WFM 2006 April 25 - 26, 2006, Czech Republic

Using Petri nets for RT level digital systems test scheduling

Jaroslav Skarvada’
skarvada@fit.vutbr.cz

Richard Ruzi¢ka
ruzicka@fit.vutbr.cz

Abstract: This paper deals with test scheduling for digital systems. Approach with C/E
Petri nets is presented and formal model of digital system under test is introduced. Main
purpose of this model is identification of structural conflicts and dead locks that may occur
during test application phase. The digital system is analyzed on register transfer (RT) level.
The obtained results can be used for digital system design partitioning. In this step
individual blocks of logic are identified. Finally concurrent test for non-conflicting blocks
of logic is scheduled. The advantage of this approach is, that with partitioned circuit, it is
possible to view digital circuit design as system on chip (SOC) design and use existing test
scheduling methods for SOC.

Key Words: Digital circuit, C/E Petri Net, test scheduling, I-paths, structural conflicts

1 Introduction

Integrated circuits continue to grow in size and complexity and even with the state of the art
technology it is impossible to eliminate probability of defects during manufacturing process.
As market demands circuits without manufacturing defects, every manufactured chip must be
tested before packaging and defective chips must be discarded. If manufacturers want to
achieve effective and defect free production, considerations about testing must be taken into
acount in early stage of the design process. Such approach is called Design-for-Testability
(DAT). It was developed a methodology for testability analysis of register transfer (RT) level
digital circuits at the department [1]. This methodology could be successfully applied in the
early stage of the design process. Apparently, the effort is to make all DfT procedures
automated. The cost of the test and duration of the test are main tracked parameters of these
methodologies. The cost of the test cover cost of the external automated test equipment (ATE)
as well as cost of additional logic that must be added to design for its successful testability
[5]. The duration of the test is important parameter for production rate. Lower test duration
can be achieved by parallel testing of components. Due to structural conflicts, it is practically
impossible to test all components in parallel. So in this case test scheduling takes place.

The structure of a digital circuit on the RT level of modeling consists of two main parts: data
paths and the circuit controller. Data path part consists of components interconnected through
connections. Components on the RT-level data paths are functional units, which perform data
transformation, registers are used to store the state of the circuit and multiplexers establish
connections among elements. An RT-level circuit synthesis based on a multiplexed data path
strategy [4] is expected to be used and the presented approach does not take into account bi-
directional buses and ports. The circuit controller is a kind of state machine implementation.
For test purposes, a special controller, which enables diagnostic data transfer paths in
accordance with a test schedule replaces the original controller (which controls the circuit to
perform the proposed function). Test scheduling generally proceeds in three steps. First step is

*

FIT BUT, Department of Computer Systems, BoZet&chova 2, CZ-612 66 Brno

79

identification of resources that are necessary for test of every component. Second step is
identification of components that are in conflict during test application. Components that are
in conflict couldn’t be tested simultaneously. Finally test sequence is determined. For first and
second steps, it is possible to exploit formal model based on C/E Petri nets. It is especially
suitable in cases, when testability verification [3] takes place before test scheduling. The
advantage is that Petri nets models that were automatically generated by software [7], [8] in
verification phase can be reused for test scheduling. The main idea behind test scheduling on
RT level is that components that are close enough could be grouped together to individual
blocks and non-conflicting blocks could be then tested simultaneously. The partitioning of
circuit allows us to use common test scheduling methods from SOC world.

2 Circuit Model

Within previous works there was implemented software [7] in the department for automatic
transformation of structural VHDL code into this formal model. The formal model was based
on approach from [11]. Every analysis and Petri net transformations uses this model. In this
chapter, the basic definitions that are necessary for understanding the transformation
procedure presented in next chapter, are described.

2.1 Unit under Analysis

For the purposes of the formal approach to the RT-level testability analysis, a Unit Under
Analysis (UUA) is described as a 5-tuple UUA=(E, P, C, PI, PO), where: E is the set of
circuit elements, P is the set of ports of all circuit elements from E, C is a set of connections,
(it is a relation between pairs of ports), PI is the set of primary input ports (ports wired to
package pins) of the UUA and PO is the set of primary output ports of the UUA.

2.2 Circuit Elements

Set E=(R W SR wMX w DMX U DP) is set of all circuit elements, where: R is the set of all
registers in the circuit, SR is set of all scan registers in the circuit, MX is set of all
multiplexers in the circuit, DMX is set of all demultiplexers in the circuit, DP is set of all
functional units in the circuit (Data Processors). TE < DP is set of all functional units that
will be tested.

2.3 Circuit Gates

Set P = (IN v OUT v CI) is set of all ports of circuit elements, where: IN is set of all input
ports (excluding primary), QOUT is set of all output ports (excluding primary) and CT is set of
all synchronizing an controlling gates.

2.4 Connections in the Circuit

Relation C is wused for modeling all metallic connections in the circuit.
Cc (PIvPOuUP)x(PIUPOU P). Relation C is transitive, reflexive and symmetric; it
can be traced from properties of metallic connection.

2.5 I-paths in the Circuit

Relation I is used for nmodeling all I-paths [6] in the circuit
Ic(PIVPOUP)x(PIUPOvVP). Cc I I-path is a virtual path from one port to another
that can be used for data transmission. On I-path can be located one or more circuit elements,
but only those elements, that have I-mode of operation (in I-mode data can be transmitted

80

from input to output without change, for example adder has I-mode when one input is set to
zero). Relation I is transitive, reflexive. Relation is not symmetrical, because most of DP
elements allow only one way data transmission.

2.6 Circuit Nodes
Set V< (P PIu PO) is called node, if V p;, p> € V: (p1, p2) € C.

2.7 Determining Input Gates of Given Element —in(e), e € E
in: E—2"
1) For Ve € E: in(e) = {p|p € IN A p is gate of element e}

2)ForVene;e E: e=e;< in(e)) Nin(e;) # (elements can‘t share gates)

2.8 Determining Output Gates of Given Element — out(e), ¢ € E

out: E —2°UT

1) For Ve € E: out(e) = { p | p € OUT A p is gate of element e}
2)For Ves,e; € E: e;=e;< out(e;) N out(e;) # D (elements can‘t share gates)

3 UUA to Petri Net Transformation

3.1 CJ/E Petri Net

C/E Petriho net [2] N = (B, Z, F, M,) is 4-tuple that represents test application process on
circuit element fu € TE from UUA, where: set B is set that corresponds to all circuit nodes
and it may be extended with some special nodes (P v PI U PO) < B). Set X is set of all
transitions that correspond to elements participating in transmission of diagnostic information
(elements that have data dependant I mode). F is flow relation that describes topology of net
F c (B x 2) U (2% B). My is initial marking of net: M, < B.

3.2 Transforming Function vid(i),i e PU E

vid: PUE 5B Assigns circuit gates and elements to corresponding net places.
The next 3 rules must hold:

1) For Vey, e; € E: vid(e;) = vid(e;) < e; = e

2) For Vpy, p2 € P:vid(p;) = vid(p;) < (p1,pz) € CA(p2,p1) € C

3) For Ve € E, Vp € P: vid(p) # vid(e)

3.3 Transforming Function eid(e),e € E

eid: E > 2% Assigns circuit elements to corresponding net transitions.
The next rule must hold:

1) For VE}, e;e E: 1= er<> eid(e;) = eid(eg)

3.4 Algorithm for Creation of New Element ID: neid

1) Find not so far used transition symbol e’ such that e’ ¢ X
2) Return e’

81

3.5 Algorithms for Creation of New ID: nvid
1) Find not so far used place symbol &’ such that b’ ¢ B

2) Return b’
3.6 Algorithm for DP Element e € DP Transformation: dp(e, Nfu) yige) d(e) vid(y1)
ewae
1) =20 {eid (e)} Insert transition representing DP L DP _ﬁ =
2) For V x: x € in(e): Creation of input X le—
. B) . Vn
B=B v {vid (x)}, F=F U {(vid (x), eid (e))} vid(e,) vid(p,)

3) For V¥ y: y € out(e): Creation of output

B=B U {vid (y)}, F=F U {(eid (e), vid (y))} Fig. 3.1: DP element transformation

3.7 Algorithm for Primary Input pePI Transformation: pi(p, Nfu)
1)b=nvid (), e’ = neid (), 2= X U {e’}

e eid(e;)
2)B=BU{vfd(p), b},Mg:MgU {Vid(p)} p vid(p &% ¥
3)F=Fu {(vid(p),e’), (e’ b)} =
4)ForVe:e e E if3c:c € Cac=(p,d) nde in(e) €n

2= {eid (e)}, eid(en)
F=F U b, eid(e)), (eid (e), vid (p))} Fig. 3.2: Primary input transformation

3.8 Algorithm for Primary Output pe PO Transformation: po(p, Nfu)

1) p’ = neid () i vidp) p’
2Q)B=Bvu {vid(p)},Z=2v {p’}, F=F v {(vid (p), p’)} —e o O__..I

Fig. 3.3: Primary output transformation

3.9 Algorithm for Register r € R Transformation: reg(r, Nfu) % 5 y

1) r’ = neid(), r’’ = neid(), x € in(r), y € out(r)
2)B=B v {vid(r)} w {vid(x)} v {vid(y) }, Z=20 {r’,r’} Il
F=F U {(vid(x), "), (r’, vid(r)), (vid(r), r”"), (r”’, vid(y))} Vi) ro vidn) rr’ vidy)
Rem: |in(r)| = |out(r)| = 1, it’s because dealing with register
Fig. 3.4: Registry transformation

3.10 Algorithm for Scan Register r € SR Transformation: sreg(r, lastscan, Nfu)

1) r’ = neid(), r’’ = neid(), sco = neid(), x € in(r), y € out(r) e I
2)B=B U Wid(P)} U idx)} U idy) }, E=Z0 {r’,r”, sco} e .| |. sco
F=F v {(vidx), r’), (r’, vid(r)), (vid(r), r”’), (r’, vid(y)), 4

revcan lastscan
(lastscan, vid(r)), (vid(r), sco)} - P . .a
3) prevscan = lastscan vid(x) r r’’ vid(y)
4) lastscan = sco

Fig. 3.5: Scan register transformation

82

3.11 Algorithm for Multiplexer m € MX Transformation: mx(m, Nfu)
1)y € out(m), B= B U {vid(y)} Only one output vid(x;) mux;
vid(y)

2) For Vx: x € in(m): X Il
mux = neid(), B= B U vid(x)}, Z=ZU {mux} % | [=
F = F U {(vid(x), mux), (mux, vid(y))}

vid(x,.‘) .mulr,,
Fig. 3.6: Multiplexer transformation

3.12 Algorithm for Demultiplexer dm € DMX Transformation: dmx(dm, Nfu)
" . dmux; Vld(y,r)
1) x € in(dm), B= B U {vid(x)} Only one output

2) For Yy: y € out(dm): = I
dmux = neid(), B=B U (vid(y)}, E= U {dmux} | L.y = diiss il
F=F U {(vid(x), dmux), (dmx, vidy))}

L » vid(x)

Fig. 3.7: Demultiplexer transformation
3.13 Transformation to Petri Net

Transformation to Petri net is recursive process. It can be informally described as follows:

Net(Ng,):
Select one so far not processed element e, e € TE
For V pe PI
pi(p)
For V pe PO
po(p)
Element (e, Nj,)
Remove all isolated places from B

Element (e, Np,):
If e € R, then reg(e, Nys,)
If e € SR, then sreg(e, Np,)
If e € DP, then dp(e, Np,)
If e € MX, then mx(e, Np,)
If e € DMX, then dmx(e, Np,)
For ¥ I paths beginning and ending at element e
For V e’ elements on this I path
Element (e’, Np,)

83

4 Net Analysis

For next analysis it is supposed digital circuit design, which successfully passed testability
verification and that the corresponding Petri nets N, = (B, , 2., F., M) for Ve € TE was
built. The described approach was based on approach from [10].

4.1 [Executability of Transition e.:

Lete. € 2., c. < B.. Transition e, is ¢, executable if:
B T 0 N 0 G =D

Remarks: "e, means preset of transition e, , ‘e, = {y | yF. e, }, where F, is flow relation of
Petri net N,

e, means preset of transition e, , e,” = {y | e, F,y}, where F, is flow relation of
Petri net IV,

4.2 Successive Markings ¢.’:

Lete, € 2., c. < B, and transition e, is ¢, executable. Marking
¢’ = (c.\'e) e,

1s called successive markings to markings c,:

4.3 Transition Between Markings =:

1) e, Ce2 < B,

2) Car=> Cez <& €218 successive marking to ¢,z

4.4 Transition Between Zero, One or More Markings —*:

1) Cel; Ce2y vovy Con & Be

*
2)Cui=Y Cuw %> Bii=Pu= Baiine

4.5 Set of Places I'e:
1) I.c B,
)= {c|V m:My=" m=" My, cem)

Remarks: Initial marking M,y is same as end marking. Initial marking matches state before
test vectors application and end markings matches state after acquiring element response to
test stimuli as used in [7] (marks are transported to primary outputs where disappear)

4.6 Dependency Relation z

z cTExTE

and must hold:

1)ForVes,e; (ene))ezeolunln+d.

Relation identifies elements that use same test resources. If any two elements e;, e; needs for
successful test same resources, it means that these two elements are test dependant and can’t
be tested concurrently. So: (e;, e;) € z. Relation zis reflexive (element e can’t be tested

84

concurrently with e) a symmetrical (if (e;, ez) then (ez, e;) and vice versa). The dependency
relation was constructed using the INA software [9] which was remotely controlled from the
main application by the TCL interface. The main application was written in pure C++ with
usage of STL library. The application takes model of digital circuit generated with software
framework from [8], transforms it to Petri net and than analyze the net. Output from the
application is dependency relation that could be processed with test circuit partitioning and
test scheduling software.

Now the digital circuit partitioning takes place. It is very time consuming task, because some
additional constraints must be taken into account. Most common constraints are power
constraints. These constraints are used for limiting chip power dissipation level during test
application process; because it is known that power dissipation in diagnostic mode could be
significantly higher than in normal functional mode. The circuit partition algorithm must deal
with this. The main goal of the method is to group together as many elements as possible.
Mutually conflicting elements could be than tested together as one block. The fault coverage
for these grouped blocks is lower but test time could be dramatically reduced. The algorithm
must take it into account and group only these blocks where fault coverage is still on
acceptable level or to insert another scan register to scan chain. The algorithm must also
recalculate test vectors and responses to cope with these new blocks. After that non
conflicting blocks could be tested concurrently. Due to huge solution space of this problem
some heuristic must be used. The approach with genetic algorithm is being developed and is
subject of next research.

5 Conclusions

For test scheduling it is possible to use any of test scheduling methods that are common for
SOC test scheduling. Namely it can be used mixed integer linear programming (MILP) test
scheduling method or some another graph based method working with test application
conflict graph models (TACG) or test compatibility graph (TCG). There were carried out
some experiments with these methods in our department. Some approaches with Tabu search
and genetic algorithm were implemented over TACG and TCG models for SOC test
scheduling so it can be successfully ported to RT level test scheduling. It is common that test
scheduling phase is preceded by test verification phase, because only for really testable
circuits, it is possible to make successful test schedule. As test verification method developed
in our department [3] uses similar Petri net models, it is possible to share these models and
save computational time during design process. And this is another advantage of presented
approach.

For the future, we have an intension to integrate our methodology into the system of formal
methodologies developed at our department. The goal is to demonstrate that formal models

based on concepts of discrete mathematics, theory of graphs and other disciplines can be used
to solve problems from the area of diagnostics and testing.

This research was supported by the Czech Ministry of Education — FRVS grant

No. 3383/2006/G1 and the Grant Agency of the Czech Republic under grant No. 102/04/0737,
Modern Methods of Digital Systems Design.

85

References

10.

11

. Kotasek Z., Ruzicka R., Hlavicka J.: Formal Approach to RTL Testability Analysis, Proc. of

IEEE LATW 2000, IEEE, Rio de Janeiro, 2000, pp. 98—-103
Reisig, W.: Petri Nets, An Introduction. Springer Verlag, Berlin Heidelberg, 1985, 160 p.

. Ruzicka, R.: Testable Design Verification Using Petri Nets, Proc. of Euromicro Symposium on

Digital System Design 2003, Belek, Turkey, 2003, pp. 304-311

Wakerly, J. F.: Digital Design, Principles and Practices., Prentice Hall, New Jersey, 2000, ISBN
0-1376-9191-2

Niraj K. Jha, Sandeep Gupta: Testing of Digital Systems. Cambridge University Press, 2003,
ISBN 0-5217-7356-3

. Razicka, R.: Data Dependent I Path and their Utilisation in DFT. Symposium of students and

doctoral works FEI VUT, Academic publisher CERM, s.r.0., Brno, 2000, pp. 228-230

Skarvada J: Testability verification of digital circuit design [diploma thesis]. Faculty of
Information Technology, Brno, 2004

Rizi¢ka R., Skarvada J.: RTL Testability Verification System. Proceedings of the Work In
Progress Session of 30th Euromicro Conference, Linz, Germany, 2004,
ISBN 3-9024-5705-8

Roch, S., Starke, P. H.: INA Integrated Net Analyzer Version 2.2 Manual. Humboldt-Universitit
zu Berlin Institut fir Informatik Lehrstuhl flir Automaten- und Systemtheorie.
URL: http://www.informatik.hu-berlin.de/lehrstuehle/automaten/ina/ , May 2005

Rézicka R: On the Petri Net Based Test Scheduling. Proceedings of th€ $th Euromicro
Conference on Digital System Design, Architectures, Methods and Tools, Porto, I ortugal, 2005

Ruzicka, R.: Formal approach to testability analysis of digital circuits on RT level [dissertation
thesis 2001]. VUT FIT, Brno, 2001

86

