WFM 2006 April 25 - 26, 2006, Czech Republic

Variations on the Theme: P Colonies

Lucie Ciencialova *
ciecilka@gmail.com

Ludgk Cienciala*
ludek.cienciala@fpf.slu.cz

Abstract: In this paper we present the results achieved in research of P colonies, a biochemically
inspired formal model of a computing device. We show that P colonies with one or two objects
inside each agent are computationally complete.

Keywords: P colonies, membrane systems, P systems.

1 Introduction

P colonies were introduced in the paper [3] as a formal model of a computing device inspired by
membrane systems and formal grammars called colonies. This model is inspirated by structure
and functioning of a community of living organisms in a shared enviroment.

The independent organisms living in a P colony are called agents. Each agent consists of
some objects embedded in a membrane. The number of objects inside the agent is the same for
each of them. The enviroment contains several copies of the basic enviromental object denoted
by e. The number of the copies of e is unlimited.

The set of programs is associated with each agent. The program determines the activity of
the agent. Each program consists of the same number of rules as the number of the objects
inside the agent. So in every moment all the objects inside of the agent are being evolved or
transported.

The rules are as simple as they can be. There are two kinds of rules in programs. The first
type called rewriting is in the form a — b. It means that object a inside of agent is rewritten to
object b. The second type of rules can be called communication and they are in the form ¢ « d.
When this rule is performed, the object ¢ inside and the object d outside of the agent change
their places, so d is now inside and c is outside of the agent.

In the specific model introduced in [3] only two objects are allowed to be inside of each
agent. Each program consists of one evolution rule and one communication rule (a — b, ¢ « d).

In [3] the ability of agents is extended by checking programs. We give the agents the posi-
bility to opt between two possibilities. They have form (a — b, ¢ < d/c’ + d'). If this program
is performing, the communication rule ¢ « d has higher priority to be executed than the rule
¢« d'. It means that the agent checks the possibility to use the rule ¢ « d (it tries to find
object ¢ inside of it and the object d in the enviroment). If this rule can be executed the agent
must use it. If the first rule cannot be applied, the agent uses the second one ¢’ < d'. In the case
of two objects inside of each agent objects ¢ and ¢’ are identical, we can rewrite the checking
rule to the form ¢ < d/c « d'.

* Institute of Computer Science, Silesian University in Opava, Czech Republic

27

At the beginning of computation the enviroment and all agents contain only copies of object
e. By using their programs the agents change their content and by enviroment can affect behav-
ior of other agents. In each step of computation each agent nondeterministically chooses one of
its applicable programs and executes it. The computation halts when no agent can apply any of
its programs. The result of the computation is the number of some specific objects present at
the enviroment at the end of the computation.

In this paper we study the computational power of P colonies. The restricted P colonies
with two objects in an agent are studied in works [2, 3, 4, 5]. The posibility of another number
of objects inside of agent is is mentioned too. Some results for P colonies with three objects
in each agent were presented in [5]. We present that P colonies with one object in a agent are
computationaly complete too.

2 Definitions

2.1 P colony
Definition 1. The P colony of the capacity c is a construct
II =(Ae, f,By,...,By), where

— A s an alphabet of the colony, its elements are called objects,
- e € Ais the basic object of the colony,
- f € Ais the final object of the colony,
- B;, 1 <i < n, are agents, B is construct B; = (O;, P;), where
e (O; is a multiset of ¢ copies of the basic object e, this multiset determines the initial state
of the agent,
o I = {pi1,...,Pir} is a finite set of programs, where the programs contain ¢ rules,
which are in one of the following forms:
* a — b, these rules are called evolution rules,
* ¢ < d, these rules are called communication rules,
* ¢ < d/c « d', which are called checking rules.

At the beginning of the computation the enviroment contains arbitrary number of copies of
the object e, each agent contains c copies of e. The P colony is in its initial configuration. A
configuration is (n + 1)—tuple of strings of objects. Formally, the configuration of P colony I7
is (wy, ..., w,, wge*), where |w;| = ¢, 1 < i < n, w; represents all the objects placed inside
the i-th agent and wg € (A — {e})* represents all the objects in the enviroment different from
€.

The computation can be done in two different ways. At each step of the parallel computation
each agent tries to find one program to use. If the number of applicable programs is higher
than one, the agent nondeterministically chooses one of them. At one step of computation the
maximal number of agents works. At each step of sequential computation only one agent use
its program.

The computation ends by halting, it means that no agent can use any of its programs. With
a halting computation we can associate a result of the computation. It is the number of copies
of the special symbol f present in the enviroment.

Because of nondeterminism in a computation of the P colony, we can obtain more than one
halting computation. Hence what we associate with P colony /7 is a set of natural numbers
denoted by N (IT) computed by all possible halting computations of 1.

28

GivenaPcolony IT = (A, e, f, By, ..., B,) the maximal number of programs associated
with the agents in P colony I7 is called the height of P colony /7. The degree of P colony /7
is the number of agents in P colony 7. The third parameter characterizing a P colony is the
capacity of P colony /7 describing the number of the objects inside each agent.

The family of all sets of numbers N(/I) computed by P colonies of the capacity ¢, the
degree at most n and the height at most ~ without using checking rules in their programs is
denoted by NPCO Ly, (c,n, h) for P colonies work in parallel way and N PCO Lge,(c, n, h)
for P colonies work in sequential way. If we allow checking rules, the family of all sets of
numbers computed by P colonies is denoted by NPCOL,, K. If the P colonies are restricted
too, we change notation to NPCOL,,R or NPCOL,, K R for m being seq or par.

2.2 Register machine

In this work we want to characterize the generative power of the families NPCOL,,(c, n, h)
comparing them with the family of sets of numbers computed by Turing machines. To achieve
this aim we need the notion of a register machine.

Definition 2. [6] A register machine is the construct M = (m, H, ly, l;,, P) where:

— m is the number of registers,

— H is the set of instruction labels,

— [y 1s the intial/start label,

— 3 is the final label,

— P is a finite set of instructions injectively labelled with the elements from the given set H.

The instruction of the register machine are of the following forms:

ly : (ADD(r),l5,13) Add 1 to the contents of the register r and proceed to the instruc-
tion (labelled with) I, or [5.

ly : (SUB(r),l2,13) If the register r is not empty, then subtract 1 from its contents and
2o to instruction [5, otherwise proceed to instruction 3.

lp: HALT Stop the machine. The final label [/, is only assigned to this in-
struction.

Without loss of generality, we can assume that in each SUB-instruction [, : (SUB(r), ls, I3)
and in each conditional ADD-instruction [, : (ADD(r),ls,l3) the labels [y, l5, I3 are mutually
distinct.

The register machine M computes a set N (M) of numbers in the folloving way: it starts
with all registers empty (hence storing the number zero) with the instruction with label [and we
proceed to apply the instructions as indicated by the labels (and made possible by the contents of
registers). If we reach the halt instruction, then the number stored at that time in the register 1 is
said to be computed by M and hence it is introduced in N (M). (Because of the nondeterminism
in choosing the continuation of the computation in the case of AD D-instructions, N (M) can
be an infinite set.) It is known (see e.g.[4]) that in this way we can compute all sets of numbers
which are Turing computable.

29

3 P colonies with one object inside the agent

In this part we analyze behaviour of a P colony with only one object inside each agent living”
in this P colony. It means that every program is formed by only one rule. This rule is rewriting,
communication or checking. If all the agents have their programs from rewriting rules, the
agents "live only for themselves™ and do not communicate with the enviroment.

Theorem 3. NPCOL,,.(1,%,7) = NRE.

Proof. Let us consider a register machine M = (m, H, ly, I, P). All the labels from H will be
objects from P colony. The contents of a register ¢ will be represented by the number of copies of
a specific object a; in the enviroment. We will construct a P colony IT = (A, f,e, By,..., By)
with:

- the alphabet A= HU {a; |1 <i<m}U{F;|1<i<|H|}U{ed, D}
- final object f = a4
—agent B; = (e, P;), 1 <i < |H| + 3 = n, and its programs are following:

1. We consider the starting agents By, B, with a set of programs:
Po={({e—1l),{lo = D/l e)}. Po={{e— D), (Dl }

The agent 3, generates and sends copies of the initial label [, of the register machine M and
stops by consuming one copy of the object D. The second agent B, generates one copy of
D and waits for the object ;. After having transported it inside the agent finishes its work.
A simulation of computation of M can start.

2. We need one more agent to generate some special object d. In every second step the agent
Bj; places one copy of d to the enviroment.

Py={(e—d),(d— H/d—e)}.

3. For each instruction ; : (ADD(r), ls,l3) there is one agent in P colony /1. This agent has
to add one copy of the object a, and the object /5 or [3 to the enviroment.

1911:{<6H£1>:(ll_’ar>>(ar‘_’d),<d—’32>,
(d—1b),{laee), (I3 e) }.

If the object [; is present in the enviroment, the agent 53;, can start to be active, it can
consume the object /;, generate the object a,., place it to the enviroment and finally exchange
the object [, or [3 by e. At the end of this part of the computation the object with the label of
the next instruction of M is placed in the enviroment and another agent can start to work.

4. For each instruction [, : (SUB(r), l3,(3) from P we consider the agent B;, with the set of
programs:

Py={{e=l),h— FA),(A<a/F«d,a),
(d-’l;;),(lg*-*ﬁ), (l3<—>€> }

The agent again brings inside the object /; and changes it to another object F}. In the next
step the agent checks whether at least one copy of a, is present in the enviroment. In the
positive case the agent consumes a, inside itself and rewrites it to the object /5.

In the negative case the agent consumes the object d and rewrite it to the object [3. In the last
step the agent again exchanges the object [, or I3 by e.

30

5. For the halting instruction labelled /;, we consider the agent B;, with the following set of
programs:

th{(eHEh)=(lh_’H%(HHd)}'

The agent consume the object [;, and in the enviroment there is no other object [,,,. This agent
places one copy of the object H to the enviroment and stops working. The object H is on
the next step consumed by the agent B;. No agent can start its work and computation halts.

From the previous explanations, it is easy to see that P colony /7 correctly simulates computa-
tion in the register machine M.

The computation of /7 starts with no object a, placed in the enviroment in the same way as
the computation in M starts with zeroes in all the registers. The computation of /7 stops if the
symbol [, is placed inside the corresponding agent in the same way as M stops by executing
the halting instruction labelled [;,.

Consequently, N (M) = N(IT), and because each agent contains at most seven programs,
the proof is complete. 0

Another question is how many agents are necessary to simulate any register machine. To
do this we need do add one type of checking rules. At the definitions we said that checking
rule has the form (¢ < d / ¢ < d'). Because each agent contains only one object, we change
itto (c «» d /¢ — d'). It means that the agent tries to exchange the object ¢ for object d. If its
demand is not satisfied the agent rewrites the object ¢’ to d'.

Theoremd4. NPCOL,, (1,5, %) = NRE

Proof. Let us consider a register machine M = (m, H, ly, l,, P) and present the content of
the register 7 by the number of copies of a specific object a; in the enviroment. We construct
aPcolony IT = (A, f,e, By, ..., Bs) with:

— alphabet A= {I;,l!|l; e H} U{L;, E;, E!, F,, F!, F!" | foreachl; € H}U
U{ai]l <i<m}U{ed,m,D,H},

1. To initialize simulation of computation of M we take two agents B, = (e, P,) and By =
(e, P,) with two sets of programs:

P1:{<e—>lg>,(l0<—>D/lo<——>e>}. Po={(e— D),(D <l }.

2. We need one more agent to generate some special object d. In every two steps the agent B;
places one copy of d to the enviroment.

Pa={({e—d),(d— H/d—e)}.

3. To simulate the ADD-instruction {; : (ADD(r),l,13) there are two agents By and By in
P colony [I. These agents help themselves to add one copy of object a, and object I3 or I3
to the enviroment.

31

Programs in P, Programs in F; Programs in P

(BHJ;{), <6<—>lf?),

(ll - El)) (B 2 [é>)

(El = d)) (1,2 = lQ) ’

(d — L), (e & Ev), (ly — l3),
(Ey — EY), (lo & e),
(Ei <—>6), (13H6>

(L « E{/L;y — m),

(m —d),

(Ey — 1), (e < L),

(Ep — 13), (L1 — ar),

(I~ €), (ar <€),

(I3 < e)

The agent B4 consumes the object [;, changes it to £, and places it to the enviroment. The
agent Bs lends E; from the enviroment and a little altered (to EY) gives back. B, rewrites
the object d to some L;. If this L; has the same index as E! placed in the enviroment, the
computation can go to the next phase. If indexes of L; and E; are different the agent B,
tries to generate another L;. If the computation gets over this checking step, B, generates
the helpful object I}, or I5 and places them to the enviroment. The agent Bj; exchanges it to
“valid label” I, or [5.

4. For each SUB-instruction [; : (SUB(r), ls, I3) there are subsets of P; and Ps:

Programs in P, Programs in P; Programs in P;

(e = l), (e = 1),

(L — F), (e — 13),

<F]<—’d>, (irg—)l}2>,
(e = F1), {3 = la)
<F1_)F1’>: <£2<—>e),
(F{ < a,/F] — F}, (I3 = e)

(d < F), (ar —€),

(F] — b), (F{' —e),

(d < FY),

(F{' — l3)

(I < e),

(I3 < e)

The agent I, starts simulation of executing of SUB-instruction [;, the agent B checks
whether there is a copy of the object a, in the enviroment or not and gives this information
(F| = there is some a,, F|' = there is no object a, in the enviroment) to agent B, by placing
the object F| or FY' to the enviroment.

5. The halting instruction [, is simulated by the agent B, with subset of programs:
{<6th>v<£h_>H>’<HHe>}'

The agent consumes the object [;, and in the enviroment there is no other object [,,. This
agent places one copy of the object H to the enviroment and stops working. At the next step

the object / is consumed by the agent B3. No agent can start its work and computation
halts.

From the previous explanations, it is easy to see that P colony I7 correctly simulates compu-

32

tation in register machine M. The computation of /I starts with no object a, placed in the
enviroment in the same way as the computation in M starts with zeroes in all the registers. The
computation of I stops if the symbol [}, is placed inside the corresponding agent in the same
way as M stops by executing the halting instruction labelled /;. Consequently, N (M) = N(II)
and because the number of agents is five, the proof is complete. O

4 P colonies with two objects inside the agent

In the case of agents with two objects each program must consists of two rules. If the former
of these rules is evolving and the latter is communication or checking, we talk about restricted
P colonies. If we allow also another combination of these three types of the rules, we obtain
non-restricted P colonies. The restricted P colonies with the checking rules are computationally
complete. The next results were proved to be true:

- NPCOL,,,KR(2,%,5) = NRE in[1, 4],

= NPCOLperR(2,%,5) and NPCO Lgeq/par KR(2,1,%) = NRE in [2],

= NPCOLgq(2,1,%) = NPCOLgeq(2, *,%) = NMAT in [2], where N M AT is the family
of sets of vectors of non-negative integers generated by partially blind register machines.

In the case of two rules in the same form in the program, we can say that the program is
rewriting, communication or checking one. The rewriting program can be modified to the form
(ab — cd). In the same way we can modify communication (and checking) programs to the
form (ab < cd) (and {(ab < cd/ab < cd'}).

TheoremS. NPCOLyqr/seqK(2,1,%) = NRE.

Proof. Let us consider a register machine M with m registers. We construct a P colony [T =
(A, f,e, B) simulating a computation of register machine M with:

-A={d,as f,ho}U{l,l'|le H}U{a, |1 <r <m},

- f = Q,

- B'=(Q,P), O0=4{d d}

At the beginning of computation the agent generates the object [, (the label of starting instruc-
tion of M) and two copies of the object a. Then agent starts to simulate instruction labelled [,
and generates the label of the next instruction. The set of programs is as follows:
1. For initializing of the simulation there are programs in P:
(dd — slg), (slo « ee€), (ee — ah), (ah < se}, (se — af), (af < LA}, {loh < aa),
2. For every AD D-instruction [} : (ADD(r), ls, l3) we add programs to P:

(aa « lLie), (el — lha,), (el — la,), {lha, < ef), (lia, — ef),
(ef o ely), (ef o ely), (ely— L), (ely — lyv), {lzv < aa), (v < aa),
When the agent takes objects [; and e inside, it rewrites them to one copy of a, and the
object I, or l5. The next sequence of steps finishes by generating of /5 or /3. This object must
be sent out to the enviroment with object v.

3. For every SU B-instruction [, : (SUB(r), I3, l3) there is a subset of programs in P:

(aa — La, [aa < lie), (lia, —), (lie — I3v), (v < aa), (l3v « aa),

33

At the first step the agent checks if there is any copy of a, on the enviroment (if register r
is noempty). In the positive case it brings {; with a, inside, in the negative case [, enters the
agent with symbol e. In dependence on the content of the agent, it generates the object [or
5.

4. For the halting instruction [, there is a program in the set P:

(aa < hiy)

By using this program, the P colony finishes computation as well as the register machine
halts its computation.

It is easy to see that the P colony /7 correctly simulates any computation of the register machine
M and the number contained on the first register of M corresponds to the number of copies of
the object a; presented in the enviroment of /7. O

5 Conclusions

We have shown that the P colonies with capacity ¢ = 1 and with checking programs with height
at most seven are computationally complete and with checking/rewriting programs with degree
5 they have the same computational power. In the last part of this study we have shown that
P colonies with two objects inside the agent and with homogeneous programs can have only
one agent (degree d = 1) and we obtain computational completeness too.

Activities carried out in the field of membrane computing are currently numerous and avail-
able at [9].

This work has been supported by the Grant Agency of Czech Republic grants No. 201/04/0528
"Vypocetni aspekty emergence - teorie a experimenty” and Grant Agency of Czech Republic
grants No. 201/06/0567 ”Bioinformatika a biovypocty: souvislosti, modely a aplikace”.

Bibliography

1. Csuhaj-Varji, E., Kelemen, J., Kelemenova, A., Pdun, Gh., Vaszil, G.: Cells in environment:
P Colonies. Journal of Multi-Valued Logic, 2005(accepted) 13 pp.

2. Freund, R., Oswald, M.: P colonies working in the maximally parallel and in the sequential mode.
Pre/Proceedings of the Ist International Workshop on Theory and Application of P Systems (G.
Ciobanu, Gh. Pidun, eds), Timisoara, Romania,2005, pp. 49-56.

3. Kelemen, J., Kelemenovd, A., Pdun, Gh.: On the power of a biochemically inspired simple computing
model: P colonies. Downoloadable version at [9].

4. Kelemen, J., Kelemenovd, A., Pdun, Gh.: The power of cooperation in a biochemically inspired
simple computing model: P colonies. Workshop and Tutorial Proceedings, Ninth International Con-
ference on the Simulation and Synthesis of Living Systems, ALIFE IX (M. Bedau at al., eds) Boston,
Masss, 2004, pp. 82-86.

5. Kelemen, J., Kelemenovd, A.: On P colonies, a Simple Bio-Chemically Inspired Model of Computa-
tion. Manuscript.

6. M. L. Minsky: Computation Finite and Infinite Machines. Prentice Hall, Engle-wood Cliffs, NJ,
1967

7. Paun, Gh.: Computing with membranes. Journal of Computer and System Sciences 61, 2000,
pp. 108-143 and TUCS Research Report No 208, Turku, 1998.

8. Pdun, Gh.: Membrane computing: An introduction. Springer-Verlag, Berlin, 2002.

9. P systems web page: http://psystems.disco.unimib.it

34

