WFM 2006 April 25 - 26, 2006, Czech Republic

String-Partitioning Systems and An Infinite Hierarchy

Zbynék Kiivka *

krivka@fit.vutbr.cz

Rudolf Schonecker *
schonec@fit.vutbr.cz

Abstract: This paper introduces and discusses string-partitioning systems. This formalization
consists of partitioning the rewritten string into several parts, which the systems rewrite by rules
that specify to which part they are applied. Based on the number of parts, the present paper estab-
lishes an infinite hierarchy of language families that coincides with the hierarchy resulting from
the programmed grammars of finite index, so these systems actually represent a counterpart to
these grammars. In its conclusion, this paper suggests some open problem areas.

Keywords: string-partitioning systems; programmed grammars; finite index; infinite hierarchy.

1 Introduction

As opposed to classical formal models, which are classifiable under their main properties into
two groups - generative grammars or accepting automata, string-partitioning systems is a formal
model, that has properties from both - it is an accepting device that uses states to control its
computation.

However, M works with strings divided into several parts by a special bounder symbol, #.
During each computational step, the system rewrittes an occurrence of # with a string, possibly
containing other #s, and, thereby, rearrange the string division. If used in this way, starting from
#, M yields a string = containg no #, z is in the language of M.

Based on this simple rewriting mechanism, we demonstrate that these automata give rise
to an infinite hierarchy of language families based on the number of parts of the rewritting
strings. More precisely, the systems that divide their strings into no more than n parts are less
powerful than the systems that make this division up to n + 1 parts, for all n > 1. In addition,
we demonstrate that this hierarchy coincides with the hierarchy resulting from the programmed
grammars of index n, for all n > 1 (see analogy with matrix grammars of finite index — page 160
in [1]). In this sense, the string-partitioning systems represent a counterpart to these grammars,
which has lacked any automata counterpart of this kind so far; in this sense, the present paper
fills this gap.

In its conclusion, this paper suggests some variants of string-partitioning systems to study
in the future.

2 Preliminaries

This paper assumes that the reader is familiar with the formal language theory (see [2]). For a
set, @, card(Q) denotes the cardinality of Q. For an alphabet, V', V* represents the free monoid

* Department of Information Systems, Faculty of Information Technology, Brno University of Technology,
BoZetéchova 2, 612 66 Brno, Czech Republic

53

generated by V' under the operation of concatenation. The identity of V* is denoted by . Set
V* = V*—{e}; algebraically, V' is thus the free semigroup generated by V under the operation
of concatenation. For w € V*, |w| denotes the length of w, and for W C V, occur(w, W)
denotes the number of occurrences of symbols from W in w and sym(w,¢) denotes the i-th
symbol of w; for instance, sym(abed, 3) = c.

A contexi-free grammar is a quadruple, G = (V,T, P, S), where V is a total alphabet,
T C V is an alphabet of terminals, S € (V' — T') is the start symbol, and P is a finite set of
rules of the form g: A — v, where A € (V — T), v € V* and ¢ is a label of this rule. If
g: A—ve P, z,ye V* G makes a derivation step from z Ay to zvy according to ¢: A — v,
symbolically written as zAy = zvy [¢: A — v] or, simply, zAy = zvy. In the standard
manner, we define =™, where m > 0, =7, and =*. The language of G, L(QG), is defined as
L(G) ={w € T* | S =* w}. A language, L, is context-free if and only if L = L(G), where G
is a context-free grammar.

For p € P, rhs(p) and [hs(p) denotes right-side and left-side handle of rule p, respectively,
lab(p) denotes label of rule p and for set of rules P, lab(P) denotes set of all labels of rules
from P.

A programmed grammar (see page 28 in [1]) is a quadruple, G = (V, T, P, S), where V is
a total alphabet, 7" C V is an alphabet of terminals, S € (V' — T') is the start symbol, and P is
a finite set of rules of the form ¢: A — v, g(q), where ¢: A — v is a context free rule labeled
by ¢ and g(q) is a set of rule labels associated with this rule. After an application of a rule of
this form in an ordinary context way, in the next step a rule labeled by a label from g(g) has
to be applied. Thus G makes a derivation step, symbolically denoted by =, by analogy with a
context-free grammar. In the standard manner, we define =™, where m > 0, =1, and =*. The
language of G, L(G), is defined as L(G) = {w € T* | S =* w}.

Let G be a programmed grammar, and let 7', and S be its terminal alphabet, and axiom,
respectively. For a derivation D: § = w; = wy = -+ = w, = w € T*, where r > 1,
according to G, we set Ind(D, G) = max {occur(w;,V —T) |1 < i < r}, and, for w € T*,
we define Ind(w, G) = min {Ind(D, G) | D is a derivation for w in G'}. The index of grammar
(see page 151 in [1]) G is defined as Ind(G) = sup {Ind(w, G) | w € L(G)}. For a language L
in the family £(X) of languages generated by grammars of some type X, we define Indx (L) =
inf {Ind(G) | L(G) = L, Gis of type X }. For a family £(X), we set £,(X) = {L| L € L(X)
and Indx(L) < n},n > land L3in(X) = | La(X).

n>1

3 Definitions

Let I be a set of positive integers {1,2,...,k}. A string-partitioning system is a quadruple
H = (Q,X,s,R), where @ is a finite set of states, X' is an alphabet containing a special
symbol, #, called a bounder, s € Q is a start state and R C @ x I x {#} x Q x X* is a finite
relation whose members are called rules. A rule (¢, n,#,p,z) € R, wheren € I, q,p € () and
T € X%, is written as 7: ¢ ,# — px hereafter, where r is unique label and can be omitted.

A configuration z of H is a string x € Q(X U {#})*.

H makes a derivation step from pu#tv to quzv by using r: p,# — qx, where occur(u, #) =
n — 1, symbolically written pu#v = quzv [r] in H or simply pu#v = quzw.

Let =* denote the transitive and reflexive closure of =>. The language derived by H, L(H),
is defined as

L(H) = {w|s# =" qu, ¢ € Q,w € (X — {#})*}.
54

A string-partitioning system H is of index k, if for every configuration gz, s# =* gz holds
occur(z, #) < k.

Example 1. H = ({s,p,q, f},{a,b,c,#},s, R), where R contains:

L. s# — p##
2. pi# — qa#bd
3. qoft — p#c
4. p# — fab
S. fmt—fe

L(H) = {a"™b"c" | n > 1}, holds that Ind(H) = 2.
Example of a derivation resulting string aaabbbcce: s# = p## [1] = qa#b# [2] =
pa#bi#tc [3] = qaa#bb#c [2] = paa#bb#cc [3] = faaabbb#cc [4] = faaabbbece [5].

Let £, (SPS), and L (P, CF) denote the families of languages derived by string-partition-
ing systems, and programmed languages of index k, £ > 1, based on context-free grammar,
respectively.

4 Results

This section establishes an infinite hierarchy of language families resulting from the string-
partitioning systems defined in the previous section.

Lemmal. Forevery k > 1, Li(P,CF) C L,(SPS)
Let k > 1. For every programmed grammar of index k, G, there is a string-partitioning system
of index k, H, such that Ly(G) = Ly(H).

Construction. Let k > 1 be a positive integer. Let G = (V, T, P, S) is programmed grammar
of index k, where N = V — T Introduce the string-partitioning system of index k, H =
(Q, TU{#},s,R), where # ¢ T, s = (o), o is a new symbol, R and () are constructed by
performing the following steps:

1. Foreachp: S — a € P, € V*, add (o)1# — ([p])# to R, ([p]) is new state in Q
2. If AjA,... Aj ...A, € N*, h € {1, . vy k:}, p: Aj —xoB121B2xs . . . Tn_1Bnxn, g('p) =
P,je{l,2,...,h}forn>0,zp,z, € T*, B, € N,1<t<nandn+h —1 < k, then
(a) if g(p) = 0, then (A1As... Aj_1[p|Ajs1-.. An), (A1Aa...By...B,... Ay) are new
states in Q and therule (A, Ay ... Aj_y[p|Aj41 ... Ap)j# — (A1Az...By... By ... Ap)
ToHx1 .+ Tn_1#txn 18 added to R
(b) for every ¢ € g(p), ¢: Dg—a, o € V* add new states (A1 Az... A;_1[p]Aji1... Ar)
and (D1 D5...[q]... Dyip-1) to Q and add the following rule to R:
<A]A2 wit Aj_l[p}Aj_H 95 2 Ah)j# = (Dng e [q] P Dn+h,1>$g#$1 ee e ln,
where Al v -Aj—lBl suraiea BnAj+1 Py Ah = D1 Bt Dh+n-1’ Bi Yy Bn = Dj, ¥ s Dj‘kn'*].
forsomed € {1,2,...,n+h—1}.

Basic Idea. The information necessary for the simulation is recorded inside of states. Every Q’s
state label carries string of nonterminals from N* where one symbol of this string is replaced
by F¢’s rule label.

55

Let us have a configuration zgA x; ...z Az, in some programmed grammar G
(N,T,P,S) of index k, where z; € T*for0 < i < h < kand A, € Nforl <[<
and let p: A; — ais applicable in the next step to the nonterminal A;, 1 < j < h.

Then, new configuration of equivalent string-partitioning system H is of the form
(A1As. .. A1 [plAjsr .. Ap)xo# Ty . .. 2y #xp and encodes simulated nonterminals in G's
sentential form and next applicable rule label.

h,

Claim 2 If S =™ 2qA121 A% ... Ty 1 Apzy in G, then (0)# =" (A1As. .. Ap)zo#T, ... Th
[1G2...q;)in H, form > 0,r > 1. For g(q,) # D existsarule go+1: A; — yoBiy1 - . . Yn—1BnYn,
n+h—1<k g+ €9(q) and A; = [¢-11), 1, - - -, ¢r, @11 € lab(R).

Proof. This claim is established by induction on m.
Basis: Let m = 0. For S =° S in G there exists (o)# = {[p])# in H, wherep: S — a € P
and (o)1# = ([p])# € R.

Induction Hypothesis: Suppose that Claim 2 holds for all derivations of length m or less for
some m > 0.

Induction Step: Consider S =™ y [p1p2 . . . pm), Where y = xoA 121 ... Tp1Apzpand py, . .., Py,
Pm+1 € lab(P) so that y = [pp4y]. f m = 0, then py1 € {p | lhs(p) = S,p €

lab(P)} otherwise p,,y1 € g(pm). For pms1: Aj — yoBiy1 ... Yn—1Bnyy is z in the form:

T = ToA171.. . Ajm1Zj1%B1Y1 - < Yn—1 Br¥nTjAjt1 . . . Th1Anzp, for <y, ...,z € T and

Yo,-.-,Yn € T*. Based on the induction hypothesis, there exists the derivation (o)# ="

(A1As . Aja[Pmt1]Ajsr - Ap)ZoFzy . . o F oy [(1g2 - - - ¢r) =

<A1A2 . EY - P BnAj-H o AR)ToF .. HLTi1YoFF - - - HYnZT;F# - . - HTn [Qr+1],?“ >1,¢ €
lab(R),1 < i < 7+ 1. If g(pmy1) # 0, then exists a rule p,40 € g(pms1) and a sequence

D1D2 o e Dn+h—1 so that AIAQ s Aj—lBl wiss BnAj+1 i Ah = D1D2 & we Dn+h—1a where for

atmostoned € {1,2,...,n+h— 1} is Dy = [¢r+2]s @42 € 9(¢r+1)-

Claim 3 If S =% z in G, then (0)# =" ()x in H for some z > 0, z € T*.

Proof. Consider Claim 2 with h = 0. At this point, if S =2 =xg, then (g)# =* (), and so
Ig= .

Lemmad4. Forevery k > 1, Li,(SPS) C Ly(P,CF)
Let k = 1. For every string-partitioning system of index k, H, exists equivalent programmed
grammar of index k, G, such that Ly(G) = Ly(H).

Construction. Let k > 1be a positive integer. Let H = (Q, TU{#1}, s, R) is string-partitioning

system of index k, where X = T U {#}. Introduce the programmed grammar of index k,

G = (V,T, P, S), where the sets of nonterminals N = V' — T and rules P are constructed as

follows:

0,

(s, 1,13,

{lp,i,h) |p€Q1<i<k,1<h<ki<hlU{d,ih)|qge@, 1<i<k,
1<h<ki<h}U{{¢,ih)|qe@,1<i<k1<h,i<h<k},

4. Foreveryruler: p# — qu € R,y = Y%o#VY1 - . . Um-1FYm> Yo, Y1, Y2 . . . Um € T™,if m = 0,
then Apap = k else hpee = & — m + 1, add the following set to P:

L Pe=
2. 8=
3. N =

56

@ {(p,j,h) — (¢,j,h+m-1),
{r'| ifj+1=jdthenr’: (p,i,h) — (¢",i,h+m —1)elser’: (p,j +1,h) —
(¢, j+1Lh+m—-1)}
|11<j <41 < h < hinaa}
U
() {{p,i,h) —(¢",i,h+m—1),
{r'| ifi=h,thenv": (¢",i,h+m —1) — yo(¢,i,h+m — Dy {¢’,i+1,h+
m—1y...Ym-1{¢, i+ m—1Lh+m— Dypelser: (p,i+1,h) —
(¢ yi+1+m—1,h+m-1)}
I@ShShmax}
U
(i) {{p,4,h) = (¢, j+m—1,h4+m—1),
{r"| ifj=nh,then?": (¢",i,h+m —1) — yold',i,h+m — Dy {¢,i + 1,
h+m—1ys... . Ym1(d,i+m—1Lh+m—Dynelser: (p,j+1,h) —
(¢, j+1+m—1Lh+m-—1)}
li<j<hi<h<hpe)
U
iv) {{¢",i,h+m —1) = yo(¢ i, h+m—Du{d, i+ L,h+m—Dyo...ym1(d,i+
m—1,h4+m — 1)ym,
{r|r': (¢, Lh+m—1) —(g,1,h+m—1}}
|i < h < Pinar}
U
(V) {(qjajvh—i'm_l) _><Q7j)h+mk1>a
{r'|ifj<h+m-—1thent": (¢,7+1,h+m—1) — (¢, j+1L,h+m—1)
elser’: (p,1,h+m —1) — (¢, 1,h+m —1+m — 1), where
Pi# — @Wo#Y1 - - Un—190m € B, Yo, G1, - U € T, if i = 1,
then ¢ := ¢"}
|1<j<h+m—1,i<h < hpgs}-

Basic Idea. Inside of every nonterminal (p, i, h) in programmed grammar occurring in a sen-
tential form, we record

(1) p—current state of simulated string-partitioning system (the same in first and last simulation
stage);

(2) i—the position of the bounder occurrence in the sentential form

(3) h—the total number of all bounders in the simulated sentential form.

From these three pieces of information and the set g(p) associated with p, we find out
whether p is applicable in the next step, and if so, we simulate the step by rules introduced
in 4" step of the above construction as follows:

(a) inside of all nonterminals in the sentential form, change h to h + m — 1, where m is the
number of nonterminals occurring on the right-hand side of p, so h + m — 1 is the number
of nonterminals after the application of p (see (i) through (iii));

(b) in the nonterminals that follow the rewritten nonterminal, change their position so it corre-
sponds to the position after the application of p (see (iii));

(c) apply p and select a rule label g from p’s set of labels g(p) to be applied in the next step
(see (iv));

(d) some auxiliary steps in G to finish the simulation of one derivation step from string-
partitioning system H (see (v)).

&7

Claim 5 If (0)# =° (D)Yo#Y1 .. . Yn-17Yn in H, then S =* yoA1y1 ... Un_14nY, in G for
some ¢ > 0.

Proof. Basis: Let ¢ = 0. For (o)# =0 (0)# in H there exists S = S in G.

Induction Hypothesis: Suppose Claim 5 holds for all derivations of length ¢ or less for some
c>0.

Induction Step: Consider (o)# =¢ (Nyo#y1...yn [ri7re... 1) in H,ry € lab(R),1 <t < ¢
and re41: (O);# — (W)TeFHTL . . . T—1#Tm € R, Zo, ..., Tm € T* so that (Hyo# . .. #yn =
(WYoH Y1 # . .. FYi1ToHFT1H# . FTmViFYir1FF - .- FUn [res1]- Based on Claim 5 there ex-
ists also a derivation Dl* : ygAl Y Ahyh =* yOAlyl v B 'yz‘__lCl’JoB]_CL']_ i BmmmyiAiJH ‘¥ Ahyh,
in G. It is shown such a derivation exists based on the construction part of the proof.

Let us have a form yoA,y; . . . Apyn. Rename nonterminals A, to (¢, ¢, h) for 1 < ¢ < h and get
a base form yo (U, 1, h)y . .. yn—1 (¥, h, h)y, which starts the simulation of the D, derivation.
This simulation must come out of continuous application of construction’s 4™ item.

(4i) Vj: 1 < j < iapply rules of the form (p, j, h) — (¢',j,h +m — 1):
Fi =y, L, R)yr ... yn—1(9, h, hYyr = yo(w', 1L, h + m — D)y1 (9, 2, h)ya . . . Yh—1
(W, h, R)yn =2 yo(w', LA +m — Dy ... yio{w',i — Lh+m — Dy 1 (9,4, h)
Yi - Y10, h, hyyn = F

(4ii) apply (p,i,h) — {(¢",i,h +m — 1):
F= gy, L,h+m— Dy ...y (W, i, h+m— Dy ... yn—1(9, b, h) = F;.
If = h, then F; := F3 and continue with [4iv] otherwise with [4iii].

(4iii) Vj : i < j < h apply rules of the form (p,j,h) — (¢',j +m — 1, h+m — 1):
F; = yo(w’, 1,h+m— 1)y1 i .yi_g(w’,i —1,h+m— 1)%‘,1((.0”,2', h+m— 1):!]1-
(w’,i—i—m, h+m— 1) Yi+1 (’lg,Z-i'Q, h)yi+2 wie .yh_l(’lg, h, h)yh =>h'—i—1 yg(w,,]., h+m— 1)
YooY (Wi h+m =Dy . g (W h+m =1 h+m— 1)y, = Fj

(4iv) apply (¢",i,h+m —1) = yo(¢'si,h+m— Dy1 ... Ym—1 (¢, i+ m =L h+m — Lyp:
Fy = yolo', LLh+m— Dy ...yizolw i, h+m — Dz . oo (Wi +m — 1, h +
m— DTy .. Yp—1{w h+m—1h+m— 1)y, = Fs

(4v) Vj:1<j < h+m—1apply rules of the form (¢, j,h+m — 1) — (¢, j,h + m — 1):
Fy =hm=1yo(w, 1, h+m— Dy ... yi1zolw,i,h+m =1z ... 1 {w,i+m—1,h+
m— Dxnyi... . yh_1{w,h+m —1,h+m — 1)y, = Fs (Final form)

Rename all nonterminals of the form (w,t,h +m — 1) in Fg to A, for 1 < t < 4,
(w,t,h + m — 1) to By_jy1 fori <t < i+m—1, (w,t,h + m — 1) to A;_py1 for
i+m <it< h + m — 1. We have obtained yOAlyl R yi_1$031$1 wits » BmwmyiAHl - Ahyh-

Claim 6 If (0)# =%)y in H, then S =* y for some z > (.
Proof. This claim follows from Claim 5 withn = 0 and y = yp.
Theorem 7. Infinite hierarchy L(SPS) C Ly41(SPS) holds for every k > 1.

Proof. Li(P,CF) = L(SPS) follows from Lemma 1 and Lemma 4. Then, Theorem 7 fol-
lows from Ly (P,CF) = L(SPS) and theorem Ly(P,CF) C Ly (P,CF), forevery k > 1
which is an analogy to Theorem 3.1.7: Ly(M,CF) C Ly4+1(M,CF)in [1], page 161.

58

5 Conclusion

There was presented a basic variant of the string-partitioning system of index k as a com-
pletely new concept of rewriting mechanism. The entire system uses only special symbol (called
bounder) and rewriting rules contain an index specifying which bounder in the sentential form
will be rewritten. The family of languages generated by string-partitioning systems of index k
was described and classified.

We would like to mention here also some other variants of the string-partitioning systems
as an open field for the next investigation.

5.1 Deterministic variant

A string-partitioning system of index £ is called deterministic, if for every tworules 1 : py # —
qir and ry: py # — qoy holds if p; = p,, then ¢ # j. We can also mention the strict determin-
istic form, which suppose, that for every two rules is p; # ps.

5.2 Accepting variant

Let H = (Q, X, s, R) be a string-partitioning system of index k. H is called accepting string-
partitioning system, if accepts given language through series of reductions. /1 makes a reduction
step from quxv to pu#v by using r: p,# b gz, symbolically written quzv F pu#tv [r] in H or
simply quzv E pu#v. Let E* denote the transition and reflexive closure of F, respectively.

The language reduced by H, L(H), is defined as

L(H)={w|quF" s#, g Qw e (£ - {#})*}.

Consider M = ({s,p,q, f},{a,b, c,#}, s, R) from Example 1. Example of accepting vari-
ant is given in reduction of string aaabbbcce: faaabbbece E faaabbb#ce [5] E paa#tbb#cc

[4] F qaa#tbbdtc [3] F padtbdc [2] F qa#tbst (3] F p## (2] F s# [1].

5.3 Parallel variant

Let I be a set of positive integers {1,2,..., k}. A parallel string-partitioning system is a quin-
tuple H = (Q, X, s, P, R), where @, X' and s are defined in the same manner as previously,
P C I x X* is afinite relation containing items called simple rules, that are written in the form
As— x,n € I,z € X* hereafter, R C Q x 2¥ x @ is a finite relation with a condition:
for each rule (p, F,q) € R, p,q € Q, F € 2 holds, that for every two simple rules ¢,d € F,
C: iFFa T d: i fF o Tais i #ig

Arulet = (p, {r1,...,™m},) € R is applicable to the configuration pz, p € Q, z € X*,
if and only if p = py, occur(z, #) > ij, for 1 < j < m, where r;: ;# — ;.

H makes a derivation step from pu to qv by using t = (p, {r1,...,7"m}, q), symbolically
written pu ,=> qv [t] in H, if ¢ is applicable to the pu and basic rules ry, . . . , r,, are applicated
to u and state p is changed onto q.

Consider parallel string-partitioning system of index k as a direct analogy of basic variant of
string-partitioning system of index k, then the paragraph descripting the rule-applicability has
to be extended with the condition occur(z, #) — m + >, occur(y;, #) < k.

Let ,4=" denote the transitive and reflexive closure of ,4=>. The language derived by H,
L(H, ,4=), is defined as

L(H, pg=>) = {w | s# =" qw, ¢ € Q,w € (T — {#})*}.

59

Acknowledgements

The authors acknowledge the support of FRVS MSMT grant FR1909/2006/G 1.

Bibliography

1. J. Dassow, Gh. Pdun: Regulated Rewriting in Formal Language Theory, Springer, New York, 1989.

2. A. Meduna: Automata and Languages, Theory and Applications, Springer, London, 2000.

3. T. Kasai: A Hierarchy Between Context-Free and Context-Sensitive Languages. In: Journal of Com-
puter and System Sciences, volume 4, 1970.

60

