WFM 2006 April 25 - 26, 2008, Czech Republic

General Top-Down Parsers Based On Deep Pushdown Expansions

Alexander Meduna *
meduna@fit.vutbr.cz

Zbynék Kiivka*
krivka@fit.vutbr.cz

Abstract: This paper discusses a generalization of the classical general top-down parsers formal-
ized by pushdown automata. This generalization consists in allowing them to make expansions
deeper in the pushdown. Based on the expansion depth, this paper establishes an infinite hierarchy
of language families between the families of context-free and context-sensitive languages. The
discussion about several modifications, their properties and open problems follows.

Keywords: parsing, pushdown automata, state grammars, infinite hierarchy

1 Introduction

Consider the standard conversion of a context-free grammar to a pushdown automaton acting as
a general top-down parser for the grammar (see, for instance, page 176 in [1], page 148 in [4],
page 113 in [6], or page 444 in [8]). During every move, the parser either pops or expands
its pushdown depending on the symbol occurring on the pushdown top. More specifically, if
an input symbol occurs on the pushdown top, the parser compares the pushdown top symbol
with the current input symbol, and if they coincide, M pops the topmost symbol from the
pushdown and proceeds to the next input symbol on the input tape. If a nonterminal occurs on
the pushdown top, the parser expands its pushdown so it replaces the top nonterminal with a
string. M accepts an input string, , if it makes a sequence of moves so it completely reads z,
empties its pushdown, and enters a final state; the latter requirement of entering a final state is
dropped in some books (see, for instance, Algorithm 5.3.1.1.1 in [6] or Theorem 5.1 in [2]).

In this paper, we discuss a slight generalization of this parser. Indeed, the generalized top-
down parser works exactly as the above parser except that it can make expansions of depth m so
it replaces the mth topmost pushdown symbol with a string, for some m > 1. We demonstrate
that the top-down parsers that make expansions of depth m or less accept a proper language
subfamily of the language family accepted by the top-down parsers that make expansions of
depth m + 1 or less, for every m > 1. The resulting infinite hierarchy of language families
obtained in this way occurs between the family of context-free and context-sensitive languages.
For every positive number n, however, there exist some context-sensitive languages that cannot
be accepted by any top-down parsers that make expansions of depth n or less.

2 Preliminaries

This paper assumes that the reader is familiar with the theory of automata, formal languages,
and parsing (see [1,4,6-8, 10]). For a set, @), card(Q) denotes the cardinality of Q. I denotes

* Brno University of Technology, Faculty of Information Technology, Department of Information Systems,
BoZetéchova 2, Brno 61266, Czech Republic

11

the set of all positive integers. For an alphabet, 1/, V* represents the free monoid generated
by V' under the operation of concatenation. The identity of V* is denoted by . Set V*t =
V* — {e}; algebraically, V* is thus the free semigroup generated by V' under the operation of
concatenation. For w € V*, |w| denotes the length of w and alph(w) denotes the set of symbols
occurring in w. For W C V, occur(w, W) denotes the number of occurrences of symbols from
W in w. For every i > 0, prefix(w, ¢) is w’s prefix of length i if |w| > 4, and prefix(w, i) = w
ifi > |w|+ 1.

A state grammar (see [5]) is a quintuple, G = (V, W, T, P, S), where V is a total alphabet,
W is a finite set of states, T C V is an alphabet of terminals, S € (V — T) is the start symbol,
and P C (W x (V —=T)) x (W x V*) is a finite relation. Instead of (¢, A,p,v) € P, we
write (¢, A) — (p,v) € P throughout. For every z € V*, set gstates(z) = {q|(¢,B) —
(p,v) € P,where B € (V —T)Nalph(z),ve V*t qpe W}LIf (¢, A) — (p,v) € Px,y €
V*, gstates(xz) = (), then G makes a derivation step from (g, zAy) to (p, zvy), symbolically
written as (g, zAy) = (p,zvy) [(¢g, A) — (p,v)] in G; in addition, if n is a positive integer
satisfying occur(zA,V — T) < n, we say that (¢, zAy) = (p,zvy) [(¢, 4) — (p,v)] is n-
limited, symbolically written as (¢, zAy) = (p,zvy) [(¢,A) — (p,v)]. Whenever there is
no danger of confusion, we simplify (¢, zAy) = (p, zvy) [(g, A) — (p,v)] and (¢, zAy) ,=
(p,zvy) [(g,4) — (p,v)] to (¢,2Ay) = (p,zvy) and (¢,zAy) .= (p,zvY), Tespectively.
In the standard manner, we extend = to =", where m > 0; then, based on =", we define
=% and =* Letn € I and v,w € (W x V*). To express that every derivation step in
v =™ w,v =1 w, and v =* w is n-limited, we write v ,=™ w,v ,=1 w,andv ,=>* @
instead of v =™ w,v =% w, and v =* w, respectively. By strings(v ,=* w), we denote
the set of all strings occurring in the derivation v ,=* w. The language of G, L(G), is defined
as L(G) = {w € T*|(¢,S) =* (p,w),q,p € W}. Furthermore, we define for every n >
1,L(G,n) ={w € T*|(q,S) n=" (p,w),q,p € W}, and L(G, n) is called n-limited language
of G. A derivation of the form (q,S5) ,="* (p,w), where ¢,p € W and w € T*, represents
a successful n-limited generation of w in G. A state grammar G is of degree n for a positive
integer n if and only if L(G,n) = L(G). ST, denotes the family of languages containing
(n or less)-limited languages of arbitrary state grammar. More formally, for every n > 1, set
ST,, = {L(G,1)| G is an arbitrary state grammar, 1 < ¢ < n}. If L(G,n) # L(G) for every
positive integer n, then G is state grammar of infinite degree. Let ST, = |J,-_, ST,,. Let ST,
be the entire family of state languages.
CF and CS denote the families of context-free and context-sensitive languages, respectively.

Kasai proved in his paper (see [5]) these crucial theorems concerning state grammars (re-
formulated in the terms of this paper):

Theorem Kasai.2. ST, = CS.
Corollary Kasai.l1. ST, C ST,,.

Theorem Kasai.5. Foreveryn > 1, 8T,, C 8T, ;.
Observe that for each n > 1, 8§T,, C ST, follows from the definition of state languages.

12

Example 1. Consider a state grammar, G' = ({4, C, a, b, c}, {1, 2, 3,4}, {a, b, ¢}, P, S) with
P={ (1,58) — (2,AC)
(2,A) — (3,aAb),
(2,A) — (4, ab),
(3,C) — (2,C¢),

(4,C) — (4,¢) k.
The demonstration of generating the string aabbce in G follows. G makes 2-limited deriva-
tion, so G is of degree 2.

(1,9) = (2,AC) [(1,S) — (2,A0)]
= (3,aAbC) [(2,A) — (3,aAb)]
= (2,aAbCc) [(3,C) — (2,Cc)]
= (4,aabbCc) [(2, A) — (4,ab)]
= (4, aabbec) [(4,C) — (4,¢)]

Therefore, (1, S) =* (4, aabbee). Observe that L(G) = L(G, 2) = {a"b"c"| n > 1}, which
belongs to CS — CF.

3 Definitions

A deep top-down parser, a DTDP for short, is a 7-tuple, M = (Q, X, I, R, s, S, F'), where @ is
a finite set of srates, X is an input alphabet, and I is a pushdown alphabet, I, (), I" are pairwise
disjoint (see Section 2 for I), X' C I’ I — X contains a special bortom symbol denoted by #,
RC(IxQx (M= (SU#D) x @ x (T—{#NF) U x Q x {#} x @ x (I'— {#})'{#})
is a finite relation, s € () is the start state, S € I' is the start pushdown symbol, F C () is a set
of final states. Instead of (m, q, A, p,v) € R, we write mgA — pv € R and call mgA — pv
a rule; accordingly, R is referred to as the set of M’s rules. A configuration of M is a triple
in Q x X* x (I' — {#})*{#}. Let x denote the set of all configurations of M. Let z,y € x
be two configurations. M pops its pushdown from z to y, symbolically written as x ,= v, if
r = (q,az,au),y = (q,z,u), where a € X,z € X* u € I'*. M expands its pushdown from
T to y, symbolically written as z .= y, if ¢ = (q, w,uAz),y = (p,w,uvz), mgA — pv € R,
where Ae I' — X u,v,2 € [*,q,p € Q, w € ¥ and occur(u, I — X) = m — 1. To express
that M makes z .= y according to mgA — pv, we write .= y [mgA — pv]. We say that
mgqA — pu is a rule of depth m; accordingly, z .= y [mgA — pv] is an expansion of depth m.
M makes a move from z to y, symbolically written as z = y, if M eitherz .= yorz ,= y. If
n € I is the minimal positive integer such that each of M ’s rules is of depth n or less, we say that
M is of depth n, symbolically written as ,, M. M is deterministic with respect to the depth of its
expansions if for every ¢ € Q,card({m|mgA — ppe RRAe ' - X velt pe@}) <1
because at this point from the same state, all expansions that M can make are of the same
depth. In the standard manner, extend ,=, .=, and = to ,=™,.=", and =", respectively,
for m > 0; then, based on ,=>™, =™, and =™, define ,=+, ,=*, =T, =", =1, and ="
Let M be of depth n, for some n € I. We define the language accepted by ,M, L(, M), as
L(,M) = {w € X*| (s,w, S#) =* (f,&,#) in ,M with f € F'}. In addition, we define the
language that M accepts by empty pushdown, E(, M), as E(,M) = {w € 2*| (s, w, S#) =~
(q,e,#) in ,M with g € Q}.

For every every k > 1,set TD, = {L(;M) | ;M is a DTDP, 1 < i < k} and ETD;, =
{E(;M) | ;M isaDTDP,1 < i < k}.

13

Example 2. Consider a DTDP, ;M = ({s,q,p, f},{a,b,c},{A, B,S,#},R,s,S,{f}) with
R={ 1sS — ¢AB,
1gA — paAb,
1gA — pab,
2pB — ¢Bec,
2pB — fc
Notice that M is deterministic with respect to the depth of its expansion. With aabbce, M
makes

(s, aabbec, S#) . aabbce, AB#) [1sS — gAB]
p, aabbce, aAbB#) [1gA — paAb]
p, abbee, AbB#)

g, abbce, AbBe#) [2pB — ¢Bc]
= (p, abbce, abbBe#t) [1gA — pab]

(g,
(
(
E
= (p, bbec, bbBc#)
=
=
= (
=
= (

=
e=
=

=

e

p, bee, bBc#)

p, cc, Be#)

frec,cc#) [2pB — fc]

fie, c#)

= (f,&,#)

We write (s, aabbce, S#) =* (f, g, #), and we say that the string aabbec is successfully

accepted by DTDP M. Observe that L(M) = E(M) = {a™"c"*|n > 1} € TD,, and L(M) €
CS — CF.

4 Results

This section proves that TD, = ETD; = CF and forevery n > 1,ETD, =TD, C ETD,,, =
TD, ., C CS.

Lemma 1. For every state grammar, G, and for every n > 1, there exists a DTDP of depth n,
oM, such that L(G,n) = L(,M); in addition, , M is deterministic with respect to the depth of
its expansions.

Proof. Let G = (V,W, T, P, S) be a state grammar and n > 1. Set N = V — T'. Define the
homomorphism f over ({#} U V)* as f(A) = Aforevery A € {#} UN, and f(a) = ¢ for
every a € T. Introduce the DTDP of depth n,

M= (Q,T,{#}UV,R,s, S, {3}),

where Q = {s,8} U {(p,u)|p € W,u € prefix(v,i),v € N*{#}",1 < i < n} and R is
constructed by performing the following steps:

1. forevery (p,S) — (q,z) € P,p,q € W,z € VT, add
1sS — (p,S)Sto R;
2. if (p, A) — (¢,7) € P, (p,udv) € Q,p,g € W,A € N,z € V+,u € N",v € N*{#}",
|luAv| = n,p & gstates(u), then add
|ud|(p, uAv) A — (q, prefix(uf(z)v,n))z to R;

14

3.ifAe N,pe Wiue N*,v € {#}*, |lw| <n—1,p¢g gstates(u), then add rules
|uA|(p, uv)A — (p,uAv)A and
|u#|(p, wv)# — (p, uo#)# to R;

4. forevery g € W, add
g, #")# — $# O R.

Basic Idea

»M simulates G’s n-limited derivations so it always records the first n nonterminals occurring in
the current sentential form in its state (if there appear fewer than n nonterminals in the sentential
form, it completes them to 7 in the state by #s from behind). , M simulates a derivation step
in the pushdown and, simultaneously, records the newly generated nonterminals in the state.
When G successfully completes the generation of a terminal string, , M completes reading the
string, empties its pushdown and enters the final state $.

Notice that , M is deterministic with respect to the depth of its expansions. For rigorous
formal proof that L(G,n) = L(, M) see [9].

In this theoretically oriented paper, we have not concentrated our attention on the efficiency
of the construction above. We will discuss the pragmatically oriented aspects of the construction
in the future. Specifically, we plan to ensure that no useless state will be generated and that every
second component of each composite state is of the same length. Let us note that the following
construction in Lemma 2 is given from a theoretical viewpoint as well.

Lemma 2. For every n. > 1 and every DTDP, , M, there exists a state grammar, G, such that
L(G,n) = L(,M).

Proof. Letn > land ,M = (Q,T,V, R, s, S, F') be a DTDP. Let Z and $ be two new symbols
that occur in no component of , M. Set N = V —T'. Introduce sets C' = {{g,%,>)|g € Q,1 < <
n—1},D = {{(g,i,9)|g € Q,0 < i < n — 1}, an alphabet W such that card(V') = card(W),
and for all 1 < ¢ < n, an alphabet U; such that card(U;) = card(N). Without any loss of
generality, assume that V| (), and all these newly introduced sets and alphabets are pairwise
disjoint. Set U = Ul ,U;. Foreach 1 < i < n—1,set C; = {{(g,%,>)|¢ € Q} and for each
0<i<n-1setD; = {{q,%,<)|¢ € Q}. Introduce a bijection i from V' to W. For each
1 <7 < n, introduce a bijection ;g from N to U;. Define the state grammar

G=(VuwuUru{zZ},QuCuDU{$},T,P,2),
where P is constructed by performing the following steps:

1. add
(s,Z) — ({s,1,p),h(S)) to P;
2. foreveryge QAe N,1<i<n-—1,z € V', add
((g,3,>), A) — ({g,i + 1,»), ig(A)) and
({a,4,), i9(A)) — ({g,i — 1, <), A) to P;
3. ifipA — qzY € R,forsomep,ge Q, Ae N,z e V*Y € V,i=1,...,n, then add
((p,i,p), A) — ((¢,i — 1,<),2Y) and
((p,i,>), h(A)) — ((g,i — 1,4),zh(Y)) to P;

15

4. forevery g € Q, A € N, add
({¢,0,9),A) — ({q, 1,l>) A) and
({¢,0,9),h(Y)) — ({¢,1,>), A(Y)) to P;
5. forevery g € F,a € T, add

((¢,0,9),h(a)) — (8,a) to P.

Basic Idea

G simulates the application of ipA — qy € R so it makes a left-to-right scan of the sentential
form, counting the occurrences of nonterminals until it reaches the ith occurrence of a nonter-
minal. If this occurrence equals A, it replaces this A with y and returns to the beginning of the
sentential form in order to analogically simulate a move from ¢. Throughout the simulation of
»M’s moves by G, the rightmost symbol of every sentential form is from W. G completes the
simulation of an acceptance of a string x by , M so it uses a rule introduced in step 5 of the
construction of P to change the rightmost symbol of z, h(a), to a and, thereby, to generate x.

To keep this paper as readable as possible and due to insufficient space, we omit the follow-
ing rigorous part of the proof. The reader can easily fill them in (for details see [9]).

Theorem 3. Foreveryn > 1, 8T, = TD,, = ETD,,.

Proof. The equivalence ST,, = TD,, for each n > 1 follows from Lemmas 1 and 2. By analogy
with that demonstration, we can establish §T,, = ETD,, for each n > 1. This theorem holds
thanks to transitiveness of equivalence relation.

The main result of this paper follows next.
Theorem4. TD, C TD, ., for everyn > 1.

Proof. This result follows from Theorem 3 above and from Theorem 5 in [5], which says that
the m-limited state grammars generate a proper subfamily of the family that (m + 1)-limited
state grammars generate, for every m > 1.

Finally, we state two theorems concerning CF and CS.
Theorem 5. TD, = ETD, = CF.

Proof. Let us recall that one-limited state grammars characterize CF (see [5]). Thus, Theorem 5
follows from Lemmas 1 and 2 forn = 1.

Theorem 6. For everyn > 1,TD,, = ETD, C CS.

Proof. From Theorem 2 and Corollary 1 in [5], for every n > 1, the n-limited state grammars
generate a proper subfamily of CS. Thus, Theorem 6 follows from Lemmas 1, 2 and Theo-
rems 3.

5 Modifications

Every following modification is presented by its difference from DTDP just by a gist, so the
same or very analogous definitions of notions are omitted. The short discussion about generative
power is included (without proofs).

16

5.1 DTDP with erasing rules

Let us note that throughout this paper, we have considered only true pushdown expansions in
the sense that the pushdown symbol is replaced with a nonempty string rather than the empty
string; at this point, no pushdown expansion can result in shortening the pushdown length.
Nevertheless, the discussion of moves that allow DTDPs to replace a pushdown symbol with
¢ and, thereby, shorten its pushdown represent a natural generalization of DTDPs discussed in
this paper. What is the language family defined by DTDPs generalized in this way?

5.2 Symbol-dependent DTDP

The definition of symbol-dependent deep top-down parser is identical up to the definition of
expansion between two DTDP’s configurations:

(g, w,uAz) .= (p, w,uvz) [mgA — pv], where occur(u, {A}) =m — 1.

For instance, language a"b"c", n > 1 can be described by symbol-dependent DTDP with
rules:

18§ — gAB, 1¢A — paAb, 1¢A — pab, 1pB — qBec, 1pB — fc.

5.3 Input-reading DTDP

We do not distinguish pop and expansion type of moves in this modification. These two kinds
of actions (pop, expand) are composed together into the rule of the form

(amgA — pz),a e X U{e},m>1,pq e QA — X,z €',

So, the selection of applicable rules is based on actual state, actual input symbol, and non-
input symbol in depth of m in the pushdown. The power of this input-reading deep top-down
parser is the next open question.

5.4 Relatively DTDP
Consider changed form of rules
pgA —pv,p € {1,0,-1},p,ge Q, AeI' - X, ve It

Each configuration can be written as (g, x,uAz, IT), IT € I, and starting configuration as (s, w,
S#, 1), respectively. The expansion move is defined as

(g, z,uAz, IT) o= (p,z,uvz, IT + u) [ugA — pv], where occur(uA, I’ — X) = IT — p.

We can also introduce a generalization of the same power, where i € {n,n — 1,...,1,0,
—1,..., =(n — 1), —n} for some constant n € I. It is easy to prove equivalence between
relatively DTDP and its generalization. On the other hand comparison with DTDP is open
problem again.

17

5.5 DTDP with symbol searching

If neither pop nor expansion is possible for any rule in actual state, then take a look in the special
set of rules F' of DTDP and make symbol searching action. F' is called failure set. Rule from F
is applied in the following way:
r = (¢, w,uAz) = (p,w,uvz) [f: ugA — pv] such that no rule from R can be used in the
configuration = and from F' is chosen rule f such that m is minimal positive integer greater or
equal to p, where m = occur(u, I’ — X).

Observe that this kind of DTDP acts in analogical way to appearance checking mode in
regulated grammars (see [3]).

In addition, most of these modifications can be combined into much more complicated au-
tomata models.

6 Conclusion

Deep top-down parsers fulfill space between classical pushdown automata and linear bounded
automata which characterize context-free and context-sensitive languages, respectively. The
power of this new formal model is proved by equivalence to the family of n-limited languages
generated by state grammars. Then, several variants of DTDP are introduced.

Future research can be divided into two areas: (a) looking for more powerful modifications,
exploring their properties and (b) studying determinism and searching for applications in pars-
ing of non-context-free languages.

The authors acknowledge the support of GACR grant 201/04/0441. They also thank Tomds
Kopecek for his comments concerning this paper.

Bibliography

1. Aho, A. V., Ullman, J. D.: The Theory of Parsing, Translation and Compiling, Volume I: Parsing
(Prentice Hall, Englewood Cliffs, New Jersey, 1972)
2. Autebert, J., Berstel, J., Boassom, L..: Context-Free Languages and Pushdown Automata. In: Hand-
book of Formal Languages, ed. by Rozenberg, G., Salomaa, A., vol 1 (Springer, 1997)
. Dassow, J., Paun, G.: Regulated Rewriting in Formal Language Theory (Springer, Berlin, 1989)
4. Harrison, M. A.: Introduction to Formal Language Theory (Addison-Wesley, Reading, Massa-
chusetts, 1978)
5. Kasai, T.: An Hierarchy Between Context-Free and Context-Sensitive Languages. In: Journal of
Computer and System Sciences, Vol. 4 (1970) pp 492-508
6. Lewis, H. R., Papadimitriou, C. H.: Elements of the Theory of Computation (Prentice-Hall, Engle-
wood Cliffs, 1981)
7. Martin, J. C.: Introduction to Languages and the Theory of Computation (McGraw-Hill, New York,
1991)
8. Meduna, A.: Automata and Languages: Theory and Applications (Springer, London, 2000)
9. Meduna, A.: Deep Pushdown Automata. In: Acta Informatica (2000, in press)
10. Sudkamp, T. A.: Languages and Machines (Addison Wesley, Reading, Massachusetts, 1988)

W

18

