selected con-

tractor responds with an acceptance or refusal. This capability can simplify the protocol and

improve efficiency for certain tasks.

A task announcement includes descriptions of addressee, eligibility specification, task
abstraction, bid specification, and expiration time. The tasks may be addressed to one or

more potential contractors who must meet the criteria of the eligibility specification. The

task abstraction, a brief description of the task, is used by contractors to rank tasks from sev-

eral task announcements. The bid specification tells potential contractors what information

must be provided with the bid; a returned bid consists of a brief specification of the agent’s

capabilities that are relevant to the task, which gives the manager a basis for comparing bids

from different potential contractors. The expiration time is a deadline for receiving bids.

CNP offers graceful performance degradation in case of errors. If a contractor is unable

to provide a satisfactory solution, the manager can seek other potential contractors for the

task. A manager might not receive bids from a potential contractor for several reasons: (1)

the contractor is busy with other tasks, (2) it is idle but ranks the proposed task below other

tasks under consideration, and (3) it is not capable of working on the given task. To handle



18.2 Contract Net Protocol 387

these cases, a manager may request immediate response bids to which contractors respond

with messages such as eligible but busy, ineligible, or uninterested (the task is ranked too

low for the contractor to bid). The manager can then make adjustments in its task plan. For

example, the manager can wait until a desired busy contractor is free.

The roles of agents are not fixed in advance in the CNP. Any agent can act as a manager

by making task announcements; any agent can act as a contractor by responding to task

announcements. This flexibility allows for further task decomposition: a contractor for a

task may act as a manager by soliciting the help of other agents in completing that task.

The resulting manager-contractor links form a control hierarchy for task sharing and result

synthesis.

CNP can be understood at three different levels: (1) it is a high-level communication

protocol, (2) it is a way of distributing tasks among self-interested agents, and (3) it is a

means of self-organization for a group of autonomous agents. CNP is best used in settings

where there is a well-defined hierarchy of tasks involving a coarse-grained decomposition of

the given problem so that the parts can be easily assigned to different agents, and where the

subtasks minimally interact with each other, but cooperate when they do, so that the agents

can carry them out without an excessive coordination overhead.

The CNP does not use models for the internal construction of its participants, thus allow-

ing them to be heterogeneous. Further, their internal reasoning is not modeled either, thus

supporting their autonomy. A manager decides whom to invite, prospective contractors

decide whether to bid, and the manager decides to whom to award the contract. Accom-

modating this autonomy also makes the protocol resilient to certain kinds of low-level errors.

For example, a network partition between the manager and a contractor in the announce and

bid stages is not too significant, as long as some suitable contractor is reachable.

However, the protocol has some key limitations. One, it lacks a formal semantics for the

various stages. Two, it assumes a particular order of messages to be exchanged. We can

imagine scenarios where another order of messages might be appropriate, e.g., if a contractor

decides to advertise its capabilities to catch the attention of potential managers. Such varia-

tions cannot be formalized since there is no formal semantics. Three, a task might be awarded

to a contractor with limited capability when a better qualified contractor happens to be busy

at award time. Four, a manager is under no obligation to inform potential contractors that

an award has already been made, possibly causing them to reject alternative contracts during

their unrequited wait. Five, because there can be many concurrent managers, a contractor

might have to consider several contracts simultaneously. If as a result the contractor misses

bidding deadlines, then it might be deemed unresponsive or incapable, neither of which is the

case. The protocol does not provide any guidance or support for how the contractor should

handle concurrent negotiations. Six, a CNP-compliant agent is allowed to break its com-

mitments unilaterally when it receives a better offer or a better task. The protocol does not

specify a recovery mechanism for such unfortunate situations.



388 Communication

18.3 Business Protocols
Protocols are specific, often standard, constraints on the behaviors of autonomous parties.

Protocols are essential to the functioning of open systems, because they specify the responsi-

bilities of the implementers and users of different components.

Just as network protocols enable low-level interoperation, so do business protocols enable

high-level interoperation of services. Some general-purpose business protocols are NetBill

[Sirbu, 1997], Secure Electronic Transactions (SET) [2003], Internet Open Trading Protocol

(IOTP) [2003], and Escrow [2003]. The RosettaNet PIPs (introduced in Section 13.4.4), of

which 107 are currently listed, are also business protocols, albeit simple ones.

When protocols are employed in service-oriented architectures, they are executed by

autonomous, heterogeneous agents, i.e., services implemented by different vendors and serv-

ing different interests. Therefore, there is a risk that the participants in a protocol may fail to

comply with it. Without a rigorous means to verify compliance, the very idea of protocols for

interoperation is subverted.

Business protocols are conventionally specified using representations such as finite state

machines (FSMs). Figure 18.4 shows the interesting parts of the NetBill FSM. NetBill

involves two roles, a merchant (M) and a customer (C). The transitions in the FSM corre-

spond to messages sent by the merchant and customer to each other.

C: rfq

M: offer

C: accept

C: pay

M: receipt

M: goods

Figure 18.4: FSM representation of the NetBill protocol

Figure 18.5 shows the FSM for the escrow protocol. Escrow involves a buyer (B), a seller

(S), and an escrow agency (E). A three-party protocol yields some additional complexity

than a two-party protocol because when two parties communicate, the third party would not

automatically know what has transpired.

FSMs have the advantage that checking compliance with them is straightforward in prin-

ciple. For example, if an unexpected message arrives, then the FSM would go into a failure



18.3 Business Protocols 389

(B, E): deposit

(E, S): secured

(S, B): goods

(B, S): goods return

(S, E): released

(B, E): goods NOK

(E, B): refund

(B, E): goods OK

(E
, S):

pay

Figure 18.5: FSM representations of the Escrow protocol

state. And if an expected response does not materialize, then the FSM is stuck in a nonfinal

state. In either case, the violation is obvious.

However, FSMs have the disadvantage that they tend to be overly rigid. Consider the

following possibilities with respect to the NetBill protocol. Suppose the merchant wishes

to send an offer prior to receiving a request for quotes, or the customer wishes to send an

accept before receiving an offer, or the merchant wishes to send the goods before receiving

an accept. The above FSM would classify each of these deviations as violations on par

with actual violations such as the customer not paying. Each of these might be a reasonable

strategy in some circumstances. In any case, whether or not it is reasonable should be decided

by the autonomous parties, not dictated by the protocol. Unfortunately, because there is no

content to the states of an FSM, it is not possible to entertain any deviation from it.

A more promising approach for business protocols is to mark up the states of the protocol

with their content, e.g., specifying what propositions hold in them and what commitments

are pending for each party in the protocol. When such mark up exists, it enables us to reason

about whether a certain message can be applied and what the resulting state would be. In

other words, when we represent this knowledge, we can reason with it at run time, i.e., while

enacting a protocol. Further, at design time or at run time, we can reason that two states in

different protocols are sufficiently similar that the protocols can be combined in a chained or

nested manner. Such an approach in essence is rule based, where rules process marked-up

content. The formulation of these rules can be carried out as described in Section 15.7.

In general, to specify any protocol requires specifying:

• its roles, e.g., buyer and seller or bidder and auctioneer;



390 Communication

• its messages (and which role may send them to which role), e.g., offer or pay;

• its states, e.g., shipped or paid;

• its transitions, e.g., the pay message causes a transition from shipped to paid.

Alternatively, the states and transitions need not be explicit and there could be other repre-

sentations to capture the sequencing constraints on messages. For simplicity, let us confine

this discussion to explicit states and transitions.

FSMs capture the states as simple identifiers (all that matters is that a state be distinct from

other states), and the transitions as relations in the usual manner. The rule-based approaches

express states and messages as formulas and transitions as rules.

But when we have the flexibility of rules, we can go further by making the rules apply

on metacommitments (as suggested in Section 17.1.3.3). Doing so gives us the processing

ease of rules coupled with the representational power of commitments. When business pro-

tocols are modeled using commitments, their creation, satisfaction, and manipulation facil-

itates understanding exactly what the protocols do, and better captures user requirements.

The messages can be given a meaning in terms of the propositions and commitments they

affect. Moreover, additional metacommitments characterizing the various roles can be added.

For example, a purchase protocol may allow that faulty goods can be returned for a refund.

Table 18.1 summarizes three possible approaches for specifying business protocols.

Table 18.1: Specifying business protocols

Roles Messages States Constraints

FSM Identifiers Tokens Tokens Reachability of

final states;

no dead-ends

Rule-Based Identifiers Tokens with

rules

Formulas As above

Commitment-
Based

Identifiers;

constrained

via metacom-

mitments

Tokens with

rules about

commitments

Formulas

involving

commitments

Metacommitments

18.3.1 Compiling Business Protocols
An advantage of the FSM approaches is that they are easier to interpret than rule-based

approaches, which require a rule engine. Therefore, in some cases, it is preferable to use

FSM approaches at run-time even though rule-based approaches might be better for the pur-

poses of design.



18.3 Business Protocols 391

C: rfq

M: offer

C: accept

C: pay

M: receipt

M: goods

M: offer

M: goods

C: pay

C: accept

M
: g

o
o
ds

Figure 18.6: FSM representation of an enhanced version of NetBill

Figure 18.6 shows an enhanced version of NetBill that accommodates some of the possi-

ble extensions discussed on page 389. The idea is that the extensions that can be anticipated

can, in principle, be compiled to yield a larger FSM.

18.3.2 Compliance with Business Protocols
Autonomous parties apply their own policies in deciding how they act. To promote the flex-

ibility of their policies, we would like the protocols to be specified using rules and commit-

ments rather than as finite state machines. But the more flexible we make the protocols the

more challenging is the problem of verifying compliance.

At the outset, it is clear that in service-oriented architectures we cannot hope to examine

the implementations of the agents who provide the various services. Therefore, compliance

verification inherently relies on observing and analyzing the (externally visible) behavior of

the communicating parties. Consequently, to determine compliance with a protocol presup-

poses that the protocol is suitably specified and the parties who wish to determine compliance

are able to make distinguishing observations with which they can discern any violations of

the stated protocol. Often, such information might not be available to all concerned. For

example, how could you determine whether an auction company is complying with its stated

rules for declaring winners in auctions? The only way you could do so is if you could see all

the data that the company has. For smaller environments, and for specialized protocols, some

agents might be able to band together to detect if one of the other parties is not complying



392 Communication

with its stated function.

In general, to ensure compliance requires a framework of trust to be in place. Such

a framework would be used to find the right parties with whom to collaborate so that the

elements forming the basis for determining compliance are themselves trustworthy. Or, a

trusted regulatory agency would be used that makes trustworthy assertions about each party’s

compliance with the given protocol.

To achieve run-time compliance checking, each agent maintains a (local) model of the

messages it has sent or received. In this manner, it keeps track of the pending commitments

of which it is the debtor or creditor. Consequently, an agent always knows which of its

commitments are pending. This can help it plan to discharge those commitments or to resolve

the commitments through other means, e.g., by delegating them to other agents. Each agent

also knows which commitments it has discharged. At the same time, each agent knows

which commitments of others are pending. When those commitments are time bound and

their deadline has elapsed, the agent can conclude with certainty that they have been violated.

The basic approach for determining compliance is simple. Just maintain a data struc-

ture indicating the state of each separate commitment, and execute some simple algorithms

(such as for reachability) on that data structure. There is flexibility as to where the compli-

ance checker is located architecturally. Compliance is intimately related to considerations of

monitoring and enforcement.

18.3.2.1 Monitoring

It is conceptually simplest if a special observer monitors the enactment of a protocol. This

means that the observer would be involved in each message exchange that takes place as a

protocol is enacted—not a reasonable assumption for a service-oriented architecture.

For this reason, it is most natural if each party assumes some of the responsibility for

monitoring the enactment of a protocol. Each party can naturally monitor the messages it

sends or has received. (The messages sent by the various parties would have to be secure,

i.e., unforgeable.) In this manner, the data necessary to determine compliance can be gath-

ered. As remarked above, a participant may not be able to make the requisite observations

so as to verify compliance. When a single participant does not make sufficient observations,

the observations of some participants can be combined to determine the compliance of the

remaining parties.

A technical aspect of monitoring is to ensure that information on commitments is prop-

agated to the right participants. We wish to maintain the constraint that each party knows

what commitments it is the creditor or debtor of, and knows who the corresponding debtor

or creditor is. Maintaining this constraint enables each party to decide upon its actions to

comply with its commitments (as a debtor) and to check if the debtors of the commitments of

which it is a creditor are complying. Of the commitment operations only delegate and assign

change the debtor or creditor. For this purpose, additional messages are necessary to ensure

that information about these operations flows to the right parties. Figure 18.7 illustrates these

message patterns.



18.3 Business Protocols 393

x y z

create(x,c)

delegate(x,z,c)

delegate(x,z,c)

discharge(x,c)

x y z

create(x,c)

assign(x,y,z)

discharge(x,c)

assign(x,y,z)

Figure 18.7: Message patterns for operations on commitment

18.3.2.2 Enforcement

Given enough information, a participant or set of participants may verify compliance of some

other participants. However, it is another matter to enforce contracts or protocols. Enforce-

ment generally takes us beyond the realm of computing into the real (physical or social)

world. The enforcement can be carried out by a computational entity such as a SoCom man-

ager that is suitably instantiated, or potentially by a legal entity that has some purview over

the contracts underlying the given protocol.

18.3.2.3 Compliance without a Global Clock

It is worth considering a scenario where the different parties do not share a global clock.

An interesting example for this situation is the fish-market protocol, which is inspired by a

typical Spanish fishmarket. Here an auctioneer attempts to sell a bucket of fish at the highest

price he can get. The protocol is simple. The auctioneer announces a price and buyers

bid if they like the price. If no buyers bid, then the auctioneer announces a lower price;

if more than one buyer bids, the auctioneer announces a higher price; if exactly one buyer

bids, the auctioneer hands the bucket to that buyer, who pays the amount bid. Figure 18.8

illustrates a possible enactment of the fish-market protocol (the annotations of the form [1 1

0] are explained below). Traditionally, this protocol is enacted by humans who gather in the

physical fishmarket. Thus there is a global clock.

However, let us consider the case where the protocol is enacted in a distributed setting.

The essential idea is to employ the notion of potential causality, which is a well-known

approach for understanding distributed computations [Schwarz and Mattern, 1994]. When

we do not assume the existence of a global clock, we must make do with a set of local clocks,

one for each participant. The clocks can be thought of as monotonically increasing natu-

ral numbers. The local clocks are mutually incomparable, meaning that we cannot directly

determine that 10 on the auctioneer’s clock is earlier or later than 8 on a bidder’s clock.

Conceptually, we can think of the system clock as a vector of the local clocks of the partici-

pants. Each participant maintains a vector that represents its knowledge of the clocks of the

other participants. Each participant has direct knowledge of its own clock and increments it



394 Communication

Auctioneer A Bidder B1

m1  “50”: [1,0,0]

m3   “No”: [1,2,0]

m5  “40”: [5,2,2]

m8   “No”: [6,2,4]

Bidder B2

m2  “50”: [2,0,0]

[0,0,0] [0,0,0] [0,0,0]

[2,0,1]

[4,2,2]

[3,2,0]

[5,3,2]

m6  “40”: [6,2,2] [6,2,3]

m7 “Yes”: [5,4,2][7,4,2]

fish

money

[1,1,0]

[8,4,4]

m4   “No”: [6,2,4]

Figure 18.8: An example of the execution of a fish-market auction

whenever it performs some action: an internal action, a message transmission, or a message

receipt. This knowledge can be propagated only through messages. For this reason, each

message is timestamped with the sender’s vector of clocks at that time. When a participant

receives a message, it updates its vector of clocks to be the element-wise max of its vector

and the message timestamp. Figure 18.8 shows the vector clocks in annotations of the form

[1 1 0].

The local observations of each participant correspond to the messages it has sent or

received. Figure 18.9 illustrates the local observations of the auctioneer and a bidder based

on the enactment of Figure 18.8. The vertices correspond to send and receive events for each

message. The message patterns of Figure 18.7 ensure that a message that ultimately resolves

a commitment will occur causally after the messages that created the commitment. Thus

each agent can search its local model to determine if some commitments remain pending or

whether any actions inconsistent with their successful discharge were taken. For example,

the auctioneer can verify if a bidder who bid Yes does indeed pay up when he is sent the fish.

A bidder can verify that if he gets the fish, it is at the price he bid. However, a bidder cannot

verify that the auctioneer is not being deceptive. One way in which the auctioneer can be

deceptive is by pretending that other bidders bid Yes for the fish, thus artificially raising the

price. Although an individual bidder cannot detect such violations, the bidders as a group, if

they pool their observations, can.

18.4 Notes
Some important themes related to agent communication are discussed in Singh [1998].

Potential causality is discussed in texts on distributed computing such as Schwarz and

Mattern [1994]; its application to compliance checking was introduced in Venkataraman and

Singh [1999].



18.5 Exercises 395

Auctioneer A

[1,0,0]

[2,0,0]

[3,2,0]

[4,2,2]

start

s(m1)

s(m2)

s(m4)

r(m3)

r(m4)

[2,0,2]

[5,2,2]

[6,2,2]

[7,4,2]

end

s(m5)

s(m6)

r(m7)

Bidder B1

start

s(m1)

[1,0,0]

r(m1)

s(m3)

r(m5)

s(m7)

end

[1,1,0]

[1,2,0]

[5,2,2]

[5,3,2]

[5,4,2]

s(m5)

Figure 18.9: An example of the local models of a fish-market auction

18.5 Exercises
18.1. Apply XML to manage communications among agents as follows:

• Write an XML Schema document that describes the FIPA ACL.

• Write an XML-generator for your ACL. That is, write a program in a language

of your choice that takes as input your XML Schema document and an ACL

expression and outputs the ACL expression in XML.

• Convert the resultant XML-encoded ACL expression into HTML via XSL. That

is, write an XSLT transform for FIPA that provides the proper style for rendering

ACL expressions.

18.2. WS-Transaction defines coordination types for short-running atomic transactions and

long-duration business transactions, such as a saga. Using WS-Coordination, define

the coordination type for the CNP.

18.3. Which one of the following is not a benefit derived from using an ontology in agent

communications?



396 Communication

• It makes it unnecessary to use an encoding method.

• A receiving agent can check the messages it receives for semantic consistency.

• Messages can be understood by all agents that can understand the ontology used.

• The actual information sent in the message is easier to identify, as opposed to

using a system-specific encoding method.

• It fulfills an aspect of the Semantic Web vision.

18.4. A commercial organization is developing a society of heterogeneous intelligent agents

that can be used to automate office operations. The agents operate according to the

following scenario. When an agent joins the society, it registers itself with a name-

server, which keeps track of the names and addresses of all agents in the society. (The

name-server also knows about special agents, called brokers, who can help an agent

locate resources it needs.) After registering with the name-server, the agent gets a list

of brokers from the name-server and contacts one to get help in finding a printer. The

agent then asks the printer when it is available to print a large document.

(a) Construct a UML interaction (sequence) diagram for this scenario.

(b) Write the FIPA messages (just the type, sender, receiver, and content) needed for

this scenario.

(c) Construct a BPEL4WS or OWL-S description of this scenario.

18.5. List the sequence of FIPA ACL performatives that would be generated by agents A, B,

and C in solving the following problem: “Agent A wants to find out the cost of football

tickets. Agent A does not know the cost, but Agent A knows that Agent B exists and

Agent A thinks that Agent B might know the cost. Agent B does not know the cost

either, but Agent B knows that Agent C exists. Agent C knows the cost.” Assume that

the agents are cooperative and truthful.

18.6. Given the interaction (sequence) diagram for a B2B scenario in Figure 18.10, show the

sequence of FIPA messages that would be exchanged by the interacting participants.

18.7. Consider the following scenario: “Bob is a nervous teenage boy who wants to call Sue

and invite her to a dance. If he knew in advance that she would say ’Yes,’ it would be

easy for him. If he knew in advance that she would say ’No,’ he would not bother to

call. To avoid embarrassment, he decides to ask Sue’s friend Jill to find out if Sue is

available. Based on what Jill finds out, he will decide whether or not to call Sue.”

“Meanwhile, Sue wants to go to the dance. She would prefer to go with Bob, but will

go with Jack if he asks her before Bob does.”

List the sequence of FIPA messages, with values for all of their fields, that would be

generated by agents Bob, Sue, Jill, and Jack in enacting the scenario.



18.5 Exercises 397

Ford: Customer Jarvis Tools:

Supplier

Efficient Log:

Warehouse

Lubetec:

Supplier

Submit(processPO)

Submit(processPO)

Submit(processPO)

Submit(AckPO)

Submit(AckPO)

Submit(ShowShipment)

Submit(ProcessInvoice)

Submit(ShowShipment)

Cellphone(BODexception)

Submit(ReceivePO)

Figure 18.10: An example B2B scenario for customers and suppliers

18.8. Imagine that dating was like contracting. Show how agent Bob could use the Contract

Net Protocol to arrange (contract) for either of his friends Joe or Sam to arrange (con-

tract) a “blind date” for him with Ann or Mary or Sue. Use the FIPA messages for the

Contract Net in your answer. For each message, show only the type, sender, receiver,

and content.

18.9. As shown in Figure 18.11, there is a problem P that can be decomposed into subprob-

lems P1 and P2.

P

P1 P2

P21 P22

Figure 18.11: An example subproblem decomposition solved by the Contract Net Protocol

Subproblem P2 can be decomposed into subproblems P21, P22, and P23. Expertise e1

is needed to decompose problem P ; expertise e2 is needed to decompose P2; expertise



398 Communication

e3, e4, and e5 are needed to solve subproblems P21, P22, and P23, respectively; exper-

tise e6 is needed to solve subproblem P1. Agent A has expertise e2 and e4, Agent B
has expertise e1 and e3, Agent C has expertise e5, and Agent D has expertise e4 and

e6. Show how Agents A, B, C, and D would solve this problem using the Contract

Net Protocol.



Part V

Selection

399





Chapter 19

Semantic Service Selection

Service selection begins with discovery. In order for a service to be used it needs to be

discovered by a prospective consumer and a correspondence established between the goals

of the user and the capabilities of the service. An application does not need to discover

all services matching a set of requirements, or even an optimal one, it just needs to find

one that is good enough in terms of features and quality. By basing discovery on meeting

specified quality-of-service (QoS) requirements, we reduce irrelevant results, thus improving

the payoff of the discovery computation.

Service selection can be approached from three viewpoints:

1. Users looking for prospective providers.

2. Providers looking for prospective users.

3. Brokers of transactions or clearing houses looking for both users and providers, as in a

continuous double auction or in a SoCom.

All three viewpoints can benefit from rich semantic representations of quality attributes.

Recall that functional requirements are about what a service does (e.g., the IOPEs of OWL-S)

and the nonfunctional requirements are about how well it does it (e.g., reliability and avail-

ability). Enriched representations based on ontologies can be used for both functional and

nonfunctional requirements. The next sections elaborate on these viewpoints.

19.1 Semantic Matchmaking
Discovery is made possible by a set of semantic descriptions, which are analogous to adver-

tising in the material world. WSDL descriptions can be used to support advertising (e.g.,

by enabling invocation of a Web service demo), but they lack semantics for the functional

attributes and do not specify nonfunctional attributes. Real-life advertisements (such as offers

401



402 Semantic Service Selection

of a cheap long-distance phone service), if expressed in a formal logical language, would be

interesting examples of semantic descriptions of service capabilities.

The descriptions can be produced by the service provider or by other parties, e.g., third-

party services that generate descriptions for services that have not provided their own descrip-

tions. For example, the Web has many sites about hotels, but most of the sites do not have

semantic descriptions of their content or of the Web services they make available. A travel

agency service might choose to provide descriptions of these sites that clients of the travel

agency can use. The descriptions may be produced in advance or generated on demand for

a given service. They can be maintained locally, kept by the third party, sent to a middle-

agent matchmaker, or stored at a central registry. To enable more sophisticated matchmaking

presupposes that the descriptions are richer, e.g., characterizations of the processes that the

services support (as in OWL-S). Richer descriptions enable a more precise selection of ser-

vices.

On the client side, the goals of the agent must also be described in a formal language. The

purpose of matchmaking is to find a “sufficiently good” similarity between the goals of the

user agent and the advertised capabilities of the service. Generally, the match is determined

by heuristic algorithms aided by domain-specific ontologies defining the terms used in the

advertisements as well as descriptions of the agent’s goals.

There are two general approaches for semantic matchmaking of services with users,

termed explicit and implicit. Imagine stock-profiling services that take as input the New

York Stock Exchange symbol for a company, such as “IBM,” and return a document chart-

ing the performance of the stock over the previous 12 months. Assume that some of these

services charge a fee and some are free. An implicit representation, as proposed for OWL-

S, would describe each service in terms of its IOPEs, where the fee is one of the effects of

performing the service. An explicit representation would use an ontology to describe each

service as being an instance of a suitably defined class, either FreeStockProfiler or FeeBased-
StockProfiler.

19.1.1 Applying Ontologies

The greatest challenge for service discovery is dealing with scalability, especially with regard

to accommodating complex service descriptions and trust. Capturing the semantics of requests

and searches for services, as well as the context of a proposed interaction with the service,

requires rich representations of the services and interactions. This is where ontologies are nat-

urally applied. Having an explicit representation enables the principled selection of services,

reformulation of requests in a context-sensitive manner, and negotiation about the capabilities

of the service providers. Ontologies facilitate specializing and generalizing service needs, as

well as facilitating their composition.

Users may formulate descriptions of services they require with sufficient detail to match

a class of potentially suitable candidates, transmit these descriptions to other agents (match-

makers or peers), and accept recommendations of possible services meeting the specified

criteria. For example, a digital camera might need to locate the nearest printer that can print



19.1 Semantic Matchmaking 403

a color picture with sufficient quality and within a specified time. After it formulates an

appropriate description of the printer it needs, the camera can use the description to search a

directory or send it to other agents for their suggestions on printers.

Paolucci et al. [2002] suggest that a matching engine should:

1. support flexible semantic matching on the basis of shared ontologies;

2. offer some control over the matching to the requesting service;

3. encourage advertisers and requesters to be honest with their service descriptions;

4. be efficient and minimize the number of false negatives and false positives.

Semantic matching algorithms can be based on OWL, thereby enabling a matchmaking agent

to recognize semantic similarities between a request and an advertisement despite syntactic

differences. Paolucci et al.’s algorithm attempts to identify advertisements that can be of use

to the requester. This is achieved by comparing the IOPEs specified in the service model

with those specified in the request. To accommodate flexible semantic matching, the request

is matched on the basis of the subsumption hierarchy provided by a given ontology that

includes the concepts being matched, rather than on the basis of syntactical similarity between

the request and the advertisement. As such, the ontology provides the context in which

the request and advertisement are interpreted. On this basis, a request for cars matches an

advertisement for vehicles, since cars is subsumed by vehicles.

A match between an advertisement and a request occurs when all the outputs of the

request are matched against the outputs of the advertisement and all the inputs of the adver-

tisement are matched against all the inputs of the request, i.e., when the service is capable

of satisfying the needs of the requester and the requester provides all the inputs the matched

service needs for its operation. Hence, if even one of the requested outputs is not matched

against the outputs of the advertisement, the match fails.

Based on the semantic equivalence of the request and the advertisement, the following

categories of matches have been identified:

• Exact: when the requested outputs are the same as the advertised outputs. In such

cases, the advertised output can be used to satisfy the requested output completely.

• Plug-In: when the requested output is subsumed by the advertised output. For example,

a service that provides all types of vehicles is a plug-in match for a request for cars.

The advertised service can be substituted in place of the requested service. Such a

match sacrifices precision, but is capable of satisfying the request.

• Subsumes: when the requested output subsumes the advertised output. For example,

a service that provides cars is a subsuming match for a request that expects vehicles.

Such a match sacrifices recall, because the advertised service would not fully satisfy

the request.

An exact match is a special case of the plug-in and subsumes matches.



404 Semantic Service Selection

19.1.2 Requirements for an Advertising and Matchmaking Language
An advertising and matchmaking language must support the description of a wide range of

aspects of a service, not merely those related to functionality. These include [Grosof et al.,

2004]:

• geographic and temporal availability;

• cost;

• owner;

• resource requirements;

• payment mechanisms.

The language should allow for match broadening (or narrowing) by either advertisement

producers, advertisement users, or intermediaries. That is, both advertisements and requests

should permit various sorts of constraint relaxation, in addition to the matching process itself

being relaxable. This is sometimes known as the “misleading (or lying) ad” requirement.

Matchmaking must scale to anticipated Web service dimensions (e.g., at the scale of the

entire Web), and it must not require a centralized broker, but must support P2P operation.

The language must support ordering, ranking, and filtering of matches. One must be able to

tell how an advertisement diverges from a correct service description. Matches must inte-

grate smoothly with negotiation and contracting. It must be possible to specify a request and

matching process that is precise enough for the resulting matches to be used directly by a

fully automated composition or invocation software process, also known as the “No Eyeballs

Always Required” requirement.

19.1.3 Selecting Services
Users receiving multiple recommendations for services satisfying or approximating their

specified requirements must be capable of selecting from among those candidates. This might

involve applying additional criteria, e.g., choosing the lowest cost picture printing service, or

acquiring additional information from third parties, such as the reputation of the printing

service (Section 20.1). The user might also communicate and negotiate with the candidate

services under consideration (see Section 17.5).

19.2 SoCom Matchmaking
The above discussion addresses the challenge of matching a service request with a ser-

vice advertisement. Recall the discussion in Section 17.2 of how a sphere of commitment

(SoCom) can function to achieve service composition. For a SoCom to succeed requires that

the services be able to keep their commitments to one another. This presupposes that the

services are selected according to their commitments in a manner that respects the needs of



19.2 SoCom Matchmaking 405

the various participants. We think of this as a form of semantic matchmaking, in that the

commitments of the services would be encoded using semantic approaches, e.g., OWL. It

is simpler than general semantic matchmaking, because in this case the ontology and repre-

sentation language would be fixed and standard (see Exercise 17.4); hence we can assume

there is no heterogeneity in the expression of commitments. If there is heterogeneity in the

tasks performed by the services and the information models that they manipulate, then such

challenges do indeed apply in this case as well.

Service
Consumer

Abstract
SoCom

Designer
SoCom
Broker

Concrete
SoCom Agent

publish URI for  abstract
SoCom with roles x and y

publish capabilities

Service
Provider

request concrete SoCom
(own role is x)

interested in concrete SoCom as role y?

yes

instantiate
manager

announce concrete SoComannounce concrete SoCom

interact according to SoCom

Figure 19.1: Buyer and seller agents: SoComs provide the context for concepts represented

and communicated

To accomplish SoCom matchmaking presupposes that the desired SoCom is specified as

an interface, i.e., as an abstract SoCom. The abstract SoCom specifies its roles and their

capabilities and commitments as discussed in Section 17.2. As an example, let us define

an abstract SoCom consisting of two roles, buyer and seller, as shown in Figure 19.1. The

capabilities correspond to placing orders (buyer) and generating price quotes and making

shipments (seller). Further, the buyer makes a commitment to pay for any goods it orders that

are received, and the seller makes a commitment about the validity of its price quotes, and so

on.

The abstract SoCom could be instantiated statically by assigning roles to different agents

who have the requisite capabilities and can take on the requisite commitments. However, the

static creation of SoComs is problematic in open service-oriented architectures.

To enable the SoComs to be constructed dynamically, a simple idea is to use a SoCom

broker that functions like a UDDI registry in some respects. An abstract SoCom is published

by announcing its URI. Agents publish their services to a broker. An agent that needs to

carry out some collaborative activity requests the broker to put together a suitable SoCom by

specifying its URI. The broker checks the published specifications of the different agents to

determine who would qualify. The broker further confirms with the qualifying agents about



406 Semantic Service Selection

their interest in participating in the specified abstract SoCom. When they all agree to par-

ticipate, the broker instantiates the given SoCom. Once a SoCom has been instantiated, it

functions in the usual manner and its members carry out their activities as specified. Compli-

ance can be checked as described in Section 18.3.2.

19.3 Exercises
19.1. Project Idea: Repository for Web Services. Your task is to build a repository for Web

services. Such repositories are typically based on the UDDI standard. (Traditional

approaches have some restrictions, which are unnecessary for our present purposes.)

The following is a description of how services are to be recorded and retrieved. You

are to design and implement the information system that will enable the required tasks.

The basic problem is to select a service implementation, given some knowledge of

a desired service type. In general, there are multiple implementations of each ser-

vice type. The practical challenge is to choose from among several competing service

implementations. In particular, we would like to choose appropriate services program-

matically, which is where your database comes into play.

Each service type has a name in an appropriate namespace and is defined in terms of

one or more domains (real-estate, retail, books, and so on), as well as the roles it can

play in various business protocols. The domains are hierarchically organized in an

ontology for the repository.

A number of quality attributes are defined for each domain, although some of the

attributes could be common among multiple domains. Examples of quality attributes

are price, price-performance ratio, availability, average response time, throughput, cus-

tomer service, timeliness, neatness of shipped goods, and friendly attitude. Here are

some example business protocols, along with the roles they define:

• Three-party-escrow protocol with roles buyer, seller, and bank.

• Advance-payment protocol with roles buyer and seller.

• Five-party-real-estate protocol with roles buyer, seller, buyer’s realtor, seller’s

realtor, and escrow company.

• Catalog-search protocol with roles provider and seeker.

Now we can describe some example service types in terms of the roles they are able to

play in one or more business protocols:

• Guaranteed-payment service type: can play the role of a bank in a three-party-

escrow protocol.

• Book-selling service type: can play the role of a seller in a three-party-escrow

protocol; can play the role of a seller in an advance-payment protocol; can play

the role of a catalog provider in a catalog-search protocol.



19.3 Exercises 407

A service implementation must be the implementation of a service type. An imple-

mentation is expected to play all the protocol roles that its declared type is given as

playing.

Besides the type information as specified above, there is information about the evalu-

ation of a service by its users. That is, consumers or users of services can rate service

implementations. They rate a given implementation along as many or as few of the

attributes that are defined for the given type as they care to rate on. For example, one

book customer might rate a service implementation in terms of its price, a second cus-

tomer may rate it in terms of the timeliness of its service, and a third customer may

rate it on both attributes.

The above are simply examples. The approach should be generic enough for new busi-

ness protocols, roles, domains, service types, attributes, and service implementations

to be added at run-time. All the relevant type information along with any ratings are

stored in a database.

Tasks and Operations. The following are the four major kinds of task that need

to be performed by your repository. Each task potentially consists of a number of

operations, each of which is something that corresponds to a separate action. For

example, inserting a new domain with its attributes is an operation.

• Create new roles, protocols, domains, quality attributes, and service types, and

update the above (you can limit the updates with suitable motivation in your

report). Declare new service implementations with enough information so that

they can be bound and used. Register new service consumers, who would be

authorized to publish their ratings of the various service implementations.

• Enable evaluation data (ratings) based on quality attributes; this data would be

produced by service consumers based on their experience with a given service.

• Identify service implementations based on type information, such as in terms of

service type, roles a service can play, the protocols in which a service may be

involved, and the domains of a service.

• Identify service implementations based on the evaluation data. Search for ser-

vices for which evaluation data exists; among those, choose services that are the

best or worst with respect to a given attribute, and best with respect to a given

attribute as assigned by a given consumer.

In carrying out this project, you will need to make additional assumptions and design

decisions. For example, how would the ratings given by users be represented? How

will the ratings be aggregated? How would users and service implementations be iden-

tified, and so on?





Chapter 20

Social Service Selection

Let us begin by considering how discovery differs from another major form of information

access: retrieval. The difference between retrieval and discovery is the difference between

what and who. Information retrieval is concerned with obtaining information, often from

specified sources. Retrieval solves a specific query. Importantly, a notion of correctness is

naturally associated with retrieval queries.

Service discovery and location are concerned with finding where to get a given service.

The specification of the desired service also corresponds to a query. However, instead of

correctness, completeness is the major consideration here. Several services may match the

specified requirement and finding the best of them might be difficult.

Retrieval is almost as difficult in closed environments as in open ones, because retrieval

involves specific information sources. However, discovery is not as difficult a problem in

closed environments as in open ones. In service-oriented architectures, the problem of dis-

covery and selection of services reduces to the discovery and selection of information sources

that lead to the desired services.

Inevitably, finding the desired services involves a form of information navigation wherein

the information sources are organized into a graph. A service is discovered by searching this

graph. Traditionally, such graphs are based on edges that can be interpreted as links from one

source to another. On the Web, for example, hyperlinks from Web pages provide a basis for

this navigation. However, the Web provides no semantics or notion of relevance. Thus, as far

as a reader of a page is concerned, all outgoing edges are equal; a page author has no special

means to create personalized links.

The DNS is an example of a graph based on referrals from servers to other servers. LDAP

is another example of a graph based on referrals. Still another variant occurs through the

public key infrastructure, which supports chains of trust. These three examples illustrate

increasing flexibility in how the referrals are generated.

When we use a single UDDI registry, it is as if the graph is a simple star, whose center

vertex is the registry. In principle, UDDI registries can be federated and thus the graph may

have additional structure. The essence of navigation is graph search, although the search may

409



410 Social Service Selection

be incremental and distributed across the vertices of the graph.

20.1 Reputation Mechanisms
Effective service discovery and selection require an ability to make recommendations to users

about relevant, high quality, and trustworthy services. They also require an ability to evaluate

continually the performance of different service providers, which itself involves obtaining

evaluations from users, finding evaluations that others may already have given, and aggregat-

ing such evaluations in a natural and adaptive manner.

Reputation approaches are commercially applied at popular e-commerce sites, e.g., at

OnSale Exchange, eBay, and others. Typically, these sites offer an opportunity to the par-

ticipants of a transaction to rate each other. The ratings consist of a numeric rating along

with some text comments. The ratings are revealed individually and in aggregation to others.

OnSale allows its users to rate and submit textual comments about sellers. The overall rep-

utation of a seller is the average of the ratings obtained from his customers. In eBay, sellers

receive feedback (+1, 0, −1) for their reliability in each auction and their reputation is cal-

culated as the sum of those ratings over the last six months. In OnSale, newcomers have no

reputation until someone rates them. On eBay, newcomers start with zero feedback points.

Current approaches for reputation suffer from some shortcomings. One, they tend to

sustain the idea of a central authority even where ratings are supplied by different users. The

market or e-commerce site where the transactions take place is itself the authority that:

• Authenticates users.

• Records, aggregates, and reveals ratings.

• Provides the conceptual schema for capturing ratings (typically a number and text),

specifying their processing, e.g., how to aggregate them and how to decay them over

time.

• Owns ratings, meaning that the ratings cannot be used by the participants for purposes

unapproved by the market. This point has been the subject of legal action between an

e-commerce site and its registered users.

Such authorities can exist only under rigidly constructed and administered computational

environments. Two, if multiple authorities (e.g., reputation agencies) may exist, there is

no basis for selecting among them. Three, the integrity of the ratings can be compromised

because of collusion or retaliation. Four, the users of ratings do not know the parties who

provided the ratings. Conversely, a rater’s ratings, once given, may be revealed to all.

Some independent sites also deal with reputations, but they tend to deal with general

topics and well-known sites, rather than with specific (not widely known) service providers.

It would be difficult to store a reputation for providers without a reliable means of identifying

them, even if pseudonymously.



20.2 Recommender Techniques 411

20.2 Recommender Techniques
Recommendation comes down to making a prediction of a user’s needs or interests. Recom-

mender systems have been widely deployed for product selection. Content-Based Filtering
is a static approach for selecting among Web sites (or other kinds of information, such as

news items) [Dumais et al., 1988]. It involves filtering Web sites or documents in terms of

the words that occur in them. This approach could be applied to services by indexing the text

descriptions of services based on the words that occur in them. However, this would be a step

backward from current Web service standards, which involve formal, structured descriptions

of services, and support discovery based on those descriptions.

Another major family of approaches is social information filtering. Of these, the most

widely used is collaborative filtering (CF), e.g., used at well-known e-commerce sites such

as amazon.com [Breese et al., 1998]. In CF, a user’s ratings for different products are stored

centrally—the ratings are often simply captured as the products a given user purchased. A

user is given recommendations based on the ratings by other users who are similar to the

given user. In simple terms, if Alice and Bob both bought books A, B, C, and D and Alice

bought book E, a CF system may recommend that Bob also buy E.

The consumer for whom the recommendation is given is called the active user. The

idea here is to predict how an active user would rate an item based on ratings by others

and the active user’s ratings on other products and services. A common approach is to use

Pearson correlation to weight the users relative to an active user. An equivalent approach

is to use vector similarity between users instead, where the users are modeled in terms of a

multidimensional space.

20.2.1 Model-Based Approaches
This class of approaches first builds a model from the given users and then uses the model

for making predictions about the active user. After clustering the users ahead of time, the

active user is placed in one of the clusters. Alternatively, one might build a Bayesian network

representation, e.g., a decision tree.

20.2.2 Memory-Based Approaches
Memory-based approaches consider the ratings of all users directly instead of via an interven-

ing step of building a model. The prediction for the active user’s rating is the weighted sum

of ratings by others, where the weight corresponds to the similarity between the active user

and each of the other users. There are two aspects to making a prediction. One is to figure out

the users’ averages so that the base-line rating can be captured. The next is to calculate the

similarity or dissimilarity between the ratings of different users. From a technical standpoint,

dissimilarity is as useful as similarity, because it gives us as sound a basis for making our

prediction.

To describe the prediction algorithm formally, let I be the set of items being rated, n be

the number of users, Ii be the set of items rated by user i, and vij be the rating given by user



412 Social Service Selection

i to item j. Next, let vi be the average rating by user i as given by

vi =
1
|Ii|

Σj∈Iivij

Let the weights wai reflect similarity between users a and i. Based on these, we can

define the predicted rating of the active user (a) for item j as (n is the number of users):

paj = va +
Σn

i=1wai(vij − vi)
Σn

i=1|wai|

The weights between the users are given by the correlation of the ratings they have been

giving to various items. Assume that where a user’s rating is missing, it is treated as if it

equals the user’s average rating; thus the term it contributes to the formula below equals zero.

wai =
Σj(vaj − va)(vij − vi)√

Σj(vaj − va)2Σj(vij − vi)2

20.2.3 Challenges for Recommender Approaches

The ratings of the different parties may be obtained explicitly, e.g., by having them fill rating

forms. However, these can be difficult to obtain, especially where they would place a serious

demand on the user. An alternative is to obtain the ratings implicitly in a manner that infers

the ratings based on other actions. For example, a product site may infer users’ ratings based

on their purchase history, browsing, and return visits to different pages. In either case, the

incompleteness of data is a major challenge. Typically, the data that is available is biased,

generally positively, because the products for which the user would rate negatively are simply

not purchased or visited multiple times. Thus, non-null values are almost always positives.

An important challenge is to correlate users reliably when they overlap on a few services.

An idea is to assume negative or neutral ratings where the ratings are unstated. Also, the

mechanism can be weighted in favor of less commonly used services, because they indicate

stronger correlations in practice.

20.2.4 Products versus Service Recommendations

There are some limitations of applying recommender approaches to service selection. One,

the fact that someone purchased a product or service does not mean that they liked it. Two,

services are distributed. The broker or registry does not provide the service that it is recom-

mending and may have little to say about its quality. That is, the registry that helps a service

user find a provider would not have any control on the actual service interaction, whereas an

e-commerce site would know that a product was shipped. Three, services would be invoked

multiple times and the registry would not even be aware of the repeat customers of a provider.



20.3 Referrals 413

20.3 Referrals
This leads us to a scheme where the service users contact a registry to discover the services

matching their needs. The registry may be able to make recommendations and may be able

to provide reputation information. To make accurate recommendations, the registry would

need a means to obtain ratings from the users (these might be implicit). To provide repu-

tation values, the registry would also need to obtain ratings from the users (these would be

explicit). Collaborative filtering or reputation mechanisms are a form of social service selec-

tion. However, the social nature of these techniques is limited in that they are conceptually

and implementationally centralized at the registry, which has the overall authority to collect,

aggregate, and present the information.

The above approaches artificially separate three aspects of service selection:

• Discovery via lookup and network navigation.

• Recommendation through similarity or dissimilarity of needs.

• Quality assessment (as in reputation calculations).

These three aspects can be fruitfully considered in a single framework, which is stronger in

its social nature. The framework is that of a service community. Such a community consists

of a number of principals, each of which potentially uses and provides different services.

The principals are assisted by agents to help them manage their interactions. The agents

evaluate the services and referrals provided by others. Importantly, like humans, they main-

tain personal directories of principals worth interacting with, and decide which of the other

principals to contact for a service. Thus each agent supports some of the functionality of a

registry. What makes the approach social, however, is that the agents interact with each other.

Let us first examine how the referrals approach works and then review the advantages it offers

over the above approaches.

20.3.1 Adaptive Treatment of Referrals
Figure 20.1 describes the steps involved in a referrals-based approach. Viewed as a commu-

nication protocol, these steps are quite simple. An agent may query another agent about a

service it needs. The recipient of a query may autonomously ignore it, respond with an offer

to perform the service, or refer another agent who might perform the requested service. Each

referral is an endorsement of the referred party by the issuer of the referral. The originator

of a query may autonomously take up an offer to perform the service or follow any referrals,

i.e., send the query to any of the referred agents.

The referral protocol leaves a number of key decisions to the agents. To be able to reason

effectively, each agent maintains models of some other agents, termed its acquaintances. The

model for an acquaintance represents its expertise (ability to provide correct services) and

sociability (ability to produce accurate referrals). Each agent adjusts its modeled expertise

and sociability of others depending on an evaluation of the service obtained from them (their



414 Social Service Selection

Send out queries

Collect responses

Referrals?

Evaluate the

answers and

update the models

Answers?

no

yes

yes

Stop

yes

no

Incoming query

Update interest of

requester

Have expertise?

Have relevant contacts?

no

Stop

Send referrals

Yes

Perform service

Yes

no

Figure 20.1: Querying (left) and responding (right) for processing referrals

modeled expertise is adjusted) or of the service obtained by following their referrals (their

modeled sociability is adjusted).

Some of the acquaintances that are modeled with a high enough combination of expertise

and sociability become the given agent’s neighbors. The agent initially sends its queries to

its neighbors. Also, when it issues referrals, the referrals point to some of its neighbors. Each

agent selects its neighbors based on their modeled expertise and sociability. Thus the neigh-

borhood relation changes dynamically, reflecting the social network of the agents, subgraphs

of which (with appropriate structure) can be thought of as communities.

20.3.2 Advantages of Referrals

Selecting services based on referrals offers some advantages over other approaches. For

instance, centralized recommender systems hide the identity of the sources of the recommen-

dations that they aggregate. Consequently, there is no one to trust (or to blame). However,

the opinions of those whom you know and trust should be more valuable. In referral sys-

tems, the participants reveal their ratings to those whom they trust, so the ratings would be

more likely to be honest. Conversely, the ratings that a principal obtains originate with its

trustworthy peers. When the identities of the participants are mutually known, they can also

understand each other’s context of usage and, where they have similar needs, can help make

better judgments.



20.4 Social Mechanism for Trust 415

20.3.3 Evaluation
The effectiveness of referral-based approaches has been evaluated through simulations. Work

by Yu and Singh [2002] indicates how the effectiveness of a referral network gradually

improves and how it adapts around problems or “attacks,” such as when a service provider

begins to provide poor quality of service. Yolum and Singh [2003] discuss the emergent

properties associated with different strategies and assumptions regarding referral networks.

The details are left as an exercise.

20.4 Social Mechanism for Trust
The idea behind a social mechanism for trust is to enable information about the trustwor-

thiness of service providers to be shared by the various participants. Intuitively, a service

consumer A would rate another consumer or a provider B based on its direct observations of

B or the ratings of B given by B’s witnesses. There are some important requirements for this

approach to work effectively. One, the ratings of the witnesses must themselves be consid-

ered. Two, the mechanism should prevent the double-counting of evidence. In other words, a

risk to be avoided is that one participant conveys the ratings it received from another, leading

to rumors about the trustworthiness of the other participants. Three, it should be possible

to introduce new participants without making it possible for a participant to exploit others,

change its identity, and then come back to exploit them some more.

20.4.1 Empirical Basis
As explained above, judgments of trustworthiness must be on empirically observable cri-

teria. In principle, the criteria could be quite subtle, although for computational settings, they

generally tend to be quite straightforward.

To make an empirical approach work, the first challenge is to account for evidence favor-

ing or opposing the opinion that the given provider is trustworthy. Reputation systems, dis-

cussed above, pool all the ratings in a central system. Let us now consider how, in a dis-

tributed setting, an individual agent may use its local evidence to form its opinion about the

trustworthiness of a given provider.

The local reasoning could involve heuristics about summarizing data, but it helps to have a

principled basis behind the summarization. In simple terms, an agent A considers the hypoth-

esis that a given provider B is trustworthy. To evaluate this hypothesis, it helps to consider a

theory of evidence. The main such theories are Bayesian [Pearl, 1988] and Dempster-Shafer
[Shafer, 1976].

The Bayesian approach considers evidence as either supporting or refuting a hypothesis.

In other words, it does not distinguish between A’s lack of belief and A’s disbelief in the

given hypothesis. Specifically, if A does not believe that B is trustworthy, then A believes

that B is not trustworthy. Lack of belief must be modeled indirectly through equiprobable

prior probability distributions. By contrast, in the Dempster-Shafer approach, lack of belief



416 Social Service Selection

does not imply disbelief: it might just be that not enough evidence is available. Lack of belief

in any particular hypothesis implies belief in the set of all hypotheses, which is referred to

as the state of uncertainty. Initially, the agent A may have some uncertainty regarding the

trustworthiness of B. As A accumulates evidence regarding the trustworthiness of B, A can

develop beliefs for or against that hypothesis.

Let us consider a proposition T , which indicates the trustworthiness of provider B. The

frame of discernment, i.e., the set of possibilities, is Θ = {T,¬T}. Dempster-Shafer the-

ory applied to trust considers three sets of hypotheses: {T} (is trustworthy), {¬T} (is not

trustworthy), and {T,¬T} (could be either). The last indicates lack of belief in the trustwor-

thiness. The above are all the nonempty subsets of {T,¬T}. A basic probability assignment
(BPA) m is a function that yields a probability for each of the above. Thus the value of m
falls in the real interval [0, 1] and the sum of the m values for the different sets is 1. Notice

that m({T}) + m({¬T}) may be less than 1, which is where this approach differs from the

Bayesian approach.

20.4.2 Local Belief Ratings

The first kind of evidence used by A to evaluate the trustworthiness of B is the ratings of

services provided by B. Intuitively, these ratings are obtained from users. The rating scales

would be specific to applications. For concreteness, let us assume that the ratings are normal-

ized to be in the range [0, 1]. For convenience, an implementation may discretize the ratings,

e.g., to lie in the set {0.0, 0.1, . . . 1.0}.

It is a good idea to bias the evaluation toward recent observations so that a provider’s

current behavior can be given greater importance than prior behavior. This is easily accom-

plished by recording just the last H service episodes, i.e., the set of ratings being considered

is {s0, . . . sH−1}. The list can be primed with some default value, possibly based on nonem-

pirical factors.

It is also natural to establish separate thresholds for trustworthiness and nontrustworthi-

ness [Marsh, 1994]. Ratings above Ω contribute to trustworthiness; ratings below ω to non-

trustworthiness; those in the middle to uncertainty about trustworthiness. Thus it is natural

to compute A’s BPA toward B based on the last H ratings of B’s services as follows (with j
ranging from 0 to H − 1):

m({T}) =

∑
sj≥Ω 1

H

m({¬T}) =

∑
sj≤ω 1

H

m({T,¬T}) = 1 − m({T}) − m({¬T})



20.4 Social Mechanism for Trust 417

20.4.3 Combining Evidence
The above discusses a local empirical basis for estimating trustworthiness. Another important

basis is in the opinions that are gathered from others. This is especially important when the

agent does not have sufficient local evidence. The Dempster-Shafer theory provides us with

a rigorous basis for combining the evidence from different sources. It only requires that the

underlying bodies of evidence be nonoverlapping, so there is no double counting.

For a subset Â of Θ, Dempster’s rule defines m = m1 ⊕ m2(Â) to be the sum of all

products of the form m1(X)m2(Y ), where X and Y range over all subsets whose intersec-

tion is Â. The commutativity of multiplication ensures that this rule yields the same value

regardless of the order in which the functions are combined. In our case, this yields the fol-

lowing formulas. Here c indicates the extent of conflict between m1 and m2; this captures

the evidence from the two sources that is ignored. If the conflict is total, i.e., c = 1, then the

combination is not defined.

c = m1({T})m2({¬T}) + m1({¬T})m2({T})

m({T}) =
m1({T})m2({T}) + m1({T})m2({T,¬T}) + m1({T,¬T})m2({T})

1 − c

m({¬T}) =
m1({¬T})m2({¬T}) + m1({¬T})m2({T,¬T}) + m1({T,¬T})m2({¬T})

1 − c

m({T,¬T}) =
m1({T,¬T})m2({T,¬T})

1 − c

You can confirm that m({T}) + m({¬T}) + m({T,¬T}) = 1. Let us now consider

examples of how the above is applied. Suppose

m1({T}) = 0.8,m1({¬T}) = 0,m1({T,¬T}) = 0.2

m2({T}) = 0.9,m2({¬T}) = 0,m2({T,¬T}) = 0.1

That is, m1 and m2 agree. Then c = 0, and m is obtained as follows:

m({T}) = 0.72 + 0.18 + 0.08 = 0.98

m({¬T}) = 0

m({T,¬T}) = 0.02

Alternatively, if the two bodies of evidence conflict, the computation is slightly more

complex. Suppose

m1({T}) = 0.8,m1({¬T}) = 0,m1({T,¬T}) = 0.2



418 Social Service Selection

m2({T}) = 0,m2({¬T}) = 0.9,m2({T,¬T}) = 0.1

Here c = 0.72, 1 − c = 0.28, and m is obtained as follows:

m({T}) = 0.08/0.28 = 0.29

m({¬T}) = 0.18/0.28 = 0.64

m({T,¬T}) = 0.02/0.28 = 0.07

20.4.4 Gathering Opinions
The above approach for combining opinions has the nice effect that each agent can locally

summarize its evidence for or against the trustworthiness of a given provider. The agents

need only share their summarizations.

In principle, the agents’ opinions could be gathered centrally or gathered by whichever

agent has an interest in estimating the trustworthiness of a given provider. For central gath-

ering, we would use a traditional reputation system; for distributed gathering, a natural idea

is to use the framework of referrals. A key requirement is to ensure that the opinions that

are combined are based on independent evidence. A risk is that agents may merely relay the

opinions they heard from others, thus causing cyclic beliefs. A simple approach to avoid this

is to require that agents convey only the beliefs derived from their local observations, not the

beliefs derived from information received from other agents. In other words, only the direct

witnesses may report their observations. Thus, if a referral process is used, it is restricted

to finding the witnesses; the evidence collected from the witnesses is combined through the

above technique.

20.5 Identity
Approaches for service selection based on reputation (or any kind of knowledge of service

quality stored by agents) face a common challenge: in the on-line world, users and service

providers can change their identities more easily than in the physical world. This is called

the problem of cheap pseudonyms [Friedman and Resnick, 2001]. Thus reputations and rec-

ommendations might be bogus. One way to mitigate this threat is to set the default levels of

trust to be low and let each party work its way up. Then no one can exploit others merely

by inventing a new identity. However, such a strategy has a side-effect that new participants

are treated suspiciously and thus would find it harder to break into the social network. Sec-

tion 25.4 returns to this point.

20.6 Exercises
20.1. Propose a distributed system architecture and algorithm for resolving URNs (described

in Appendix B) that uses a central authority (e.g., to begin its search process). The



20.6 Exercises 419

URNs not only might identify abstract entities such as namespaces, but also could be

names of services. The location to which a service-naming URN would be resolved

would be a service instance.

20.2. Propose a distributed system architecture and algorithm for resolving URNs that does

not use a central authority. Each party must begin its search through it neighbors. Base

your approach on the treatment of discovery via referrals as in Section 20.3. How

does your approach compare to the approach for Exercise 20.1? In particular, can the

resolution process be context sensitive? That is, could the location (service instance)

to which a name (identifying a service interface) resolves depend upon who initiates

the resolution process? How would new service interfaces be added? How would new

service instances be published, i.e., associated with the service interfaces?





Chapter 21

Economic Service Selection

Economic abstractions have a lot of appeal as an approach to design and manage complex

systems of autonomous agents. By themselves they are incomplete, but they can provide a

basis for achieving some of the contractual behaviors, especially by helping an agent decide

what to do or by helping agents negotiate.

The Internet is moving toward an open, friction-free marketplace, in which software

agents will manage the buying and selling of goods. In the near term, agents’ major roles

will occur in the general economy, where they will dynamically link teams of buyers and

sellers, producers and consumers, in efficiently managed transactions. Agents will contribute

to this economy by reducing communication and interaction costs—the so-called friction—

associated with doing business.

In the new information economy, agents will purchase ideas, computational results, search

results, and raw information from other agents and refine this information through aggrega-

tion, filtering, knowledge discovery, data mining, classification, translation, and other pro-

cesses into information products. They will then sell the resultant products to other agents—

both computational and human.

Using the Internet for an agent-based information economy seems beneficial. After all,

economic processes already manage the conflicting needs of billions of human agents. Many

economists, beginning with Adam Smith, the father of their field, claim that markets produce

optimal allocations of resources. In other words, even as each individual seeks to maximize

his or her own reward, the overall effect is that everyone wins. This view is opposed by

many, because not everyone has equal choices and certain historical accidents can govern

outcomes. While a free market has several advantages, an unrestricted free market can prove

quite harmful. This is the reason, for example, why there are antitrust laws in the USA and the

European Union, and why governments regulate various aspects of market behavior. Some

combination of freedom and regulation might also be appropriate for agent-based economies.

421



422 Economic Service Selection

21.1 Market Environments

A computational market can constitute an environment in which agents can operate. As

described in Section 15.2, agent-based systems involve the design of both agents and their

environment. Market environments are used to control the allocation of resources among

agents. They can also be used to control the actions of their participating agents. Markets can

be used by services to decide which users to serve, and by users to decide with which services

to contract. Criteria for the decisions can be based on price systems or barter systems. Prices

simplify a mechanism for service selection, because the many factors contributing to the

value of a service are compressed into a single number.

For example, imagine there are four agents that would like to make use of a Web service

that performs financial portfolio analysis. As shown in Figure 21.1, each agent would like to

reserve the service for a specific length of time and before a specific deadline. The solution

shown satisfies three of the agents, which end up with positive utility (their resultant values

are greater than their costs), and the service receives a positive utility for each hour of its

availability (the income exceeds the fixed cost, i.e., the reserve price). There might be several

factors characterizing both the needs of the agents and the capabilities of the service, but all

of these are represented by the prices shown.

Market-oriented programming is an approach to distributed computation based on the

market-price mechanisms of buying and selling. Its focus is on characterizing and designing

environments in which agents interact, rather than the agents themselves. It can be effective

for coordinating the activities of many agents with minimal communication among them,

and it is most appropriate for solving problems of distributed resource allocation. It does

this by representing resources to be allocated as goods in a computational economy. At

equilibrium, the market has computed the allocation of resources and dictates the activities

and consumptions of the agents. Market-oriented programming has the following features:

• The state of the world is described completely by current prices, and communications

are offers to exchange goods at various prices.

• Agents do not need to consider the preferences or abilities of others.

• Under certain conditions, a simultaneous equilibrium of supply and demand across all

of the goods is guaranteed to exist, to be reachable via distributed bidding, and to be

Pareto optimal.

There are two types of agent in the market: (1) consumer agents, which exchange goods,

and (2) producer agents, which transform some goods into other goods. Both types of agents

bid so as to maximize their profits (or utility). That is, they are self-interested. It is assumed

that there are enough agents for the impact of an individual agent on a market to be negligible.



21.1 Market Environments 423

Financial Portfolio

Analysis Service

Reserve Price

= $300/hour

Agent 2

  9:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

length = 1 hour

deadline = 12:00

value = $600

Agent 4
length = 4 hours

deadline = 17:00

value = $1700

Agent 3
length = 2 hours

deadline = 12:00

value = $1500

Agent 1
length = 2 hours

deadline = 13:00

value = $1200

Financial Portfolio

Analysis Service

Reserve Price

= $300/hour

Agent 2

  9:00      $700

10:00      $700

11:00      $700

12:00      $400

13:00      $400

14:00      $400

15:00      $400

16:00      $400

length = 1 hour

deadline = 12:00

value = $600

Agent 4
length = 4 hours

deadline = 17:00

value = $1700

Agent 3
length = 2 hours

deadline = 12:00

value = $1500

Agent 1
length = 2 hours

deadline = 13:00

value = $1200

Figure 21.1: An example allocation of a Web service for financial portfolio analysis among

four potential user agents. The agents’ requirements (e.g., Agent1 is willing to pay $1200 for

two hours of time before 13:00), the initial state of the service (top), and a solution (bottom)

that maximizes the income of the service are shown



424 Economic Service Selection

21.2 Auctions for Services
An auction is a market in which prices are determined dynamically. Auctions can involve not

only consumers, but also businesses. An auction might be an ideal way for a business to sell

excess inventory or allocate services to a large number of users dynamically. Auctions enable

the exchange of services and goods, much as stock exchanges manage the buying and selling

of securities.

21.2.1 Auction Types
Over the years, many types of auctions have been developed to satisfy different requirements.

The most familiar is the first-price, open-cry auction, also known as the English auction. The

auctioneer asks for progressively higher bids and closes when no one is willing to exceed

the current bid. The winning buyer (highest bidder) then pays the amount bid to the seller in

return for the item. Typically, the auctioneer gets paid a small percentage of the sell price.

Other types of auctions include the first-price, sealed-bid auction, where each buyer sub-

mits only one bid in a sealed envelope; the second-price, sealed-bid (Vickrey) auction, where

the buyer pays the second highest bid price; and the Dutch auction, where the price descends

from a sufficiently high number until someone states a desire to buy at the current price.

The Dutch auction closely resembles the moving-knife protocol for resource allocation

(see Section 17.5) and could be extended to N agents as follows. An auctioneer begins with

a certain price for a portion of a resource and steadily reduces the asking price until one agent

accepts. The agent pays whatever price has been agreed upon, and relinquishes its claim on

the rest of the resource. Then a similar auction follows for the remaining N − 1 agents and

resources. The process repeats until all the resources have been allocated. Such negotiation

protocols could serve to auction any resources that can be fairly distributed in terms of the

dimensions of interest (such as time or space)—e.g., allocations of storage, CPU time, and

search results.

Each auction type has advantages, depending on the values placed on the buyer’s or the

seller’s privacy, time to closing, avoidance of speculation, fairness of the final sale price, and

so on. Most consumer Internet auctions, such as eBay and OnSale, use the English auction,

since one of their goals is entertainment, delivered in the form of buyer speculation. Also,

people are more experienced with such auctions. Dutch auctions can conclude more quickly

by lowering the price at a faster rate, but they also encourage speculation. In auctions, the

participants reveal hints about their valuations only through their bids. Buyers, however, can

speculate about each other’s true valuations. In a second-price, sealed-bid auction, a buyer’s

best strategy is to bid (and thereby reveal) its true valuation. It must also trust the auctioneer

to reveal the correct second price.

21.2.2 Online Auctions
The two most important requirements for online auctions are that they be fair and secure.

They should not let users or agents manipulate the auction to their own or anyone else’s



21.2 Auctions for Services 425

advantage. They should preserve the participants’ confidentiality and ensure that all tran-

sactions are private and completed successfully. They should also introduce low overhead

in terms of the cost they add to each transaction and the complexity they introduce into the

process.

For agents to participate in online auctions, relevant protocols should be well defined.

Agent communication languages can provide a basis for such protocols, but a simpler, XML-

based approach might become the de facto standard. Companies and industrial consortia,

such as eCo, have proposed competing XML-based languages. It is not yet clear which

protocols will become accepted standards.

21.2.2.1 Application: Markets for Advertising Space

Some search engines sort results (Web sites) based on what the promoters of those sites pay

the engine for a prominent placement. At GoTo.com, content providers bid to be listed earlier

(first) on search lists. If one bids 6 cents per hit to be listed first, it stays in that position until

another provider bids 7 cents per hit. Providers pay their bid amount each time someone uses

their link.

AltaVista is also arranging for providers to bid for placement on the search results that it

returns. If you are a consultant with expertise on computer virus outbreaks and you would like

to be listed first when a user searches on the keywords “computer + virus,” then you would

try to be the highest bidder for this combination of keywords. At AltaVista the minimum bid

is 50 cents, and you would pay this every time a search result listed you near the top.

Right now, list preference auctions are held just once, and no software agents are involved.

This makes it difficult for new businesses to get listed in favorable positions. It is conceiv-

able, however, that the bidding might occur much more frequently, with providers essentially

bidding for top position on each user’s search request. Such an arrangement would require

agents to represent each of the bidders.

21.2.2.2 Application: Markets for Shopping

Because online auctions can occur any time there is an availability or demand for goods and

services, our shopbots and personal agents must be alert to the appearance of items that we

might wish to buy. The agents need to know not only our interests, but also the value we

attach to various items and how much we would be willing to pay or what we would be

willing to trade.

The Tete-a-Tete system implements shopping agents that embody a user’s preferences

over attributes such as price, warranty, color, and size. These agents then negotiate tran-

sactions with seller agents on the user’s behalf. A deal closes when both agents are satisfied.

Whereas Tete-a-Tete implements complex value trade-offs, other, simpler agent-like inter-

faces exist for the popular online auctions. For example, OnSale has a proxy agent called

BidWatcher that automatically bids on a user’s behalf. The user tells it the maximum price he

or she is willing to pay, and BidWatcher bids the minimum price possible to win the auction

without exceeding the user’s maximum. Similar interfaces exist for other online auctions.



426 Economic Service Selection

21.2.2.3 Application: Markets for Information

As another application for auctions, consider the University of Michigan Digital Library

(UMDL), which implements an open market where information providers, such as publish-

ers, can sell their goods to individual consumers. UMDL is composed of collection interface

agents (CIAs), user interface agents (UIAs), mediators, and facilitators. CIAs provide an

interface between the publishers’ databases and UMDL. UIAs provide an interface between

a user, or a user’s browser, and UMDL. Mediators match buyers with sellers, while facilitators

handle the economic infrastructure.

Almost all UMDL transactions have an associated dollar value and are facilitated by

auction agents. For example, when a user issues a query, his UIA first finds an auction agent

that is advertising the correct type of mediator agents—those that can answer the query. The

UIA bids in this auction for mediator service. Once the auction clears, the query is sent

to the winning mediator for processing. The mediator in turn might also use an auction to

find the services it needs. Once suitable documents are identified in particular collections,

the CIAs responsible for them are paid, using some third-party payment mechanism, and the

documents are sent to the UIA, which forwards them to the user.

UMDL implements, in its own microcosm, a working model of the envisioned world-

wide electronic commerce infrastructure. It showcases both the power and the drawbacks of

using automated auctions. Research results show that these auctions serve as effective load

balancers. For example, when one agent crashes or bogs down from a heavy load, the flow of

queries is automatically directed toward underemployed agents, because they can offer lower

prices. On the other hand, the use of auctions adds an extra layer of overhead to the system,

which sometimes increases response time.

21.2.3 Agent Economies
If we are going to have online auctions with agents buying and selling items automatically,

we should first consider such a system’s dynamics. Classical economic theory tells us that

in a market populated by rational agents, prices of goods will approach their marginal costs.

However, this is based on goods of a given type being mutually indistinguishable, the agents

being utility maximizers, and there being a large number of agents so that the influence of

any one of them on the market is minimal.

In an economy of agents, some of the necessary conditions for a competitive market may

not be met, and prices will not reach the equilibrium point. For example, a buyer agent may

be unable to assess the quality of a purchased service reliably, as in the UMDL. Sellers can

take advantage of this scenario by providing lower quality services. More complex buyers

might then retaliate by modeling the sellers’ behaviors. Sellers might in turn build models of

the buyers’ models of the sellers’ models, and so on. This situation leads to an escalation of

modeling levels and to price dynamics not seen in human auctions.

Another possibility is building agents with myopic decision functions that maximize only

the agents’ immediate payoff. Kephart et al. [2000] studied such a scenario and found that

these systems could lead to continual price wars. Rather than settling on an equilibrium



21.2 Auctions for Services 427

price, the agents would underbid each other until the price became too low, at which point

they would start the price war again, but at a higher price.

These examples warn us that the price dynamics of market systems composed of software

agents will not always be the same as those of market systems composed of human agents.

We must be careful when choosing the auction types, protocols, and agents that will populate

the future online auction landscape.

21.2.3.1 Understanding Agent-Based Economies

At first glance, it seems that market mechanisms can be easily applied to agent-based infor-

mation economies. However, information economies involve human as well as software

agents and, by comparison, software agents are immeasurably less sophisticated, less flex-

ible, less able to learn, and notoriously lacking in common sense. The science of agent-based

economies is not yet fully understood and, given these differences, it is entirely possible that

agent-based economies will behave in unexpected ways.

This is exactly what has been found in a simulation of an agent-based economy [Kephart

et al., 2000]. In the simulation, it is assumed that there is a mixture of buyer agents, some

searching for the lowest price and the rest buying from the first seller who meets the price

they have in mind. It is also assumed that sellers operate according to one of three different

pricing strategies:

• game-theoretic, based on a mixed-strategy Nash equilibrium, in which each seller sets

its price before observing the prices set by others.

• myopically optimal, by which prices are set according to the known mix of buyers and

other sellers’ current prices.

• derivative, whereby each seller sets prices according to its own profit trend—increasing

its prices whenever profits are rising and decreasing prices whenever profits are falling.

The first two strategies require perfect knowledge of buyer statistics and the number of sellers,

whereas the third requires only local knowledge.

When all sellers follow the same strategy, the derivative strategy yields the highest profits

for all. However, with a mixture of sellers following different strategies, those following the

myopically optimal strategy fare best. Interestingly, if sellers are allowed to change their

strategies, they end up with the myopically optimal strategy, which leads not only to repeated

price wars, but also to lower profits for all.

21.2.3.2 Brand Names as a Component of Quality

One potential outcome of a mass market of interacting services is the loss of brand-name

identity. In our present economy, sellers rely heavily on brand-name influence, and buyers

learn to depend on known brands. First-generation services focus only on price and are

oblivious to brand names: to them, a mom-and-pop garage operation is indistinguishable

from a major manufacturer, and there is no such thing as brand loyalty.



428 Economic Service Selection

Buying at the lowest price is not so appealing if your goods never arrive, their quality

is poor, or they cannot be returned if they prove unsuitable. Under these circumstances,

dealing with a reputable seller can be more important than simply getting the lowest price.

Next-generation services should be able to help with this aspect of e-commerce.

One way they might accomplish this is through online certification services, much as

sellers now rely on consumer credit ratings when extending credit. Early examples of certifi-

cation services are BBBOnLine (http://www.bbbonline.org), provided by the Council of Better

Business Bureaus and TRUSTe (http://www.truste.org). These rating agencies variously cer-

tify the privacy and fiscal responsibility of retail sites, but not the quality of their service.

When no certifying organization can be found for sellers of a desired product or service,

information can be obtained from a site such as Dun & Bradstreet (http://www.dnb.com/),
which provides financial reports on companies and organizations, both domestic and inter-

national. By incorporating certification services, agents may be able to retain brand-name

value.

21.2.3.3 A Service Economy

Building on general ideas pioneered by Gnutella, FreeNet, and SETI@home, Mojo Nation

(http://www.mojonation.net) is creating a digital marketplace for the exchange of idle disk

space, bandwidth, and CPU cycles. By providing services and resources to other Mojo Nation

peers, participants earn credit they can use to consume content or sell for cash. Although

right now the marketplace is limited to mostly computational goods, it provides a strategy for

micropayments among participants and a new currency: the Mojo.

An alternative to using or inventing a currency is a return to the types of markets that

originated during the Middle Ages, when trade was based on bartering—the direct exchange

of goods with no intermediate currency (“I’ll trade my extra bushel of wheat for your extra

goat”). Because an agent-based economy provides direct links between producers and con-

sumers, without retailers and other middlemen, it might also significantly reduce the need for

traditional currencies. This is impractical in our current markets, because while individuals

and corporations simultaneously produce and consume, they typically produce narrowly and

consume broadly. Pairwise matches are thus unlikely. You might like to trade your extra

chickens to Ford for a new car, but Ford needs steel, not chickens. Agents, however, might be

able to dynamically form large coalitions and chains of producers and consumers, then find

matches to make such bartering feasible.

Agents will continue to evolve from assistants into decision makers, and their autonomy

and responsibility will increase. Ultimately, transactions among economic software agents

will constitute an essential and perhaps even dominant portion of the world economy.

21.3 Exercises
21.1. For the example market shown in Figure 21.1, find an allocation for the time of the

financial portfolio analysis Web service when the value for Agent 2 is $900, all other



21.3 Exercises 429

agent’s values are as shown in the figure, and all prices are in increments of $100. The

Financial Portfolio Analysis Service wants to maximize its profits.

21.2. The Trust Game. Consider a situation involving the trust of service requesters and the

trustworthiness of service providers in a simulated investment environment. To begin,

each requester has $10, and can send all, part, or none of this amount to the provider

to invest. The provider handles the investment and is guaranteed to triple the amount

invested, so that there might be $30 for the requester and provider to share. However,

the provider is free to return all, part, or none of this to the requester.

If the requester and provider are purely self-interested, then according to economic

theory no money will flow: to maximize its own profits, the provider will have no

reason to return any money to the requester. Being aware of this, the requester will not

send any money to be invested. (Experiments with humans show that they behave less

selfishly than predicted by economic theory.)

Assume that there are 100 providers and 100 requesters, that each is either purely

benevolent (trusting) or purely self-interested, and that there are 50 of each kind. Also

assume that there are 10 repeated plays of the game. At each play, each requester

randomly selects a provider to handle its investment. Via simulation, find the total

amount of money among all participants at the end of the 10 trials.

21.3. Project Idea: Market for Web Services. Building on the description of Exercise 19.1,

augment the above design to create a simple market where bids for services can be

placed by both providers (sell bids) and prospective consumers (buy bids). The bids

specify not only the service interface, but also the provider. Assume that there are no

explicit ratings at all. The bids capture the information inherent in the ratings, because

popular service providers can charge higher fees for their services.

What kind of a market mechanism will you use? For example, with sealed bids or an

outcry model, would you use a continuous double auction?





Part VI

Engineering

431





Chapter 22

Building SOC Applications

This book begins with a discussion of the motivations behind service-oriented computing

and progresses through a host of technologies that are needed to realize it. Builders of suc-

cessful service-oriented computing systems know that more than just using the right tech-

nologies, creating a design that satisfies requirements, and producing an implementation that

meets specifications are adequate for success: the final SOC system must be reliable, secure,

easy-to-use, easy-to-understand, and maintainable. This chapter summarizes key engineer-

ing techniques for semantics, processes, and agents—the three main themes of this book. It

takes a closer look at some major application settings where SOC will find its greatest value,

and then suggest some combinations of specific techniques through which such applications

can be brought to fruition. The remaining chapters of this part address additional system

requirements, focusing on security, quality of service, and manageability.

22.1 Elements of SOC Design

There are six key design principles that come into play when service-oriented systems are

constructed and deployed. There are also a number of ways in which the resulting systems

are evaluated, and these are collectively known as quality of service (QoS).

Roles. Ideally each service should correspond to a business role and should encapsulate the

capabilities of that role. As discussed in Chapter 17, business roles are best understood

in terms of the commitments they can enter into with other business roles. Similarly, as

described in Section 22.5, methodologies for agent design begin with a specification of

their roles. Therefore, services should be defined based on the naturalness of the roles

they portray.

Capabilities. The functionalities supported by the services should correspond to the capabil-

ities of the roles that they implement. These functionalities are a better way to model

433



434 Building SOC Applications

the behavior of the services than the use of small methods to get and set variables, as is

done for typical data type definitions.

Arm’s length interactions. There is a tendency (among programmers accustomed to con-

ventional closed systems) to think in terms of detailed interactions among services and

their users. Arm’s length interactions avoid such unnecessary coupling, making it eas-

ier to evolve one of the interacting parties without affecting the others.

Another reason for maintaining arm’s length relationships is to improve the perfor-

mance of the overall system. This is because arm’s length relationships mean that there

are fewer events and less data that the parties need to share with each other. This leads

to reduced communication latency and more independent, asynchronous computations

by the various components.

Reconfigurability. To facilitate deployment, services should be able to be relocated. Service

registries provide a mechanism to ensure location transparency. Another consideration

is allocating computational resources to a service implementation. Grid computing,

or more generally utility computing, permits the late binding of service instances to

resources, thus enabling high-demand services to be allocated more resources, thereby

improving overall system behavior.

Caution. Since services apply in open environments, they are subject to greater threats than

components in conventional closed settings. Therefore, services must deal with other

parties cautiously. This entails the elementary kinds of software engineering considera-

tions, such as checking inputs before initiating processing. Further, there is a significant

need for the usual kinds of security considerations, such as authentication and authori-

zation. It also leads to the question of trust. Each party in an interaction must be able

to trust the others. Next there must be a means to determine compliance of the various

parties with respect to the stated protocols.

Narrow interfaces. Interfaces should be kept as narrow as possible. It is almost always a

bad idea to expose the details of implementations or even software frameworks. For

this purpose, an implementation detail is anything that is not explicitly encoded in a

contract.

What is the proper granularity for Web services? If they are too small, then there is too

much overhead in describing them, locating them, composing them, and invoking them. If

they are too large, then they might not fit an application’s requirements precisely. It can be

attractive to treat Web services simply as distributed objects that can be invoked in a man-

ner that is independent of programming languages. This view proves quite problematic in

practice. Objects provide the wrong set of abstractions for dealing with autonomous, hetero-

geneous components. Further, Web services are not designed for the fine-grained invocations

of local objects. Conversely, Web services should not be based directly on legacy systems,

which may be unduly coarse. If the system design can be refactored into a small number of

reusable services, then greater value can be extracted from it.



22.2 Quality of Service 435

22.2 Quality of Service
Current standards for Web services, such as WSDL, support descriptions of the functional

aspects of a service, but not the nonfunctional aspects. Examples of nonfunctional aspects

are: who designed the Web service, who implemented it, when it was implemented, and

where its documentation is located. Many of the nonfunctional aspects are related to quality

of service [Mani and Nagarajan, 2002; Maximilien and Singh, 2002], which is described by

the following parameters:

Availability. Availability is a measure of whether a service is present and ready for immedi-

ate use, or likely to be ready when it is needed. It can be specified as the probability

that the service is available or specified in terms of the particular times it is usable or,

alternatively, the times when it is under repair. For example, a bank might balance its

accounts every night between midnight and 1:00 a.m., and a cash withdrawal service

at an ATM might be unavailable during this time.

Accessibility. Accessibility is a quality measure representing the likelihood that a service can

satisfy a request at a given point in time. A service might be available but inaccessible

due to network traffic or because it is busy. For example, a Web service selling tickets

for a popular sporting event might be inaccessible because of a high demand from client

applications trying to purchase tickets. High accessibility can be achieved by building

scalable systems that can serve requests consistently despite variations in volume.

Integrity. Integrity measures how well a service maintains the correctness of its interactions

with respect to a client, as well as its own state. If a single invocation of a service

is viewed as a transaction, then integrity refers to the proper execution of the transac-

tion, including obeying all interaction protocols, operating according to its advertised

specification, and satisfying all applicable constraints, so that the transaction will either

complete successfully or abort entirely.

Performance. Performance is of two main types: throughput and latency. Throughput is the

number of service requests served during a given time period. Latency is the round-trip

time between sending a request and receiving the response.

Reliability. Reliability measures how often a service meets or exceeds its advertised capa-

bilities, typically specified as inversely proportional to the service’s number of failures

per time interval.

Compliance. This quality reflects how well a service complies with the appropriate rules,

laws, standards, and any established service-level agreements. Strict adherence to cor-

rect versions of standards (e.g., SOAP 1.2) by services is necessary for their proper

invocation.

Security. Security specifies how well a service provides confidentiality and nonrepudiation

by authenticating the parties involved, encrypting messages, and maintaining access



436 Building SOC Applications

control. A service provider can provide different security levels and mechanisms

depending on the service requester.

Honesty. Honesty measures how well a service’s delivered qualities correspond to its adver-

tised qualities.

Price. Price measures the cost of using a service, measured along suitable dimensions, such

as registration, first use within each session, successive uses within the same session,

and revisions and updates.

Currently, the only viable system for supporting QoS information is a UDDI registry, although

there are no standards for how such information must be represented in it. If QoS information

with a well-defined semantics were available, then the following might transpire:

1. A service requester would specify a service interface along with the QoS it requires.

2. A QoS broker would search for the service providers in the UDDI registry.

3. The QoS broker would compare the offered QoS with the required QoS and use its

internal information to determine a QoS to be agreed upon. This process is called QoS

negotiation. It would inform the service requester and service provider of the outcome.

4. The requester and provider would then interact as necessary.

22.3 How to Create an Ontology
An essential step in the construction of a service-oriented computing system is the develop-

ment of an ontology, which is essential for interoperation in a given domain. The formal

languages expressed in Chapters 6–9 provide a means to capture ontologies, but they leave

open the extremely important question of how actually to build one. As an analogy, just

because someone reads the specification for a programming language does not mean that

they are a good programmer in that language. In other words, you need to understand the

engineering or methodology aspects of ontology construction. Recognizing that this is an

engineering art rather than pure logic helps put the task in perspective. The first challenge is

that, to be designed well, ontologies require clean conceptual thinking. The second challenge

is that ontologies can be as diverse as the people who construct them.

To produce good ontologies, a developer should be a specialist in the given domain and

in knowledge representation. When this is not the case, a developer must elicit the ontology

from the domain specialists. Such specialists, also known as subject matter experts, can ben-

efit from guidance from developers. For example, computer scientists may help physicians or

package tour vendors create ontologies for their domains of expertise. As a result, whereas

the ontology would remain a characterization of the common sense knowledge in the given

domain, it would additionally represent an improved organization of that knowledge.

Ontologies facilitate the unambiguous descriptions of services. In more general terms,

ontologies facilitate the development and sharing of domain knowledge. The advantages of



22.3 How to Create an Ontology 437

modeling domain knowledge are significant. Doing so makes assumptions explicit, enabling

the inspection of the knowledge—thus violations in the model can be detected more easily.

This improves the design of programs with better specification and handling of exceptions.

22.3.1 Ontology Construction

It is believed by some that ontologies can be defined independently of any application. To

the extent that you can capture application-independent knowledge, doing so is highly desir-

able, because such knowledge is widely reusable. However, it is difficult in practice to find

representations that are application neutral. Every model of any aspect of reality makes sim-

plifications, which might be appropriate only for the particular application at hand.

However, it is still helpful to think of a range of applications that your ontology is

intended to support: specific applications are not always known at design time, because new

services would become available—created from scratch or by composition—all the time. If

your models are generic, then you will be able to support some applications that you might

not have anticipated.

The concepts in your ontology should be close to the concepts in your domain of interest.

In this manner, ontologies take what may be termed a common sense approach to knowledge.

For example, you might capture wines as white, red, and blush without modeling the vari-

ations in the underlying biochemical processes that cause the colors. Similarly, instead of

breaking down an airline flight into its various segments, you might prefer to model it just in

terms of its end points. If a new application needs to represent the potential number of plane

changes or possible airport delays, you might then enhance the ontology to be able to capture

individual flight segments explicitly.

A recurring challenge is knowing when to stop modeling. For instance, an ontology for

shoes might capture their widths, but it might not be worthwhile to capture the fact that shoe

widths are ordered. Although that fact would enable a program to reason about what shoes to

suggest for a customer (if size B is too tight, then maybe size C would fit), it might be best to

let the program encode that knowledge instead. The primary reason is that there would be too

many such rules, making it difficult to maintain them. A secondary reason is that including

such rules would complicate our representation.

Concept classifications might not remain constant as a domain evolves. For example,

if fashion begins to dictate unisex shoes, then a prior classification into men’s and women’s

shoes would need to be modified. And perhaps blush wines should be treated as a subcategory

of white.

In the same vein, the purpose of an ontology is not necessarily to capture the correct

scientific thinking about a domain, but to capture the practical knowledge that would support

modeling the applications in that domain. For example, it would be reasonable to classify

apples as fruits for a grocery service, because they are fruits in the grocery domain, even

though they are not fruits in the biological sense. Trying to be correct scientifically would

only add complexity to the application. Further, you can even include things that you believe

do not exist, such as goblins and unicorns.



438 Building SOC Applications

There is no correct unique or canonical ontology for a given domain. How people con-

ceptualize a domain differs and how they express their conceptualizations in a formal repre-

sentation differs too. This means that we can evaluate ontologies only by judging how good

they are at supporting the applications of interest. The lack of a canonical form is also why

merging related ontologies is difficult: similar ideas might have been captured differently in

the given ontologies.

Since ontology construction is about creating a conceptualization, it is inherently an

engineering art rather than an exact science. Like other forms of software engineering or

requirements capture, it is a task that requires experience and good judgment. Some ideas

for methodologies for ontology development can be borrowed from the world of conceptual

modeling of databases and information systems, although such efforts were often of a more

local scope than ontologies that would be used to support service-oriented computing.

The following steps in creating an ontology are based on the discussion in Noy and

McGuinness [2001].

• Consider the following key questions to organize your thoughts.

– What applications will your ontology support? These can be captured as the kinds

of competency questions that you expect your ontology to answer.

– How will the ontology be used and maintained? Is it going to be standard or

merely one person’s take on the world?

– What existing ontologies could you reuse and enhance? It is best not to build an

ontology from scratch if you can avoid doing so.

– What are the key concepts in the ontology? What attributes do they have? What

relationships do they have with other concepts?

• Formulate a hierarchy of the main concepts. Established techniques are bottom up, top

down, or inside out. When a number of applications exist, the bottom-up approach

of identifying their commonalities makes sense. When a domain is extremely well

understood, a top-down strategy can capture its essence quickly. For domains that are

novel and thus imperfectly understood, the inside out strategy is a desirable one. In this

strategy, you first place the main concepts that you wish the ontology to cover. Then

you elaborate them and enhance the structure underlying and overlying them.

• Formulate a hierarchy of the main relationships and define their properties. These

include their domain and range, as well as further restrictions. Define the attributes of

the concepts and properties, such as value type and cardinality.

The most important point to realize is that ontology development is not a one-shot effort.

Except for domains that are so well-understood as to be of limited practical value (and boring

to boot), you would not begin with a clear picture of the conceptualization you are building. It

is, therefore, wise to proceed in an iterative manner, where the first tentative design decisions

can be revised without large effort.



22.3 How to Create an Ontology 439

22.3.2 Ontology Guidelines and Conventions
The following guidelines are based on the authors’ experience with ontologies in several

domains:

• Classes should be named distinctly. They correspond roughly to nouns, and should be

expressed in the singular form. Properties correspond to verbs.

• Classes should correspond to the intrinsic attributes of the objects of interest. For

example, we may classify shoes according to their size, but not according to whether

they are currently clean or not. A shoe will typically not change its size, but will

alternate between clean and dirty throughout its life. This might affect the value of one

of its properties, say the value of cleanliness for a given shoe, but not the class to which

the shoe belonged. That is, ontologies should concern schemas and not specific data.

• There is often a choice between creating a subclass or creating a property and allowing

it to take a variety of values. For example, we could create subclasses for shoes of

different colors, or we could create a property called color and use it to capture the

various colors. We should prefer explicit subclasses for colors if we plan to capture

different properties for them, such as how formal they are.

• A class with a single subclass suggests that the class and its subclass be merged.

• A class with a large number of subclasses may indicate that either some of the sub-

classes should be coalesced or an intermediate layer of subclasses should be introduced

to make the structure manageable.

• Siblings should be at about the same level of generality. This restriction makes the

ontology easier for people to understand.

• As many constraints as possible should be captured explicitly. Doing so enables some

potential errors to be detected automatically.

• Properties can have default values. When used, such values serve as a convenience. In

general, it is not too good to rely on such defaults, because they can give the impression

of a class being fully fleshed out while not meriting any assurance of having correct

values.

• Different classes should generally have different properties and should participate in

different relationships. This holds even when one of the classes is the subclass of

another. The subclass and superclass should be different enough for it to be worth

keeping both in the ontology.

• Ontologies in the narrow sense have classes rather than instances. Instances are the

province of databases and knowledge bases, whose schemas can be specified via onto-

logies. Keep in mind that there are no subinstances.



440 Building SOC Applications

22.3.2.1 Guidelines for RDF and RDF Schema

RDF is mostly a straightforward notation and has only a few quirks.

• The XML syntax of RDF often proves quite cumbersome. It might be preferable in

some cases to use an alternative, more compact, notation such as N-Triples for devel-

opment. This should be translated into XML for publishing.

• rdf:ID applies within the given namespace. Thus an ID resolves to a URI given by

the base URI of the scope where it occurs, followed by a # followed by the value of

the ID. If the base URI changes—as may happen when the document is moved—the

resolved URI for the entity with the rdf:ID would also change. For things that may

move, rdf:about with an absolute URI is better than rdf:ID, because the absolute URI

would not change. Another approach is to use the xml:base attribute in the rdf:RDF
element, which sets the base URI regardless of where the element is placed.

• Use an explicit rdf:label. It is not safe to assume that the last “word” in a URI would be

interpreted as a label.

• Use rdfs:isDefinedBy, which points to an authoritative description of the resource. Its

superproperty rdfs:seeAlso, which points more generally to relevant descriptions, can

also be useful. Use rdfs:comment for additional human-readable information.

• Follow the standard naming convention wherein classes are identified by names that

begin with an uppercase letter, whereas properties are identified by names that begin

with a lowercase letter.

22.3.2.2 Guidelines for OWL

The OWL syntax allows malformed restrictions and multiple ways to capture the same mean-

ing.

• A restriction that lacks an owl:onProperty element would have no semantic effect,

although interpreting the formulation purely as RDF may have some effect, which is

lost. It is best to avoid such formulations.

• A restriction with more than one owl:onProperty element could have surprising conse-

quences, such as equating the extensions of two well-formed restrictions. The behavior

would be quite unintuitive and should be avoided.

• Constructs such as sameAs and equivalentClass or equivalentProperty or sameIndivid-
ualAs differ ever so slightly. For classes, properties, or individuals, it is best to use

equivalentClass, equivalentProperty, and sameIndividualAs, respectively.

• OWL makes it easy to scatter the meaning of a class. To maximize readability, it is

best to place the constructors in the same owl:Class element unless there are excellent

reasons for placing constraints in different elements.



22.4 How to Create a Process Model 441

• Recall that the domain and range of a property are global restrictions, since they apply

to a property by itself independent of the class whose instances to which it is being

applied. Further, multiple domains and multiple ranges are implicitly intersected. For

this reason, these should be used with care. However, the necessary requirements

should be captured.

• It is best to keep instance and class data in separate documents. An ontology should

be mainly about classes and only refer to key individuals, such as might be needed to

define other classes.

22.4 How to Create a Process Model
Processes are created by one of the following four general strategies:

• By searching forward from a start state towards a goal state to enumerate successively

the possible sequences of intermediate states.

• By searching backward from a goal to a start state.

• By successively refining an abstract process description into a concrete description,

commonly termed task decomposition.

• By successively defining the operations needed to transform an initial state into a final

or goal state.

The strategy used most often is task decomposition in which, given an overall task or goal,

the system’s first step is to decompose it into smaller, more manageable pieces. This is typi-

cally done using a divide-and-conquer approach. This reduces complexity: smaller subtasks

require less capable components (agents or services) and fewer resources. Task decomposi-

tion must consider the resources and capabilities of the components, and potential conflicts

among tasks and components. These four strategies correspond to the various styles of artifi-

cial intelligence planning, which is beginning to be used for planning service compositions.

22.5 How to Design Agent-Based Systems
Agent-based systems are unique types of service-oriented computing systems that deal with

the knowledge, intentions, and responsibilities of their components. Several agent-oriented

software engineering (AOSE) methodologies have been proposed. One approach, followed

by AUML (which extends UML) [Bauer et al., 2001], is to extend methodologies intended

for conventional software systems. Another approach, followed by Tropos [Kolp et al., 2002]

and Gaia [Wooldridge et al., 2000], is to support the particular characteristics of agents that

mandate the use of agents in the system being developed. Below is a longer discussion of

Gaia.



442 Building SOC Applications

Gaia supports the design of both individual agents and systems or societies of agents.

Multiagent systems are viewed as being composed of a number of autonomous interactive

agents that operate in an organized society in which each agent plays one or more specific

roles. Gaia specifies a multiagent system in terms of the roles that agents play and the inter-

action protocols among the roles.

Roles have four attributes: responsibilities, permissions, activities, and protocols. There

are two types of responsibilities: liveness properties that try to ensure that the role exhibits

positive behavior in completing its assigned tasks, and safety properties that try to prevent

the role from exhibiting negative behavior or to ensure the role maintains acceptable condi-

tions during task execution. Permissions specify what the role is allowed to do and which

information resources it is allowed to access. Activities are the tasks that an agent performs.

Protocols are the specific interaction patterns that the roles must support.

There are three steps in the Gaia design methodology. The first step is to map roles

into agent types and instantiate the agents of each type. The mapping in general is N-to-1,

i.e., each agent can fill one or more roles. The second step is to create the service model.

Services, similar to OWL-S, are specified in terms of their inputs, outputs, preconditions, and

postconditions (effects). Each service is a function that an agent performs, and is derived

from the protocols, activities, responsibilities, and liveness properties of a role the agent is

filling. The third step is to create the acquaintance model that defines the communication

paths among the agent types.

22.5.1 Engineering Cooperation

Choosing the roles that an agent will play is often done by considering the goals of a system

and the tasks that are needed for its domain. In an environment with limited resources, agents

must coordinate their activities with each other to further their own interests or satisfy system

or group goals. The actions of multiple agents need to be coordinated, because there are

dependencies among agents’ actions, there is a need to meet global constraints, and no one

agent has sufficient competence, resources, or information to achieve the goals. Examples of

coordination include supplying timely information to other agents, ensuring that actions of

agents are synchronized, and avoiding redundant problem solving.

Cooperative services require techniques for distributing both control and data. Distributed

control means that agents have a degree of autonomy in generating new actions and in decid-

ing which goals to pursue next. The disadvantage of distributing control and data is that

knowledge of the system’s overall state is dispersed throughout the system and each agent

has only a partial and imprecise perspective. There is an increased degree of uncertainty

about each agent’s actions, so it is more difficult to attain coherent global behavior.

The actions of agents in solving goals can be expressed as search through a classical AND-

OR graph or goal graph. The goal graph includes a representation of the dependencies among

the goals and the resources needed to solve the primitive goals (leaf nodes of the graph).

Indirect dependencies can exist among goals through shared resources.

Formulating a multiagent system in this manner allows the activities requiring coordina-



22.5 How to Design Agent-Based Systems 443

tion to be clearly identified. Such activities include: (1) defining the goal graph, including

identification and classification of dependencies, (2) assigning particular regions of the graph

to appropriate agents, (3) controlling decisions about which areas of the graph to explore, (4)

traversing the graph, and (5) ensuring that successful traversal is reported. Some of the activ-

ities may be collaborative, while others may be carried out by an agent acting in isolation.

Determining the approach for each of the phases is a matter of system design.

An intuitive strategy shared by many approaches for developing cooperating multiagent

systems is to decompose and then distribute tasks. Such a divide-and-conquer approach

can reduce the complexity of a task: smaller subtasks require less capable agents and fewer

resources. However, the system must decide among alternative decompositions, if available,

and the decomposition process must consider the resources and capabilities of the agents.

Also, there might be interactions among the subtasks and conflicts among the agents.

Task decomposition might be done (1) by the system designer, whereby decomposition is

programmed during implementation, (2) by the agents using hierarchical planning, (3) inher-

ently according to the representation of the problem, as in an AND-OR graph, (4) spatially,

based on the layout of information sources or decision points, or (5) functionally, accord-

ing to the expertise of available agents. Once tasks are decomposed, they can be distributed

according to any of the following mechanisms:

Market mechanisms. Tasks are matched to agents by generalized agreement or mutual selec-

tion (analogous to pricing commodities).

Negotiation. Task assignments are mutually negotiated among agents, e.g., via the Contract

Net Protocol’s announce, bid, and award cycles (see Section 18.2).

Multiagent planning. Planning agents assign tasks to others.

Organizational structure. Agents play roles that have responsibilities for particular tasks.

Figure 22.1 illustrates two of the methods of decomposing and distributing tasks.

22.5.2 Diversity versus Complexity
Among the many reasons why agents are attractive, the following two are of interest here.

One, agents enable us to construct modular systems from heterogeneous components, poten-

tially created by any number of vendors. Two, the agents themselves embody diverse know-

ledge, reasoning approaches, and perspectives. This diversity is sometimes essential, because

the agents represent people or business interests that have different goals and motivations.

Diversity can sometimes be added in by design: it can make an agent system more robust by

enabling a variety of viewpoints to be represented and exploited.

However, agents can be complex pieces of software, so the question arises whether a set

of agents that are different from each other would unnecessarily add to a system’s complexity.

The more kinds of agents there are, the harder it is to build and maintain them.

Fortunately, this turns out to be a false dilemma. The agents have to be diverse in content,

e.g., knowledge, reasoning techniques, and interaction protocols, but not in the form in which



444 Building SOC Applications

Spatial decomposition, where the services

are an information source or decision point:

Functional decomposition, where the

services offer specialized expertise:

Business Travel

Planner
Car Rental Expert

Cruise Planner

Hotel Reservation

Expert

Flight Reservation

Expert

European

Travel

Specialist

North American

Travel

Specialist

Asian Travel

Specialist

Figure 22.1: Examples of task decomposition based on spatial or functional criteria

that content is realized, e.g., the language or toolkit with which they are constructed. Prob-

lems arise through unnecessary heterogeneity in construction; the cost of necessary hetero-

geneity in content is more than recovered through the flexibility it offers.

There are three practical ways you can limit the heterogeneity and its pernicious effects.

One, construct agents using a toolkit and, preferably, a common toolkit (or as few as possible,

because the choice is often based on past practice or local politics). Two, apply agents in the,

by now, conventional roles outlined above. You will be much happier if you keep your broker

conceptually separate from your user agent, for example. You could upgrade each agent

independently or, if you like, plug in someone’s improved version for yours. Three, use

standards wherever appropriate. Public standards can make it easier to construct composite

systems from heterogeneous and independently developed parts. The more that you and your

collaborators can agree on in advance, the fewer problems you will have when you hook up



22.6 How to Construct Agent-Based Systems 445

your agents to form the desired multiagent system.

Once an agent-based system is designed using an AOSE approach and taking into account

the goal and task requirements of the system, it can be implemented and deployed using an

agent development environment, as described in the next section.

22.6 How to Construct Agent-Based Systems
The easiest way to construct an agent or a multiagent system is to use a development envi-

ronment. There are several such environments available, including Jade, Zeus, FIPA-OS, and

CoABS. Each has its strengths compared to the others, but they all provide skeleton agents

and implementations of standard FIPA interaction protocols.

Jade, the most popular of the above, is a FIPA-compliant platform, which implements

FIPA’s agent Management System, Directory Facilitator, and Agent Communication Chan-

nel. It supports interagent communication in the form of a message transfer protocol (MTP)

over HTTP, CORBA’s IIOP, and a Java ORB. Agents can be deployed and execute on a variety

of platforms, including PDAs. Messages are represented using the FIPA Agent Communi-

cation Language (see Section 18.1). Jade also supports FIPA’s standard interaction proto-

cols, such as the Contract Net Protocol. For such protocols, Jade distinguishes initiator and

responder roles, based on whether an agent starts or participates in a conversation, respec-

tively. AchieveRE classes are made available to applications, and are used to implement

FIPA’s achieve rational effect. A finite-state machine for the AchieveRE initiator role of the

Contract Net Protocol is shown in Figure 22.2.

Each Jade platform has its own Java Virtual Machine, in which each agent is a single

thread. Within its thread, each agent is controlled by a scheduler with a nonpreemptive round-

robin policy for selecting, executing, and managing behaviors. Constructing an agent involves

giving it one or more behaviors, and then customizing the behaviors for the particular respon-

sibilities of the agent. Each behavior implements an intention or performs an atomic task,

and the behaviors can be composed to realize complex patterns. For example, three simple

one-shot behaviors might be used to prepare, commit, and compensate a purchasing opera-

tion, respectively, and a finite-state-machine behavior would combine the one-shot behaviors

into an ACID transaction.

22.7 How to Engineer Composed Services
Constructing an application by composing services first requires that existing services, with

the functionalities they provide, be identified. Where essential services are missing, they must

be constructed by the application developer or their construction out-sourced. The next step

is to select, plan, or specify the desired combination of services. Finally, the composition of

services is executed and monitored for success or faults.

Current approaches take a procedural view of service composition by formulating work-

flow graphs that can be stepped through in a simple manner. Because of this, the main engi-



446 Building SOC Applications

Prepare Initiations

Send Initiations

Receive Reply
Dummy Final

Check In Sequence

Handle Positive Response

Handle Failure

Handle Not Understood

Handle Refuse

Handle Inform

Handle Out-of-Sequence

Check Sessions

agree

refuse inform

not understood

failure

Handle All Responses

Handle All Result Notifications

Check Again

TIMEOUT

INTERRUPT All Responses Received

All Result Notifications Received

Reset

Figure 22.2: A finite-state model in Jade for the initiator role of the Contract Net Protocol

neering challenges that arise concern standardizing on the data, e.g., through syntax or the

semantics. However, Web services have attributes that set them apart from traditional closed

applications: they are autonomous, heterogeneous, long-lived, and interact in subtle ways to

cooperate or compete. Engineering a composition of such services requires abstractions and

tools that bring these essential attributes to the fore. When the requirements are expressive,

they highlight the potential violations, e.g., the failure modes of a composition.

Engineering composed services thus requires capturing patterns of semantic and prag-

matic constraints on how the services may participate in different compositions. It also

requires tools to help reject unsuitable compositions so that only acceptable systems are built.

A key aspect in the design of a composed service or a multiagent system is to maintain

global coherence, often without explicit global control. This calls for a means to pool know-



22.8 Exception Handling 447

ledge and evidence, determine shared goals, determine common tasks across services, and

avoid unnecessary conflicts. The result is a collaboration.

Several challenges regarding transport, messaging, and security constraints must be han-

dled for each collaboration. In general, business collaborations are becoming increasingly

complex, and most systems will be dealing with multiple collaborations at the same time. If

the transactions are legally bound or even otherwise, a nonrepudiation condition may have to

be satisfied. Lastly, as usual, there is always a possibility of exceptions.

For the reasons described in several places in this book, the above challenges make

automating business transactions using ontologies and agents an appealing approach. Steps

toward such technologies are already underway in industry. For example, OAG, OASIS,

bizTalk, and RosettaNet are standardizing the syntax and semantics of the documents that are

exchanged during a B2B transaction. What is also needed is a basis for standardizing (and

automating) the behaviors that are expected of the participants in a B2B transaction. Further,

misbehaviors must be handled. For example, a precise specification of a purchase order does

not say what to do in the following case: if a company does not receive a response, should it

assume that the recipient was not interested or that the PO was lost?

Whether an architecture for an application is specified in terms of a workflow, causal

model, process model, goal-subgoal graph, or some other modeling formalism, it must be

realized by compositions of available services. These services might be found in a local

repository or located across the Internet. Engineering a service-oriented computing system is

thus a process of discovering and matching the appropriate services, planning their interac-

tions, and composing them at run-time. This process is illustrated in Figure 22.3. Also note

that when deciding on tasks, or decomposing goals into subgoals, it is important to end up

with tasks and goals that match services available in a repository or ones that can be con-

structed easily. An unresolved problem is that the services within the repository are typically

not organized.

22.8 Exception Handling
Because service-oriented computing systems have diverse, distributed, autonomous compo-

nents, it is highly possible that exceptions will occur. It would be good if the exceptions were

anticipated, rather than coming as a surprise. It would be even better if a scheme for handling

them were ready in advance.

Exceptions have two main connotations: they are things that go wrong and they are devi-

ations from the normal pattern of activity of interaction. Some exceptions can be easy to

detect and correct, others not so. To understand exceptions better, it helps to classify them as

follows:

Programming. A computation may encounter an exception because of some internal vio-

lation of integrity that can be thought of as arising from the programming language

engine. Examples of these are divide by zero, array bounds check failure, erroneous

typecast attempted, attempt to use uninitialized object, or corruption of program state.



448 Building SOC Applications

Task1

Task2

Task3

Task4

Task5

Task6

Task7

WebService1 WebService2 WebServiceN. . .

Discovering, Matching, Planning, Composing

Repository/Directory of Services

Discovering, Matching, Planning, Composing

Goal

Subgoal

Subgoal

Subgoal

Subgoal

Subgoal

Subgoal

Subgoal

SubgoalSubgoal

Figure 22.3: Engineering an SOC system is a process of discovering and composing the proper

services to satisfy a specification, whether the specification is expressed in terms of a goal

graph (top), a workflow (bottom), or some other model



22.8 Exception Handling 449

System. Exceptions might occur at the level of networking or operating system and are man-

ifested as problems in accessing necessary resources. Examples are broken network

connections, unreachable hosts, or missing files. Failures due to security policy viola-

tions should also be included in this category.

Management. These occur due to resource management problems. For example, locks on

data items may not be available, or a transaction may be aborted by a DBMS because

of potential concurrency violation or because of a potential deadlock. In these cases,

the resources may be physically available, but the management layer may in effect

throw an exception to ensure that properties such as safety or liveness of the set of

computations as a whole are preserved.

Semantic. These occur when some precondition for a service is not met or a postcondition

is obtained that violates some integrity constraint. Semantic exceptions rely on the

meaning of the given computation and can occur when the above kinds of exceptions

do not occur. A possible case is when the business partners turn out to have some

disagreement about their terminologies.

Pragmatic. These exceptions arise from a violation of commitments, possibly caused by

events that may be outside the direct purview of the computational system. An exam-

ple is the loss of a shipment or the failure to meet a production schedule because of

failures in the manufacturing equipment. Another example would be a failure to make

a promised foreign currency payment, because the emergence of new governmental

regulations limiting such payments above a (newly set) threshold amount.

Semantic and pragmatic exceptions are often manifested as coordination failures. If the mech-

anism for exceptions is limited to doing nothing or announcing a generic condition as a fault

(e.g., as in SOAP), then the programmers and system administrators involved would devise

some ad hoc means to convey the varieties of meaning. It would be better to include a richer

representation for exceptions just as for the other aspects of interactions among services.

For contracts to be robustly executed, there would need to be a means to handle all of the

above kinds of exceptions. A conceptually simple means to handle exceptions is to capture

some possible classes of exceptional scenarios in the contract itself and to specify varying

penalties for them. However, in practice, such penalties may not be directly applied, because

the failures may be due to uncontrollable events, such as (depending on the given domain)

adverse weather or war. More generally, it is helpful to classify exception handlers into two

main types, each with two main subprocesses.

• Before the fact: anticipate exceptions and avoid (or, more practically, reduce the risk

of) exceptions. Such eager exception handlers use heuristics and sanity checks to deter-

mine whether an exception is imminent. An example of such heuristics are (in produc-

tion planning) monitoring inventories of needed parts to see if any of them is likely to

run low. Another example is to use aggressive time-outs to determine if an expected

confirmation seems likely not to arrive.



450 Building SOC Applications

• After the fact: detect and resolve exceptions. These lazy exception handlers are com-

monly used in practice, sometimes due to a lack of modeling of the possible exceptions.

When we do not know what exceptions might occur, we clearly cannot anticipate them

with any precision. Even detecting such exceptions after the fact is nontrivial; the only

feasible way currently is by making the user responsible for detecting exceptions. The

approach of Section 18.3.2 shows how violations of commitments can be detected by

each interested party.

In general, there is no easy solution to exception handling. Richer representations of pro-

cesses identify the exceptions more clearly in the models. Flexible executions of processes

via agents help choose suitable behaviors in the face of exceptions. High-level contracts and

communications among agents help them interact to enact processes in a manner that can

side-step certain exceptions and maintain overall coherence. Whereas all of these help a lot,

ultimately there is still a need to model the exceptions that are worth worrying about. To this

end, taxonomies of exceptions and exception handling can be invaluable. The MIT Process

Handbook [Malone et al., 2003] describes different process types. Klein et al. [2002] propose

a taxonomy of exceptions that enhances the handbook.

22.9 Knowledge Management Applications
The foregoing has discussed the engineering of SOC systems in general. Let us now turn our

attention to some major application classes, the first of which is knowledge management. If

you want to find out how to increase the bandwidth into your office, you ask your network

administrator, but if you want a new chair, you might not know whom to ask. Your secretary,

however, will know, so ask him (or her). In this way we all depend on each other, because few

people know everything they need to know to get their jobs done. Studies indicate that people

who are more successful have faster networks of more capable experts, and they access this

expertise in one-on-one interactions. So whom you know is still as important as what you

know.

In today’s large or extended enterprises, where frequent personnel changes make it dif-

ficult to conduct business in such a direct way, success requires an ability to exploit the

cumulative knowledge of a widely distributed and diverse workforce. Moreover, the basic

problem of knowing whom to ask for help has another side: you too have expertise in some

area, and you need to find the people who can benefit from it.

Many companies are trying to facilitate such connections with some combination of col-

laboration software (groupware), such as Lotus Notes or Groove, and an intranet portal navi-

gated by a search engine. If each employee has a home page on the intranet that clearly spells

out that person’s responsibilities and capabilities, then a search engine can compute an index

for the home pages and store it in an online database. For example, along with 7 000 internal

Web sites, Hewlett-Packard’s intranet has a database of company-wide expertise. A properly

conducted search can match the right person to the right task. In some companies, Lotus

Notes is then used to keep track of incomplete tasks, and properly motivated employees can



22.9 Knowledge Management Applications 451

browse the list of tasks to find some they can work on.

Unfortunately, a combination of an intranet portal and Lotus notes is insufficient in prac-

tice, because it does not support the way most of us work. We do not randomly browse

directories to find someone who might be able to help us; instead, we are accustomed to find-

ing the right people through our personal offline networks. Such networks of expertise tend

to have only a few levels, and they are not fully connected. In fact, to be useful, they need

paths that are short and fast. As described below, there are only a few degrees of separation

between most people in social networks, and we can assume this pertains to business as well.

One-level referrals are the basis for some successful search engines, such as Direct Hit.

22.9.1 Agent-Based Knowledge Network
In the long run we need a more comprehensive solution. The necessary capabilities are:

• Categorizing: the ability to classify unstructured content automatically.

• Hyperlinking: the ability to add to each item of information appropriate pointers to

other relevant items of information.

• Alerting: the automatic notification of users and agents to new information that might

be of interest to them.

• Profiling: the construction of models of users and agents to describe their interests and

expertise.

This last capability is the most important for a knowledge network, because it involves inte-

grating statements of work, contracts, plans, and corporate strategies with structured data to

characterize an enterprise’s objectives and work.

The system architecture for a knowledge network must include:

• brokers that manage the metadata relating applications, agents, systems, and people;

• search engines;

• ontology servers to reconcile the semantics of the different components that make up

the intranet;

• knowledge bases for each of the active participants in the system;

• agents (of course!) to provide the proactive behavior needed to make the knowledge

network an active collaborative service.

How close are we to achieving such a solution? It appears that all of the individual

pieces are available, but they are just not integrated with agents into a complete system. The

following sections review the current state of portals, groupware, and corporate knowledge

management.



452 Building SOC Applications

22.9.2 Intranet Portals

Corporate intranets are often controlled by many independent groups. As a result, intranet

Web sites are built according to different standards, use different vocabularies and taxonomies,

provide incompatible inferencing techniques, and are not coordinated. The information is

accessible, but it is not comprehensible. A corporate portal is an attempt to improve on this

situation by providing a single coherent point of access to the information.

Several different kinds of portals are possible. The simplest is an information portal

that allows access to Web pages, aided by a conventional search engine. A second kind

enables users to collaborate by establishing virtual project communities with conferencing,

workflow, query tools, and document management. A third type, the kind suggested here,

enables expertise to be networked throughout an enterprise. Such a portal can be active,

pushing knowledge to where it is needed and where it can be exploited.

22.9.3 Communities of Practice

Groupware and portal solutions tend to be one-to-many. What is needed instead is a network

of computational agents and people that can keep track of each other and use each other’s

strengths. But software such as Microsoft Exchange or Lotus Notes does not support agents,

and agent technology does not support people. Agents communicate via messages in lan-

guages such as FIPA ACL, but people cannot be expected to communicate with agents or

each other in such languages.

A better approach in many companies has been to set up “communities of practice,” allow-

ing workers to share knowledge on a particular topic. The necessary investment of time and

leadership to establish and maintain such a community can pay off by fostering person-to-

person interaction. AmberWeb at Xerox is one such community-of-practice Web site. Cur-

rently, 30 000 researchers, planners, and marketers use it to exchange information about the

latest corporate research.

Xerox’s other version of this concept is Eureka, a system of more than 5 000 service

tips that aid 22 000 technicians worldwide. Eureka started from small, informal gatherings

of repair technicians who shared stories and insights about how they had solved customers’

problems. The insights were captured in a knowledge base and then expanded into a system

that now supports a global community of technicians. To support smaller groups needing to

collaborate, Xerox provides DocuShare, which enables the creation of virtual workspaces of

shared information for previously identified group members.

22.10 eBusiness Applications

Traditional models of eBusiness, such as those based on Electronic Data Interchange (EDI)

and Enterprise Resource Planning (ERP), are useful for businesses with well-defined trading

relationships, but unsuitable for the rapidly growing and changing global marketplace. In



22.10 eBusiness Applications 453

the traditional models, point-to-point interfaces are created to support transactions involv-

ing replenishment orders for the goods or services of a previously negotiated contract. The

operative assumption is either that a single distributor is responsible for aggregating all the

suppliers, or that a customer is responsible for comparison-shopping between suppliers—this

is inefficient and expensive for both customers and suppliers. An alternative is the buy-side

eProcurement model, which typically consists of a browser-based self-service front end for

the purchasing systems or ERP systems of the participating businesses. However, this model

does not enable dynamic trading. Furthermore, buying organizations must set up and main-

tain catalogs for each of their suppliers, and hence it is costly and technically demanding.

Electronic marketplaces (eMarketplaces) are the most promising forum for reshaping

business relationships, and will soon affect all businesses in one way or another [Ghen-

niwa and Huhns, 2003]. They will enable customers to shop at all hours from product sup-

pliers and service providers around the world. Likewise, businesses can reach customers

worldwide quickly and at low cost. eMarketplaces offer companies the chance to develop

and enhance their most important relationships—those with customers and suppliers—while

allowing market makers to open new revenue opportunities. Companies can use eMarket-

places to strengthen their existing trade relationships, discover and develop new ones, and

promote faster and more efficient trading.

There have been several recent attempts by the academic and industrial communities to

promote electronic marketplace models. For example, the objective of the work by Boll et
al. [1999] was to develop a business-to-business system architecture, based on a DBMS, that

supports many-to-many relationships between customers and suppliers. The Global Elec-

tronic Market system [Rachlevsky-Reich et al., 1999] describes a logical market framework

and infrastructure that separates system-related and market-related issues, where the market

provides trading mechanisms with bids and offers. A more complex architecture is MAGMA

[Tsvetovatyy et al., 1997] with its focus on three main functionalities: traders, advertising,

and banking. Alternatively, OFFER [Bichler et al., 1998] proposes a brokering-based archi-

tecture viewed as a collection of suppliers, customers, and brokers. A customer can search

for a service either directly in the online catalog of the supplier or by using a broker to search

all the catalogs of the suppliers that are registered with the broker. The brokers employ a

simple auction mechanism. In a different approach, MOPPET [Arpinar et al., 2000] views

an eMarketplace as agent-oriented workflows carried out by several types of agents: task,

scheduling, facilitator, and recovery agents.

Another approach is driven by the bottom-up modeling of market processes with self-

organizing capabilities [Arthur et al., 1997]. The objective is to develop a computational

study of economies modeled as evolving systems of autonomous interacting agents, known

as agent-based computational economics (ACE) [LeBaron, 2000; Timmers, 1999]. Computa-
tional laboratories [McFadzean et al., 2001] are used to study the evolution of decentralized

market economies under controlled experimental conditions. The goal is to develop analysis

tools that enable an economist to test economic theories developed using standard modeling

approaches.

Several companies have emerged to automate logistics and resupply within specific indus-



454 Building SOC Applications

trial segments. For example, Ariba has developed a marketplace based on procurement por-

tals and dynamic exchanges for horizontal marketplaces, which includes dynamic trade mech-

anisms, such as auctions, reverse auctions, and bid/ask exchanges and negotiations. SAP Ser-

vices Marketplace, an Internet portal for the SAP community, provides online services such

as catalog browsing, matchmaking, and ordering from SAP and its partners. PaperExchange

provides a vertical marketplace, enabling customers and suppliers to negotiate pricing and

transact directly with one another. PaperExchange offers supporting services for logistics,

industry-specific job listings, industry events, and a resource directory. VerticalNet also has

built a general marketplace as a set of several Web-based marketplaces for specific industrial

segments, such as financial services, healthcare, and energy. Each Web site forms a commu-

nity of vendors and customers in a specific area. Vertical trade communities are introduced

in segments with a substantial number of customers and suppliers, a high degree of fragmen-

tation on both the supply and demand sides, and significant on-line access.

Many software vendors are developing Internet-based commerce platforms. Examples

are IBM CommercePOINT, Microsoft Site Server Commerce Edition, Oracle Internet Com-

merce Server, Intershop Communications’ Unified Commerce Management, and the Java

Electronic Commerce Framework (JECF) from Sun Microsystems. These proprietary tools

focus on providing infrastructure services such as security, payment, directories, and catalogs

to be integrated with existing systems and the Web.

22.10.1 Business Models for eBusiness Applications

Surveys of small and large companies have shown that one of the most frequently mentioned

barriers to eBusiness projects is the lack of an appropriate business model. A business model

can be used with marketing strategies as an effective tool to assess the commercial viability

of an eBusiness application. A business model is “an architecture for the product, services

and information flows, including a description of the various business actors and their roles;

a description of the potential benefits for the various business actors; and a description of

the sources of revenues” [Timmers, 1999]. In an eBusiness framework, a business model

can be viewed in terms of four principal components [Bartelt and Lamersdorf, 2001]: (1) the

products and services offered by the business entity, (2) the customer relationships that the

business entity creates and maintains in order to generate revenues, (3) the financial aspects

of the business, such as cost and revenue structures, and (4) the infrastructure and the network

of partners that are necessary in order to create value and to maintain good customer relation-

ships. Possible architectures for business models are constructed by combining interaction

patterns with value-chain integration for the possible creation of marketplaces. The following

are the most widely realized models [Timmers, 1999].

A basic model of eBusiness is the eShop model. It is based on providing a self-service

storefront to a customer by displaying the company catalogs and product offers on a Web

site. The business objective is to lower the sales cost. A major concern in this model is

the assumption that the customer should be responsible for comparison-shopping between

products of different suppliers.



22.10 eBusiness Applications 455

While an eShop model is based on the selling aspect of the business, an eProcurement

model focuses on the buying aspect of the business. Typically it consists of a browser-

based self-service front end to a corporate purchasing system or ERP. The supplier catalogs

are presented to end-users through a single unified catalog, thereby facilitating a corporate-

wide standard procurement process. In addition, eProcurement might support calls for tender

through the Web, which might be accompanied by an electronic submission of bids. Nonethe-

less, an eProcurement model does not support dynamic trading. Its business objective is cost

savings on purchasing operations. Recently, eAuction models have received much attention

for automating dynamic trading. In fact, an eAuction model can be applied in any situation

where there is fluctuation of demand or supply. The prime business objective is to increase

efficiency, reduce waste, and minimize overall cost.

Alternative models are based on creating value-chain businesses. One model describes

service provisioning of specific functions for the value chain, such as electronic payments or

logistics. New approaches are also emerging in production and stock management, where

new intermediary service providers are formed to provide specialized expertise to analyze

and fine-tune production. The business objective is to generate revenue based on a fee-based

or percentage-based schema. Another model is based on integration of multiple steps of the

value chain in a way that exploits the information flow between the steps for further added

value. In particular, this approach may include customized advice to buyers and manufactur-

ers. The business objective is formulated as revenues from consultant or transaction fees.

Clearly these models still encounter the challenge of how to create, populate, and lever-

age significant growth in services and supply operations in a way that seamlessly integrates

customers, suppliers, partners, and competitors in a trading community. An important and

promising business model is the eMarketplace. This model supports value chain integration

and provisioning in its (1) structure, (2) services, such as advertisement-branding, (3) one-

to-one marketing logistics, (4) pre- and post-financing, (5) risk management, and (6) product

bundling. Ultimately, the eMarketplace relieves participant business entities of much of the

burden to participate effectively in the eBusiness domain. The business objective of the eMar-

ketplace model is based on a combination of subscription fees, transaction fees, and service

fees. This approach is important, as it is particularly suited for B2B volume trading.

22.10.2 eMarketplace Architectural Requirements

The feasibility of implementing a business model depends upon the state-of-the-art of the

technology, whether for realizing individual functions, for supporting interaction patterns, or

for integrating components. A successful engineering foundation for an eMarketplace must

accommodate the needs of the eBusiness participants and allow them to extend advanced

services to the trading community. As eMarketplaces mature, they must support a broader

base of services, ranging from baseline interaction and directory services to specialty ser-

vices such as online payment, logistics, and dynamic trade. In addition, an eMarketplace

should facilitate the many-to-many relationship between suppliers and customers, enabling

both to leverage economies of scale in their trading relationships and produce a more liquid



456 Building SOC Applications

marketplace. This in turn allows the use of dynamic pricing models, such as auctions and

exchanges, which improve the economic efficiency of the market. To provide smooth and

effective integration at the business level, an eMarketplace model should accommodate and

support interfaces to the existing business models of the participant entities for procurement

processes, customer-supplier interactions, business rules, workflow, and relationships.

Another key factor for the foundation of an eMarketplace is its ability to be integrated into

an open environment, because a customer’s needs might go beyond the specialist capabilities

of any single eMarketplace. The ability of eMarketplaces to interact extends the idea of liq-

uidity and network effect, but should not sacrifice the ability of an eMarketplace to be highly

specific to the supply-chain node or target customer group it serves. This model combines

the advantages of the sell-side, the buy-side, and the value-chain models.

Because an eMarketplace requires complex interactions among the systems deployed by

the participating business units of an enterprise and their customers, there must be substantial

amounts of business knowledge within the eMarketplace transactions, activities, and service

definitions. Figure 22.4 shows an example supply chain for automobile manufacturing, indi-

cating several tiers of suppliers, which must begin to interact when they begin serving the

same customer.

Tier 2
Suppliers Stamping Body

Shop

Paint

Shop
Final

Assembly

Dealers

Assembly Plant i

Assembly

Plant 1

Assembly

Plant 15

Tier 1

Suppliers

Tier 2

Suppliers

Tier 1

Suppliers

Tier 2

Suppliers

Figure 22.4: Supply chains and the automotive industry

As this example indicates, there must be a large degree of communication, coordination,

and cooperation within and among business entities and their systems in the eMarketplace.

This, in turn, facilitates consistent behavior among the participants. In other words, the eMar-

ketplace architecture should represent an integrated body of people, systems, information,

processes, services, and products. By integrated, we mean the structural, behavioral, and

informational integration of the participating business entities, including their legacy appli-



22.11 Application to Supply-Chain Automation 457

cations. Business-process reengineering addresses the challenge of structural integration by

reorganizing enterprises along critical business processes, such as the supply-chain and the

product life cycle [Hammer and Champy, 1993; Davenport, 1993]. Achieving integration

requires the development of an information infrastructure that supports the communication

of information and knowledge, decision-making, and the coordination of actions.

22.11 Application to Supply-Chain Automation

The above requirements can be met by a multiagent system approach. Recent research, orig-

inated by Parunak [1996] and then successively extended by Singh [2000] and Huhns et
al. [2002], can partially automate the development and deployment of the agents needed to

implement a supply chain. The approach begins with a UML sequence diagram (see Fig-

ure 22.5) showing the interactions among a number of independent organizations in a B2B or

supply-chain scenario.

The interactions in Figure 22.5 consist of the exchange of structured documents, which

the OAG and RosettaNet call business object documents (BODs). For B2B interactions, a

ProcessPO BOD is a directive that carries the composite semantics of request and inform;

that is, the sender requests that the recipient evaluate the purchase order and inform the sender

of the results. The informal semantics is that ProcessPO will be followed by a response from

the recipient and that the response will be either an AckPO or a DeclinePO.

Next, using the formal semantics, a tool converts the messages in the sequence diagram

into collaboration diagrams, shown in Figure 22.6. The diagram for each role can be con-

verted directly into a state-machine description for the agent’s behavior, enabling automatic

agent generation. Each business collaboration is handled by an autonomous software entity,

i.e., an agent.

On forming a collaboration, we can generate ebXML-compliant agents automatically,

as shown in Figure 22.7. After being installed at each company, the agents manage the B2B

supply-chain process. Figure 22.8 shows several of the state-machine behavioral descriptions.

At execution time, the software agents exchange ebXML messages to perform the specified

collaboration.

22.12 Exercises

22.1. Review your solution to Exercise 8.5 with respect to the SOC design criteria introduced

in this chapter.

22.2. Using a tool such as Protégé, develop an ontology that emphasizes meronomy, that is,

the part-whole relationship.

(a) Specifically, choose a complex object or concept that has at least three levels of sub-

parts. For example, an engine has a part cylinder, which has a part intake valve, which



458 Building SOC Applications

Ford: Customer Jarvis Tools: Greenfield Die LubetecEfficient Logistics

submit(ProcessPO)

submit(ProcessPO)

submit(ProcessPO)

submit(AckPO)

submit(AckPO)

submit(ShowShipment)

submit(ProcessInvoice)

Lubetec expedites

processing for

preferred customer

submit(ShowShipment)

During picking,

defective goods

are found

cellPhone(BODexception)

Short item

purchased from

new supplier,

UDDI used to

find source

submit(ProcessPO)

submit(AckPO)

submit(ShowShipment)

submit(ProcessInvoice)

submit(ReceivePO)

Goods received

at warehouse

communicated

to Ford

Figure 22.5: A sequence diagram representing a B2B or supply-chain scenario (in this case for

Ford and its suppliers) is the first step in automating an MAS implementation of the scenario

has a part valve seat. Use the guidelines presented in this chapter when constructing

your ontology.

(b) Include in your ontology some concepts that are objects, such as a bolt, and some

concepts that are substances, such as steel.

(c) Include both intrinsic and extrinsic properties for the objects in your ontology. An

intrinsic property is one that holds for all portions of an object, such as its density. An

extrinsic property is one that does not holds for all portions of an object, such as its

weight. Identify which of the properties in your ontology are intrinsic and which are



22.12 Exercises 459

J1: Jarvis Tools J2: Jarvis ToolsF1: Ford Engine Plant

L1: Lubetec Inc. L2: Lubetec Inc.F2: Ford Engine Plant

G1: Greenfield Tool&Die G2: Greenfield Tool&DieF3: Ford Engine Plant

E1: Efficient Logistics F4: Ford Engine Plant

1. ProcessPO

4. AckPO

8. ShowShipment 9. Refuse

2. ProcessPO

5. AckPO

6. ShowShipment

10. ProcessPO

11. AckPO

12. ShowShipment

7. ProcessInvoice

7. ProcessInvoice

3. ProcessPO

14. ReceivePO

Figure 22.6: A collaboration diagram showing the participant roles for a supply-chain sce-

nario, constructed automatically from a sequence diagram by an analysis of conversations

based on Dooley graphs

extrinsic. Are there any that are neither?

(d) Fill in the following table for the reasoning that would be valid, that is, the kinds

of inferences you could make, for each combination of an object type and a property

type. Hints: Would the density of an object apply to its parts transitively? Would

the weight of an object apply to its parts transitively? Would the weight of an object

impose any constraints on its parts? Would the weight of a part impose any constraints

on the weight of its whole?

Intrinsic Property Extrinsic Property

Individual Object

Substance



460 Building SOC Applications

Augment B2B

Transaction

State Machine

Generic Use-

Case and

Class Models

Exception-

Augmented

Transaction

Templates

BOD

Semantics

Participants

Enact B2B

Interaction

Agents

Create Agent-

Based B2B

Transaction

State Machine

Participants

Develop B2B

Interaction

Diagrams

Identify B2B

Conversations

Figure 22.7: A coordination methodology for converting a sequence diagram for a supply

chain into a set of agents that enact the appropriate business functions for the supply chain

participants

22.3. Develop the Web services needed for a publicly managed ontology. In order to enable

autonomous applications to use and maintain the ontology, the following services

would be needed:

• insert, update, or delete classes in the ontology;

• find references that directly depend on a class;

• query for classes and attributes.

Construct the WSDL description for the ontology services.



22.12 Exercises 461

WarehouseSupplier

Don’t Pay Pay

InStock(“Goods”) ^send(ProcessInvoice)

OutOfStock(“Goods”) ^send(Refuse)

Goods

Shipped

^send(ShowShipment)
POdeclined

Commited

to

ship

^send(AckPO)

^send(“DeclinePO”)

Evaluation
POignored

Start

Receive(ProcessPO)

Order Complete

Complete(“Goods”)^send(ReceivePO)

Short(“Goods”)

Check Order

Completion

POdeclined

receive(“Goods”)

Send(“DeclinePO”)

POignored Evaluation

Receive(ProcessPO)

Start

Figure 22.8: State-machine behavior skeletons for enacting agents for a supply chain





Chapter 23

Service Management

As services proliferate and applications based on them become more prevalent, enterprises

will increasingly rely upon them for critical business functions. This introduces a risk,

because some of the services might be outside of the enterprise and beyond its control. How

can an enterprise mitigate this risk?

One approach is to extend common industry-approved practices to the deployment and

control of Web services. A second approach is to employ Web service management tech-

niques for assessing and maintaining quality of service. A third approach is to make use of

recently proposed techniques for agent-based redundancy. This chapter describes all three of

these approaches.

23.1 Enterprise Resource Planning
Enterprise Resource Planning (ERP) is a collection of tools that management uses to operate

a business on a daily basis. ERP usually comprises several modules, such as a financial

module, a distribution module, or a production module. Each module uses information that

is housed within the database structures underlying the ERP system. ERP helps coordinate

different departments within a business, e.g., by alerting management that a sales department

is selling 25% more goods than the manufacturing department can produce, and that the

shipping department is underutilized. If a designer needs to specify a bolt for part of a design,

it makes sense to specify a bolt the company already uses. A salesman visiting a customer

needs to know what dealings the business has already had with that customer: what did the

customer buy, were there any complaints, were invoices paid on time and, if not, was that

because there were warranty problems? With an ERP system, all departments have access to

the up-to-date information that is needed for the enterprise to operate smoothly.

The software consulting industry has developed several competing views of enterprises

and competing approaches for helping enterprises to automate their information systems and

become more efficient. They are based on the economic concept of a value chain: an orga-

463



464 Service Management

nized collection of activities that an enterprise performs to design, produce, market, deliver

and support its product. An enterprise’s value chain and the way it performs those activities

are a reflection of its history, its business strategy, its approach to implementing its strategy,

and the underlying economics of the activities themselves [Porter, 1985].

One approach for representing and automating a value chain, shown in Figure 23.1, is

termed “Global Best Practices.” The additional activities involved in supporting this approach

to a value chain are (1) develop and manage human resources, (2) manage information

resources and technology, (3) manage financial and physical resources, (4) manage environ-

mental, health, and safety issues, (5) manage external relationships, and (6) manage improve-

ment and change.

Produce and

deliver for

manufacturing

organization

Produce and

deliver for

service

organization

Understand
markets

and

customers

Design
products

and

services

Invoice
and

service

customers

Develop
vision and

strategy

Market

and sell

Figure 23.1: The “Global Best Practices” approach to automating value chains for enterprises

An alternative view, shown in Figure 23.2, is termed “Multi-Industry Process Technol-

ogy.” Besides the activities shown, the additional activities needed to implement and use this

approach for a value chain are (1) perform business improvement, (2) manage environmen-

tal concerns, (3) manage external relationships, (4) manage corporate services and facilities,

(5) manage financials, (6) manage human resources, (7) provide legal services, (8) perform

planning and management, (9) perform procurement, and (10) develop and maintain systems

and technology.

Perform

marketing

and sales

Define

products and

services

Produce

products and

services

Manage

logistics and

distribution

Perform

customer

service

Figure 23.2: The “Multi-Industry Process Technology” approach to automating value chains

for enterprises

The two models attempt to achieve the same overall goal of process management and

continuous improvement, but the information systems that support them and each of their

activities are incompatible, in spite of their overlapping concerns. Section 6.3 describes a

methodology for how the semantics and behaviors of different approaches can be reconciled.



23.2 WSMF: Web Services Management Framework 465

Integrated suites of ERP modules are available from several vendors, including SAP,

Oracle Corporation, PeopleSoft, and Baan International. SAP’s approach, labeled “mySAP

ERP,” is typical of these, and includes the following functionalities:

• mySAP Analytics provides strategic enterprise management and business analytics for

forecasting, planning, and asset exploitation.

• mySAP Financials performs supply chain management and financial and managerial

accounting.

• mySAP Human Resources is used for recruiting employees and managing their employ-

ment lifecycles.

• mySAP Operations provides the management of purchase orders, inventory, produc-

tion, maintenance and quality, delivery, and sales orders.

• mySAP Corporate Services manages real estate, incentives and commissions, and travel.

23.2 WSMF: Web Services Management Framework
Imagine that an electrical parts manufacturer would like to provide an on-line catalog of

its parts, with the prices available in any currency that a user would like, such as dollar,

rupee, yen, or euro. This might be accomplished by a combination of two Web services:

one to look up parts and the other to perform a currency conversion. The catalog is a type

of computing resource, and managing it would require the management of both of its Web

service components. Also required would be a management interface for the components

that enables a manager (either a human or a software application) to monitor and control the

components. For example, the components might have to be stopped, reset, and restarted if

they are misbehaving.

The Web Services Management Framework is a logical architecture that uses Web ser-

vices to manage computing resources, such as the on-line parts catalog described above.

WSMF defines a standard extensible interface for communicating management information,

using a standardized protocol and description language. In the case of the on-line catalog,

each component Web service would require its own Web services for stopping and restart-

ing it. That is, an object or resource must provide a management interface before it can be

managed, and the management interface is described using WSDL.

23.3 WSDM: Web Services Distributed Management
The purpose of the Web Services Distributed Management framework is to provide a means

for managing a set of Web services deployed within an enterprise [Labbe, 2002]. WSDM

uses basic Web service standards, such as SOAP and WSDL, to describe and implement its

management capabilities. Enterprises use WSDM to document:



466 Service Management

• the services that are invoked;

• the applications that invoke services;

• the performance of each service;

• comparisons of the performance of a service with its past performance or with the

performance of competing services;

• comparisons of measured QoS with the Service Level Agreements (SLAs) that are in

force, i.e., ensuring that each business customer is receiving the service for which it

contracted;

• the costs for setting up, using, and maintaining services;

• version numbers or dates of the currently used services and the numbers or dates of the

newest versions available.

The WSDM framework defines how the resources in an adaptive enterprise can expose

management information about themselves and how they can be managed. Rather than rely-

ing on each service to provide management information in an individual form, WSDM pro-

vides a common means for the information to be represented. As described in Section 2.3,

a Web service is a kind of resource. It is specified as an aggregation of endpoints, each of

which offers the service at an address and makes it accessible in accordance with a binding.

Manageability is a possible quality of a service, and it can similarly be specified by an end-

point. A manageability endpoint exposes a set of management interfaces through which the

underlying service could be managed. A management interface communicates information

about changes in business processes and IT infrastructure whenever process and infrastruc-

ture events occur. This makes it possible for an enterprise to engage in real-time service

monitoring using tools based on the Simple Network Management Protocol (SNMP).

To accomplish this, there must be a definition for a management event. An event is

expressed as a 3-tuple in XML syntax consisting of (1) reporterComponentId, the identifi-

cation of the component that is reporting the situation, (2) sourceComponentId, the identifi-

cation of the component that is experiencing the situation (which might be the same as the

component that is reporting the situation), and (3) situationInformation, the situation itself.

reporterComponentId and sourceComponentId are instances of the ComponentIdentification
type. The situation information includes a required set of properties that are common across

product groups and platforms, yet adaptable to product-specific requirements.

23.3.1 Contingency Plans for Service Failures
When service failures occur, contingency plans must be instantiated and enacted automat-

ically. For example, a Web service provider might change the endpoint of the service by

deploying a new version or changing its hosting environment. Upon receiving a service

access error, a requester could execute a contingency plan to check the description of the



23.4 Metadata Protocols 467

service in a UDDI repository to find the service’s new endpoint. Unfortunately, formulating

such contingency plans within each application can cause inconsistent approaches to recov-

ery. WSDM recommends that contingency plans be executed centrally. Further, WSDM also

recommends that service contingency and monitoring procedures be implemented together,

so that service access problems can be fixed before an application’s service request fails.

23.3.2 Security and Authentication

Although login and authentication information can be placed in the SOAP header of a Web

service invocation, WSDM guidelines recommend that such information be removed from

end-user applications and stored at a central proxy layer. Once authenticated, an application

would place its secured information into the SOAP request that it sends to a service.

23.3.3 Features and Benefits of WSDM Centralization

Centralizing the management of services enables a number of other benefits to be realized.

First, if all SOAP messages requesting services for an enterprise pass through a central proxy

layer, then requests to the same service can be batched and connections can be pooled, thereby

improving response times. Second, response times can be improved by caching service

results. Whether or not this is worthwhile depends on how frequently results are needed

and how frequently they change. For example, it would be reasonable to cache stock quotes

after an exchange closes for the day, but not during the trading day. Third, a centralized

WSDM strategy enables XML transformations to be performed enterprise-wide, rather than

made the responsibility of individual developers. Overall, centralized WSDM practices have

the potential to yield improved utility and functionality for enterprises.

23.4 Metadata Protocols

The new Web Services Metadata Exchange (WS-MetadataExchange) specification builds on

the existing architecture for Web services. It defines how Web services retrieve specific types

of metadata used for interactions with other Web services.

The specification defines three request-response message pairs: one retrieves the WS-

Policy associated with the receiving endpoint or a given target namespace, a second retrieves

the WSDL data, and a third retrieves the XML schema.

23.5 Scalability

Fundamentally, scalability is the ratio between performance and resources. We can think

about the scalability of a service-oriented system in terms of its characteristics when applied

to a domain that changes in size, or in terms of how the system achieves scalability.



468 Service Management

A service-oriented system can cope with a growing application domain by increasing

the number of services, the capability of each service, the computational resources available

to each service, or the infrastructure resources needed by the services to make them more

productive.

Alternatively, a service-oriented system can exhibit scalability one of three ways:

• As the amount of resources available to a fixed system of services increases, system

performance should increase.

• As the number of services in a system increases to match increases in the number of

entities in a domain, such as patients in a hospital information system or packages

being tracked for delivery, the system should continue to function as designed.

• A scalable system should perform better by taking advantage of the additional capabil-

ities offered by the increased number of services.

Scalability can also be dynamic or static. Static systems must be recompiled and restarted

when the number of services or the resources available to them change. Dynamic systems

can accommodate changes in services and resources during runtime. Obviously, dynamic

systems are preferable.

23.5.1 Scalability in Practice

Scalability is not a problem for reactive services, because they do not use any system resources

until they receive a SOAP message. Increasing the number of reactive services in a system

simply causes a storage problem for the services and a possible communication bottleneck

for the messages they exchange.

Nonreactive services behave like proactive, deliberative, agents, which consume resources

as long as they exist. They evaluate their current circumstances and then plan their actions

to achieve both immediate and long-term goals. They are continuously active, where even

deciding to do nothing requires active deliberation and, thus, resources.

Physically, you can achieve scaling as follows:

• Distribute system components, namely, agents and services, across multiple physi-

cal machines, using distributed computing technologies such as Microsoft DCOM,

CORBA, Java RMI, .NET, and Jini. Unfortunately, this approach can introduce com-

munication latencies.

• Replicate the components on multiple physical machines, using distributed computing

technologies similar to those in the distributive approach. Unfortunately, this tactic

introduces consistency problems among the multiple copies, which limits its use to

services that are mostly stateless and applications that are mostly static (a lot of com-

munication is required to restore consistency when systems change).



23.5 Scalability 469

• Schedule the components intelligently to execute only when and for as long as neces-

sary to optimize the use of available resources. You can also arrange the components

into hierarchies or other organizational structures to make their interactions more effi-

cient.

Each of these techniques has been used successfully to deploy large systems of agents.

23.5.2 Scaling Infrastructure Services for Agents
The services agents require—services provided by the infrastructure and by agents to each

other—must also scale. Agent services include name services, location services, directories,

facilitators, and brokers. Infrastructure services include message transports, human inter-

faces, and CPU cycles.

The Internet, though DNS, already has an established means for scalable name services,

which agent-based systems can use. DNS essentially scales through replication.

Scaling a directory service is more problematic. A directory service, such as LDAP,

consists of attribute-value pairs that an agent can search for matches to its requirements,

much as a person searches through a yellow pages. In general, an agent might need to search

an entire directory exhaustively for each lookup. An index can shorten the search time, but

such indexes are difficult to maintain in a distributed setting.

23.5.3 Scalability Experiments
In investigating the effect of communication on scalability, researchers developing the ZEUS

multiagent framework discovered that the maximum communication load grows, at worst,

linearly with the number of agents.

A research team at the University of Saskatchewan used the DICE framework to inves-

tigate the computational load of creating and executing 1 000 simple agents on a set of 10

remote hosts. The results demonstrated the feasibility of moving agents to less busy hosts for

load balancing and also that response times remain reasonable—a few seconds at most—for

agents that need to respond to people. Other results with complex rule-based agents (which

incorporated the Jess reasoning engine) showed that 400 agents could execute acceptably

within the same computational framework.

The DIET framework uses lightweight threads and thread-management techniques to

enable more than 100 000 simple agents to execute on a single host machine.

In a different kind of experiment, a team at the University of South Carolina is investi-

gating the scalability of a system of medium-complexity, heterogeneous agents. The agents

form geometric shapes on a two-dimensional grid by communicating with nearby agents.

Although only 60 agents are involved, they are heterogeneous—60 different programmers

constructed them. For online reputation assessment experiments in (human) social networks,

the team is scaling the system to more than 500 agents.

In a similar effort for scaling heterogeneous agents in a distributed and dynamic world,

the DARPA Control of Agent-Based Systems (CoABS) program has developed an infra-



470 Service Management

structure called the Grid. The Grid has integrated agents and components from more than 20

independent projects and has operated successfully in a series of naval fleet battle exercises

and other applications from information retrieval to military command and control. Built

using Sun’s Jini services, the Grid can integrate agent-based systems, object-based applica-

tions, Web services, and legacy systems. Agents in the Grid communicate point-to-point, so

communications scalability, up to the limit imposed by network bandwidth, is not a problem.

The Grid relies on a lookup service for registration and discovery that is centralized, which

is a potential bottleneck. However, recent experiments with up to 10 000 agents show that

registration and discovery are essentially independent of the number of agents registered.

23.5.4 Long-Lived Adaptable Agents

Scalability applies not only to the number of services and their interactions, but also to their

lifetimes and the duration of their interactions. Most agents in use today are designed for

short lives in relatively static online worlds. For example, an agent might be programmed to

access the Web pages of five online stores and find the best price for a given music CD. While

this is underway, the sites are presumed to be static and, when finished, the agent dies.

In contrast, future agents—especially those who represent users in their dealings with a

ubiquitous computing world—might live for many years. Such agents will learn and adapt as

they and their users encounter new situations, making it impractical for them to be recreated

from scratch. Their needed infrastructure services must also be designed to exist for many

years. They will also need new kinds of services: social services to help them cooperate in

solving larger tasks, and legal services to help them meet their obligations and ensure their

rights.

23.6 Robust Services via Agent-Based Redundancy

Software problems are typically characterized in terms of bugs and errors, which may be

either transient or omnipresent. The general approaches for dealing with them are: (1) predic-

tion and estimation, (2) prevention, (3) discovery, (4) repair, and (5) tolerance or exploitation.

Bug estimation uses statistical techniques to predict how many flaws might be in a system and

how severe their effects might be. Bug prevention is dependent on good software engineering

techniques and processes. Good development and run-time tools can aid in bug discovery,

whereas repair and tolerance depend on redundancy.

Indeed, redundancy is the basis for most forms of robustness. It can be provided by repli-

cation of hardware, software, or information, e.g., by repetition of communication messages.

Redundant code cannot be added arbitrarily to a software system, just as steel cannot be added

arbitrarily to a bridge. A bridge is made stronger by adding beams that are not identical to

ones already there, but that have equivalent functionality. This turns out to be the basis for

robustness in service-oriented systems as well: there must be services with equivalent func-

tionality, so that if one fails to perform properly, another can provide what is needed. The



23.6 Robust Services via Agent-Based Redundancy 471

challenge is to design service-oriented systems so that they can accommodate the additional

services and take advantage of their redundant functionality.

The authors hypothesize that agents are a convenient level of granularity at which to add

redundancy and that the software environment that takes advantage of them is akin to a society

of such agents, where there can be multiple agents filling each societal role. Agents by design

know how to deal with other agents, so they can accommodate additional or alternative agents

naturally.

Fundamentally, the amount of redundancy required is well specified by information the-

ory. If we want a system to provide n functionalities robustly, we must introduce m × n
agents, so that there will be m ways of producing each functionality. Each group of m agents

must understand how to detect and correct inconsistencies in each other’s behavior, without

a fixed leader or centralized controller. If we consider an agent’s behavior to be either correct

or incorrect (binary), then, based on a notion of Hamming distance for error-correcting codes,

4 × m agents can detect m − 1 errors in their behavior and can correct (m − 1)/2 errors.

Redundancy must also be balanced with complexity, which is determined by the number

and size of the components chosen for building a system. That is, adding more components

increases redundancy, but also increases the complexity of the system.

An agent-based system can cope with a growing application domain by increasing the

number of agents, each agent’s capability, or the computational and infrastructure resources

that make the agents more productive. That is, either the agents or their interactions can be

enhanced, but to maintain the same redundancy m, they would have to be enhanced by a

factor of m.

N-version programming, also called dissimilar software, is a technique for achieving

robustness first considered in the 1970s. It consists of N separately developed implementa-

tions of the same functionality. Although it has been used to produce several robust systems,

it has had limited applicability, because (1) N independent implementations have N times

the cost, (2) N implementations based on the same flawed specification might still result

in a flawed system, and (3) each change to the specification will have to be made in all N
implementations.

Database systems have exploited the idea of transactions: an atomic processing unit that

moves a database from one consistent state to another. Consistent transactions are achievable

for databases because the types of processing done are regular and limited. Applying this

idea to software execution requires that the state of a software system be saved periodically

(a checkpoint) so the system can return to that state if an error occurs.

23.6.1 Architecture and Process

Suppose there are a number of services, each with strengths, weaknesses, and possibly errors.

How can the services be combined so that the strengths are exploited and the weaknesses or

flaws are compensated or covered?

Three general approaches are evident in Figure 23.3. First, a preprocessor could choose

the best services to perform a task, based on published characteristics of each service. Second,



472 Service Management

a postprocessor could choose the best result out of several executing services. Third, the

services could decide as a group which ones should perform the task.

Choose service based on: (1) functionality, (2) QoS

Service #1 Service #2 Service #N

Single Task

Single Result

Compare Results and Select Best

. . .

Figure 23.3: Approach for combining N versions of a service into a single, more robust

system

The difficulties with the first two approaches are (1) the preprocessor might be flawed,

(2) it is difficult to maintain the preprocessor as services are added or changed, and (3) the

postprocessor wastes resources, because several services work on the data and their results

have to be compared.

The third approach requires distributed decision-making, which is not an ability of con-

ventional Web services. What generic ability could be added to a service to enable it to partic-

ipate in a distributed decision? The generic capability has the characteristics of an agent, so

distributing the centralized functions into the different modules creates a multiagent system.

Each agent would have to know its role as well as (1) something about its own service, such

as its time and space complexity, and input and output data structures; (2) the complexity

and reliability of other agents; and (3) how to communicate, negotiate, compare results, and

manage reputations and trust.

23.6.2 Experimental Results
Huhns and colleagues collected one set of 25 algorithms for reversing a doubly linked list and

another set for sorting a list. Different novice programmers wrote each algorithm. For sorting,

no specifications were given to the programmers (beyond that the problem was sorting), so the

algorithms all have different data and performance characteristics. For list reversing, the class



23.7 Exercises 473

structure (i.e., method signatures) was specified, so the differences among the algorithms are

in performance and correctness.

Each algorithm was converted into an agent, composed of the algorithm written in Java

and a wrapper written in Jade. The wrapper knows only about the signature of its algorithm,

and nothing about its inner workings.

Our experiments verified that the same wrapper can be used for both the sorting and list-

reversing domains. We also verified our hypothesis that more algorithms give better results

than any one alone. Further, we investigated both a distributed preprocessor and a central-

ized postprocessor for combining the agents’ functionality, and found that the postprocessor

is generally better, but performs worse for large data sets or selected algorithms with long

execution times.

The eventual outcome for application development is that service developers will spend

more time on functionality development and less on debugging, because different services

will likely have errors in different places and can cover for each other.

23.7 Exercises
23.1. WSDM is a centralized strategy for Web service management—true or false?

23.2. List and provide a short description of three techniques for achieving robustness in

Web services.

23.3. Describe the differences between WSMF and WSDM in terms of what things are

intended to be managed and what entities perform the management.





Chapter 24

Security

Service-oriented architectures not only make it easier for legitimate entities to access systems

from outside an enterprise boundary, but also expose new opportunities for unauthorized and

illegal entities to misuse and exploit the services. An SOA is subject to more than the usual

threats to security, because it inherently involves interactions among autonomous entities.

A simple presupposition underlying contracts and negotiation, for example, is that you can

ensure that the various entities are accountable, which is not always the case when the enti-

ties are autonomous. To some extent, nothing other than a social or economic notion of

trust would apply, but even such techniques must be supported through the appropriate dis-

tributed system infrastructure. Further, traditional approaches for ensuring security do not

apply across administrative domains or when there are high transaction rates. Consequently,

SOAs provide a hot testbed for the elaboration of security techniques. This chapter briefly

reviews some of the key techniques with reference to the general Web infrastructure.

24.1 Securing Web Services
Security is fundamental to the successful adoption of Web Services for business applications.

First-generation Web services have been largely unencrypted and unsecured, and this has

hindered their wider adoption. The most basic security technique for simple applications is to

use traditional transport layer security, for example, a secure sockets layer (SSL) connection

between two points. For more complex applications involving multiple parties and services,

messages among the end points might be encrypted and signed to protect their confidentiality

and integrity. Tokens may also be added to messages to assert claims, e.g., about identity

checks that have been carried out by a trusted authority.

SSL and its successor, the transport layer security (TLS) protocol, operate between the

HTTP and TCP network layers. They provide public-key and private-key encryption and

support the digital certificates issued by a certification authority to authenticate parties. TLS

works well for browsers, but is unsuitable for the high transaction rates that Web services

475



476 Security

can perform, because messages must be decrypted when they arrive at a Web server and then

encrypted for transmission to the next server. Web services thus require their own security

approaches.

In developing any secure and reliable distributed system, you must consider three essen-

tial aspects:

• Authentication, i.e., who exactly is trying to use your system? This typically involves

confirming a claim that two references to identities are the same, for example, that the

sender of a message is Munindar. Identity is a set of attributes for a real-world entity

linked to a unique symbol. The concept of identity is fundamental to security in Web

services.

• Authorization, i.e., what is a user allowed to do? For example, confirming that Munin-

dar is allowed to use the service he requested in his message.

• Access control, i.e., whether or not your system should honor the user’s request. This

involves ensuring that users can get what they are entitled to, cannot get what they are

not entitled to, and cannot prevent other users from getting what they are entitled.

Related to the last is the question of how capably and reliably the user or its agents are able

to do what they intend.

The next sections describe the above aspects of security with regard to distributed services

and their trustworthiness. They focus on how trust can be managed and engendered in a

distributed environment of autonomous entities.

24.1.1 Nonrepudiation
In the process of selecting or accepting a service to perform a particular function, a client

may engage in direct communications with the service to identify further the scope of ser-

vice provided or the compensation to be exchanged for that service. Once an agreement is

reached, which might be captured in a formal contract, all parties must be confident that the

resultant transactions are secure, that the parties are who they say they are (authentication),

and that the contract is verified as final. Systems must ensure that a party cannot subsequently

repudiate (reject) a contract. To protect and ensure digital trust, the parties to such systems

might employ digital signatures, which will not only validate the senders, but also timestamp

each transaction, so it cannot be claimed subsequently that a transaction was unauthorized or

invalid.

With semantic Web services, nonrepudiation may involve logical reasoning about the

fulfillment of contracts. This might occur by the generation of a proof or explanation that

entries in an audit trail—together with nonrepudiation support that the audit trail represents

evidence of certain events—implies a conclusion that the contract was fulfilled (or not).

To determine compliance, resolve disputes, or reach settlements, third-party services may

be involved. Such services might offer conflict resolution, proof verification, settlement

options, and penalty enforcement.



24.2 SAML and WS-Security 477

24.1.2 Endorsement
An endorsement is a statement from one participant about another. Whereas reputation is

inherently broad-based, endorsements are typically narrowly focused. Endorsements contrast

with reputation ratings, since they are from a known party to a known party. Each party can

decide how to aggregate the endorsements it receives. Just as for reputation, endorsements

are based on a conceptual model and may include a rating.

Obviously, an endorsement matters if it is from a trusted party. But how do you decide

whom to trust? The basic elements of trust can be

• Hard-coded: trusting some predetermined source, such as the government.

• Based on organizational or social factors: trusting some well-known party within your

own organization.

• Other endorsements: essentially building chains of trust in a distributed manner. This

idea is little more than a recasting of the idea of network navigation that was introduced

in Chapter 19.

24.1.3 Certificates
Certificates, also known as digital certificates, resemble a conventional form of endorsement

limited to assertions of identity. A certificate is issued by an authority and attests to the

authenticity of the digital signature (i.e., of the public key) of a given party.

The following process characterizes how a certificate is obtained. In the beginning, an

interested principal contacts a registration authority, which upon authentication (potentially

through mechanisms in the physical world) of the principal forwards its request to a certifica-

tion authority. The certification authority issues a key pair for the principal, signs a certificate

relating the principal (i.e., its name) and the assigned public key, and publishes the certificate

in a public repository. Now the principal can use its private key. Others who deal with this

principal can validate its signature via the publicly available certificate.

However, this approach begs the question: how do you trust the certificate? Or how do

you trust the certification and registration authorities?

24.2 SAML and WS-Security
The Security Assertion Markup Language uses XML to express security information. It

defines the schemas for the structure of documents that include information about identity,

authorization rights, and access. Specifically, it functions as a framework for exchanging

information about three types of security, namely

• Authentication assertions describe checks that have been done to confirm the identity

of the subject.



478 Security

• Attribute assertions attest to the values of one or more attributes of the subject, for

example, a credit limit for e-commerce.

• Authorization assertions attest to which services the subject is or is not entitled.

As well as XML document types for expressing these assertions, SAML also defines simple

request-response message pairs for obtaining these assertions from messages.

WS-Security defines how such assertions and other security tokens can be attached to

the headers of SOAP messages. It is an enhancement to SOAP messaging that provides

protection quality through message integrity, message confidentiality, and single message

authentication. These three mechanisms can accommodate a wide variety of security models

and encryption technologies, such as PKI, SSL, X.509 certificates, and Kerberos tickets.

WS-Security also provides a mechanism for associating security tokens with messages.

The mechanism is extensible and supports multiple security token formats. For example,

a client might provide both proof of identity and proof that they have a Better Business

Bureau certification. Security metadata defined by the XML Encryption and XML Signature

specifications can also be attached.

A security token, defining the name of the requester for a service, could be added to the

header of a SOAP message by the following code (note that wsse denotes the namespace for

WS-Security):
� �

<wsse:UsernameToken Id ="MyID">
<wsse:Username>Munindar </ wsse:Username>

</ wsse:UsernameToken>
� �

A digital signature, using the XML Signature specification, could also be added to the

SOAP header by the following code:
� �

<d s : S i g n a t u r e >
<d s : S i g n e d I n f o >

<d s : C a n o n i c a l i z a t i o n M e t h o d

Algo r i t hm ="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<d s : S i g n a t u r e M e t h o d

Algo r i t hm ="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
<d s : R e f e r e n c e URI="#MsgBody">

<d s : D i g e s t M e t h o d

Algo r i t hm ="http://www.w3.org/2000/09/xmldsig#sha1"/>
<d s : D i g e s t V a l u e >LyLsF0Pi4wPU . . . </ d s : D i g e s t V a l u e >

</ d s : R e f e r e n c e >
</ d s : S i g n e d I n f o >
<d s : S i g n a t u r e V a l u e >DJbchm5gK . . . </ d s : S i g n a t u r e V a l u e >
<d s : K e y I n f o >

<w s s e : S e c u r i t y T o k e n R e f e r e n c e >
<w s s e : R e f e r e n c e URI="#MyID"/>

</ w s s e : S e c u r i t y T o k e n R e f e r e n c e >
</ d s : K e y I n f o >



24.3 WS-Trust 479

</ d s : S i g n a t u r e >
� �

The Reference field in the above listing indicates that the body of the message, not the header,

is encrypted.

WS-Security is designed to prevent unauthorized entities from reading (confidentiality)

or modifying (integrity) a SOAP message and unauthorized entities from obtaining services

to which they are not entitled by sending a SOAP message without a valid token.

24.3 WS-Trust
In order to secure a communication between two parties, the two parties must exchange

security credentials (either directly or indirectly), using a specification such as WS-Security.

However, each party needs to determine if they can “trust” the asserted credentials of the other

party. The Web Services Trust (WS-Trust) language uses the secure messaging mechanisms

of WS-Security to define additional primitives and extensions for issuing, exchanging, and

validating security tokens. That is, trust is represented through the exchange and brokering
of security tokens. WS-Trust also provides for issuing and disseminating credentials within

different trust domains. Using these extensions, applications can engage in secure communi-

cations while still using the basic SOAP+WSDL+UDDI+HTTP framework for Web services.

A service first specifies its required claims using WS-Policy. When a request containing

security tokens arrives at a service as a SOAP message, WS-Trust requires that the message

prove a set of claims, e.g., name, key, and permission. Otherwise, the service will ignore the

message or deny the request. To validate a request, the service must have a trust engine that

(1) verifies that the claims match the requirements of the service’s policy, (2) verifies that

the signature proves the attributes of the claimant, and (3) verifies that the security tokens are

trusted to issue their claims. As an alternative, a trusted intermediary may verify the requester

by simply asserting the requester’s identity.

24.4 XACML
The eXtensible Access Control Markup Language, is an OASIS specification for expressing

access-control policies in XML for information access over the Internet. Once configured,

it expresses and communicates the rules and policies that an access-control mechanism can

use to decide about access to objects and attributes. XACML postulates two architectural

components: a Policy Enforcement Point (PEP), which decides whether to allow or disallow

a particular request; and a Policy Decision Point (PDP), which determines whether a policy

request should be allowed. A PEP consults a PDP. A PDP consults its repository of XACML

policies. Figure 24.1 shows the steps in a typical use of XACML for access control.

XACML specifies both an access control policy language (which allows developers to

declare who can do what and when), and a language for expressing requests and responses.

This language expresses queries about whether a particular access should be allowed and



480 Security

Information System

User or User’s

System

PEP: Policy

Enforcement

Point

Access Control

Policies

1. Service

Request PDP: Policy

Decision

Point

2. XACML

Request

3. XACML

Policies

4. Matching

Policies

5. Permitted

Request
6. Results

Figure 24.1: How XACML is used. A subject requests permission to perform an action on a

resource. Permission is granted, or not, by a PEP if the attributes of the request match the

relevant access policies in effect, which are retrieved from a PDP

describes the answers to those queries. The XACML specification defines ways to encode

rules, to bundle rules to policies, and to define selection algorithms where multiple rules

apply. Access control lists in XACML are four-tuples that consist of:

Subject. This can be a user ID, a role, or a group; e.g., “Only department managers and

above can view this document.”

Target object. This can be a single XML document element, a device, or a file.

Action. The permitted action can be read, write, create, or delete.

Provision. This is an action that must execute when the XACML rule is activated; such

an action might be to send an alert, require additional credentials, or begin a login

procedure.

Process management systems must take into account relevant policies expressed in XACML.

For example, a policy might be “Grant Xs request to do A if X is an employee of organization

Y and Y has an agreement B with us that lists A as a right applicable to all employees.” Agent-

based systems may incur obligations as the result of accepting tasks from other agents through

communicative acts in an ACL. Failure to carry out obligations may result in sanctions, such

as a decrease in the degree of trust an agent has from other parties that it will be able to carry

out certain actions.



24.5 Reasoning about Security Policies 481

24.5 Reasoning about Security Policies
XACML specifies how to represent, but not how to reason about access control policies.

Rei [Kagal et al., 2004] is a declarative language for both representing and reasoning about

security policies over domain actions. It is modeled on the deontic concepts of rights, prohi-

bitions, obligations, and dispensations. Due to these concepts, Rei policies can be expressed

in terms of not only what an entity can or cannot do, but also what it should or should not do

in terms of actions, services, and conversations. An example of a Rei policy is, “All entities

in the same group as Mike have the right to perform a printing type of action on color printers

in this lab.”

Rei includes primitives for delegation, revocation, request, and cancel (compare to the

operations on commitments in Section 17.1.3), which enables security control policies to be

communicated about by interested parties and, thus, decentralized. Delegation is critical for

Web services, because services cannot predict who will request them and cannot specify in

advance the requirements of the entities who should request them. Once an entity acquires

or establishes access rights to a service, the entity can delegate the rights to a set of trusted

entities, without changing the service’s policy or requirements explicitly. A revocation com-

municative act nullifies an entity’s existing right, whether policy-based or delegation-based.

A request asks another entity for a right or to perform an action and a cancel revokes a prior

request.

Policy conflicts are quite normal in open systems. For this reason, Rei includes two

constructs for resolving conflicts: (1) setting a modality preference (negative over positive

or vice versa), and (2) stating the priority between policies. For example, in the US, it is

possible to say that in case of conflict a Federal government policy always overrides a State

government policy.

Associated with the policy language is a policy engine that interprets and reasons over the

policies, related communicative acts and domain information to make decisions about rights,

prohibitions, obligations, and dispensations of users. The engine is also capable of answering

other queries related to policy making, such as who can perform a certain action, who can

perform any action on a certain resource, what unfulfilled obligations does a particular entity

currently have, and what prohibitions does a certain class of users have?

24.6 Privacy
A flaw in how security is managed in most current operating systems is that access control is

based solely on user identity, which combines the three aspects mentioned above (authentica-

tion, authorization, and access control) into one mechanism. Any process executing on your

behalf inherits your identity and, therefore, all of your privileges. If the process becomes

infected with a virus or simply misbehaves, it can damage all parts of your computing envi-

ronment, including files, email, databases, and network connections.

To counter this, a technique known as the principle of least authority (POLA) has been

advanced [Shapiro et al., 1999]. It grants to processes and objects only the authority they



482 Security

need to perform their task or achieve their goal. It also advocates separating the above three

aspects to enable a finer-grained control of permissions.

24.7 Exercises
24.1. The Extremely Reliable Operating System (EROS) [Shapiro et al., 1999] enforces

POLA as an inherent part of its architecture. Discuss how EROS could be used for

a distributed system of Web services.

24.2. Secure Database Queries via E-Mail

• Construct a database that contains at least two tables, with at least four columns

in each table and at least five tuples in each table. The database can be for any

domain of your choice.

• Construct an email front-end to your database. Your overall system should be

able to receive an email message, parse it to find a query from the sender, apply

that query to your database, retrieve the result from the database, and email the

result back to the sender. Turn in all source code, examples of the email messages,

and screen-shots of the system’s operation.

• Construct a public-key encryption system for your email responder. That is, the

result of a query should be encrypted by your email front-end using the public-

key of the email sender, and then decrypted by the recipient using his private key.

Show both the encrypted and decrypted data, as well as both of the keys that you

chose.

24.3. SAML can be used in combination with which of the following specifications for secu-

rity?

• WS-Security.

• WS-Trust.

• XACML.

• WS-Policy.

• XML Encryption.

• XML Signature.

24.4. A Web service for a corporate personnel system has the following two operable poli-

cies:

“Permission to use the service must be granted explicitly by the database administrator

(DBA) in charge of the system.”

“The CEO has the right to overrule the DBA.”



24.7 Exercises 483

Using Rei or another deontic logic, formulate the policies. Then, assuming that the

DBA has not granted permission to the CEO to use the service, describe using WS-

Security and WS-Trust how a request from Smith, claiming to be the CEO, would be

validated so that Smith could use the service.





Part VII

Directions

485





Chapter 25

Challenges and Extensions

Advances in techniques such as those discussed in the foregoing chapters are fulfilling the

promise of personalized, friendly, Web services. The improvements come at a cost, however:

greater implementation complexity. Thus, as we come to rely more on the improved services

for e-business or information retrieval, we understand less about how they operate.

Abstraction is a classical approach for dealing with complexity. This book discusses

several computational abstractions motivated from how people organize their knowledge,

their activities, or their contracts. Additional computational abstractions can be based on

subtle concepts related to human interactions.

25.1 Trust
Web services routinely put us in interactions with strangers, both people and corporations,

or their digital assistants. Services can be defined for information, entertainment, and com-

merce. For each there is a need for trust. Trust goes beyond security in that it is about manag-

ing interactions at the application level. For example, whereas security is about authenticating

another party and authorizing actions, trust is about the given party acting in your best interest

and choosing the right actions from among those that are authorized.

Interactions among strangers presuppose some level of assurance that the parties will act

appropriately. For example, a shipping service cannot be sure that it will receive payments

after delivery and may thus require payments before delivery. Or it may seek assurance from

a third party that can guarantee the payment. Security mechanisms yield assurances, e.g., that

messages will not be intercepted. Likewise, contracts yield assurances, e.g., that the buyer

will pay (or face legal action).

In some respects, trust is complementary to assurance. If you trust the other party more,

you need fewer assurances about its good behavior. The existence of assurances can also

engender trust. And yet you need a level of trust in an assurance mechanism even to believe

the mechanism itself. For example, if you use an escrow agency, you would need to trust it.

487



488 Challenges and Extensions

If you participate in a contract, you need to trust that the contract reflects the contingencies

that are of importance to you.

Several interesting scenarios are being envisaged for service-oriented computing. For

example, global supply networks will control the complex movement of goods from raw

materials to customers without human intervention. As systems become more complex and

longer lived, the situations to which they will be subjected cannot all be anticipated, so the

systems cannot be fully verified. We will have to trust them, and there must be a principled

basis for our trust.

We can think of trust as placing your plans in the hands of another. The trustworthiness

of a party reflects how much trust you can place in it. Thus trustworthiness involves the

following elements, which affect whether your plan, if placed in the hands of the given party,

will come to fruition. The following are some of the ingredients of trust:

Capability. The party should be competent and aware of material facts.

Sincerity. The party should believe what it asserts and commit to acting according to its

promises. It should not be deceptive or misleading, even if correct in a literal sense.

Helpfulness. The party should be well-intentioned, and should apply its capabilities to sup-

port the needs of the trusting party.

Duty. The party should be under a duty to help you, because of its ethics, its social or team

role, or its prior commitments.

Predictability. The behavior of the party should be as easy to predict as possible.

Understanding. The behavior of the party should be understandable or explainable. Unfor-

tunately, as components become more complex it is harder to understand them.

The above can be supported via the following. One, ethics is key. Rational parties are poten-

tially easier to predict provided you have the knowledge they have. Further, you can constrain

the actions of a rational entity by making it in its interest to act as you prefer. Thus rationality

enhances trustworthiness. Another basis for trust arises from societal conventions, possibly

inspired from ethical considerations. For example, we could have a convention that service

requesters whose requests have not been processed successfully be given priority on later

requests. The presence of such a convention improves the predictability of the system for all

concerned and makes its behavior more understandable.

25.2 Ethics
Ethics is the branch of philosophy concerned with codes and principles of moral behavior. It

is important to distinguish between the concepts of right and good:

Right is that which is right in itself.



25.2 Ethics 489

Good is that which is good or valuable for someone or for some end.

The German philosopher, Immanuel Kant (1724-1804), defined the categorical impera-
tive as an absolute and universal moral law (of the form “Do this”) based entirely on reason

(as distinguished from his hypothetical imperative, which is based on desire: “Do this if you

want that”). We can state the categorical imperative in relation to agent behavior as follows:

“Agents should act as if the maxim of their action were to secure through their will a universal

law of nature.” It provides a source of right action. For example, breaking a promise is not

right, because if all agents broke promises, the system they support would not function.

Kant’s categorical imperative does not contain a way to resolve conflicts of duty. Less

stringent formulations specify prima facie duties, which do not bind agents absolutely but

instead hold generally: “All other things being equal, keep your promises.”

The deontological theories of ethics, like Kant’s, emphasize right before good. They

oppose the idea that the ends can justify the means, and they place the locus of right and

wrong in autonomous adherence to moral laws or duties. These theories distinguish inten-

tional effects from unforeseen consequences. That is, an action is not wrong unless the agent

explicitly intends for it to do wrong. This legitimizes inaction, even when inaction has pre-

dictable, but unintended effects. For example, a service manager would not be wrong to shut

down a service for diagnostics, even if that might leave some users hanging.

In contrast, teleological theories of ethics choose good before right: something is right

only if it maximizes the good; in this case, the ends can justify the means. In teleological

theories, the correctness of actions is based on how the actions satisfy various goals, not the

intrinsic rightness of the actions. Choices of actions can be comparison-based or preference-

based. A further distinction is between utilitarianism (action should maximize the universal

good of all agents) and egoism (action should maximize self-interest). In teleological theo-

ries, good may be interpreted in various ways:

• Pleasure, in which case it is called hedonism.

• Preference satisfaction, called microeconomic rationalism, which assumes each agent

knows its preferences.

• Interest satisfaction, called welfare utilitarianism.

• Esthetic ideals, called ideal utilitarianism.

What agents need to decide upon actions are not just universal principles (each can be

stretched) and not just consequences, but also a regard for their promises and duties.

Along with keeping promises, agents’ prima facie duties include helping others and

repaying kindness. Just to help, a courier service may offer to deliver some low-priority

packages for a parcel service when it sends a courier for a high-priority package. Moreover,

there may or may not be a ranking among an agent’s duties. For example, if the courier ser-

vice’s truck has a breakdown, it may commandeer a truck belonging to the parcel service,

based on a belief that its promises are more important than the parcel service’s promises.



490 Challenges and Extensions

25.2.1 Machine Ethics
Isaac Asimov proposed a moral philosophy for intelligent machines in 1940. His collection of

short stories, I, Robot, included a Handbook of Robotics that defined three Laws of Robotics.

These were subsequently augmented in Foundation and Empire by the “zeroth law,” and the

four laws were rewritten as follows:

Law 0. A robot may not injure humanity or, through inaction, allow humanity to come to

harm.

Law 1. A robot may not injure a human being or, through inaction, allow a human being to

come to harm.

Law 2. A robot must obey the orders given it by human beings except where such orders

would conflict with the First Law.

Law 3. A robot must protect its own existence as long as such protection does not conflict

with the First or Second Law.

An adaptation of these laws for a collection of services might be:

Principle 1. An agent shall not prevent the success of a service interaction.

Principle 2. Except where it conflicts with Principle 1, an agent shall not interfere with other

agents.

Principle 3. Except where it conflicts with the previous principles, an agent shall not risk its

own success.

Principle 4. Except where it conflicts with the previous principles, an agent shall make ratio-

nal progress toward team goals.

Principle 5. Except where it conflicts with the previous principles, an agent shall follow

established conventions.

Principle 6. Except where it conflicts with the previous principles, an agent shall make ratio-

nal progress toward its own goals.

Principle 7. Except where it conflicts with the previous principles, an agent shall operate

efficiently.

SOA implementations are susceptible to deadlocks and livelocks. However, if we could

establish that the components obey these seven principles, then the susceptibilities would

disappear, because deadlock and livelock would violate Principle 6. Conversely, because

of the obvious connection with the Halting Problem for Turing machines, this suggests that

we cannot develop an automatic procedure to verify that an agent system satisfies the above

principles.



25.3 Coherence 491

25.2.2 Applying Ethics

A philosophical approach to SOAs presupposes that the components are autonomous agents

that can negotiate with others and can enter into commitments to collaborate with others.

However, the ethical theories described above are theories of justification, not of deliberation.

That is, agents can use them to explain why an action should or should not be taken, but not

how to find possible actions to be taken. Other means are needed to decide on a course of

action. An agent can decide what basic “value system” to use under any approach.

The deontological theories are narrower and ignore practical considerations, but they are

only meant as incomplete constraints—that is, the agent can choose any of the right actions

to perform. The teleological theories are broader and include practical considerations, but

they leave the agent fewer options for choosing the best available alternative.

All of these ethical approaches are single-agent in orientation and encode other agents

implicitly. An explicitly multiagent ethics would be an interesting topic for study.

25.2.3 Ethical Violations

Ethics governs how an entity should behave, but does not specify what should happen when

it misbehaves. In human societies, punishments are enacted to deal with legal violations

committed by individuals or organizations; these are discussed in Section 18.3. There can

be no punishment for ethical violations except social censure or loss of reputation. What

punishments should be meted out in computational systems? The challenges involved include

detecting violations, determining responsibility (e.g., intent), and enforcing a punishment.

Punishments are often not cost-effective locally, but they are cost-effective globally. That

is, if someone is caught shoplifting a $10 CD (which is more than just an ethical violation),

arresting, prosecuting, trying, convicting, and incarcerating the criminal costs several hundred

thousand dollars. For just this one case, it obviously makes more economic sense to ignore

the theft. However, a prison sentence is expected to be a deterrent that prevents millions of

other people from committing the same crime. Globally, then, society saves money.

For ethical violations, the situation can be simpler because no formal punishment may be

necessary. However, the parties would need to ensure that the punishment (even if no more

than loss of reputation) was fair and had consequences that were not disproportionate to the

original violation.

25.3 Coherence

To endow agents with ethical principles, we as developers need an architecture that supports

explicit goals, principles, and capabilities (such as how to negotiate), as well as laws and

ways to sanction or punish miscreants. Figure 25.1 illustrates such an agent architecture that

can support both trust and coherence, where coherence is defined as the absence of wasted

effort and progress toward chosen goals.



492 Challenges and Extensions

Societal Norms and

Conventions

Social Commitments

Rationality / Decision Theory

Beliefs, Desires, and Intentions

Theorem Prover / Utility

Maximizer

Reactive Agent Kernel

A framework for guiding

overall behavior

Middle layers guide agent’s

interaction with others

    For handling immediate events

Philosophical Principles

Figure 25.1: Architecture for a philosophical agent. The architecture defines layers of delib-

eration for enabling an agent to behave appropriately in a society

The lowest level of the architecture enables an agent to behave reactively, i.e., react to

immediate events. The middle layers are concerned with an agent’s interactions with others,

while the highest level enables the agent to consider the long-term effects of its behavior

on the rest of its society. Agents are typically constructed starting at the bottom of this

architecture, with increasingly abstract reasoning abilities layered on top.

Awareness of other agents and of one’s own role in a society enable agents to behave

coherently. If the agents have sufficient time, they can negotiate about or vote on which agent

should become the new leader. When time is short or communication is not allowed, the

agents can follow mutually understood social conventions, such as, “The agent with the most

seniority becomes the new leader.”

25.4 Benevolence
Research in multiagent systems demonstrates that even when the control of a system is dis-

tributed among autonomous agents, it can be globally coherent. Moreover, this coherence

improves greatly when the agents cooperate. The previous chapters discussed some ways to

cooperate in which the agents came to some mutual agreement. Let us now now consider

benevolence, a kind of unilateral cooperation without any explicit agreement.

Benevolence means voluntarily helping others without expecting an immediate reward or

benefit for doing so. One motivation for acting benevolently is to help the society to which

one belongs. Another is the belief that our actions may encourage others to act benevolently

as well, thereby providing compensation in the longer term. It is important to understand that

a benevolent entity can exist only in an environment with other entities, never alone.

How might a software agent in a computational environment have the opportunity to



25.5 Network Architecture 493

behave benevolently? The agent could clean up stalled or failed database transactions or

remove locks set by failed or former processes. If it does not have the authority or ability to

take action, a benevolent agent can simply notify those who do.

One of the most common Web agents is a query agent. A query agent searches the Web

to find an answer to a user’s request, and in so doing it may use many Web services. When

asked, a benevolent query agent would freely share the names of its best sources (modulo

their needs), even though it may have consumed substantial resources to get this knowledge

and might have to consume more to share it. In lieu of any remuneration, the agent’s only

prospect for a return on its benevolence is either personal satisfaction or an improved service

network. Through one agent’s benevolence, other agents charged with similar queries would

not have to explore all the sites or databases the first explored: they can simply use its results.

An obvious challenge to benevolence is the risk of exploitation. Some parties may keep

benefiting from others without ever helping them. Experimental studies in agents shed some

light on this problem. A simple way to remove exploitation is through reciprocity, where

agents help only those agents who helped them in the past or can help them in the future.

Thus the amount of unreciprocated help is limited. If we take a rigid approach, no help

would be given unless there was already a business relationship, which can be fine. If help is

given in anticipation of a return, then the recipient may still exploit a number of other agents,

one at a time. Conversely, there is a risk that if the system is designed to resist exploitation, it

might become a worse environment for all concerned. Sen [1996] argues that compared with

selfish behavior, reciprocal behavior improves an individual agent’s performance, and thereby

the group’s performance, over the long run. Cesta, Miceli, and Rizzo [1996] describe settings

where a social system is endangered more by the presence of filters against exploitation than

by the presence of exploiters. Moreover, the more robust the social strategy, the greater the

usefulness of social agents to the entire system compared with that of exploiting agents.

Dependence theory seeks to model the relationships among agents’ activities. Reciprocal

dependence occurs when two agents realize each other’s goals. Mutual dependence is when

agents need each other’s help to achieve their goals. Modeling dependence emphasizes the

positive relationships rather than the competition among the agents. Castelfranchi and Conte

[1996] present an early study on dependence theory.

25.5 Network Architecture
Web services provide an excellent venue in which to study some important ramifications of

network architecture. The Internet respects the famous end-to-end principle [Saltzer et al.,

1984], which treats the Internet as a bit pipe on which a transport mechanism such as TCP

can easily be layered. The Internet appears transparent to applications, e.g., as the proverbial

cloud between a client and a server. All intelligence resides at the endpoints, i.e., in the

applications [Isenberg, 1998].

However, the Internet is far from transparent. One, the Internet is a collection of private

networks offering different quality profiles (in the sense of throughput, reliability, and so on).

Two, what users encounter is not the raw Internet, but service networks layered on top of it.



494 Challenges and Extensions

The service networks can involve disparate administrative domains, which control the flow

of services.

These private service networks are exemplified by those of AOL, NTT DoCoMo’s iMode,

and Microsoft. These networks provide either the so-called walled gardens, in which the

administrator must approve the services that are available, or a trusted third party, who can

be relied on to complete various transactions.

A telecommunication provider’s intelligent network is a second form of a private service

network. Compare such networks to the Internet. It is trivial to add new services over the

Internet, because you do not need anyone’s approval to do so. However, the services so

added are impoverished in that they lack knowledge of the kinds of things only an intelligent

network would know, e.g., a user’s location or the current throughput or reliability. The

complexity and administrative control of telecom networks make it difficult to introduce new

services, e.g., those that address narrow market segments or short-lived fads. Context-based

services seek to exploit such elements of context in a manner that retains the flexibility of

creating, administering, and maintaining services.

25.6 Managing Privacy
For services to be effective, they must be personalized to users. But personalization means

that the service provider potentially knows something about the user. In general, for two par-

ties to carry out well-nuanced collaborations presupposes that they develop extensive models

of each other. But for the models to be built means that each party’s privacy is compromised

to some extent. The potential loss of privacy becomes more significant when context-based

services are involved, because they end up knowing aspects of the user’s context that might

otherwise not be known to them.

Having users opt in for services does not quite solve these problems. A user who opts in to

join a mailing list faces a small bit of annoyance if the mailing list is not of interest. But a user

who opts in to a location-based service faces a potentially significant risk through violation of

privacy, because the information about the user is so much more precise. Traditional privacy

policies can help only a little, because the information may still be compromised, even if the

service follows its published policy.

The approach involves a fairly straightforward application of agent technology. Each user

and provider is assigned an agent who represents the user’s interests. The user signs on and

off from services through his agent. Consequently, the user agent knows what services its

user has signed up for currently. It also knows what its user’s preferences are regarding each

given service. These preferences would, in particular, apply to the sharing of information

(about the user) with the service.

Capturing a user’s wishes, however, may not be easy. This is because users may choose

to reveal different information to different providers. For example, a user may need to inform

an office groupware service where he is presently, but only during work hours. However, the

user might not allow revealing his location to a service that might send him advertisements

for products in his vicinity. When the preferences are more than simply on/off decisions,



25.7 Key Challenges and Recommendations 495

maintaining them becomes quite tedious: the rules involved could be cumbersome and the

user may not understand their ramifications until an unexpected event occurs.

Agents can help by capturing the constraints or policies that a user would like to enforce

with regard to their privileged information. An agent-based interface can suggest the con-

straints that the user may wish to enforce based on properties of the given service. This

would require developing an ontology of services and would benefit from self-describing ser-

vices. For example, an enterprise service might be given location information during office

hours and just informed if the user is entertaining only text messages the rest of the time.

These agents may need some information from the underlying network (e.g., their user’s

location), but otherwise can function like any other service. In other words, privacy man-

agement can itself be modeled as a service, one that is specially trusted by the user and can

mediate interactions with other services.

25.7 Key Challenges and Recommendations
The main lesson is to recognize the constraints of service-oriented architectures, while respect-

ing the autonomy and heterogeneity of the participants. Let us briefly discuss some challenges

that recur in the development of different technologies and approaches for Web services.

Design rules must be formulated for facilitating the application of the various interesting

ideas discussed in this book in a manner that minimizes the cognitive load on a designer.

Security and trust are key because SOAs are inherently open.

Scalability is essential for ensuring that systems of practical interest can be dealt with; scal-

ability applies not only to deployments, but also to design tools.

Quality of service applies not just to traditional aspects of performance, such as reliability

and availability, but also to application-specific considerations.

User interfaces are the Achilles heel of complex software systems, but should be given

deeper consideration to ensure the success of a practical installation. Services, ulti-

mately, are for the benefit of users.

In light of the above, we need more sophisticated means to describe services. For example,

it might be helpful to encode how the result of the service is obtained, how accurate it is, and

what constraints there are on the validity and uses of the result. Likewise, we need approaches

to handle exceptions. The previous chapters discuss how systems can be organized to most

naturally handle exceptions, but require a detailed study of domain-specific considerations.

Further, there are low-level concerns, such as that a service might not be able to respond to a

particular request because it is off-line, does not have an answer, or its response is proprietary.

Advanced abstractions can help significantly to understand services in the broadest terms,

specify and seek services at a high level, design service compositions in a principled manner,



496 Challenges and Extensions

and validate composed services. But the abstractions must be conceptually simple and well-

grounded in theory, and represent the true status of the system, in reflection of its service-

oriented architecture. If you can use an adaptive approach, doing so enables dynamically

configuring complex systems, and simplifies your task of implementing them because some

decisions can be deferred.

Often, technologists forget that real-world problems are often mundane and that a large

fraction of the solution effort will go into simple details. Advanced ideas must be incorpo-

rated into existing systems. Let common sense be your guide!



Part VIII

Appendices

497





Appendix A

XML and XML Schema

As shown in Figure A.1, the foundation for interoperation among enterprises and for the

envisioned Semantic Web is the eXtensible Markup Language, XML. This chapter describes

XML to a sufficient extent to understand services standards and approaches. You will learn

how to write well-formed XML data and documents, how to write the rules that such data

and documents must obey, and how to validate the documents against the specified rules.

BPEL4WS
OWL-S Service

Model

ebXML
CPA

Process and workflow
orchestrations

QoS: Service
descriptions and bindings

Contracts and
agreements

XLANG

WSCL

WSDL
ebXML

CPP

ebXML
BPSS

XML, DTD, and XML Schema

HTTP, FTP, SMTP, SIP, etc.

SOAP
ebXML

messaging

OWL

UDDI
ebXML

Registries

WSCL
WSCI

WS-Coordination

WS-AtomicTransaction and WS-
BusinessActivity

OWL-S Service
Grounding

OWL-S Service
Profile

BTP

BPML

Discovery

Messaging

Transport

QoS: Conversations

QoS: Choreography

QoS: Transactions

Encoding

WS-Policy

WS-Security

WS-Reliable
Messaging

PSL

RDF

Figure A.1: The relationships among the different proposed standards and methodologies that

are the foundation for service-oriented computing. XML and its rules provide the syntax in

which all of the Semantic Web and its services and protocols are being described

A.1 Why XML?
It is clear that there is a need to share information among software components. To enable

such sharing, the network and data encoding need to be compatible. The use of IP networks

499



500 XML and XML Schema

throughout, along with standard character encoding schemes, greatly mitigates these lower-

level problems. The convergence on HTTP further simplifies the connectivity. Since not

everyone uses ASCII, more powerful text encoding schemes were needed and have been

invented in the form of the Universal Character Set (UCS) and the UCS Transformation

Format (UTF-8). Consequently, the low-level problems are all but eliminated.

But the data needs to be cleanly formatted so that it can be parsed reliably by the recipient

to yield the intended structures. In other words, the information that is transmitted must be

expressed in some generic manner. In particular, this manner could be independent of the

programming language in which the interacting components may have been implemented.

Any format would work, provided the parties to the communication agreed to it. For

instance, it could be the famous comma-separated value (CSV) format, which despite its

ubiquity remains unstandardized [Python, 2004]. CSV is defined only operationally in terms

of how it is interpreted by a given application, leading to various problems. CSV, moreover,

is unsuited for representing anything more complex than simple tabular data. In particular,

nested object-like structures cannot be represented easily in CSV. More complex structures

can be expressed readily in the syntax of the programming language Lisp or in Knowledge

Interchange Format (KIF), which also uses a Lisp-like syntax. Another language for express-

ing complex structures is Abstract Syntax Notation (ASN.1). ASN.1 was standardized by the

International Standards Organization (ISO). It is used in some telecommunication protocols,

including H.323, and for storing genomic data. Starting as early as the 1960s, Electronic

Data Interchange (EDI) standards have supported the exchange of business documents. EDI

standards have expanded into a variety of industries and have been implemented, but these

implementations were complex and not easy to maintain. Part of the problem was that other

key technologies, especially for information and process modeling and semantics, were not

well developed.

Also starting in the 1960s, there was work on marking up documents in a manner that

would express a formal grammar for documents, separating content from structure, and

allowing customization for markup languages in different domains of interest. This work

culminated in the Standard Generalized Markup Language (SGML) in the 1970s, which was

standardized by the ISO in the 1980s. In essence, HTML and XML are special cases of

SGML. SGML is an extremely powerful language. This made it difficult to build robust

and usable tools for it, and for its target users to understand it conceptually with high confi-

dence. Consequently, applications of it were mostly limited to large publishing concerns and

document management efforts in large companies.

Arguably, any of the above (except perhaps CSV, which is expressively quite weak) could

have been the standard interchange language for service-oriented computing. For most pur-

poses, it would not matter what the standard was as long as it was expressive enough and

perspicuous enough that robust tools existed for it, and users were comfortable specifying the

contents of their communications using it. Beyond that, the choice is a question of historical

accident and culture (for example, KIF’s association with Lisp may have been a strike against

it in the minds of many programmers who were not well-versed in Lisp). As a practical mat-

ter, what has happened is that alternative XML-based notations are being proposed for each



A.2 XML 501

of the above languages so as to help assimilate their use into XML-based systems.

A.2 XML
The eXtensible Markup Language is an attempt to attach semantics to data through a struc-

tured syntax. It turns out that it does not quite attach any semantics, but it streamlines the

syntax and provides a basis for introducing semantics.

XML syntax provides a set of rules for describing content, rather than the presentation

of that content, and it is used to provide a structure for data. A well-formed XML document
corresponds to a tree. Elements function as customized opening and closing parentheses. For

example, the temperature element in the example below has an opening tag 〈temperature〉 and

a closing tag 〈/temperature〉—the difference is the leading / before the token in the closing

tag. The nesting of the document tree is indicated by what is included in an element, i.e.,

between its opening and closing tags. Elements may include other elements or may include

text. Elements may have zero or more attributes, each with its associated value. Attribute

values must be strings, which can be demarcated via either single (’) or double (”) quotes. The

attributes are placed within the opening tag for the element. This is why the example below

shows the opening tag for temperature as 〈temperature scale=”Celsius”〉. Elements that have

no subelements or PCDATA can be written via an empty tag, which ends immediately. The

element 〈ambience condition=”shade”/〉 in the example below is an empty tag.

A well-formed XML document consists of a single top-level element, which may (and

usually does) contain other elements. That is, the document tree is rooted at the top-level

element. Two requirements of well-formedness are that each element that begins must end,

and no element may have two attributes of the same name. For example, to express the fact

that a temperature is 25 ± 2 degrees Celsius, the syntax might be as in Listing A.1.

Listing A.1: XML example
� �

<?xml v e r s i o n =’1.0’ e n c o d i n g =’UTF-8’?>
< t e m p e r a t u r e s c a l e ="Celsius">

<va lue>25</ va lue>
<accu racy >2</ a ccu racy >
<ambience c o n d i t i o n ="shade"/>

</ t e m p e r a t u r e >
� �

where the first line is a processing instruction (XML boilerplate); value and accuracy are

subelements; and scale is an attribute of the element temperature.

Unfortunately, the specification for XML allows alternative ways of expressing the same

information, so that the above fact could also be expressed, equally correctly, as in List-

ing A.2.

Listing A.2: Alternative XML example
� �

< t e m p e r a t u r e a c c u r a c y ="2" s c a l e ="Celsius">



502 XML and XML Schema

25

<ambience c o n d i t i o n ="shade"/>
</ t e m p e r a t u r e >

� �

XML, however, is an improvement over HTML, which is intended to express the appear-

ance of data, rather than its meaning. XML enables the separation of the meaning or seman-

tics of the data from the way it is used by an application or rendered on a screen or output

device. For example, consider the HTML source code for a table of temperatures in List-

ing A.3.

Listing A.3: An example of HTML that contains the same data as the previous example of XML
� �

<TABLE BORDER=1>
<TR>

<TH>Value </TH>
<TH>Accuracy </TH>
<TH>S c a l e </TH>
<TH>Ambience C o n d i t i o n </TH>

</TR>
<TR>

<TD>25</TD>
<TD>2</TD>
<TD>C e l s i u s </TD>
<TD>Shade </TD>

</TR>
</TABLE>

� �

The resultant table would likely have an appearance that resembles Table A.1; the exact

appearance would of course depend on the browser being used and the display on which it is

rendered.

Table A.1: Rendering the temperature document

Value Accuracy Scale Ambience Condition
25 2 Celsius Shade

A.2.1 XML and Vocabularies
We can think of the tags used in a markup document as a vocabulary. An important difference

between Listing A.1 and Listing A.3 is that the XML document uses tags that are specific to

the domain, whereas the HTML document uses formatting tags that have nothing to do with

the domain of interest. This illustrates the extensibility of XML. XML is a language in which

arbitrary domain-specific vocabularies can be constructed. These vocabularies might not be

sufficiently expressive to capture meaning (as discussed at length in Chapter 6), but the fact



A.2 XML 503

that they are domain-specific enables them to indicate the meaning more perspicuously than

the corresponding HTML version. If the parties sharing some information can agree on a

vocabulary and its intended meaning, then they can interoperate effectively.

A.2.2 Transforming XML
Table A.1 contains the same data as the previous example of XML, but there is nothing in this

example that readily associates “Scale” with “Celsius” and nothing about “temperature.” The

XML example could be rendered to appear exactly like this table, using the following XSL

Transformations (XSLT), but different XSLT documents could be made to appear as plain

text for rendering on a cell phone or as the input to a text-to-speech system for speaking the

information aloud. Listing A.4 shows a complete XML file that references an XSL stylesheet;

Listing A.5 shows the stylesheet itself.

Listing A.4: An XML file that references an XSL stylesheet named TempTable.xsl
� �

<?xml v e r s i o n ="1.0"?>
<? x m l : s t y l e s h e e t t y p e ="text/xsl" h r e f ="TempTable.xsl"?>
<TempCol lec t ion>

< t e m p e r a t u r e s c a l e ="Celsius">
<va lue>25</ va lue>
<accu racy >2</ a ccu racy >

</ t e m p e r a t u r e >
< t e m p e r a t u r e s c a l e ="Kelvin">

<va lue>123</ va lue>
<accu racy >5</ a ccu racy >

</ t e m p e r a t u r e >
< t e m p e r a t u r e s c a l e ="Fahrenheit">

<va lue>32</ va lue>
<accu racy >1</ a ccu racy >

</ t e m p e r a t u r e >
</ TempCol l ec t ion>

� �

Listing A.5: An example of a stylesheet stored in a file named TempTable.xsl that could transform the

XML example listed above into the HTML that would appear as a table in a browser
� �

<x s l : s t y l e s h e e t v e r s i o n ="1.0"

x m l n s : x s l ="http://www.w3.org/1999/XSL/Transform">
<x s l : t e m p l a t e match="/">

<HTML>
<BODY>

<x s l : a p p l y −t e m p l a t e s />
</BODY>

</HTML>
</ x s l : t e m p l a t e >
<x s l : t e m p l a t e match="TempCollection">



504 XML and XML Schema

<TABLE BORDER="2">
<TR>

<TH>Value </TH>
<TH>Accuracy </TH>
<TH>S c a l e </TH>

</TR>
<x s l : a p p l y −t e m p l a t e s />

</TABLE>
</ x s l : t e m p l a t e >
<x s l : t e m p l a t e match="temperature">

<TR>
<TD><x s l : v a l u e −of s e l e c t ="value"/></TD>
<TD><x s l : v a l u e −of s e l e c t ="accuracy"/></TD>
<TD><x s l : v a l u e −of s e l e c t ="@scale"/></TD>

</TR>
</ x s l : t e m p l a t e >

</ x s l : s t y l e s h e e t >
� �

The XML example expresses better semantics than the HTML example, but it still suf-

fers from two major limitations. First, another temperature application might use the tags

“Amount,” “Precision,” and “TempScale” instead of “Value,” “Accuracy,” and “Scale.” XML

provides no way to reconcile the different tags. Second, the XML specification (described

below) requires that a well-formed XML document be a tree with a single root, but it does

not otherwise specify the structure of a valid document, so that many different structures can

convey the same information. Section A.3 on XML Schemas addresses this limitation.

A.2.3 Well-Formedness
A well-formed XML document must satisfy the following requirements:

• It must be a tree with a single root. This makes it easier to determine when a document

is complete.

• Every start tag must have a matching end tag, e.g.,

〈temperature〉25〈/temperature〉

• All attributes must be quoted, e.g.,

〈temperature scale=”Celsius”〉

• Empty tags must have a trailing slash, e.g.,

〈temperature value=”25”/〉

• All entities (see Section A.2.5) must be declared.

• Child elements must be properly nested, e.g.,

〈temperature〉 〈value〉25〈/value〉 〈/temperature〉



A.2 XML 505

The validity of an XML document can be determined by comparing it to a specified Document

Type Definition (DTD) or a specified XML Schema document. A DTD for a collection of

data consisting of temperatures like the example at the beginning of this chapter would be as

shown in Listing A.6.

Listing A.6: A DTD for a collection of the XML temperature examples
� �

<?xml e n c o d i n g ="UTF-8"?>
<!ELEMENT T e m p C o l l e c t i o n ( t e m p e r a t u r e )+>
<!ELEMENT t e m p e r a t u r e ( va lue , accu racy , ambience )>
<!ELEMENT v a l u e ( #PCDATA)>
<!ELEMENT a c c u r a c y ( #PCDATA)>
<!ELEMENT ambience (EMPTY)>
<!ATTLIST ambience c o n d i t i o n CDATA "shade">
<!ATTLIST t e m p e r a t u r e s c a l e CDATA #REQUIRED>

� �

The last line specifies that “scale” is a required attribute of “temperature” and that the data

must be characters, i.e., text. Notice that this DTD does not satisfy the rules for an XML

document, which means that two kinds of documents, a DTD and XML, are needed to specify

some of the semantics of data. This is corrected by using an XML Schema instead of a DTD,

because an XML Schema is itself a well-formed XML document.

A.2.4 Namespaces and Qualified Names
Because XML enables the development of multiple vocabularies, it introduces the possibility

of confusion among those vocabularies. In other words, whereas for HTML we can be sure

what the 〈TD〉 tag means, for XML we cannot quite be sure that 〈temperature〉 means for us

what it means for another party. That is, although we know we are using a vocabulary, how

do we know that we are using the right vocabulary?

Namespaces provide a simple means to keep the different vocabularies separate. By plac-

ing the element and attribute names in separate namespaces, we can ensure that we can iden-

tify the ones we mean. A namespace is identified via its URI. Typically, XML documents

specify the namespaces they are using. The namespace declarations, which relate a local pre-

fix to a namespace URI, are usually placed in the top-level element of the given document.

These declarations are made via a reserved attribute and a reserved prefix. For example,

Listing A.7 uses xmlns to declare its default namespace, in which the elements weather, tem-
perature, value, and accuracy are declared. This listing uses the xmlns: paradigm to declare

places as a namespace prefix to identify elements for describing a place via its latitude and

longitude.

Listing A.7: Example of XML namespaces
� �

<?xml v e r s i o n ="1.0"?>
<w e a t h e r xmlns = "http://www.temperature.org"

x m l n s : p l a c e s ="http://www.temperature.org/places"



506 XML and XML Schema

< t e m p e r a t u r e s c a l e ="Celsius">
<va lue>25</ va lue>
<accu racy >2</ a ccu racy >
<ambience c o n d i t i o n ="shade"/>

</ t e m p e r a t u r e >
<p l a c e s : l a t i t u d e >3 3 .2 3 </ p l a c e s : l a t i t u d e >
<p l a c e s : l o n g i t u d e >155 .23 </ p l a c e s : l o n g i t u d e >

</ wea ther>
� �

Namespaces need not be defined anywhere, but it is good practice to define them as XML

Schema documents. They are used via qualified names. A qualified name consists of a

namespace prefix and a local part, which is one of the names declared within the defined

namespace.

A.2.5 Using Entities
The !ENTITY construct in XML is a convenient means for creating abbreviations. It is analo-

gous to symbolic constants in programming languages, which you can declare in the preamble

of a program and use throughout the program as a means of making your program more read-

able. This book uses the !ENTITY construct in several places as do many standard documents,

so it is a good idea to be familiar with it. Listing A.8 shows a simple example of using the

!ENTITY construct.

Listing A.8: An example of !ENTITY in XML
� �

<!ENTITY MNH ’Michael’>
<!ENTITY MPS ’Munindar’>
<doc>
<book>
< t i t l e >Read ings i n Agents </ t i t l e >
<e d i t o r name=’&MNH;’/>
<e d i t o r name=’&MPS;’/>

</book>

<goodguys>&MNH; and &MPS; </ goodguys>
</doc>

� �

In this example, MNH and MPS are first declared as abbreviations. These abbreviations

are then used in the remainder of the document via &MNH; and &MPS;, respectively. The

notation simply substitutes the definition string for the terms being defined. It can be used for

attribute values and for PC Data, but not for the names of elements. Thus the above document

is equivalent to Listing A.9.

Listing A.9: An equivalent example to Listing A.8 without !ENTITY
� �

<doc>



A.3 XML Schema 507

<book>
< t i t l e >Read ings i n Agents </ t i t l e >
<e d i t o r name=’Michael’/>
<e d i t o r name=’Munindar’/>

</book>
<goodguys>Michae l and Munindar </ goodguys>

</doc>
� �

Entities can be used as certain kinds of security attacks. For example, recursive entities

(not allowed by XML) can cause unbounded computation during expansion if not detected

by a processor. For this reason, products such as Apache Axis do not accept entities.

A.2.6 XML Extensions
XML is not just a language, but a family of technologies. Its main specification, e.g., XML
1.0, defines the syntax for tags and attributes and the requirements for a well-formed XML

document. Other specifications extend the usefulness of XML. For example,

XSL. The eXtensible Stylesheet Language specifies rules for formatting an XML document,

including presentation formats such as font color and size. The XSL Transformations

(XSLT) is a standardized specification for XSL processors. Implementations of XSLT

can convert an XML document into HTML, or one XML document into another, or

even an XML document into an unstructured document.

Xlink. Xlink specifies how to add hyperlinks to an XML document. The links can be uni-

directional like HTML, as well as bidirectional, multidirectional, and typed.

XPointer. XPointer specifies how to refer to individual items of data inside an XML docu-

ment.

XPath. XPath is used by XPointer to describe location paths. A location path consists of

steps, which in turn consist of an axis, a node test, and a predicate. An individual step

allows navigation among documents or within a document to reach a desired location.

XML Schema. XML Schema, described in Section A.3, specifies the structure of a set

of similar documents, along with the elements that can appear in a document, their

attributes, and their default values. In addition, it can enforce data typing.

A.3 XML Schema
An XML Schema is used to provide the rules that conforming XML data and documents must

obey. Consider again the example of XML data at the beginning of the previous section. The

example obeys all of the rules for correct XML, but how would we know if this data is

structured properly and the data values are valid? For example, would a “Huhns” scale make



508 XML and XML Schema

sense for describing a temperature? For the example data to be deemed valid, we might

decide that the following business rules must be satisfied:

• A temperature element must comprise a value subelement and an accuracy subelement

in that order.

• The data in a value element must be an integer.

• The data in an accuracy element must be an integer that is ≥ 0.

• A scale must be one of the strings: Celsius, Fahrenheit, or Kelvin.

All of the above business rules can be expressed using an XML Schema. An XML Schema is

itself a document, written in XML, that constrains the allowable structure and values for valid

XML data. You can think of it as the metadata for the document. It is a formal specification

of the rules of an XML document, including a definition for the data types that can appear

in the document. For example, an XML Schema that corresponds to the DTD above and

expresses the above business rules is shown in Listing A.10.

Listing A.10: An example of an XML Schema for temperatures
� �

<?xml v e r s i o n ="1.0"?>
<xsd : schema x m l n s : x s d ="http://www.w3.org/2001/XMLSchema"

t a r g e t N a m e s p a c e ="http://www.temperature.org"

xmlns="http://www.temperature.org"

e l e m e n t F o r m D e f a u l t ="qualified">
<x s d : s i m p l e T y p e name="scaleType">

<x s d : r e s t r i c t i o n base ="xsd:string">
<x s d : p a t t e r n v a l u e ="Celsius"/>
<x s d : p a t t e r n v a l u e ="Fahrenheit"/>
<x s d : p a t t e r n v a l u e ="Kelvin"/>

</ x s d : r e s t r i c t i o n >
</ x s d : s i m p l e T y p e >
<x s d : e l e m e n t name="TempCollection">

<xsd:complexType>
<x s d : s e q u e n c e >

<x s d : e l e m e n t r e f ="temperature"

minOccurs="1" maxOccurs="unbounded"/>
</ x s d : s e q u e n c e >

</ xsd:complexType>
</ x s d : e l e m e n t >
<x s d : e l e m e n t name="temperature">

<xsd:complexType>
<x s d : s e q u e n c e >

<x s d : e l e m e n t r e f ="value" t y p e ="xsd:integer"

minOccurs="1" maxOccurs="1"/>
<x s d : e l e m e n t r e f ="accuracy"



A.3 XML Schema 509

minOccurs="1" maxOccurs="1"/>
</ x s d : s e q u e n c e >
<x s d : a t t r i b u t e G r o u p r e f ="TempAttributes"/>

</ xsd:complexType>
</ x s d : e l e m e n t >
<x s d : a t t r i b u t e G r o u p name="TempAttributes">

<x s d : a t t r i b u t e name="scale" use ="required">
<x s d : s i m p l e T y p e >

<x s d : r e s t r i c t i o n base ="xsd:string">
<x s d : p a t t e r n v a l u e ="Celsius"/>
<x s d : p a t t e r n v a l u e ="Fahrenheit"/>
<x s d : p a t t e r n v a l u e ="Kelvin"/>

</ x s d : r e s t r i c t i o n >
</ x s d : s i m p l e T y p e >

</ x s d : a t t r i b u t e >
</ x s d : a t t r i b u t e G r o u p >
<x s d : e l e m e n t name="accuracy"

t y p e ="xsd:nonNegativeInteger"/>
</ xsd :schema>

� �

This schema is typical in most respects. It uses the targetNamespace attribute to specify the

namespace that it defines.

A validator is a program that checks XML data or documents to determine if they con-

form to a given XML Schema, as indicated in Figure A.2. Listing A.11 is a valid document

that references the above XML Schema.

Listing A.11: An XML document that conforms to the XML Schema named TemperatureTable.xsd

and found at http://www.temperature.org
� �

<?xml v e r s i o n ="1.0"?>
<T e m p C o l l e c t i o n xmlns = "http://www.temperature.org"

x m l n s : x s i ="http://www.w3.org/2001/XMLSchema-instance"

x s i : s c h e m a L o c a t i o n =

"http://www.temperature.org/TemperatureTable.xsd">
< t e m p e r a t u r e s c a l e ="Celsius">
<va lue>25</ va lue>
<accu racy >2</ a ccu racy >

</ t e m p e r a t u r e >
< t e m p e r a t u r e s c a l e ="Kelvin">
<va lue>123</ va lue>
<accu racy >5</ a ccu racy >

</ t e m p e r a t u r e >
. . .

</ TempCol l ec t ion>
� �

In general, for the simpler cases, types defined in XML Schema can be mapped to the

types in established programming languages such as Java, and vice versa. However, it is



510 XML and XML Schema

<TemperatureIncrease>

       <value unit=”degree”>25</value>

       <scale>Celcius</scale>

</TemperatureIncrease>

XML Data

XML Schema

-check that the value is an integer

-check that the scale is either Celcius,

    Fahrenheit, or Kelvin

-check that the value is positive

Validator
XML Data Valid

and Well-Formed

Figure A.2: XML data and documents can be validated by comparing their structure and

content to the rules for structure and content expressed in an XML Schema

possible to specify complex types in XML Schema through the use of restrictions that cannot

be mapped easily to programming languages. And programming language types, especially

those involving references, would not map easily to XML Schema.

A.4 Limitations
XML, in its current form, has the disadvantages that it is best used for transferring text, not

binary data. In its typical encoding it is highly inefficient, because the tags are a significant

proportion of most messages and have a lot of redundancy. However, binary and compressed

formats do exist, e.g., Wireless Binary XML (WBXML) [Martin and Jano, 1999], although

these formats are used predominantly in specialized settings, such as those involving wire-

less devices. Also, WBXML does not handle XML namespaces and requires shared-token

dictionaries, which work best for predefined element types. The SOAP standard, discussed

in Chapter 2, is able to accommodate binary data through the mechanism of attachments, but

the main content remains text based.

An XML document is validated by reconciling it with either a DTD (Document Type

Definition) or an XML Schema. Either of these can provide the link among the tags in an

XML document, which might be idiosyncratic and local, to definitions of tag structures and

syntaxes that could be industry-wide or standard.

A.5 Notes
Xerces, available at http://www.apache.org/xerces-j/index.html, is a well-known open-source

XML tool. An XML checker is included in Internet Explorer. The XML Schema Validator

(XSV) is available from http://www.ltg.ed.ac.uk/ ht/xsv-status.html. All of these tools check

that an XML document is well formed. The validators also check that a document is valid



A.6 Exercises 511

according to a specified DTD or XML Schema. The Saxon tool includes a powerful XSLT

engine.

A.6 Exercises
A.1. A new XML namespace is declared using which one of the following:

• the xmlns attribute;

• the DOCTYPE element;

• the namespace attribute;

• the xsi attribute;

• the xsd attribute.

A.2. In the following XML snippet:
� �

<c h o i c e r e t : a n s w e r ="1"><code>Pick me</ code></ cho i ce >
<c h o i c e x m l n s : r d f ="http://www.rdf.org">

<r d f : c o d e >I am wrong</ r d f : c o d e >
</ cho i ce >
<c h o i c e x s i : t y p e ="string">

<code>I am a l m o s t c o r r e c t </ code>
</ cho i ce >
<c h o i c e namespace="http://example.com/x.xsd">

<code>I am b o r i n g </ code>
</ cho i ce >
<cho ice ><code>Who ? me?</ code></ cho i ce >
� �

Which one of the following is a namespace prefix?

• ret

• namespace

• xmlns

• choice

• http://www.rdf.org

A.3. Which of the following is true about XML Schema and DTDs?

• XML Schema is written in XML.

• A DTD can be more specific than XML Schema about the type of subelements

an element can have.

• XML Schema is easier to validate.



512 XML and XML Schema

• XML Schema implements namespaces.

• A DTD cannot be used to define the set of elements a document should have.

A.4. The following XML Schema definition:
� �

<x s d : s e q u e n c e >
<x s d : e l e m e n t name="part" t y p e ="xsd:string"/>
<x s d : e l e m e n t name="quantity">

<x s d : s i m p l e T y p e >
<x s d : r e s t r i c t i o n base ="xsd:positiveInteger">

<x s d : m a x E x c l u s i v e v a l u e ="20"/>
</ x s d : r e s t r i c t i o n >

</ x s d : s i m p l e T y p e >
</ x s d : e l e m e n t >

</ x s d : s e q u e n c e >
� �

would validate which of the following XML examples?

• <p a r t >v a l v e </ p a r t >
<q u a n t i t y >12</ q u a n t i t y >

• <q u a n t i t y >12</ q u a n t i t y >
<p a r t >v a l v e </ p a r t >

• <p a r t >v a l v e </ p a r t >
<q u a n t i t y >24</ q u a n t i t y >

• <partName>v a l v e </partName>
<q u a n t i t y >20</ q u a n t i t y >

• <p a r t >p i s t o n </ p a r t >
<q u a n t i t y ba s e ="xsd:positiveInteger">4</ q u a n t i t y >

A.5. In the following XML snippet
� �

<a l p h a d e l t a ="gamma">
b e t a

</ a lpha>
� �

identify the element, attribute, attribute value, and PC data.

A.6. Namespaces were a necessary addition to XML because of which one of the following?

• The need to use multiple schemas in one document.

• The need to build really large XML documents.



A.6 Exercises 513

• The proliferation of XML dialects.

• The excessive use of attributes.

• The move from DTDs to XML Schemas.

A.7. Using XML Schema, one can define new data types by which one of the following?

• Restriction or extension.

• Inheritance.

• Grouping.

• Aggregation.

• Alliteration.

A.8. Given the following DTD (located at http://www.nscu.edu/address.dtd) for an address

book,
� �

<?xml e n c o d i n g ="UTF-8"?>
<!ELEMENT addressBook ( p e r s o n )+>
<!ELEMENT p e r s o n ( name , e m a i l ∗)>
<!ELEMENT name ( fami ly , f i r s t )>
<!ELEMENT f a m i l y ( #PCDATA)>
<!ELEMENT f i r s t ( #PCDATA)>
<!ELEMENT e m a i l ( #PCDATA)>

� �

(a) Show how the DTD would have to be modified to add an attribute gender to person,

where the gender attribute must be present, can have only the values male, female, and

unknown, and has a default value of unknown.

(b) Construct an XML document for the addresses of two people that would be valid

with respect to the DTD as modified in (a).

A.9. Consider a library that keeps track of books and borrowers in a database. The library

decides to use XML to encode the reports it sends out. The database contains the

following information: the name (family name and first name), address, gender, birth-

year, and salary of each borrower, and the title, author (family name and first name),

publisher’s address, publication year, and ISBN of each book. Which of the above

features should be elements and which should be attributes? Show your answer to this

by constructing a DTD for this scenario.

A.10. Write an XML Schema that an employment service can use to advertise job and intern-

ship opportunities. The advertisements should include the following information: com-

pany name, location (such as city and state), annual salary, type (permanent or intern-

ship), degree requirements (major and BS, MS, or PhD), and years of experience

required.



514 XML and XML Schema

Then use your XML Schema to construct the single XML encoding for the following

two job advertisements (i.e., both ads would be in the same XML structure):

(i) TopTech in Columbia, SC has openings for five interns. Each intern will be paid

$2 000 per month. The positions require a master’s degree in computer engineering.

(ii) New York, NY based Xcorp is looking for a permanent website developer. The

successful candidate, who must have a PhD in computer engineering or five years of

relevant experience, will earn $120 000 per year.

A.11. Construct a class diagram in UML (using, for example, Rational Rose or Microsoft

Visio) for a domain of your choice. The diagram should have at least two classes

with at least one relationship between them. For example, you might have entities

ZooAnimals and Food, with the relationship Eats between them. Make sure that each

class has several attributes and methods.

Construct an XML Schema document for data that might be transmitted to, from, or

within applications in your domain.

Optionally, construct a DTD for data that might be transmitted to, from, or within

applications in your domain.

Create two XML documents that are valid with respect to your XML Schema. Verify

the validity by using Xerces and XSV (described in Section A.5), or one of the XML

validation tools that you can download via the website for this book.

A.12. Write a program in a language of your choice that accepts an XML Schema and pro-

duces the code needed for a Web form. When a user enters data into fields on the form,

the form converts it to XML that conforms to the schema and stores it in a file.



Appendix B

URI, URN, URL, and UUID

The Web architecture relies upon a way to identify resources uniquely. This leads to the

concept of the Uniform Resource Identifier. URIs are defined via a number of the so-called

schemes, such as HTTP, ftp, and so on. The various schemes correspond to different sub-

spaces of the space of resource identifiers. The schemes must be registered with the Internet

Assigned Numbers Authority (IANA) [IANA, 2004].

A Uniform Resource Locator is a kind of URI that gives an address or location of a

resource. The most popular URI schemes, such as HTTP, HTTPS, and ftp, are all examples

of URLs. URLs build on the Domain Name Service (DNS) to address hosts symbolically

and use a file-path like syntax to identify specific resources at a given host. For this reason,

mapping URLs to physical resources is straightforward and is implemented by the various

Web browsers.

A Uniform Resource Name is a kind of URI that gives a name for a resource. Concep-

tually, URNs reside at a higher level than URLs. They name resources without regard to

the host name and the host’s physical resource hierarchy (i.e., file system). In principle, if

resources are uniquely named, that means they are identified independently of where they

might happen to reside on the Web. However, the conceptual flexibility comes at a price

and URNs cannot be resolved to physical resources easily, and are therefore not supported

by modern Web browsers or networking APIs. However, for the purposes of identification,

URNs are just fine. Subspaces of URN must also be registered with IANA by the organization

that wishes to serve as the authority for making URN assignments within that subspace.

As described in Section A.2.4, a namespace is identified via its URI. Two URI references

to namespaces are considered identical only if they match literally, i.e., character by character.

Nonidentical URI references may prove to be functionally equivalent if they resolve to the

same address. In principle, because a namespace is identified via a URI, we can think of the

namespace as a resource. An application that was designed to process XML documents might

retrieve the resource corresponding to the namespace declaration, say, an XML Schema, and

use that resource to validate a given document or to create an appropriate document. However,

this need not be the case. A URI merely identifies a namespace uniquely. The URI might

515



516 URI, URN, URL, and UUID

not refer to any specific physical resource that can be retrieved and reasoned about. In many

cases, the applications that process XML documents might be hard-coded for the schemas

that they can accommodate. Before such applications begin processing a document, they can

check if the namespace URIs are the ones they are designed to accommodate, but not rely on

the actual description of the namespace at run time.

The URIs used for identifying namespaces can be URLs or URNs. In general, they are

URLs because it is easy to map them to physical resources. Further, although this is not

required in principle, it is good practice to ensure that the URLs for a namespace do indeed

physically contain the definition of that namespace. Even if automatic tools do not use such

definitions, programmers can use them to understand how a document using a particular set

of namespaces should be processed. However, URNs are conceptually cleaner than URLs

because the location of a document is, after all, incidental to its meaning. Only a few of the

namespaces are identified via URNs. One of the better known URNs for services is urn:uddi-
org:api v2, which identifies the UDDI Version 2 namespace.

As remarked above, unlike URLs, URNs do not map to physical locations in a trivial

manner. Consequently, the location of the namespace definition needs to be encoded sepa-

rately. This is the reason that the targetNamespace attribute, e.g., as used in XML Schema

definitions, comes in handy. It is the same reason why the import element in WSDL has

separate attributes for namespace (identifier) and schemaLocation. The document found in

the specified schema location must have the given namespace as its target namespace. This

approach is necessary for URIs that do not readily map to locations, but it provides an addi-

tional check even when URLs are being used and it allows copies of namespace definitions

to be kept at multiple locations.

Often, we will see not a URI but a URI Reference. A URI Reference may include a so-

called optional fragment identifier, i.e., the part of a URL including and after the # character,

which points to a particular part within a page.

A Universally Unique Identifier (UUID) is a means to uniquely identify objects in a dis-

tributed system. Formally, a UUID is a 128-bit number, conventionally written as a hexadec-

imal string.

UUIDs are generated by executing a standard algorithm. This algorithm includes the

hardware address of the given host, the current time, and a random component. The hard-

ware address of a host corresponds to the MAC address of its network card, which is itself

guaranteed to be unique because each network card vendor is assigned a unique part of the

space and is charged with ensuring that the cards it manufactures are given unique numbers.

Including the hardware address ensures that UUIDs generated by different hosts will not con-

flict. Using the current time means that the UUIDs generated by a given host will not conflict.

However, this relies upon the host’s system clock always having unique values. If a clock is

reset, possibly due to a reboot, then the assumption is no longer valid. The UUID algorithm

goes to great lengths to ensure that such problems would be avoided. The random component

of the UUID further reduces the risk of nonuniqueness.

Consequently, UUIDs can be treated as unique for all practical purposes, although there

may be a combination of extremely rare events under which this assumption is violated.



Appendix C

XML Namespace Abbreviations

Each XML namespace is defined via a URI. Namespaces are abbreviated within each doc-

ument to provide qualified names. To reduce clutter and make it easier to understand the

examples, this book uses the following conventions for abbreviated names:

bpel. Business Process Execution Language for Web Services

dc. Dublin Core metadata for documents, whose current version is at

http://purl.org/dc/elements/1.1/

owl. Web Ontology Language

owls. OWL for services

rdf. Resource Description Framework

rdfs. RDF Schema

soapenc. SOAP encoding

soapenv. SOAP envelope

tns. this namespace; refers to the current WSDL document. It is conventional and reasonable

to define this abbreviation as the value of the targetNamespace attribute.

uddi. UDDI

wsdl. WSDL

wsse. WS-Security

xsd. XML Schema definition

xsi. XML Schema instance, which includes the standard types of the XML Schema, which

can be used in instance documents.

517





Glossary

B2B. B2B is an abbreviation for business-to-business electronic commerce, which denotes

the interactions among autonomous commercial organizations.

B2C. B2C is an abbreviation for business-to-consumer electronic commerce, which denotes

the interactions between an individual and a commercial organization.

BPEL4WS. Business Process Execution Language for Web Services, also known as BPEL.

BPML. Business Process Management Language.

BPSS. Business Process Schema Specification, one of the ebXML suite of standards.

CORBA. Common Object Request Broker Architecture, a standard proposed by the Object

Management Group. CORBA introduced a number of technical innovations for inter-

operation, but has generally been considered too cumbersome for widespread use.

Discovery. Web service discovery is the act of locating a machine-processable description of

a Web service that may have been previously unknown and that meets certain functional

criteria.

ebXML. Electronic Business eXtensible Markup Language.

EDI. Electronic Data Interchange.

IDL. The Interface Definition Language is a language for specifying operations (procedures

or functions), parameters to these operations, and data types.

Process. A process is a series of actions or changes proceeding from one to the next over

time.

Protocol. A protocol is a set of rules governing the format and order of messages exchanged

among systems or components.

RPC. A Remote Procedure Call refers to the act of a local computation synchronously invok-

ing functionality at a nonlocal site.

519



520 Glossary

SAML. SAML, the Security Assertion Markup Language, targets the secure interchange of

authentication and authorization assertions and supports single sign-on.

Schema. A schema is an outline for a document or a plan for a collection of activities.

Service. A service is the product of human, organizational, or computational activity meant

to satisfy a need, but not constituting an item of goods. In WSDL, a service is a

collection of ports.

SOAP. The Simple Object Access Protocol is the XML language and protocol for messages

that enables clients and servers to communicate with each other and exchange XML

data. It is built on common Web transport protocols, such as HTTP, SMTP, and FTP.

UDDI. The Universal Description, Discovery, and Integration (UDDI) protocol is used to

describe Web services, so that providers can advertise their services in a registry and

clients can locate and then use them.

Web service. A Web service is functionality that can be engaged over the Web.

WfMC. The Workflow Management Coalition is a group of organizations that defines stan-

dards and conventions for workflow management systems.

Workflow. The facilitation or automation of a business process by a computer system.

Workflow Management System. A system that defines, manages, and executes workflows

through the execution of software whose order of execution is driven by a computer

representation of the workflow logic.

WS-Chor. The W3C Web Service Choreography Working Group and its specifications for

organizing the interactions of Web services. These are working drafts that go beyond

WSCL and WSCI (see below).

WSCI. The Web Service Choreography Interface is a specification for organizing the inter-

actions of Web services.

WSCL. The Web Service Conversation Language is a specification for stating constraints on

the conversations in which a given Web service may participate.

WSDL. WSDL, the Web Services Description Language, is an XML format for describ-

ing how one software system can connect to and use the services of another software

system over the Internet.

WS-Coordination. Web Service Coordination is a specification for a service whose job it is

to coordinate the activities of the Web services that are part of a business process.

WS-Transaction. Web Service Transaction is a specification for two particular coordination

types: a short-term atomic transaction and a long-duration business activity.



Glossary 521

WS-Security. WS-Security, the most mature Web service security protocol, defines meth-

ods for embedding authentication, encryption, and security in SOAP messages, and

provides a framework for the exchange of XML-based objects, such as X.509 certifi-

cates or SAML tokens.

XACML. The eXtensible Access Control Markup Language is a specification for expressing

access-control policies in XML for information access over the Internet.

XPDL. The XML Process Definition Language can be used to describe a process using the

XML syntax.





Bibliography

Achermann, Franz and Oscar Nierstrasz. Applications = components + scripts—a tour of

Piccola. In Aksit, Mehmet, editor, Software Architectures and Component Technology,

pages 261–292, Boston, 2001. Kluwer.

Arpinar, Sena, Asuman Dogac, and Nesime Tatbul. An open electronic marketplace through

agent-based workflows: MOPPET. International Journal on Digital Libraries, 3(1):36–59,

2000.

Arthur, W. Brian, John H. Holland, Blake Lebaron, Richard G. Palmer, and Paul Tayler. Asset

pricing under endogenous expectations in an artificial stock market. In Proceedings on the
Economy as an Evolving Complex System II. Addison-Wesley, 1997.

Austin, John L. How to Do Things with Words. Clarendon Press, Oxford, 1962.

Bansal, Sharad. Matchmaking of Web services based on the DAML-S service model. Mas-

ter’s thesis, Department of Computer Science and Engineering, University of South Car-

olina, Columbia, December 2002.

Barringer, Howard, Ruurd Kuiper, and Amir Pnueli. Now you may compose temporal logic

specifications. In Proceedings of the ACM Symposium on Theory of Computing, pages

51–63. ACM, 1984.

Bartelt, Andreas and Winfried Lamersdorf. A multi-criteria taxonomy of business models

in electronic commerce. In Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware 2001), Workshop on Electronic Commerce,

volume 2232 of LNCS, pages 193–205, Berlin, 2001. Springer-Verlag.

Bauer, Bernhard, Jörg P. Muller, and James Odell. Agent UML: A formalism for specifying

multiagent software systems. International Journal of Software Engineering and Know-
ledge Engineering, 11(3):207–230, April 2001.

Bichler, Martin, Arie Segev, and Carrie Beam. An electronic broker for business-to-business

electronic commerce on the Internet. International Journal of Cooperative Information
Systems, 7(4):315–330, 1998.

523



524 Bibliography

Boll, Susanne, Andreas Gruner, Armin Haaf, and Wolfgang Klas. EMP - a database-driven

electronic market place for business-to-business commerce on the Internet. Distributed
and Parallel Databases, 7(2):149–177, April 1999.

Bond, Alan and Les Gasser, editors. Readings in Distributed Artificial Intelligence. Morgan

Kaufmann, San Francisco, 1988.

Box, Don, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Hen-

rik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple object access protocol (SOAP)

1.1, 2000. http://www.w3.org/ TR/ SOAP.

Breese, John S., David Heckerman, and Carl Kadie. Empirical analysis of predictive algo-

rithms for collaborative filtering. In Proceedings of the 14th Annual Conference on Uncer-
tainty in Artificial Intelligence, pages 43–52, 1998.

Breitbart, Yuri, Hector Garcia-Molina, and Avi Silberschatz. Transaction management in

multiadatabase systems. In Kim [1994], chapter 28, pages 573–591. ACM Press and

Addison-Wesley, 1994.

Castelfranchi, Cristiano and Rosaria Conte. Distributed artificial intelligence and social sci-

ence: Critical issues. In Jennings, N. R. and G. M. P. O’Hare, editors, Foundations of
Distributed Artificial Intelligence. John Wiley & Sons, Somerset, NJ, 1996.

Cesta, Amedeo, Maria Miceli, and Paola Rizzo. Help under risky conditions: Robustness of

the social attitude and system performance. In Proceedings of the International Conference
on Multiagent Systems, pages 18–25, 1996.

Christensen, Erik, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web ser-

vices description language (WSDL) 1.1, 2001. www.w3.org/TR/wsdl.

Curbera, Francisco, Rania Khalaf, Nirmal Mukhi, Stefan Tai, and Sanjiva Weerawarana. The

next step in web services. Communications of the ACM, 46(10):29–34, October 2003.

Dalal, Sanjay, Sazi Temel, Mark Little, Mark Potts, and Jim Webber. Coordinating business

transactions on the web. IEEE Internet Computing, 7(1):30–39, January-February 2003.

DAML. The DARPA agent markup language. http://www.daml.org, 2001.

Davenport, Thomas H. Process Innovation: Reengineering Work through Information Tech-
nology. Harvard Business School Press, Boston, MA, 1993.

Davies, Charles T.,Jr. Data processing spheres of control. IBM Systems Journal, 17(2):179–

198, 1978.

Davis, Randall and Reid G. Smith. Negotiation as a metaphor for distributed problem solving.

Artificial Intelligence, 20:63–109, 1983. Reprinted in Bond and Gasser [1988].



Bibliography 525

de Kleer, Johan. An assumption-based truth maintenance system. Artificial Intelligence, 28

(2):127–162, 1979.

Decker, Stefan, Sergey Melnik, Frank van Harmelen, Dieter Fensel, Michel Klein, Jeen

Broekstra, Michael Erdmann, and Ian Horrocks. The semantic Web: The roles of XML

and RDF. IEEE Internet Computing, 4(5):63–74, September 2000a.

Decker, Stefan, Prasenjit Mitra, and Sergey Melnik. Framework for the semantic Web: An

RDF tutorial. IEEE Internet Computing, 4(6):68–73, November 2000b.

Delugach, Harry S. An exploration into semantic distance. In Proceedings Seventh Annual
Workshop on Conceptual Graphs, volume 754 of Lecture Notes in Artificial Intelligence,

pages 29–37. Springer, 1993.

Dennett, Daniel C. The Intentional Stance. MIT Press, Cambridge, MA, 1987.

Doyle, Jon. A truth maintenance system. Artificial Intelligence, 12(3):231–272, 1979.

Dumais, Susan T., George W. Furnas, Thomas K. Landauer, Scott Deerwester, and Richard

Harshman. Using latent semantic analysis to improve access to textual information. In

Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems,

pages 281–285. ACM Press, 1988.

Emerson, E. Allen. Temporal and modal logic. In Leeuwen, Janvan , editor, Handbook of
Theoretical Computer Science, volume B, pages 995–1072. North-Holland, Amsterdam,

1990.

Escrow.com. Online escrow process, 2003. http://www.escrow.com /solutions /escrow /pro-

cess.asp.

FCC. Comments on reverse search for electronic white pages, July 1996. Number DA 96-

1069; available at www.fcc.gov/ Bureaus/ Common Carrier/ Orders/ 1996/ da961069.txt.

Fielding, Roy T. and Richard N. Taylor. Principled design of the modern Web architecture.

ACM Transactions on Internet Technology, 2(2):115–150, May 2002.

Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, CA, 2000. Available from

http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm.

FIPA. Foundation for intelligent physical agents (FIPA) specification, 1998. www.fipa.org.

Forgy, Charles. Rete: A fast algorithm for the many patterns/many objects pattern match

problem. Artificial Intelligence, 19(1):17–37, 1982.

Foster, Ian. The Grid: A new infrastructure for 21st century science. Physics Today, 55(2):

42–47, February 2002.



526 Bibliography

Foster, Ian, Carl Kesselman, and Steven Tuecke. The anatomy of the Grid: Enabling scalable

virtual organizations. International Journal of Supercomputer Applications, 15(3):200–

222, Fall 2001.

Francez, Nissim and Ira R. Forman. Interacting Processes: A Multiparty Approach to Coor-
dinated Distributed Programming. ACM Press and Addison-Wesley, New York, 1996.

Friedman, Eric and Paul Resnick. The social cost of cheap pseudonyms. Journal of Eco-
nomics and Management Strategy, 10(2):173–199, 2001.

Garcia-Molina, Hector and Kenneth Salem. Sagas. In Proceedings of ACM SIGMOD Con-
ference on Management of Data, pages 249–259, 1987.

Georgakopoulos, Dimitrios, Marek Rusinkiewicz, and Amit P. Sheth. Using tickets to enforce

the serializability of multidatabase transactions. IEEE Transactions on Knowledge and
Data Engineering, 6(1):166–180, 1994.

Ghenniwa, Hamada H. and Michael N. Huhns. Intelligent enterprise integration: eMarket-

place model. In Creating Knowledge Based Organizations, pages 46–79. Idea Group Pub-

lishers, 2003.

Gomez-Perez, Asuncion and Oscar Corcho. Ontology languages for the semantic Web. IEEE
Intelligent Systems, 17(1):54–60, January-February 2002.

Gray, Jim and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann, San Mateo, 1993.

Grosof, Benjamin, Michael Gruninger, Michael Kifer, David Martin, Deborah McGuinness,

Bijan Parsia, Terry Payne, and Austin Tate. Semantic Web services language requirements,

2004. http://www.daml.org/services/swsl/requirements/swsl-requirements.shtml.

Gruninger, Michael. Applications of PSL to semantic Web services. In Cruz, Isabel F., Vipul

Kashyap, Stefan Decker, and Rainer Eckstein, editors, Proceedings of the 1st International
Workshop on Semantic Web and Databases, pages 217–230, September 2003.

Haddadi, Afsaneh. Towards a pragmatic theory of interactions. In Proceedings of the Inter-
national Conference on Multiagent Systems, pages 133–139, 1995.

Hammer, Michael and James Champy. Reengineering the Corporation. Harper Collins, New

York, 1993.

Heflin, Jeff and James A. Hendler. Dynamic ontologies on the Web. In Proceedings of the
National Conference on Artificial Intelligence (AAAI), pages 443–449, 2000.

Hendler, James and Deborah L. McGuinness. DARPA agent markup language. IEEE Intelli-
gent Systems, 15(6):72–73, 2001.



Bibliography 527

Hohfeld, Wesley Newcomb and Walter W. Cook. Fundamental Legal Conceptions: As
Applied in Judicial Reasoning. Lawbook Exchange Ltd., Clark, NJ, 2001.

Horrocks, Ian, Ulrike Sattler, and Stephan Tobies. Practical reasoning for expressive descrip-

tion logics. In Proceedings of the 6th International Conference on Logic Programming and
Automated Reasoning (LPAR), volume 1705 of LNCS, pages 161–180. Springer-Verlag,

September 1999.

Huhns, Michael and David M. Bridgeland. Multiagent truth maintenance. IEEE Transactions
on Systems, Man, and Cybernetics, 21(6):1437–1445, 1991a.

Huhns, Michael N. and David M. Bridgeland. Multiagent truth maintenance. IEEE Tran-
sactions on Systems, Man, and Cybernetics, 21(6):1437–1445, December 1991b.

Huhns, Michael N. and Munindar P. Singh. Agents and multiagent systems: Themes,

approaches, and challenges. In Huhns and Singh [1998b], chapter 1, pages 1–23. Mor-

gan Kaufmann, 1998a.

Huhns, Michael N. and Munindar P. Singh, editors. Readings in Agents. Morgan Kaufmann,

San Francisco, 1998b.

Huhns, Michael N., Munindar P. Singh, and Tomasz Ksiezyk. Global information manage-

ment via local autonomous agents. In Huhns and Singh [1998b], pages 36–45. Morgan

Kaufmann, 1998. (Reprinted from Proceedings of the ICOT International Symposium on
Fifth Generation Computer Systems: Workshop on Heterogeneous Cooperative Knowledge
Bases, 1994).

Huhns, Michael N., Larry M. Stephens, and Nenad Ivezic. Automating supply-chain man-

agement. In Proceedings of the 1st International Joint Conference on Autonomous Agents
and MultiAgent Systems (AAMAS), pages 1017–1024. ACM Press, July 2002.

IANA. Internet assigned numbers authority, 2004. http://www.iana.org/.

IOTP. Internet open trading protocol (IOTP), October 2003. IETF: Internet Engineering Task

Force, http://www.ietf.org/html.charters/trade-charter.html.

Isenberg, David S. The dawn of the stupid network. ACM netWorker, 2(1):24–31, February

1998.

Jennings, Nicholas R. Coordination techniques for distributed artificial intelligence. In Foun-
dations of Distributed Artificial Intelligence, pages 187–210. John Wiley & Sons, New

York, 1996.

Joy, Bill. Keynote address at JavaOne, June 2000. http://java.sun.com/ javaone/ javaone00/

transcripts/ keynote2.html.



528 Bibliography

Jung, Jae-yoon, Wonchang Hur, Suk-Ho Kang, and Hoontae Kim. Business process choreo-

graphy for B2B collaboration. IEEE Internet Computing, 8(1):37–45, January-February

2004.

Kagal, Lalana, Tim Finin, and Anupam Joshi. A policy based approach to security for the

semantic Web. In Proceedings of the 2nd International Semantic Web Conference (ISWC),
October 2003.

Kagal, Lalana, Massimo Paolucci, Naveen Srinivasan, Grit Denker, Tim Finin, and Katia

Sycara. Towards authorization, confidentiality and privacy for semantic web services. In

AAAI 2004 Spring Symposium on Semantic Web Services. AAAI, March 2004.

Kephart, Jeffrey O., James E. Hanson, and Amy R. Greenwald. Dynamic pricing by software

agents. Computer Networks, 36(6):731–752, May 2000.

Kim, Won, editor. Modern Database Systems: The Object Model, Interoperability, and
Beyond. ACM Press and Addison-Wesley, New York, 1994. Reprinted with corrections,

1995.

Klein, Johannes. Advanced rule driven transaction management. In Proceedings of the IEEE
COMPCON, 1991.

Klein, Mark and Abraham Bernstein. Searching for services on the semantic Web using

process ontologies. In Proceedings of the International Semantic Web Working Symposium
(SWWS), July 2001.

Klein, Mark, Chrysanthos Dellarocas, and Juan A. Rodrı́guez-Aguilar. A knowledge-based

methodology for designing robust multi-agent systems. In Proceedings of the 1st Interna-
tional Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS), page

661. ACM Press, July 2002.

Kolp, Manuel, Paolo Giorgini, and John Mylopoulos. A goal-based organizational perspec-

tive on multiagent architectures. In Intelligent Agents VIII: Agent Theories, Architectures,
and Languages, volume 2333, pages 128–140, New York, 2002. Springer-Verlag.

Kowalski, Robert and Marek J. Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67–95, 1986.

Labbe, Joe. Web services: The new conventional “WSDM”. eAI Journal, pages 25–27,

January 2002.

LeBaron, Blake. Agent-based computational finance: Suggested readings and early research.

Journal of Economic Dynamics and Control, 24(5–7):679–702, June 2000.

Lenat, Douglas. Cyc: A large-scale investment in knowledge infrastructure. Communications
of the ACM, 38(11):32–38, November 1995.



Bibliography 529

Lenat, Douglas and R. V. Guha. Building Large Knowledge-Based Systems: Representation
and Inference in the Cyc project. Addison-Wesley, Reading, MA, 1990.

Little, Mark. Transactions and Web services. Communications of the ACM, 46(10):49–54,

October 2003.

Malone, Thomas W., Kevin Crowston, and George A. Herman, editors. Organizing Business
Knowledge: The MIT Process Handbook. MIT Press, Cambridge, MA, 2003.

Mani, Anbazhagan and Arun Nagarajan. Understanding quality of service for web ser-

vices, January 2002. http://www-106.ibm.com/developerworks/webservices/library/ws-

quality.html.

Manocha, Nitish, Diane J. Cook, and Lawrence B. Holder. Structural web search using a

graph-based discovery system. ACM Intelligence, 12(1):20–29, Spring 2001.

Marsh, Steven P. Formalising Trust as a Computational Concept. PhD thesis, Department of

Computing Science and Mathematics, University of Stirling, April 1994.

Martin, Bruce and Bashar Jano. WBXML: WAP binary XML content format, 1999.

http://www.w3.org/ TR/ wbxml.

Maximilien, E. Michael and Munindar P. Singh. Conceptual model of Web service reputation.

ACM SIGMOD Record, 31(4):36–41, December 2002.

McBride, Brian. Jena: A semantic Web toolkit. IEEE Internet Computing, 6(6):55–59,

November 2002.

McCarthy, John. Ascribing mental qualities to machines. In Ringle, Martin, editor, Philo-
sophical Perspectives in Artificial Intelligence, pages 161–195. Harvester Press, Brighton,

UK, 1979.

McFadzean, David, Leigh Tesfatsion, and Deron Stewart. A computational laboratory for

evolutionary trade networks. IEEE Transactions on Evolutionary Computation, 5(5):546–

560, October 2001.

Melnik, Sergey and Stefan Decker. A layered approach to information modeling and inter-

operability on the Web, 2000. www-db.stanford.edu/ ˜melnik/ pub/ sw00/.

Metz, Cade. Testing the waters, November 2001. http://www.pcmag.com/ article2/

0,4149,62217,00.asp.

Meyer, Bertrand. .NET is coming. IEEE Computer, 34(8):92–97, August 2001.

Miller, George A. WordNet: A lexical database for English. Communications of the ACM,

38(11):39–41, November 1995.



530 Bibliography

Noy, Natalya Fridman and Deborah L. McGuinness. Ontology development 101: A guide

to creating your first ontology. TR KSL-01-05 and SMI-2001-0880, Stanford Knowledge

Systems Laboratory and Stanford Medical Informatics, March 2001.

Paolucci, Massimo, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. Semantic match-

ing of Web services capabilities. In Proceedings of the First International Semantic Web
Conference (ISWC), June 2002.

Parunak, H. Van Dyke. Visualizing agent conversations: Using enhanced Dooley graphs

for agent design and analysis. In Proceedings of the 2nd International Conference on
Multiagent Systems, pages 275–282. AAAI Press, 1996.

Pearl, Judea. Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference.

Morgan Kaufmann, San Mateo, California, 1988.

Pierre, John. Practical issues for automated categorization of Web sites. In Proceedings of
the ECDL Workshop of Semantic Web, 2000.

Porter, Michael E. Competitive Advantage. Free Press, New York, 1985.

Python. CSV file reading and writing, February 2004. http://www.python.org /dev /doc /devel

/lib /module-csv.html; versions 2.3 and 2.4.

Rachlevsky-Reich, Benny, Israel Ben-Shaul, Nicholas Tung Chan, Andrew W. Lo, and

Tomaso Poggio. GEM: A global electronic market system. Information Systems, 24(6):

495–518, 1999.

Rosenschein, Jeffrey S. and Gilad Zlotkin. Designing conventions for automated negotiation.

AI Magazine, pages 29–46, Fall 1994a.

Rosenschein, Jeffrey S. and Gilad Zlotkin. Rules of Encounter. MIT Press, Cambridge, MA,

1994b.

Russell, Stuart J. and Peter Norvig. Artificial Intelligence: A Modern Approach, Second
Edition. Pearson Education, Inc., Upper Saddle River, NJ, 2003.

Saltzer, Jerome H., David P. Reed, and David D. Clark. End-to-end arguments in system

design. ACM Transactions on Computer Systems, 2(4):277–288, November 1984.

Schulzrinne, Henning. Internet telephony. In Singh [2004]. Chapman Hall & CRC Press,

2004.

Schwarz, Reinhard and Friedemann Mattern. Detecting causal relationships in distributed

computations: In search of the holy grail. Distributed Computing, 7(3):149–174, 1994.

Sen, Sandip. Reciprocity: a foundational principle for promoting cooperative behavior among

self-interested agents. In Proceedings of the 2nd International Conference on Multiagent
Systems, pages 322–329. AAAI Press, Menlo Park, 1996.



Bibliography 531

SET. Secure electronic transactions (SET) specifications, 2003. http://www.setco.org/ set

specifications.html.

Shafer, Glenn. A Mathematical Theory of Evidence. Princeton University Press, Princeton,

1976.

Shapiro, Jonathan S., Jonathan M. Smith, and David J. Farber. EROS: A fast capability

system. In Proceedings of the 17th ACM Symposium on Operating Systems Principles
(SOSP), pages 170–185, New York, 1999. ACM Press.

Singh, Munindar P. Agent communication languages: Rethinking the principles. IEEE Com-
puter, 31(12):40–47, December 1998.

Singh, Munindar P. Synthesizing coordination requirements for heterogeneous autonomous

agents. Autonomous Agents and Multi-Agent Systems, 3(2):107–132, June 2000.

Singh, Munindar P. Distributed enactment of multiagent flows. TR 2003-12, North Carolina

State University, May 2003.

Singh, Munindar P., editor. Practical Handbook of Internet Computing. Chapman Hall &

CRC Press, Baton Rouge, 2004.

Sirbu, Marvin A. Credits and debits on the Internet. IEEE Spectrum, 34(2):23–29, February

1997.

Sowa, John F. Knowledge Representation: Logical, Philosophical, and Computational Foun-
dations. Brooks/Cole, Pacific Grove, CA, 2000.

Tate, Austin and Jeff Dalton. O-plan: a common lisp planning web service. In Proceedings
of the International Lisp Conference, New York, October 2003.

Thesiger, Wilfred. Arabian Sands. Penguin, London, 1959.

Timmers, Paul. Electronic Commerce: Strategies and Models for Business-to-Business Trad-
ing. Wiley & Sons, 1999.

Traiger, Irving L. Trends in systems aspects of database management. In Proceedings of the
2nd International Conference on Databases (ICOD-2, pages 1–21. Wiley & Sons, 1983.

Trastour, David, Claudio Bartolini, and Javier Gonzalez-Castillo. A semantic Web approach

to service description for matchmaking of services. In Proceedings of the International
Semantic Web Working Symposium (SWWS), July 2001.

Tsvetovatyy, Maksim, Maria L. Gini, Bamshad Mobasher, and Zbigniew Wieckowski.

MAGMA: An agent-based virtual market for electronic commerce. Journal of Applied
Artificial Intelligence, 11(6):501–523, 1997.



532 Bibliography

Tuecke, Steven, Karl Czajkowski, Ian Foster, Jeffrey Frey, Steve Graham, and Carl Kessel-

man. Grid service specification. Draft 2/15/2002, University of Chicago, 2002.

www.globus.org/research/papers/gsspec.pdf.

UDDI. UDDI technical white paper, 2000. www.uddi.org/pubs/Iru-UDDI-Technical-White-

Paper.pdf.

Venkatraman, Mahadevan and Munindar P. Singh. Verifying compliance with commitment

protocols: Enabling open Web-based multiagent systems. Autonomous Agents and Multi-
Agent Systems, 2(3):217–236, September 1999.

Vinoski, Steve. Web services interaction models, part I: Current practice. IEEE Internet
Computing, 6(3):89–91, May 2002.

WfMC. Workflow management coalition (WfMC) reference model. http:// www.aiai.ed.ac.uk

/WfMC/, 1995.

Wiederhold, Gio. Ontology algebra. In Proceedings of the ICOT International Symposium on
Fifth Generation Computer Systems: Workshop on Heterogeneous Cooperative Knowledge
Bases, 1994.

Wiegold, C. Frederic, editor. The Wall Street Journal Lifetime Guide to Money. Hyperion,

New York, 1997.

Wooldridge, Michael. A knowledge-theoretic semantics for concurrent METATEM. In Intel-
ligent Agents III: Agent Theories, Architectures, and Languages, pages 357–374, 1997.

Wooldridge, Michael, Nicholas R. Jennings, and David Kinny. The Gaia methodology for

agent-oriented analysis and design. Autonomous Agents and Multi-Agent Systems, 3(3):

285–312, 2000.

WSI. Web services interoperability organization, 2004. http://www.ws-i.org.

Yolum, Pınar and Munindar P. Singh. Emergent properties of referral systems. In Proceedings
of the 2nd International Joint Conference on Autonomous Agents and MultiAgent Systems
(AAMAS), pages 592–599. ACM Press, July 2003.

Yu, Bin and Munindar P. Singh. An evidential model of distributed reputation management.

In Proceedings of the 1st International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), pages 294–301. ACM Press, July 2002.



Index

.NET, 45, 57, 62, 64, 67, 69, 180, 207, 308,

468

ADS, 66

MSIL, 65

MSMQ, 66

ODBC, 66

webservice, 65

wsdl.exe, 57

A. M. Best, 98, 99, 117

Abstract Syntax Notation, 500

accessibility, 435

ACID properties, 195, 214, 242

atomicity, 196, 203, 214

consistency, 196, 203, 214

durability, 196, 203, 214

isolation, 196, 203, 214

ACL, 348, 381

communicative act, 377, 382–384, 480,

481

communicative act type, 382

semantics

mentalist approaches, 383

public approaches, 383

sincerity conditions, 383

speech act, 383

speech act theory

illocution, 382

locution, 382

perlocution, 382

action, 280

activation service, 234

Active Directory Service, 66

Active Server Pages, 18

adapters

invocation-based, 180

advertisements, 494

agent, 93

autonomy, 312

BDI architecture, 313, 355

goal, 314

perception, 314

plan, 314

beliefs, 309

broker, 93

desires, 309

environment, 308

continuous, 309

deterministic, 308

discrete, 309

dynamic, 309

episodic, 309

fully observable, 308

multiagent, 309

partially observable, 308

sequential, 309

static, 309

stochastic, 308

intentions, 309

knowledge, 309

mediator, 93

persistence, 312

proactive, 312

reactive architecture, 313

role, 344

broker agent, 345

execution agent, 346

533



534 Index

mediator agent, 346

ontology agent, 347

resource agent, 346

security agent, 347

user agent, 345

workflow agent, 346

self-interested, 422

sociability, 313

tasking, 356

translator, 93

unique identity, 312

agent communication language, see ACL

agent management system, 347

agent message transport services, 348

DF, 348

directory facilitator, 348

mobility, 348

white pages, 347

yellow pages, 348

agent-oriented software engineering, 441

agents, 179

agreement

envy free, 372

fair, 372

agreements, 17

AIMS, 74

Alt, 124

amazon.com, 4, 17

American Bar Association, 378

American Wire Gauge, 109

AND-OR graph, 135, 442, 443

anesthesia information management system,

74

antonymy, 164

AOL, 494

AOSE, 441

Apache, 55, 57

Apache eXtensible Interaction System, see
Axis

Apache Tomcat, 68

arm’s length interactions, 434

articulation axioms, 94

Asimov, 490

ASN.1, 500

ASP, 18

asynchronous invocation, 180

asynchronous invocation with immediate

acknowledgment, 181

asynchrony, 187

attribute, 501

AUML, 441

autonomic computing, 75

availability, 435

AWG, 109

Axis, 55, 507

B2B, 519

B2C, 519

Backus Naur Form, see BNF

Bag, 123

basic probability assignment, 416

Basic Profile version 1.0, 15

BBBOnLine, 428

BEA System, 81

BEA WebLogic Server, 68

behavior

finite-state-machine, 445

one-shot, 445

benevolence, 492, 493

Berners-Lee, 4

bizTalk, 447

Bluetooth, 188, 189

BNF, 119, 308, 311

BPEL, see BPEL4WS

bpel, 517

BPEL4WS, 14, 15, 179, 232, 246, 247, 256,

261, 519

partners, 256

BPMI, 325

BPMI.org, 15

BPML, 15, 232, 261, 325, 519

BPSS, 232, 262, 272, 274, 519

BP 1.0, 15

BTP, 179, 242

atoms, 242



Index 535

cohesions, 242, 243

business entities, 32

Business Information Entity, see UBL, BIE

Business Process Execution Language for

Web Services, see BPEL4WS

Business Process Management Initiative, 15

Business Process Modeling Language, see
BPML

Business Process Specification Schema, see
BPSS

business protocols, 92, 256, 364, 388

Business Transaction Protocol, see BTP

callback, 180

CAP Principle, 223

capabilities, 433

Captain Bligh, 372

catalog, 183

categorical imperative, 489

categories, 113

caution, 434

CF, 411

active user, 411

cheap pseudonyms, 418

choreography, 17

CICS, 81

classes, 113

classification

completeness, 110

nonredundancy, 110

CLR, 64

CNP, 385, 395, 443

CoABS, 445, 469

CoABS Grid, 358

Cobol, 55

cognitive economy, 110

collaboration, 447

collaborative filtering, see CF

comma-separated value, 500

commitments, 364

assign, 366

base-level, 365

cancel, 366

create, 366

creditor, 365

debtor, 365

delegate, 366

discharge, 366

manipulability, 365

metacommitments, 366

multiagency, 365

operations, 366, 481

release, 366

scope, 365

social context, 365

Common Language Runtime, 64

Common Logic, 274, 336

common logic, 166

Common Object Request Broker

Architecture, see CORBA

Common Warehouse Metamodel, 66

compensation, 217, 218, 240, 257, 258, 287,

325, 368

competency, 438

completeness, 311

compliance, 435

composite services, 79

composition, xxi, xxiv, 79, 80, 82, 88, 89,

208, 281, 282, 300, 307, 308,

316–318, 325, 326, 328, 338, 339,

368, 402, 404, 445, 446, 495

procedural, 316

compositional atomicity, 209

compositional semantics, 311

compositional serializability, 210, 211, 213,

216, 219, 221

concepts, 108, 113

abstract, 108

actual, 108

concrete, 108

coordinate, 102

imaginary, 108

intangible, 108

prototypical, 108

real, 108



536 Index

subordinate, 102

superordinate, 102

tangible, 108

conceptualization, 108

cons pair, 124

constraints, 109

business rules, 109

cardinality, 109

higher-order, 109

temporal existence, 109

content-based filtering, 411

continuous double auction, 401, 429

Contract Net Protocol, see CNP

contracts, 17

convention, 370

conversation, 16, 226

Conversation Definition Language, 226

cooperation, 7, 179, 442

coordinate system

polar, 111

rectangular, 111

coordination protocol service, 234

coordination service, 234

CoordinationContext, 234

CreateCoordinationContext, 234

coordinator, 234

CORBA, 14, 67, 82, 92, 181, 182, 189, 308,

348, 382, 468, 519

bridging mechanism, 186

concurrency control, 185

event, 182, 185

externalization, 185

IIOP, 82, 182, 348, 382

naming, 185

object life cycle, 185

ORB, 82

OTS, 206

property, 185

query, 185

relationship, 185

trader, 185

transaction, 185

CPP

delivery channel element, 267

service binding element, 267

transport element, 267

CSV, 500

Cyc, 165

D-U-N-S, 38

DAML, 104, 160

DARPA Agent Modeling Language, see
DAML

data and structure, 179

database, 193

database management system, 193

DBMS, 193

dc, 517

DCOM, 180, 468

deduction, 312

deferred synchronous invocation, 181

deontic logic, 363, 364

deontological theories, 489

dependency, 218, 284

description logic, 103, 140, 143, 328

dimensions of abstraction, 88, 91, 96

data, 96

policy, 97

process, 97

exception handling, 97

flow, 97

preferences, 97

structure, 96

directed obligations, 364

directories, 92

directory service, 30

discovery, 17, 519

dissimilar software, 471

Distributed Component Model, 180

distributed JTMS, 352

distributed object management, see ETM,

DOM

DNS, 515

Document Object Model, 57

Document Type Definition, 505



Index 537

document-centric view, 77

DOM, 57

Domain Name Service, 515

DTMS, 352

Duff & Phelps, 98–101

Dun & Bradstreet, 428

DUNS number, see D-U-N-S

durability, 210

dynamism, 179

EAI, 61, 90

eBay, 410

ebXML, 14–16, 31, 232, 262, 519

Ecma International, 32

eCo, 425

economic rationality, 376

economics

friction, 421

EDI, 73, 92, 273, 378, 452, 500, 519

egoism, 489

EI, 62

EII, 61

EJBs, 63

Electronic Business eXtensible Mark-up

Language, see ebXML

electronic business XML, see ebXML

Electronic Data Interchange, see EDI

Encina, 81

end-to-end principle, 493

enterprise application integration, see EAI

enterprise information integration, 61

enterprise integration, 62

Enterprise Java Beans, 63

Enterprise Resource Planning, see ERP

equivalence, 176

ERP, 452, 463

ETM

DOM, 219, 222

multitransaction, 219

top transactions, 219

event complementation, 285

event service, 185

Exceptions

management, 449

pragmatic, 449

programming, 447

semantic, 449

system, 449

executable business processes, 256

eXtensible Access Control Markup

Language, see XACML

eXtensible Markup Language, see XML

eXtensible Stylesheet Language, see XSL

extranets, 7

extrinsic, 458

facets, 113

Federal Communications Commission, 12

federation of equals, 187

finding and binding, 179

FIPA, 15, 381, 384, 395, 445

FIPA ACL, 344

FIPA-OS, 357, 445

fish-market protocol, 393

flexible configurability, 77

flow, 284

Flowmark, 247

fluent, 280

formatting, 179

Foundation for Intelligent Physical Agents,

see FIPA

frames, 103

FreeNet, 428

functions, 108

Gaia, 441

generalization, 176

gerunds, 112

Gnutella, 428

goal graph, 442

Google, 17

granularity, 77

grid, 189, 348

Globus Toolkit, 189

grid computing, 75

grid services, 75



538 Index

grid computing, 434

Groove, 450

Halting Problem, 490

hedonism, 489

HMS Bounty, 372

holonymy, 164

honesty, 436

Horn clauses, 333, 334

HTTP, 5, 9, 10, 14, 15, 20, 21, 29, 30, 44,

49, 50, 92, 179, 348, 382

DELETE, 53

GET, 22, 53

POST, 22, 51, 53

PUT, 53

hypernymy, 164

Hypertext Transfer Protocol, see HTTP

hyponymy, 164

hypothetical imperative, 489

IANA, 515

IBM, 15, 81

CommercePOINT, 454

IBM WebSphere, 68

ideal

utilitarianism, 489

ideal utilitarianism, 489

idempotency, 54

IDL, 182, 519

IEEE 802.11x, 188, 189

IEEE Standard Upper Ontology, 166

IETF, 14, 254

Immanuel Kant, 489

iMode, 494

implementation neutrality, 76

individuals, 113

inference, 152, 311

information navigation, 409

injective, 151

instances, 113

integration, 61

integrity, 435

intelligent network, 494

intentional stance, 355

Interface Definition Language, see IDL

interleaving, 284

International Standards Organization, 500

Internet Assigned Numbers Authority, see
IANA

Internet Engineering Task Force, see IETF

Internet Inter-ORB Protocol, see CORBA,

IIOP

Internet Protocol, 9

interoperation, 61

layers, 91

ontology-based, 93

interpretation, 108

intrinsic, 458

inverse, 106

IOPE, 319–321, 325, 337, 401, 403

iope, 402

IP, 9

isA, 106

ISO, 500

ISO 11179, 42

ISO 3166, 32, 38

ISO 8601, 265

J2EE, 62, 63, 66–69, 180, 207

JNDI, 63

JADE, 357

Jade, 445

Java

RMI, 82, 308, 468

Java 2 Platform, Enterprise Edition, see
J2EE

Java API for XML Messaging, 56

Java API for XML Registries, 57

Java API for XML-Based RPC, 56

Java Connection Architecture, see JCA

Java Database Connectivity, see JDBC

Java Electronic Commerce Framework, see
Sun Microsystems, JECF

Java Message Service, see JMS

Java Naming and Directory Interface, see
J2EE, JNDI



Index 539

Java Server Pages, see JSP

JAX-RPC, 56

JAXM, 56

JAXP, 56, 57, 64

JAXR, 57

JBoss, 68

JCA, 63, 64, 180

JDBC, 59, 63

Jena, 131

Jini, 188, 468

JavaSpaces, 188

matchmaker, 188

JMS, 63, 64

JNDI, 64

joint action, 370

Joy’s Webs

far web, 13

here web, 13

near web, 13

weird web, 13

JSP, 18, 63

keywords, 101

KIF, 166, 274, 500

Knowledge Interchange Format, see KIF

knowledge representation

connectionist, 103

discrete, 103

Laws of Robotics, 490

legacy systems, 67

legal concepts

claim, 363

correlate, 362

disability, 363

duty, 363

exposure, 363

immunity, 363

liability, 363

power, 363

privilege, 363

Legal XML, 378

location-based service, 494

logic, 311

long lifetime, 77

Long-Running (Business) Transaction, 258

loose coupling, 76

lost update problem, 198

Lotus Notes, 450

LRT, 258

mappings, 94

market mechanisms, 443

MDA, 14, 66

CWM, 66

MOF, 66

PIM, 66

PSM, 66

XMI, 66

MDBs, 63

means-ends reasoning, 309

members, 113

meronymy, 164

Message Oriented Middleware, 82

Message-Driven Beans, 63

messaging, 74, 92, 179

Meta Object Facility, 66

metacomputing, 75

metadata registry, 62

microeconomic

rationalism, 489

microeconomic rationalism, 489

Microsoft, 15, 494

Site Server Commerce Edition, 454

Microsoft .NET Framework, see .NET

Microsoft Access, 59, 223

Microsoft Intermediate Language, 65

Microsoft MapPoint, 17

Microsoft Message Queue, 66

Microsoft Transaction Server, 66

Model-Driven Architecture, see MDA

Mojo Nation, 428

MOM, 82

Moody’s, 96, 98, 99, 117

MTS, 66

multiagent planning, 443



540 Index

multiagent systems, 179

mustUnderstand, 43

mutual

dependence, 493

mutual dependence, 493

MySQL, 59

N-Triples notation, 127

NAICS, 31, 38

narrow interfaces, 434

Negotiation

cooperation, 377

negotiation, 372, 443

agent-centered, 374

compromise, 376

conflict, 376

deal, 376

distribution, 375

efficiency, 375

environment-centered, 374

monotonic concession protocol, 375

negotiation set, 376

optimal strategy, 375

simplicity, 375

stability, 375

symmetry, 375

task-oriented domain, 375

unified negotiation protocol, 376

utility, 376

Zeuthen strategy, 375

nested transaction, 203

NIST, 325

nominalization, 112

North American Industry Classification

System, see NAICS

NorthSouth Carolina University, 49

Novell exteNd, 68

NSCU, 49

NTT DoCoMo, 494

O-Plan, 326

OAG, 447

OASIS, 14, 82, 164, 277, 447, 479

UBL Technical Committee, 164

Object Management Group, see OMG

object request broker, see ORB

Object Transaction Services, 206

objects, 11

obligation, 364

obligations, 363

ODBC, 59

OEM, 104, 105

OGSA, 189

OIL, 104, 105, 160

OilEd, 175

OMG, 14, 66, 182

one-to-one, 151

OnSale Exchange, 410

onto, 151

ontologies, 102

ontology, 92, 93

aggregation, 103

antisymmetry, 107

asymmetric, 108

asymmetry, 107

basic typing, 104, 105

cardinality constraint, 105

class attribute, 105

class attributes, 105

constraints: cardinality, 105

constraints: ordering, 105

frames, 103

generalization and inheritance, 102

instance attribute, 105

instance attributes, 105

instantiation, 103

inverses, 106

irreflexive, 108

irreflexivity, 107

isA, 107

isPartOf, 106, 107

ispartof, 161

linear order, 107

linearity, 107

meronomy, 107



Index 541

multiple inheritance, 104, 105

not subclass, 105

object id, 105

ordered relationship, 105

orthogonal features, 104

partial order, 107

partition, 104

partitions, 105

precedence, 107

reification, 105, 112, 123, 124, 127

relationships, 105

relationships: binary, 105

relationships: n-ary, 105

single inheritance, 104

subclass, 105

subsumption, 103

total order, 107

transitivity, 107

tree model property, 158

Ontology Inference Layer, 160

Ontology Interchange Language, see OIL

ontology mapping

extensional approach, 95

intensional approach, 95

open, 7

Open Database Connectivity, see .NET,

ODBC

open environments, 7

architecture, 10

autonomy, 8

coordinated, 10

dynamism, 10

heterogeneity, 9

Open Grid Service Architecture, 189

Oracle, 223

Internet Commerce Server, 454

Oracle Developer, 55

ORB, 182

orchestration, 17

Organization for the Advancement of

Structured Information Standards,

see OASIS

organizational structure, 443

organizations

capabilities, 361

lifetime and persistence, 361

perception, 361

reasoning, 361

shared context, 361

OWL, 92, 104, 105, 120, 137, 179, 336

AllDifferent, 149

allValuesFrom, 145, 155

anonymous class, 144

anonymous classes, 143

cardinality, 148

Class, 113, 141, 440

Collection, 148

complementOf, 143, 155

DataRange, 142, 155

datatype properties, 141

DatatypeProperty, 141

DatatypeRestriction, 144

dialects, 140

differentFrom, 149

disjointWith, 150, 155

distinctMembers, 149

equivalentClass, 149, 155

equivalentProperty, 142, 150

FunctionalProperty, 151

hasValue, 146, 155

imports, 172

intersectionOf, 143

InverseFunctionalProperty, 151

inverseOf, 142, 150

maxCardinality, 147

memberOf, 148

minCardinality, 147

Nothing, 141, 153

object properties, 141

ObjectProperty, 141, 150, 151

ObjectRestriction, 144

oneOf, 144, 155

onProperty, 145, 440

Ontology, 138, 174



542 Index

OWL DL, 140, 335

OWL Full, 140

OWL Lite, 140

priorVersion, 174

property restriction, 144

resource, 153

Restriction, 144, 145

sameAs, 148

sameIndividualAs, 148

someValuesFrom, 145, 155

species, 140

SymmetricProperty, 151

Thing, 141, 143

TransitiveProperty, 150

unionOf, 143, 155

versionInfo, 174

owl, 517

OWL DL, 155

OWL for Services, see OWL-S

OWL Full, 155

OWL Lite, 155

OWL Services, see OWL-S

OWL Validator, 160

OWL-S, 104, 179, 246, 318, 401

atomic processes, 320

composite processes, 320

effects, 319

inputs, 319

outputs, 319

preconditions, 319

service grounding, 319, 325

service model, 319, 320

service profile, 319

simple processes, 320

owls, 517

P2P, 4

PaperExchange, 454

Pareto Optimal, 376

part-of, 176

partial function, 151

Partner Interface Process, see RosettaNet,

PIP

PDDL, 326

PDP, 479

Pearson correlation, 411

peer-to-peer, 4

PEP, 479

performance, 435

Petri Nets, 15

pi calculus, 15

Plan Domain Description Language, 326

plan recognition, 310

planning, 318, 326

platform-independent model, 66

platform-specific model, 66

POLA, 481

policy, 179, 371

Policy Decision Point, 479

Policy Enforcement Point, 479

polling, 180

potential causality, 393

pragmatic, 5

Pragmatic Web, 5

precision, 403

price, 436

pricing strategy

derivative, 427

game-theoretic, 427

myopically optimal, 427

PRIMA FACIE duties, 489

principle of least authority, 481

process, 179, 519

choreography, 246

collaboration, 246

orchestration, 246

Process Specification Language, see PSL

Prolog, 328

proof, 311

protocol, 519

protocols, 92, 377

Protégé, 113, 160, 175

PSL, 105, 179, 262, 274, 279, 280, 325

ActivityOccurrences, 275

beginOf, 276



Index 543

concurrency, 277

endOf, 276

equality, 276

existingFor, 276

existsAt, 275

greaterThan, 276

instanceOf, 275, 276

lessThan, 276

Objects, 275

occurrenceOf, 275

occurringFor, 276

occursAt, 276

ordering, 277

participatesIn, 275

partOf, 275

resource, 277

subactivityOf, 275

subclass, 275

subset, 276

TimePoints, 275

pub-sub systems, 182

publish and subscribe, 182

topics, 182

QoS, 401, 433, 435

quality of service, see QoS

queues, 182

RACER, 160

RDF, 92, 104, 105, 119, 121, 137, 179, 336

1, 124

about, 123, 126

Alt, 124

Bag, 123

collections, 124

containers, 123

datatype, 126

Description, 126

first, 124

ID, 123

lexical space, 127

lexical to value mapping, 127

li, 124

List, 124

Literal, 130

literal, 121

nil, 124

nodeID, 125

object, 121

object, 124

parseType, 127

predicate, 121

predicate, 124

Property, 121

RDF, 125, 138

Resource, 121

resource, 121

resource, 126

rest, 124

Seq, 123

Statement, 124

statements, 121

subject, 121

subject, 124

type, 123, 129

value, 149

value space, 127

XML serialization, 122

XMLLiteral, 126

rdf, 517

RDF Schema, see RDFS

RDFS, 128, 137, 179

Class, 129, 141

comment, 130, 440

Container, 130

Datatype, 130, 142

domain, 130, 142

extension, 129

isDefinedBy, 440

label, 130

Literal, 130

range, 130, 142

Resource, 130

seeAlso, 130, 440

subClassOf, 129, 144, 149



544 Index

subPropertyOf, 130, 142

rdfs, 517

reasoning

defeasible, 160

nonmonotonic, 160

recall, 403

reciprocal

dependence, 493

reciprocal dependence, 493

reciprocity, 493

reconfigurability, 434

referrals, 419

acquaintances, 413

expertise, 413

neighbors, 414

sociability, 413

registration service, 234

registry

ebXML, 57

ISO 11179, 57

UDDI, 57

Rei, 371, 481

cancel, 481

delegation, 481

request, 481

revocation, 481

reinforcement, 171

relation schema, 133

relationships, 108

causation, 108

generality, 109

instantiation, 109

meronomy, 109

ownership, 108

part-whole, 109

relaxed transaction processing, 344

reliability, 435

Remote Method Invocation, see Java, RMI

remote procedure calls, 77

Representational State Transfer, see REST

residuation, 289

Resource Description Framework, see RDF

REST, 49

characteristics

caching, 52

client-server, 52

code-on-demand, 52

layered components, 52

statelessness, 52

uniform interface, 52

representation, 49

resources, 49

user agent, 54

RMI

Java, 188

role restrictions, 113

roles, 113, 433

RosettaNet, 447

PIP, 262, 272

RPC, 92, 519

RPC-centric view, 77

RuleML, 333, 336

rules

antecedent, 330

consequent, 330

S&P, 96, 98, 99, 101

SAAJ, 56

safety, 54

saga, 218, 219, 222, 240, 258, 301, 395

SAML, 477, 520

SAP, 465

mySAP Analytics, 465

mySAP Corporate Services, 465

mySAP Financials, 465

mySAP Human Resources, 465

mySAP Operations, 465

SAX, 57

schema, 520

scientific computing, 75

screen-scraping, 4

Section 5 Encoding, 29

security, 435

Security Assertion Markup Language, see
SAML



Index 545

selection, 92

semantic bridge, 168

semantic network, 93

semantic searching, 41

Semantic Web, 4

Semantic Web Rule Language, see SWRL

semantics, 179

Seq, 123

servents, 4

service, 520

service community, 413

principals, 413

service descriptions and bindings, 16

service level agreement, see SLA

service-oriented architecture, see SOA

services, 11

servlets, 63

Session Initiation Protocol, 14

SETI, 428

SGML, 500

SHOE, 104, 105

short message service, 12

significant events, 283, 284

Simple API for XML, 57

Simple Network Management Protocol, 466

Simple Object Access Protocol, see SOAP

SIP, 14, 179

situation, 280

situation calculus, 280

skeleton, 204, 283

SLA, 83, 372

slots, 113

SMS, 12

SMTP, 179

SNMP, 466

SOA, 76, 89

SOAP, 15, 19, 45, 56, 92, 136, 179, 384,

468, 520

body, 24

detail, 24

fault, 24

faultactor, 24

faultcode, 24

faultstring, 24

intermediary

active intermediary, 25

forwarding intermediary, 25

MIME, 42

mustUnderstand, 24

nodes, 23

intermediary, 23

sender, 23

ultimate recipient, 23

role, 24

roles, 23

next, 23

none, 23

ultimateReceiver, 23

section 5 encoding, 25

SOAP Section 5, 58

SOAP faultcode

client, 24

mustunderstand, 24

server, 24

versionmismatch, 24

SOAP with Attachments API for Java, 56

soapenc, 517

soapenv, 517

social commitments, see commitments

social information filtering, 411

SoCom, 368, 372, 401, 404, 406

abstract, 405

broker, 405

manager, 393

soundness, 311

specialization, 176

speech act theory, 382

Sphere of Commitment, see SoCom

SQL, 7, 31, 63, 89, 92, 308, 328, 344, 346

Standard and Poor’s, see S&P

Standard Generalized Markup Language,

500

stateful resources, 190

STRIPS, 326



546 Index

Structured Query Language, see SQL

subelements, 501

subject matter experts, 436

Sun Microsystems

JECF, 454

SUO, 166

surjective, 151

SWAP, 254

SWRL, 333, 334

Sybase EAServer, 68

symmetric client-server, 187

synchronous invocation, 180

task decomposition, 387, 441, 443

task distribution, 443

taxa, 102

taxonomies, 102

taxonomy, 107

TCP/IP, 92

teams, 77, 368

technical models, 32

teleological theories, 489

The Trust Game, 429

theory of evidence, 415

Bayesian, 415

BPA, 416

Dempster-Shafer, 415

frame of discernment, 416

thesauri, 102

ticket, 211

tickets, 223

TMS, 350

assumption-based TMS, 350

coherence, 350

justification-based TMS, 350

well-foundedness, 350

tns, 517

total function, 151

TP monitor, 81, 206, 223

transaction, 179, 193

2PC, 204, 209–212, 214, 216, 241, 242,

283, 360

coordinator, 204

2PL, 200, 202, 203, 209, 221

conservative 2PL, 202

growing phase, 202

shrinking phase, 202

strict 2PL, 202, 209, 212, 213, 219,

221

atomic transaction, 240

business activity, 240

cascading aborts, 200

closed, 217

concurrency control, 203

conflict, 197

distributed transaction, 203

extended model, 216

compensation, 217

contingency, 217

redo, 216

retry, 216

vital subtransaction, 217

flat transaction, 203

lock, 200

exclusive, 201

shared, 201

lock manager, 200

model

Flex transaction, 218

open, 217

operation types, 196

abort, 196

commit, 196

read, 196

rollback, 196

write, 196

reads from, 200

recovery, 203

schedule, 196

conflict equivalent, 199

nonrecoverable, 200

recoverable, 200

rigorous, 200, 202

serial, 199

serializable, 196, 199, 202



Index 547

strict, 200, 202

timestamp ordering, 212

undo, 240

WS-AtomicTransaction, 240

WS-BusinessActivity, 240

transaction processing monitor, see TP

monitor

transaction protocols, 17

Transarc, 81

transport, 179

Tropos, 441

TRUSTe, 428

truth maintenance system, see TMS

Turing machines, 490

Tuxedo, 81

two-phase commit, see transaction, 2PC

two-phase locking protocol, see transaction,

2PL

UBL, 14, 164, 378

BIE, 164

UCS, 9, 500

UCS Transformation Format, see UTF-8

UDDI, 14, 15, 20, 31, 45, 46, 92, 136, 179,

319, 520

businessEntity, 32

businessKey, 40

D-U-N-S, 31, 41

find business, 41

green pages, 32

Inquiry API, 32, 41

keyValue, 41

Publish API, 32, 41

serviceKey, 40

Thomas Register, 31

tModel, 32, 45

white pages, 31

yellow pages, 31

uddi, 517

UMDL, 426

UML, 14, 34, 59, 66, 91, 104, 105, 112, 113,

261, 336, 396

�invoke�, 262

�process� class, 262

�process� class attributes, 262

�receive�, 262

�reply�, 262

activity graph, 262

control flow, 262

hierarchical structure, 262

UMM, 262

UN/CEFACT, 15, 378

UN/CEFACT Modeling Methodology, 262

Unified Commerce Management, 454

Unified Modeling Language, see UML

Uniform Resource Identifier, see URI

Uniform Resource Locator, 515

Uniform Resource Name, see URN

United Nations Center for Trade Facilitation

and Electronic Business, see
UN/CEFACT

United Nations Standard Products and

Services Code, 32

Universal Business Language, see UBL

Universal Character Set, see UCS

Universal Description, Discovery, and

Integration, see UDDI

Universally Unique Identifier, 516

universe of discourse, 108

UNSPSC, 32

URI, 121, 515

optional fragment identifier, 516

schemes, 515

URI Reference, 516

URL, 515

URN, 418, 419, 515

UTF-8, 9, 500

utilitarianism, 489

utility, 422

utility computing, 75, 434

UUID, 516

validator, 509

value map, 96, 97

consistent inversion, 99

order preservation, 99



548 Index

totality, 99

value sets, 100

continuous, 100

dense, 100

discrete, 100

finite, 100

infinite, 100

unbounded, 100

VerticalNet, 454

virtual enterprises, 364, 368

virtual private networks, see VPNs

Visual Studio .NET, 55

vOWLidator, 160

VPNs, 7

W3C, 14, 226, 520

walled gardens, 494

Web Ontology Language, see OWL

Web service, 520

Web Service Agent Gateway, 384

Web Service Choreography Interface, see
WSCI

Web services

communication, 19

connection, 19

description, 19

discovery, 19

Web Services Business Process Execution

Language, 277

Web Services Conversation Language, see
WSCL

Web Services Description Language, see
WSDL

Web Services Distributed Management, 465

Web Services Flow Language, see WSFL

Web Services Interoperability Organization,

see WS-I

Web Services Invocation Framework, 57

Web Services Management Framework, see
WSMF

Web Services Metadata Exchange, 467

Web Services Resource Framework, see
WS-Resource Framework

WebOnto, 160, 175

Weiss, 98, 117

welfare

utilitarianism, 489

welfare utilitarianism, 489

WfMC, 15, 232, 251, 252, 254, 346, 520

actor, 251

process, 251

role, 251

service, 251

task, 251

workflow, 251

workflow, 247, 520

Workflow Management Coalition, see
WfMC

workflow management system, 520

World-Wide Web Consortium, see W3C

WS-AtomicTransaction, 179, 240

WS-BusinessActivity, 179, 240

WS-Chor, 226, 520

WS-Coordination, 179, 234, 240, 395, 520

application, 234

context, 234

protocol, 234

WS-I, 15, 57

profiles, 57

basic profile 1.0, 57

WS-MetadataExchange, 467

WS-Notification, 190

WS-Resource Framework, 189, 190

WS-Resource Lifetime, 191

WS-Resource Properties, 191

WS-Security, 521

WS-Transaction, 191, 395, 520

WSAG, 384

WSBPEL, 277

WSCI, 179, 231, 246, 520

WSCL, 226, 246, 520

WSDL, 15, 20, 26, 44–46, 179, 232, 317,

520

binding, 29

endpoint, 29



Index 549

message, 29

operation, 29, 325

operation types, 29

notification, 29

one-way, 29

request-response, 30

solicit-response, 30

port, 29

port type, 29

service, 29

type, 29

WSDL interface, 30

WSDL service implementation, 30

wsdl, 517

WSDM, 465

WSFL, 15, 247

WSIF, 57

WSMF, 465

WSRF, 189, see WS-Resource Framework

wsse, 517

XACML, 179, 479, 521

action, 480

provision, 480

subject, 480

target object, 480

XLANG, 15

Xlink, 507

XML, 5, 16, 92, 137, 179, 501

attributes, 501

base, 127

document, 501

DTD, 505

element, 501

empty tag, 501

ENTITY, 506

namespaces, 505

qualified name, 506

Saxon, 511

vocabulary, 502

well-formedness, 501

Xerces, 510

xmlns, 505

XSV, 510

XML 1.0, 507

XML Metadata Interchange, 66

XML Schema, 15, 26, 29, 507

XML Schema Validator, 510

XML 1.0, 15

XPath, 507

axis, 507

node test, 507

predicate, 507

XPDL, 232, 521

XPointer, 507

xsd, 517

xsi, 517

XSL, 503, 507

XSL Transformations, see XSLT

XSLT, 57, 503, 507, 511

XSLT, 395

Zeus, 358, 445


	Service-Oriented Computing
	Contents
	About the Authors
	Preface
	Note to the Reader
	Acknowledgments
	Figures
	Tables
	Listings
	I Basics
	1 Computing with Services
	1.1 Visions for the Web
	1.1.1 Semantic Web
	1.1.2 Peer-to-Peer Computing
	1.1.3 Processes and Protocols
	1.1.4 Pragmatic Web

	1.2 Precursors
	1.3 Open Environments
	1.3.1 Autonomy
	1.3.2 Heterogeneity
	1.3.3 Dynamism
	1.3.4 Challenges

	1.4 Services Introduced
	1.5 Using Services
	1.6 The Evolving Web
	1.7 Standards Bodies
	1.8 Overview of this Book
	1.9 Notes
	1.10 Exercises

	2 Basic Standards for Web Services
	2.1 XML
	2.2 SOAP
	2.2.1 Processing
	2.2.2 Body and Header
	2.2.3 Faults
	2.2.4 Message Exchange
	2.2.5 Limitations

	2.3 WSDL
	2.3.1 Concepts
	2.3.2 Operation Types
	2.3.3 Creating WSDL Models

	2.4 Directory Services
	2.5 UDDI
	2.5.1 Conceptual Model
	2.5.2 UDDI APIs

	2.6 Notes
	2.7 Exercises

	3 Programming Web Services
	3.1 Representational State Transfer
	3.2 A RESTful Example
	3.3 SOAP and REST
	3.4 Developing and Using Web Services
	3.4.1 Programming WSDL
	3.4.2 Java for Web Services
	3.4.3 .NET

	3.5 Web Services Interoperability
	3.6 Notes
	3.7 Exercises

	4 Enterprise Architectures
	4.1 Enterprise Integration
	4.2 J2EE
	4.3 .NET
	4.4 Model-Driven Architecture
	4.5 Legacy Systems
	4.6 Notes
	4.7 Exercises

	5 Principles of Service-Oriented Computing
	5.1 Use Cases
	5.1.1 Intraenterprise Interoperation
	5.1.2 Interenterprise Interoperation
	5.1.3 Application Configuration
	5.1.4 Dynamic Selection
	5.1.5 Software Fault Tolerance
	5.1.6 Grid
	5.1.7 Utility Computing
	5.1.8 Software Development

	5.2 Service-Oriented Architectures
	5.2.1 Elements of Service-Oriented Architectures
	5.2.2 RPC versus Document Orientation

	5.3 Major Benefits of Service-Oriented Computing
	5.4 Composing Services
	5.4.1 Goals of Composition
	5.4.2 Challenges for Composition

	5.5 Spirit of the Approach
	5.6 Exercises


	II Description
	6 Modeling and Representation
	6.1 Modeling to Enable Interoperation
	6.2 Integration versus Interoperation
	6.2.1 Declarative versus Procedural Representations
	6.2.2 Interoperation
	6.2.3 Layered View
	6.2.4 Interoperation Trends

	6.3 Common Ontologies
	6.3.1 Ontologies: A Definition
	6.3.2 A Shared Virtual World
	6.3.3 Dimensions of Abstraction
	6.3.4 Value Maps

	6.4 Knowledge Representations
	6.4.1 Relationships Represented
	6.4.2 Frames versus Descriptions
	6.4.3 Ontology Language Features

	6.5 Elementary Algebra: Relations
	6.6 Hierarchies
	6.6.1 Taxonomy
	6.6.2 Meronomy

	6.7 Modeling Fundamentals
	6.7.1 Perspectives for Conceptualization
	6.7.2 Guidelines for Conceptualization
	6.7.3 Modularity and Extensibility

	6.8 UML as an Ontology Language
	6.9 Alternative Terminology
	6.10 Notes
	6.11 Exercises

	7 Resource Description Framework
	7.1 Motivation for RDF
	7.2 RDF Basics
	7.2.1 Resources
	7.2.2 Literals
	7.2.3 Properties
	7.2.4 Statements

	7.3 Key Primitives
	7.3.1 Containers and Collections
	7.3.2 Reification
	7.3.3 Information Model

	7.4 XML Syntax
	7.5 The N-Triples Notation
	7.6 Storing RDF
	7.7 RDF Schema
	7.8 Vocabularies in RDF Schema
	7.9 Notes
	7.10 Exercises

	8 Web Ontology Language
	8.1 Getting Started with OWL
	8.2 OWL Dialects
	8.3 OWL Constructors
	8.3.1 Classes
	8.3.2 Properties
	8.3.3 Class Expressions
	8.3.4 Collections

	8.4 OWL Axioms
	8.4.1 Individuals
	8.4.2 Data Values
	8.4.3 Classes
	8.4.4 Properties
	8.4.5 Elementary Algebra: Functions

	8.5 OWL Inference
	8.6 OWL Dialects Compared
	8.7 An OWL Example
	8.8 Expressiveness
	8.8.1 Tree Model Definitions
	8.8.2 Constraints among Individuals
	8.8.3 Specialized Properties
	8.8.4 Defeasible Concepts

	8.9 Notes
	8.10 Exercises

	9 Ontology Management
	9.1 Language-Based Representations
	9.2 Standard Ontologies
	9.2.1 Universal Business Language
	9.2.2 Cyc
	9.2.3 IEEE Standard Upper Ontology

	9.3 Standardization versus Semantic Reconciliation
	9.4 Consensus Ontologies
	9.4.1 Analysis
	9.4.2 Reconciling Ontologies
	9.4.3 Correctness versus Relevance

	9.5 Ontology Imports and Versioning
	9.6 Notes
	9.7 Exercises


	III Engagement
	10 Execution Models
	10.1 Basic Interaction Models
	10.2 Messaging
	10.3 CORBA
	10.4 Peer-to-Peer Computing
	10.4.1 Going Beyond Client-Server
	10.4.2 Models of P2P Computing

	10.5 Jini
	10.6 Grid Computing
	10.7 Notes
	10.8 Exercises

	11 Transaction Concepts
	11.1 Transactions
	11.1.1 ACID Properties
	11.1.2 Schedules
	11.1.3 Locking
	11.1.4 Distributed Transactions

	11.2 Transactions over Composed Services
	11.2.1 Architecture for Composed Services
	11.2.2 Properties of Composed Transactions
	11.2.3 Difficulty with Compositional Serializability
	11.2.4 Achieving Compositional Serializability

	11.3 Limitations of Traditional Transactions
	11.4 Relaxing Serializability
	11.5 Extended Transaction Models
	11.5.1 Sagas
	11.5.2 Flex Transactions
	11.5.3 DOM Transactions

	11.6 Notes
	11.7 Exercises

	12 Coordination Frameworks for Web Services
	12.1 WSCL: Web Services Conversation Language
	12.2 WSCI: Web Service Choreography Interface
	12.3 WS-Coordination: Specifying Coordination
	12.3.1 Coordination Service
	12.3.2 Activation Service
	12.3.3 Registration Service

	12.4 Web Service Transaction Types
	12.5 BTP: Business Transaction Protocol
	12.6 Notes
	12.7 Exercises

	13 Process Specifications
	13.1 Processes
	13.2 Describing Dynamics with UML
	13.3 Workflows
	13.3.1 Exceptions
	13.3.2 Workflow Interoperability
	13.3.3 A Metamodel for Workflow
	13.3.4 Interoperation
	13.3.5 State of the Art
	13.3.6 Challenges Facing Workflow Technology

	13.4 Business Process Languages
	13.4.1 BPEL4WS
	13.4.2 BPML
	13.4.3 ebXML
	13.4.4 RosettaNet

	13.5 The Process Specification Language
	13.6 Notes
	13.7 Exercises

	14 Formal Specification and Enactment
	14.1 Scheduling with Dependencies
	14.2 Specifying Service Composition
	14.2.1 Coordination Relationships
	14.2.2 Example Scenario

	14.3 Residuation
	14.4 Symbolic Calculation of Residuals
	14.5 Distributed Scheduling
	14.5.1 Temporal Logic for Internal Reasoning
	14.5.2 Deriving Guards from Specifications
	14.5.3 Scheduling with Guards

	14.6 Formalization
	14.6.1 Evaluating Guards
	14.6.2 Simplification
	14.6.3 Formalizing Event Classes

	14.7 Discussion
	14.8 Notes
	14.9 Exercises


	IV Collaboration
	15 Agents
	15.1 Agents Introduced
	15.2 Agent Environments
	15.3 Agent Descriptions
	15.3.1 Reasoning
	15.3.2 Internal Architectures

	15.4 Abstractions for Composition
	15.5 Describing Compositions
	15.5.1 Representing and Reasoning about Action
	15.5.2 OWL-S

	15.6 Composition as Planning
	15.7 Rules
	15.7.1 Applying Rules
	15.7.2 Kinds of Rules
	15.7.3 Jess
	15.7.4 SWRL: Semantic Web Rule Language
	15.7.5 Complexity and Expressiveness
	15.7.6 Negation, Nonmonotonicity, Priorities

	15.8 Notes
	15.9 Exercises

	16 Multiagent Systems
	16.1 Applicability in Service-Based Systems
	16.2 Multiagent Architecture
	16.3 Agent Types
	16.4 Life Cycle Management for Agents and Multiagent Systems
	16.5 Consistency Maintenance
	16.5.1 Truth Maintenance Concepts
	16.5.2 Multiagent Truth Maintenance
	16.5.3 Consistency Maintenance for a Long-Lived Service
	16.5.4 Conflicts among Agents

	16.6 Modeling Other Agents
	16.7 Cognitive Concepts
	16.8 Applying the Cognitive Concepts
	16.9 Notes
	16.10 Exercises

	17 Organizations
	17.1 Contracts
	17.1.1 Legal Concepts
	17.1.2 Deontic Logic
	17.1.3 Commitments

	17.2 Spheres of Commitment
	17.2.1 Teams of Services
	17.2.2 Virtual Enterprises as Teams

	17.3 Achieving Collaboration via Conventions
	17.4 Policies
	17.5 Negotiation
	17.5.1 Negotiation Protocols
	17.5.2 Negotiation Fundamentals
	17.5.3 Requirements for a Negotiation Language

	17.6 Exercises

	18 Communication
	18.1 Agent Communication Languages
	18.1.1 Speech Act Theory
	18.1.2 Semantics
	18.1.3 Interaction Patterns
	18.1.4 Combining ACLs with Web Services

	18.2 Contract Net Protocol
	18.3 Business Protocols
	18.3.1 Compiling Business Protocols
	18.3.2 Compliance with Business Protocols

	18.4 Notes
	18.5 Exercises


	V Selection
	19 Semantic Service Selection
	19.1 Semantic Matchmaking
	19.1.1 Applying Ontologies
	19.1.2 Requirements for an Advertising and Matchmaking Language
	19.1.3 Selecting Services

	19.2 SoCom Matchmaking
	19.3 Exercises

	20 Social Service Selection
	20.1 Reputation Mechanisms
	20.2 Recommender Techniques
	20.2.1 Model-Based Approaches
	20.2.2 Memory-Based Approaches
	20.2.3 Challenges for Recommender Approaches
	20.2.4 Products versus Service Recommendations

	20.3 Referrals
	20.3.1 Adaptive Treatment of Referrals
	20.3.2 Advantages of Referrals
	20.3.3 Evaluation

	20.4 Social Mechanism for Trust
	20.4.1 Empirical Basis
	20.4.2 Local Belief Ratings
	20.4.3 Combining Evidence
	20.4.4 Gathering Opinions

	20.5 Identity
	20.6 Exercises

	21 Economic Service Selection
	21.1 Market Environments
	21.2 Auctions for Services
	21.2.1 Auction Types
	21.2.2 Online Auctions
	21.2.3 Agent Economies

	21.3 Exercises


	VI Engineering
	22 Building SOC Applications
	22.1 Elements of SOC Design
	22.2 Quality of Service
	22.3 How to Create an Ontology
	22.3.1 Ontology Construction
	22.3.2 Ontology Guidelines and Conventions

	22.4 How to Create a Process Model
	22.5 How to Design Agent-Based Systems
	22.5.1 Engineering Cooperation
	22.5.2 Diversity versus Complexity

	22.6 How to Construct Agent-Based Systems
	22.7 How to Engineer Composed Services
	22.8 Exception Handling
	22.9 Knowledge Management Applications
	22.9.1 Agent-Based Knowledge Network
	22.9.2 Intranet Portals
	22.9.3 Communities of Practice

	22.10 eBusiness Applications
	22.10.1 Business Models for eBusiness Applications
	22.10.2 eMarketplace Architectural Requirements

	22.11 Application to Supply-Chain Automation
	22.12 Exercises

	23 Service Management
	23.1 Enterprise Resource Planning
	23.2 WSMF: Web Services Management Framework
	23.3 WSDM: Web Services Distributed Management
	23.3.1 Contingency Plans for Service Failures
	23.3.2 Security and Authentication
	23.3.3 Features and Benefits of WSDM Centralization

	23.4 Metadata Protocols
	23.5 Scalability
	23.5.1 Scalability in Practice
	23.5.2 Scaling Infrastructure Services for Agents
	23.5.3 Scalability Experiments
	23.5.4 Long-Lived Adaptable Agents

	23.6 Robust Services via Agent-Based Redundancy
	23.6.1 Architecture and Process
	23.6.2 Experimental Results

	23.7 Exercises

	24 Security
	24.1 Securing Web Services
	24.1.1 Nonrepudiation
	24.1.2 Endorsement
	24.1.3 Certificates

	24.2 SAML and WS-Security
	24.3 WS-Trust
	24.4 XACML
	24.5 Reasoning about Security Policies
	24.6 Privacy
	24.7 Exercises


	VII Directions
	25 Challenges and Extensions
	25.1 Trust
	25.2 Ethics
	25.2.1 Machine Ethics
	25.2.2 Applying Ethics
	25.2.3 Ethical Violations

	25.3 Coherence
	25.4 Benevolence
	25.5 Network Architecture
	25.6 Managing Privacy
	25.7 Key Challenges and Recommendations


	VIII Appendices
	A XML and XML Schema
	A.1 Why XML?
	A.2 XML
	A.2.1 XML and Vocabularies
	A.2.2 Transforming XML
	A.2.3 Well-Formedness
	A.2.4 Namespaces and Qualified Names
	A.2.5 Using Entities
	A.2.6 XML Extensions

	A.3 XML Schema
	A.4 Limitations
	A.5 Notes
	A.6 Exercises

	B URI, URN, URL, and UUID
	C XML Namespace Abbreviations

	Glossary
	Bibliography
	Index


