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Preface

Many modeling languages, such as the Unified Modeling Language (UML), advocate the
use of graphical notations for modeling. While such visual representations provide a intu-
itive way of modeling and, usually, allow for describing high-level concepts very nicely, the
visual representations are often not suited for describing systems in a precise and unam-
biguous way: either the visual representations lacks the necessary constructs completely
or the visual representations, including all formal details, gets overpopulated.

The challenges of providing both a graphical notation that allows the intuitive modeling
of the overall system while still being able to express system properties in a precisely
and unambiguously motivated the development of textual specification languages that
integrate, extend, or even replace graphical notations. Typical examples of such languages
are OCL, textual MOF, Epsilon, and Alloy. Textual modeling languages have their roots
in formal language paradigms like logic, programming and databases.

The goal of this workshop was to create a forum where researchers and practitioners
interested in building models using OCL or other kinds of textual languages could directly
interact, report advances, share results, identify tools for language development, and dis-
cuss appropriate standards. The close interaction enabled researchers and practitioners to
identify common interests and options for potential cooperation.

Every accepted paper was reviewed by at least three members of the program com-
mittee. In addition, these proceedings contain one unreviewed paper summarizing the
panel discussion about proposal for future improvements of the OCL. For this paper, each
panelist contributed one sections that motivates his or her proposal for extending the
OCL.

October 2014 Achim D. Brucker, Carolina Dania, Geri Georg, and Martin Gogolla






Textual, executable, translatable UML*

Gergely Dévai, Gédbor Ferenc Kovécs, and Addm Ancsin

Eo6tvos Lorand University, Faculty of Informatics, Budapest, Hungary,
{deva,koguaai,anauaai}@inf.elte.hu

Abstract. This paper advocates the application of language embedding
for executable UML modeling. In particular, txtUML is presented, a Java
API and library to build UML models using Java syntax, then run and
debug them by reusing the Java runtime environment and existing de-
buggers. Models can be visualized using the Papyrus editor of the Eclipse
Modeling Framework and compiled to implementation languages.

The paper motivates this solution, gives an overview of the language
API, visualization and model compilation. Finally, implementation de-
tails involving Java threads, reflection and AspectJ are presented.

Keywords: executable modeling, language embedding, UML

1 Introduction

Executable modeling aims at models that are completely independent of the ex-
ecution platform and implementation language, and can be executed on model-
level. This way models can be tested and debugged in early stages of the devel-
opment process, long before every piece is in place for building and executing
the software on the real target platform.

Executable and platform-independent UML modeling changes the landscape
of software development tools even more than mainstream modeling: graphical
model editors instead of text editors, model compare and merge instead of line
based compare and merge, debuggers with graphical animations instead of de-
buggers for textual programs, etc. Figure 1 depicts the many different use cases
such a toolset is responsible for. Models are usually persisted in a format that
is hard or impossible to edit directly, therefore any kind of access to the model
is dependent on different features of the modeling toolset. Are the available
tools ready to meet the requirements? Experience shows that they still need to
evolve a lot. Another aspect is that, while graphical notations help understand-
ing software more than textual representations, editing graphics is usually less
productive than editing text [13].

Textual modeling languages solve many of these concerns. The many high-
quality text editors with sophisticated editing and search-related features, as
well as the numerous compare and merge tools serve as a solid basis. However,
merely defining a textual notation for modeling does not solve all the issues. Text

* This work is supported by Ericsson Hungary and KMOP-2008-1.1.2.
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Fig. 1. Using an ”omnipotent” modeling framework

editors need plugins to do syntax highlighting and autocompletion correctly for
the new language. Executable modeling makes even heavier-weight demands:
interpreter and debugger are also required.

Language embedding is a technique to implement a language in terms of an
existing one. The implementation language is called the host language, while the
implemented one is referred to as the embedded language. One way to embed a
language is to create an API in the host language that offers the constructs of the
embedded language for the developers. A program of the embedded language is
therefore a host language program that heavily uses this API. The API can, on
one hand, implement the execution semantics of the embedded language (making
it executable in the runtime environment of the host language) and, on the other
hand, can build an internal representation of the embedded program (to be used
further for compilation, visualization, analysis etc.). The big advantage is that an
embedded language can piggyback on the development and runtime environment
of the host language.

Refactor
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Fig. 2. Using an embedded language for executable modeling

This paper proposes using language embedding for executable UML model-
ing. As stated above, such an embedded language can be realized by an API
that provides the constructs of executable UML. It is natural to use an object-
oriented programming language as host language, because many of the UML
modeling concepts, such as classes, inheritance, attributes, operations, visibility,
instance creation etc. are already present in these languages. Other constructs,
like components, associations, state machines, events etc. are usually not ex-



plicitly present, therefore these abstractions have to be provided by the API.
The implementation of this API has to capture the runtime semantics of these
constructs. A UML model can then be implemented by a program in the host
language naturally reusing the modeling constructs that are part of the host
language and using the API to build the rest of the model. Model execution,
in this setup, is not more than running the resulting program in the execution
environment of the host language. Figure 2 highlights how many elements of the
”modeling environment” are provided for free by this approach. Editing, search-
ing, basic refactoring can be performed in the usual development environment
(smart text editor or IDE) of the host language. The debugger of the host lan-
guage can be reused to observe model execution in detail. Visualization of the
model can be achieved via existing UML editors or viewers.

Authors of this paper have created a prototype implementation of a modeling
language along these lines [7]. Its name, tetUML stands for textual, executable,
translatable UML. Our host language is Java. Papyrus, the primary UML editor
of the Eclipse Modeling Framework, is selected to provide model visualization.

The paper is organized as follows. The next section reviews related work and
compares them to our approach. Section 3 presents the language API, while sec-
tions 4, 5 and 6 talks about execution, visualization and model compilation. More
details on the implementation of these aspects are given in Section 7. The last
section summarizes the paper and highlights its most important contributions.

2 Related Work

The UML standard does not define precise execution semantics, but the Founda-
tional Subset for Executable UML (fUML) [18] is an OMG standard doing that
for a subset of UML, including classes and actions, but excluding components
and state machines. There is another OMG standard in preparation to define
precise semantics of UML composite structures [20].

BridgePoint [15] is an executable modeling tool originally based on the
Shlaer-Mellor methodology [24]. Its metamodel is a non-standard fork of UML,
including components, classes, state machines (with graphical-only editor) and
action language (textual with custom syntax). BridgePoint includes open-sourced
[2] editor, and commercial model executor with graphical debugging features and
model compiler. A similar, commercial solution is iUML, a tool based on the
xUML methodology [23]. A UML simulator based on a generic model execution
engine [14] was developed by IBM Haifa Research Lab and integrated into Ratio-
nal Software Architect. Topcased [22] is an open-source joint industry-academia
project to create an open-source engineering toolkit. It is implemented over the
Eclipse platform and supports UML model execution with graphical feedback.
The project is currently under migration to PolarSys [8]. The Eclipse Modeling
Framework (EMF) [25] is surely the most active open source modeling commu-
nity nowadays. Moka [4] is one of the EMF-based tools, and it provides model
execution with graphical animations for f{UML actions. The Yakindu Statechart
Tools [10] is an open source toolkit for editing and simulating statecharts and



compiling them to C, C+4 and Java. It supports statecharts with semantics
slightly different from UML state machines and a limited textual action lan-
guage. All these tools come with graphical-only editors for most layers of their
modeling language and are subject to the concerns described in Section 1.

Turning to textual UML modeling, Action Language for Foundational UML
(Alf) [17] needs to be mentioned. This is an OMG standard that defines textual
syntax for f{UML. Although there are prototype tools [11] to parse and run Alf
code, the support for this language is not mature enough yet. Furthermore,
fUML and Alf are based on a limited subset of UML, they miss concepts like
components and state machines that are essential for executable modeling. The
Umple project [12,9] shows a very neat way to integrate textual modeling with
traditional coding. It provides custom syntax for associations, state machines
that can be mixed directly into Java, C++, Php or Ruby sources. The Umple
compiler preprocesses these files and translates the Umple code fragments to the
language they are mixed in. Umple relates to our work because both approaches
are textual and try to make modeling more lightweight. On the other hand,
their goals are different: Umple provides easy mix-in of model abstractions into
traditional programming projects, while txtUML aims at completely platform
and implementation language independent, executable modeling.

Section 1 discussed the importance and difficulties of model management. The
Epsilon [21, 1] project provides a number of textual languages based on a common
expression language for different model management tasks like transformation,
comparison, merge etc. In particular, not human readable model storage format
is one aspect of the model management problem, which is addressed by the OMG
standard UML Human-Usable Textual Notation (HUTN) [16]. In this paper, in
contrast, we explore the possibilities of reusing the management toolset of a
mainstream programming language.

Regarding the visualization aspect of our project, MetaUML [3] (a KIEX
package to create UML diagrams) and TextUML [6] (providing custom textual
notation to build UML diagrams) are related projects. Furthermore, there are
UML tools (Topcased java2uml importer, Object Aid, UML-lab, Class Visualizer,
MoDisco etc.) that can create UML diagrams (usually class diagrams) based on
Java code. The important difference compared to our approach is that these
tools start from arbitrary Java code and produce a small part of a model on a
best effort basis, while our library only accepts a subset of Java (the txtUML em-
bedded language) and turns the full model definition (including state machines,
actions etc.) to a model for visualization or compilation.

3 Language Overview

Our implementation currently supports classes, state machines and action code.
To make clear distinction between plain Java classes and those that are part
of the UML model description, all model classes have to inherit (directly or



indirectly) from ModelClass, which is provided by our API'. Associations are
also represented by class definitions, inheriting from Association. Multiplicities
are described as Java annotations like @0ne, @Many etc. For example, a class
diagram talking about users using machines can be described this way:

class Machine extends ModelClass { /* ... x/ }
class User extends ModelClass { /* ... */ }
class Usage extends Association {

@0One Machine usedMachine;

@Many User userOfMachine;

}

Signals are defined by classes that inherit from Signal. Let us define a signal
that users can send to machines by pressing the power button:

class ButtonPress extends Signal {}

State machines are described by nested classes inside model classes, inheriting
from State, InitialState or Transition. The annotations @From, @To and
@Trigger complete the definition of transitions.

class Off extends State { /* ... */ }
class On extends State {
public void entry() { /* ... x/ }
public void exit() { /x ... */ }
}

QFrom(0ff.class) @To(On.class) @Trigger (ButtonPress.class)
class SwitchOn extends Transition {

public void effect() { /* ... %/ }
}

Operations of model classes, entry and exit actions of states and effects of tran-
sitions contain action code. The doWork operation of the User model class, for
example, log a message to the console, selects the machine that it is associated
with, then presses its power button:

void doWork() {
Action.log("User: starting to work...");
Machine myMachine = Action.selectOne(this, Usage.class, "usedMachine");
Action.send(myMachine, new ButtonPress());

}

Action language constructs include instance related operations (eg. creation,
deletion, access to operations and attributes), association related ones (link,
unlink, different traversals), signal sending, logging and basic operations of ele-
mentary types like integers and strings.

It is important to note that only a restricted subset of Java is allowed in model
definitions. For example, adding a Vector<User> attribute into the Machine

! Inheritance between two model classes encodes UML generalization. Java does not
support multiple inheritance, which is currently a limitation of txtUML.



class instead of the explicit definition of the association is invalid: Selecting the
concrete collection type is an optimization issue and should not be part of the
abstract model. The techniques to be discussed in Section 7.2 can rule out the
violations of these rules, including constraints specified in the UML standard.
Using an embedded language in Java makes model descriptions a bit more
verbose than tailor-made custom syntax. This is a moderate price for familiar
syntax and the possibility of model execution and debugging with existing tools.

4 Execution

A model, defined using the API introduced above, can be compiled, run and
debugged as any Java application. Figure 3 shows a debugging session executing
the example used in Section 3. A breakpoint, set on the signal sending instruc-
tion of the doWork method, is being hit. It is possible to inspect the threads
that belong to the active object instances, the attributes of these instances, in
particular the current state of the machine instance. When stepping over the
send instruction in the debugger, the developer can verify that the state changes
from off to on.

35 Debug 52 ¢ T =B
4[] Exemple (3) [Aspect)/Java Application] B
4 {2 ttuml.eamples.examplel. Bemple at localhost:54259
4 o Thread [main] (Suspended (breakpoint at line 45 in ExampleModelSUser))

ExampleModelSUser.doWork( line: 45

p del.doWork_aroundBo del, delSUser, JoinPaint) line: 62
ExampleModel test() line: 62
Example.main(String[]) line: 69

38 Thread [Thread-0] (Running)

wl C:\Program Files\Java\ire7\bin\javaw.exe (2014.07.10, 18:14:41) —Z

9= Variables 57 | g Breakpeints #E Y= B8
MName Value i
> a this ExempleModelSUser (id=25) E
4 O myMachine ExampleModel$Machine (id=28)
> @ currentState ExampleModelSMachineSOff (id=30)
> o identifier "inst_1447237459" (id=32) i
txctuml. examples . examplel . ExampleModelSMachine$0Ff@3b5c3849 E
« f
] Examplejava % =8
class User extends ModelClass { -
void doWork() {
Action.log("User: starting to work...");
Machine myMachine = Action.selectOne(this, Usage.class, "usedMachine”);
g Action.send(myMachine, new ButtonPress());
) o

] i, b

Fig. 3. Eclipse debugging session executing the example of Section 3

Discussing the execution semantics behind our implementation is far beyond
the scope of this paper. We summarize our approach as follows: We start from
the constructs in the xtUML modeling language [2], port them to standard
UML2 [19] and gradually add more UML2 abstractions. In case of abstractions
that are covered by other standards, like f{UML [18] and PSCS [20], we adopt the
standard semantics. If the execution semantics of the considered abstractions are



not standardized (eg. state machines), we closely follow the informal semantics
given in the UML2 standard, examine different possibilities and select one based
on usability and implementation considerations.

5 Visualization

Even if our proposal is a textual modeling language, we consider visualization
an extremely important aspect. Graphical representation of system architecture
and behavior makes it easier to understand large systems. The advantage of
our approach is that we have the possibility to reuse any UML editor or viewer
tool for model visualization by generating the persistency format of the selected
tool. We use the Ecore based implementation of UML2 as our internal model
representation that gives us Papyrus-compatible [5] model persistency for free.
Papyrus provides autolayout for diagrams.

Note, however, that automatically laid out diagrams are far from perfect, be-
cause the position of model elements and their relative distance in a hand-drawn
diagram also carries information. For example, the class representing the most
important concept is usually placed in the middle of a class diagram. Closely
related classes are drawn close to each other, while marginal or technical asso-
ciations can be long broken lines. Our plan is to extend the embedded language
with constructs to define the relative placement of model elements. For exam-
ple, one could specify that the User class has to be displayed next to the class
Machine, on its right hand side. This is definitely an important future work in
our project.

Figure 4 shows the Papyrus editor showing our example model. The tree-
view of the model in the Model Explorer on the left hand side is automatically
loaded when opening the model persisted by our API. The class diagram on the
right-hand side can be created by manually dragging the classes from the Model
Explorer onto the diagram.

T Model Explorer 52

ERFBREEG

B 7D modeldi X
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E Machine E User
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@ + doWork))

B ClassDiagram £

B Properties &2

Fig. 4. The Papyrus editor showing the example model of Section 3



6 Translation

The toolchain of executable modeling is completed by the model compiler that
turns a model into a program in a given implementation language (C++, Java,
etc.) optimized towards a selected platform and runtime libraries. Our imple-
mentation includes a prototype model compiler generating C++. For example,
let us show a fragment of the generated code for the example used throughout
the paper:

struct Machine
{
std: :vector<User*> user0fMachine;
enum state { state_Init, state_0ff, state_On };
state current_state;
/* ... x/
};

The association between the machine and its users results in the member
called user0fMachine in the machine class. Since the multiplicity of this end of
the association is @Many, a vector of pointers to user objects is generated. Note,
that the compiler is free to choose a different collection type for optimization
reasons. In particular, this member can be omitted if the association is never used
to navigate from machines to users. The states of the machine are represented
by the enumeration type state and the current_state member is responsible
for storing the actual state in runtime.

Section 5 revealed that we use the Ecore-based UML2 implementation as the
internal representation of the models. The model compiler’s task is to query the
model via the UML2 API and turn its elements C++ to code.

7 Implementation

7.1 Implementation of the execution semantics

Execution semantics of the model are captured by the implementation of our
API, introduced in Section 3. The interesting bit of this implementation is the
asynchronous communication between object instances. Any modeled class has
to inherit from ModelClass. Its constructor creates a Java thread for all the
instances?. Each thread has a mailbox of type LinkedBlockingQueue<Signal>
that other instances can put signals in asynchronously. The threads run the
following loop:

while (true) {
Signal signal = mailbox.take();

parent.processSignal(signal);

}

2 This is the reason to use inheritance to mark classes belonging to the model.

10



That is, they are polling their mailboxes for incoming signals and propagate
those to their object instances (parent) for processing. The processSignal
method implements the runtime semantics of state machines. Note that the take
method blocks the thread if the mailbox is empty, therefore no busy-waiting is
involved. When the object instance is deleted, its thread is interrupted, leading
to an InterruptedException that stops the loop above.

7.2 Building the internal representation of models

Both visualization and model compilation requires a representation of models
that can be queried and transformed to graphics or text. In our case this repre-
sentation is the FEcore-based implementation of UML2.

Using Java reflection, it is possible to get information about the static struc-
ture of Java code. For example, in case of the Machine class, we iterate through
its attributes and member functions to find out the attributes and operations to
be added to the model representation via the UML2 API. Then, the enclosed
classes are examined, if they inherit from State or Transition in order to add
the state machine of this class to the model.

Java reflection is unable to look into method bodies, but it is possible to call
methods via the reflection API. However, simply calling the methods found eg.
in states or transitions would not help in building model representation, since
the instructions inside these methods implement the runtime semantics of the
model. For this reason, we use AspectJ, an aspect-oriented extension to Java.
For example, the following AspectJ code fragment replaces all method calls on
instances of ModelClass with code that adds the corresponding call operation
element to the model:

Object around(ModelClass target): call(x *(..)) && target(target) {
return Importer.call(target, thisJoinPoint.getSignature().getName(),
thisJoinPoint.getArgs());

8 Summary

In this paper we presented tztUML, which is an executable UML language em-
bedded in Java. Our main contributions are the following:

— A novel textual UML modeling method that makes model-level execution
and debugging possible by reusing the Java runtime environment and Java
debuggers.

— Application of Java reflection and AspectJ for creating model representation
that can be used for visualization and model compilation.

— Prototype implementation of the framework.

Using a mainstream programming language provides easy integration to existing
toolchains, while reusing its execution environment and debuggers reduces the
implementation effort needed to create a framework for executable UML.

11
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Abstract. Managing models requires extracting information from them
and modifying them, and this is performed through queries. Queries can
be executed at the model or at the persistence-level. Both are comple-
mentary but while model-level queries are closer to modelling engineers,
persistence-level queries are specific to the persistence technology and
leverage its capabilities. This paper presents MQT, an approach that
translates EOL (model-level queries) to SQL (persistence-level queries)
at runtime. Runtime translation provides several benefits: (i) queries are
executed only when the information is required; (ii) context and meta-
model information is used to get more performant translated queries;
and (iii) supports translating query programs using variables and depen-
dant queries. Translation process used by MQT is described through two
examples and we also evaluate performance of the approach.

Keywords: Model-Driven Development, Large-Scale Models, Runtime
Query Translation, Model Queries

1 Introduction

Managing models encompasses tasks such as model validation, constraint check-
ing, model analysis, etc. These tasks require executing queries over the models
for getting information from them and also for modifying them. Model queries
can be classified on two levels: model-level and persistence-level. Queries from
both levels are complementary, but each level provides different benefits and
limitations.

On the one hand, model-level queries are closer to modelling engineers since
they are expressed in languages focused on interacting with models, indepen-
dently of the persistence mechanism. Model-level query languages are for exam-
ple Epsilon Object Language (EOL), Object Constraint Language (OCL), EMF
Query, IncQuery, etc. Model-level query languages typically require the user to
load the relevant models into memory first (e.g. using the Resource provided by
EMF), before queries can be executed.

On the other hand, persistence-level queries are specific and dependent on
a particular persistence mechanism. Some persistence-level query languages are
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for example: SQL for querying information persisted in relational databases; or
MorsaQL [1] for querying models persisted using Morsa [2]. Persistence-level
queries are typically executed directly over persisted models, without requiring
to load model information first. Moreover, persistence-level languages leverage
capabilities of persistence mechanisms for which they were created.

In this paper, we present the Model Query Translation layer (MQT), an
approach that translates EOL queries (model-level) to SQL queries (persistence-
level) at runtime. Runtime translation allows to translate imperative model-level
queries that make use of variables and dependant queries. Moreover, runtime
translation produces more performant queries through context and metamodel
information.

The main contribution of this paper is MQT, a prototype that translates EOL
queries to SQL. Using MQT, queries are translated and executed at runtime. We
have evaluated it and the results show that the translation mechanism provided
by MQT performs better (in terms of execution speed) than using the naive
translation provided by Epsilon Model Connectivity Layer (EMC). Modification
queries are not supported at this stage but we plan to add support for them in the
future. Moreover, although currently MQT only translates EOL queries to SQL,
in the future, we aim to extend it to support more model and persistence-level
query languages.

The rest of the paper is organised as follows. In Section 2 we provide some
background and motivation for this work. Section 3 presents MQT and illustrates
the translation process through two examples. The approach is evaluated in
Section 4, and Section 5 compares our approach with related work. We conclude
the paper on Section 6 providing conclusions and directions for further work.

2 Background and Motivation

XMI is commonly used as a model persistence format in Eclipse Modelling
Framework (EMF). Although other alternative file-based persistence solutions
such as binary (supported by EMF) or JSON? exist, file-based persistence entails
memory and performance problems with large models. When trying to solve scal-
ability problems, most recent approaches [3,4,5,6] propose leveraging databases
for large-scale model persistence. These approaches provide persistence-level
query languages that leverage capabilities of these databases. This results in
queries that are expressed at a low level of abstraction and tightly couples the
queries with the specific model persistence mechanism used.

This scenario motivates us to provide a solution that automates query trans-
lation from persistence-agnostic model-level queries that are widely-used by mod-
elling engineers to persistence-level queries that leverage the capabilities of the
persistence layer to improve efficiency.

3 Read more at http://ghillairet.github.io/emfjson/
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3 MQT: Runtime Query Translation From EOL to SQL

Our work is focused on the implementation of a mechanism that allows querying
models in a transparent way and using query languages closer to modelling en-
gineers. Following these directions, we present MQT, an approach that provides
automatic query translation from EOL, a model-level query language, to SQL,
a persistence-level query language.

On the one hand, we have chosen EOL at model-level since it is an impera-
tive OCL-like language that allows querying and modifying models of arbitrary
modelling technologies. EOL provides interesting features such as: use of vari-
ables and methods, use of query chains and syntactic checking. Moreover, it
is the base language of Epsilon Languages which provide different functionali-
ties: model validation, model transformation, code generation, etc. On the other
hand, we have chosen SQL at persistence-level since it is a structured and mature
language widely used for performing queries in relational databases. However, it
can be also used to query some NoSQL databases (e.g. using Unity JDBC* for
running SQL queries against MongoDB databases).

We base our work on [7], where EOL is used to efficiently query large datasets
stored on a single relational table. MQT supports translation of EOL query
programs to SQL, and translated queries are only executed when the result is
required. EOL is imperative and allows specifying variables and query chains.
SQL does not support these features, which means that the expressive power of
EOL and SQL is different. Consequently, the query translation cannot be total.
Being so, in this case where the translated language (EOL) provides constructs
that have no direct mapping in the target language (SQL), translation should
be performed partially. The partial translation mechanism of MQT is based
on the EMC, an API that provides abstraction facilities over modelling and
data persistence technologies. To support the query translation, MQT prototype
provides different classes that are described below:

— MQTModel It extends the IModel class provided by EMC and is the main
class of the approach. Using this class MQT is able to interact with models
conforming EMF in a uniform manner. In order to execute the SQL queries
over databases where models are persisted, this class also implements a jdbc
driver.

— MQTResultObject class. It implements the IModelElement interface of EMC
and allows to work with each model element persisted within the database.
This class translates, executes and get results of queries that ask about model
elements and its features.

— MQTResultSetList class. This class translates, executes and get results of
queries returning a list of MQTResultObjects.

— MQTPrimitiveValueList class. It implements the IModelElement interface
and it is used to translate, execute and get results of SQL queries returning
lists of primitive values (e.g. names).

4 Read more at http://www.unityjdbc.com/mongojdbc/mongo_jdbc . php

15



Using these classes the approach is able to translate and execute at run-
time EOL queries to SQL, and then get the results from a database where the
queried model is persisted. However, the translation provided by EMC is naive:
each query expression is translated and executed by the MQTModel and results
of the SQL query are returned using MQTResultObject, MQTResultSetList or
MQTPrimitiveValueList. Each query expression is translated and executed one-
by-one. This occurs for example in the query ‘‘EClass.all.select(...)’’:
first ¢ ‘EClass.all’’ is translated, returning a MQTResultSetList class with
the result. Then, the ‘¢.select(...)’’ part of the query is translated, but
using the MQTResultSetList. This requires to execute a SQL query for each
result of the list to check the condition of the select.

But the previously described translation mechanism does not exhibit a good
performance when translating and executing complex queries over large mod-
els, since it executes a lot of SQL queries. To improve scalability within query
translation, MQT provides a mechanism that adapts translated SQL queries
at runtime. To support the adaptive query translation MQTResultSetList class
implements the IAbstractOperationContributor interface. In this way, naive
translation of more complex queries such as selects, collects or rejects is replaced
by our own translation mechanism. Using this mechanism MQT is able to group
related and dependant EOL queries within a single translated SQL query. Being
so, MQT executes fewer SQL queries (they are more accurate) and are executed
only when the results are required.

We now explain the runtime query translation mechanism, by demonstrating
the execution of the translation of different EOL programs. To avoid introduc-
ing a custom metamodel, sample query programs are executed over models that
conform to the Ecore metamodel. As we have chosen SQL persistence-level query
language, we have provided a metamodel-agnostic mechanism that persists mod-
els in a relational database. Relational databases require the specification of a
schema where the structure of the database is defined. However, it is important
to note that this paper is focused on the translation of queries and not on the
efficient persistence of large-scale models. In order to facilitate understanding
of the query translation process, the data-schema of the database is described
previously.

3.1 Data-Schema

As the schema of Figure 1 illustrates, table Object persists elements of the model.
This table contains ObjectID (primary key) identifying each element in the model
and the classID (foreign key) that stores ID of its meta-class. Meta-classes are
stored within the Class table, where ClassID (primary key) and Name are stored
for each one. Feature table persists ids (FeatureID) and Names of all the existing
attributes and references. Values of attributes and references (FeatureID) of each
model element (ObjectID) are stored in the Attribute Value and ReferenceValue
tables (primitive value in case of attributes and id and meta-class in case of
references). These five tables are enough for persisting the information stored in
the models. However, sometimes adding duplicated information has a significant
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Fig. 1: Specified metamodel-agnostic database schema.

performance impact on the execution since the information can be used to get
more effective translated queries (in terms of query execution speed). This is the
case of Feature ValueCount table containing how many values each feature of each
element has. Information of this table is used to get more effective translated
queries: for example if ValueCount is 0, the feature do not exist for the element,
and consequently, there is no need to query value of the feature; if ValueCount
is X, it can be used to add ¢ ‘LIMIT X’’ expression within the translated SQL
query.

To improve query execution speed, MQT loads some information of the
database in the memory during query translation and execution. This is the
case of FeatureIDCache and ClassIDCache (loading ID and name of the exist-
ing features and classes).

3.2 Translation Example 1: Simple queries

The first example, shown in Listing 1.1, illustrates a querying program which:
retrieves all model elements that are instances of EClass and assigns only the
first element of the list to the class variable (line 1); then, the program prints
the value of the name attribute of the selected element (line 2); and finally,
the program iterates elements that are referenced through the eSuperTypes
reference of the selected element (line 3), printing the name of each one of them
(line 4).

In the following paragraphs, we explain how MQT translates and executes
these queries.

var class = EClass.all.first();

class.name.println();

for (superClass in class.eSuperTypes)
superClass.name.println() ;

W N

Listing 1.1: Sample EOL program getting instances and attributes/references.
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— Line 1: EClass.all.first (). This first query is divided in two parts. The
first part is EClass.all and it creates a new instance of MQTResultSet
adding the information required to query for all model elements that are
instances of EClass. As such, behind the scenes, MQTResultSet executes
the following SQL query to retrieve the list of matching elements from the
database: SELECT ObjectID FROM Object WHERE ClassID=7 The parame-
ter of the query is ClassID obtained from memory using the previously
introduced ClassIDCache. Then, the second part is executed (first() expres-
sion), returning only the first element (instance of MQTResultObject) of the
MQTResultSetList, and it is stored in the class variable.

— Line 2: class.name. This query expression prints the name of the previ-
ously selected MQTResultObject. This is provided by a method implemented
within the MQTResultObject (getValue(feature)) that retrieves attribute
and reference values of the related model element from the database. In this
case, the method executes the following query for getting the value of the
name attribute: SELECT Value FROM AttributeValue WHERE ObjectID =
? and FeatureID = 7 LIMIT 1. The query parameters are the ObjectID
known by the MQTResultObject and the FeatureID obtained from memory
(FeatureIDCache).

— Line 3: for (superClass in class.eSuperTypes). This statement is
similar to the previous but instead of returning an attribute value, a list of
ResultObjects is returned and then iterated. The executed query is the fol-
lowing: SELECT Value FROM ReferenceValue WHERE ObjectID = 7 and
FeaturelD = 7.

— Line 4: superClass.name. The execution logic of this statement is similar
to the class.name statement.

3.3 Translation Example 2: Complex queries

Listing 1.2 shows another EOL program with more complex model element selec-
tion queries. In this example, the program first selects all the abstract EClasses
without superclasses, and then computes the number of model elements that
satisfy these conditions. If at least one element satisfies these conditions, the
program prints the name of the first model element of the list.

1 var list = EClass.all.select(c|c.abstract=true)

2 var list2 = list.select(clc.eSupertypes.isEmpty());
3 if(list2.size() > 0)

4 list2.first () .name.println();

Listing 1.2: Sample EOL program with selection.

Figure 2 illustrates the translation mechanism used for translating complex
queries from Listing 1.2. Following, a more detailed description is provided:

— EClass.all. Creates a new instance of MQTResultSetList adding the in-
formation required to query all the model elements that are of the EClass
meta-type.
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EClass.all .select(c | c.abstract=true)
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( MQTResultsetList \
SELECT ObjectiD
FROM Object Selection: ObjectID
WHERE (ObjectiD NOT IN (SELECT Object!D FROM REFERENCEVALUE Tables: Object
WHERE FeaturelD = getFeaturelD(“eSuperTypes”))) AND €= Conditions: [ObjectlD NOT IN ( #SELECT_B ),
(ObjectiD IN (SELECT ObjectiD FROM ATTRIBUTEVALUE WHERE ObjectID IN( #SELECT A ), ClassID =7?1]
FeaturelD = getFeaturelD(“abstract”) AND Value= true)) Parameters: [getFeaturelD(“eSuperTypes”),
AND (ClassID= getClassiD(“EClass”)) getFeaturelD("abstract”), true, getClassID(“EClass”)]

#SELECT_A = “SELECT Object!D FROM ATTRIBUTEVALUE WHERE FeaturelD = ? AND Value=?"
H#SELECT_B= “SELECT ObjectiD FROM REFERENCEVALUE WHERE FeaturelD =?"
getFeaturelD(x) and getClassiD(y) are methods that get the Ids from featurelDCache or classiDCache

Fig. 2: Example of the runtime translation of the query from EOL to SQL.

— select(c|c.abstract=true) . This second expression completes the previ-
ous one. Being so, the same instance of MQTResultSetList is completed by
adding a new condition and two parameters to get only the model elements
that have the abstract feature with the true value.

— select(c|c.eSuperTypes. isEmpty ()) . This select expression completes more
the MQTResultSetList instance. It adds a new condition and parameter to
get only the model elements that do not have eSuperTypes.

— Finally, the information that has been added during the previous steps is
used by the MQTResultSetList to get the translated SQL query.

MQT only executes the translated SQL query over the database when the
results are needed. In the case of the previous example (Listing 1.2), the instance
of MQTResultSetList executes the translated SQL in the line 3, where the size
value needs be returned. Once the query described on Figure 2 is executed,
MQTResultSetList instance obtains the results. Then MQTResultSetList pro-
vides size through a method that counts the quantity of the returned elements.
In the case of line 4, MQTResultSetList uses same results but it returns only
the first element of the list.

4 Evaluation

To evaluate MQT, we have executed an EOL query program over five models
of different sizes (from 45MB to 403MB). All experiments have been executed
using an Intel Core i7-3520M CPU at 2.90 GHz with 8GB of physical RAM
running Windows 7 SP1 64bit, JVM 1.7.0 and the Eclipse Kepler SR1 distri-
bution configured with 2GB of maximum heap size. Models have been created
using MoDisco’s Java Discoverer [8] and they specify source code of different
Java plug-ins. These models have been persisted in a relational database with

19



the previously described metamodel-agnostic schema and using the H2°> DBMS
(version 1.3.168). We have specified an EOL Query Program based on the Gra-
Bats’09 reverse engineering contest, where the query identifies singleton classes
within source code of Java plug-ins specified by the models. We have used Gra-
Bats’09 because is widely used by the community on the studies related to model
persistence.

EOL Query program has been executed 100 times over each model and using
the naive translation of EMC and the MQT translation (previously explained
on Section 3). Table 1 shows information of the models used during experimen-
tations: size, number of objects, number of methods and number of singleton
classes that they contain.

Table 1: Singleton query program execution over different models.
Size Objects Methods Singl. Classes Naive trans. MQT trans.

M1 45MB 165741 5366 9 185ms 13ms
M2 72MB 330761 8129 8 302ms 11ms
M3 212MB 875988 11393 6 676ms 10ms
M4 327MB 1343207 15386 0 950ms 3ms
M5 403MB 1566890 19366 0 1243ms 1ms

Average of the query translation and execution times obtained during exper-
imentations are illustrated on Naive translation and MQT translation columns.
As is shown on the table, with naive translation, model size has great impact
on the required time for executing the query program and it increases as the
size of the model increases. However, using MQT translation model size has less
impact over the execution time. We can conclude with these results that MQT
provides more scalability if queries are executed over large-models.

To assess the performance of MQT, we executed the same query against
XMI models (provided by EOL) and obtained the same results. We have also
analysed the execution time spent on the query translation: (M1) 3.35ms; (M2)
4,51ms; (M3) 0.77ms; (M4) 0.8ms; and (M5) 0.64ms. From these results, we have
concluded that as the translation time is only few milliseconds it does not imply
a temporary overload.

5 Related Work

Several solutions have been proposed in terms of generation of queries based
on OCL-like languages. [9] proposes an approach focused on generating SQL
queries from invariants specified using OCL. The approach allows mapping Uni-
fied Modelling Language (UML) models to other data schemas like databases

5 More information about H2 at http://www.h2database.com/
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and then generating queries that allow to evaluate invariants using SQL. [10]
describes an approach that generates views using OCL constraints, and then
uses these view to check the integrity of the persisted data. The approach has
been implemented in OCL2SQLS, a tool that generates SQL queries from OCL
constraints. A similar approach for integrity checking is proposed in [11]. While
these approaches are focused on translating OCL constraints into SQL queries
at compile-time, our approach generates SQL queries from OCL-like expressions
(EOL) at runtime. Comparing with compilation-time translation, main benefits
of runtime translation are: (i) translated queries are executed only when the
information is required; (ii) context and metamodel information can be used
during query translation; and (iii) it supports query chains and variables within
the query program.

[12] presents SPARQLAS, an SPARQL-like query syntax that is translated
to SPARQL and then executed against OWL knowledge base, using results as
input for OCL queries. Using SPARQLAS, queries are executed using SPARQL
(persistence-level) and then query results are the input of OCL queries (model-
level). By contrast, our approach translates queries from EOL (model-level) to
SQL (persistence-level) and then executes the obtained SQL queries.

6 Conclusions and Further Work

In this paper we have presented MQT, an approach that translates at runtime
and automatically model queries specified using EOL (model-level query lan-
guage) to SQL (persistence-level query language). Main benefits of the runtime
translation are: (i) on-demand execution of translated queries; (ii) queries are
translated and adapted at runtime and metamodel and context is used to get
more effective translated queries; (iii) it allows to execute query programs with
variables and dependant queries.

We have evaluated our approach, concluding that with the runtime trans-
lation and adaptation of queries, MQT provides a scalable solution to query
large-models. However, for the future, we plan to perform a more complete eval-
uation that analyses the impact of the characteristics of the used models and
queries.

Presented prototype supports all the EOL expressions that obtain infor-
mation from models, but modification expressions are not supported. For a
next version, we plan to extend the approach with support for: (i) modifica-
tion queries; (ii) additional model-level query languages (e.g. OCL); and (iii)
additional persistence-level query languages (e.g. Cypher). This will provide a
solution that allows engineers to write high-performance queries in a model-level
query language without worrying about the model persistence format. Regard-
ing this point, an open issue to be analysed is how to provide extensibility to
facilitate the integration of query languages at both sides.

5 Read more at http://dresden-ocl.sourceforge.net/usage/oc122sql/
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Abstract. We propose a new method for efficiently checking OCL con-
straints by means of SQL queries. That is, an OCL constraint is satisfied
if its corresponding SQL query returns the empty set. Such queries are
computed in an incremental way since, whenever a change in the data
occurs, only the constraints that may be violated because of such change
are checked and only the relevant values given by the change are taken
into account. Moreover, the queries we generate do not contain nested
subqueries nor procedures. In this way, we take advantage of relational
DBMS capabilities and we get an efficient check of OCL constraints.

Keywords: OCL, Constraints Checking, SQL

1 Introduction

A conceptual schema is the description of an Information System in terms of
the data it should contain and the operations available to users to modify such
data [1]. To define conceptual schemas, the Object Management Group (OMG)
has defined the UML/OCL standards [2,3]. Broadly speaking, UML is used for
specifying a class diagram, i.e. the structure of the data, and OCL for stating
the conditions (i.e. the constraints) that should always be satisfied by the data.

We aim at defining an efficient method to perform integrity checking of OCL
constraints. That is, to efficiently check whether the OCL constraints of the
schema are satisfied by the data contents. Such problem arises in several sit-
uations like conceptual schema execution in animation tools (like USE [4]) or
checking whether a model satisfies the constraints defined in its metamodel in
MDA [5]. Unfortunately, there are not efficient OCL checkers able to deal with
medium-large scenarios [6].

One way to efficiently check OCL constraints is aimed at reducing such prob-
lem to check the emptiness of some SQL query [7]. Intuitively, given an OCL
constraint, we can build an SQL query that returns all instances that violate it.
Thus, the OCL constraint is satisfied if and only if the SQL query is empty. In
this way, we benefit from all optimization techniques of current DBMS for query
answering. Moreover, since SQL is widely used for storing data from constrained
domains, bringing an efficient method for checking constraints based on SQL
might be integrated in current industrial systems without crossing technologies.
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To our knowledge, there are two implemented tools that perform such trans-
lation: OCL2SQL [8] and MySQL4OCL [9]. However, their translation should be
further optimized to scale up for efficient integrity checking in large scenarios.
Mainly, because whenever a change in the data occurs (e.g. an insertion of a new
instance), the whole query is recomputed, when it probably just need to check
whether the updated data should appear as a result of the query.

The main goal of this paper is to overcome the previous drawback by propos-
ing a translation from OCL constraints to SQL queries which allows to compute
them incrementally by a relational DBMS. This is achieved by generating SQL
queries which are only recomputed when the change applied to the data may
violate their associated constraint and such that, whenever the computation is
performed, only the relevant values given by the update are taken into account.
In addition, our generated queries do not nest subqueries nor procedures.

Our method starts by applying the automatic translation of OCL Constraints
into Event Dependency Constraints (EDCs), as defined in [10]. An EDC is a logic
formula which states when some structural events (i.e. insertions or deletions of
data) may cause the violation of a constraint. In terms of logics, an EDC is a
conjunctive query with negated base atoms and built-in literals (i.e. arithmetic
comparisons). So, an EDC has the form: iy A ... AL, A bily A ... Abily, — L,
where each [; is a literal representing an instance, an instance insertion or an
instance deletion; and bil; is a built-in literal. For example, the EDC: user(X) A
wuser Age(X, Age) A Age < 18 — L states that a constraint is violated if there
is a user X in the data and we insert some Age below 18 to this user X.

From this point, we define an inductive translation from EDCs to SQL.
Broadly speaking, {1 gives the initial table to start the FROM clause, then,
each [; is joined with the other tables by a cross join (i.e. a Cartesian product),
inner join or anti join depending on the binding of the variables of I; and its
positive/negative sign. Any bil; is directly placed in the WHERE clause.

Literals l; representing an instance insertion or deletion, i.e. a change taking
place over the data, provide the key for incrementality. Each such [; is translated
as an SQL join from a table containing such insertions/deletions to the rest of
tables translated from the other EDC literals. When a user wants to apply an
update, this update is first inserted in the auxiliary tables and, once the method
has ensured that it does not cause any integrity constraint violation, the update
is applied to the real tables and the auxiliary tables are emptied. Such process
may be automatized by means of a DB controller.

Since each SQL query contains at least one of such literals, such query com-
putations will always be tied to the data changes. For instance, in the previous
EDC, wuserAge(X, Age) joins the query with the insertion of an age to a user.
Thus, if we do not insert any age for any user, the join will return the empty
set and no more evaluation will be needed. On the contrary, if there is some
insertion of an age to a user, the join will retrieve only the affected user(s) from
which to continue the query computation. Note that such evaluation is better
than retrieving all the users of the database and then perform the convenient
checks for each one for any kind of data update.
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As a result, we get some SQL queries that are empty if and only if the OCL
constraints are satisfied. Such queries perform incrementally and, in addition,
avoid the use of nested queries/procedures. As a trade-off, the expressiveness of
OCL is limited to the fragment of OCL translatable to EDCs.

To show the benefits of our method, we have performed some experiments to
compare the efficiency of our translation with the translations given by OCL2SQL
and MySQL4OCL. In such empirical study, we show that whereas our approach
is capable to check the integrity of a set of constraints in at most 3 seconds per
constraint regarding scenarios with 5-10° instances and 5-10* updates, OCL2SQL
and MySQL4OCL could not check some invariants after one hour of execution.

2 Related Work

To our knowledge, there are two tools implementing an OCL to SQL transla-
tion: OCL2SQLI[8] and MySQL4OCL[9]. We review both of them separately. In
addition, we review the research on incremental OCL integrity checking, some
work based on translating OCL to graph patterns, and some other based on
translating FOL based constraints to incremental SQL queries.

OCL2SQL. OCL2SQL is a component of the OCL Dresden Toolkit for trans-
lating OCL constraints to SQL views [8]. The idea is that such SQL views are
empty if and only if all the constraints are satisfied. The bases for such trans-
lation were early established in [7], however, since such bases were not defined
inductively, it is hard to realize which OCL subset does it deal with. In any case,
the main drawback that we find in it is the non-incrementality of their checks.

MySQL40OCL. MySQL4OCL is a tool for translating OCL expressions to
MySQL queries [9]. The translation is tied to MySQL because it uses some
procedures for translating iterator expressions of OCL (e.g. forAll, exists, select,
etc). In this way, they deal with a broad subset of OCL. Moreover, they can
also deal with the three valuated logic of OCL (i.e. true, false, null). However,
and similarly to OCL2SQL, the translation of the constraints is not incremental
and thus, we do not know which queries should be recomputed and which is the
relevant data to take into account to check the data integrity after some update.

Incremental OCL Integrity Checking. There are already some proposals on
how to incrementally check OCL constraints [11,12,13]. Applying such methods
it is possible to realize which constraints should be checked and which is the
relevant data to analyse after some data updates. Nevertheless, as far as we
know, none of them have been adapted to work with databases on its behind.

OCL translation to graph patterns. The work of [5] consists in translating
OCL constraints into graph patterns to benefit from its incremental capabilities.
Such proposal relies on the intensive usage of memory since it is not intended to
work with databases, but from data kept in memory. To overcome such difficulty,
in [14] there is a proposal implementing the incremental graph patterns approach
using some distributed databases. However, it seems that such databases are just
implementing the persistence and the data is still kept (and queried) in memory.
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FOL to incremental SQL queries. Decker proposed a method to translate
constraints specified in a logic notation (different from OCL) into incremental
SQL queries [15]. In his proposal, constraints are translated into queries that
are invoked by triggers when a change over the data may cause a violation of
a constraint. This is the way efficiency is achieved. However, and despite the
difference on the language used to specify the constraints, we are not aware of
any implementation of this approach that allow us to compare its efficiency with
ours in the experiments we have performed.

3 Translating OCL Constraints to SQL Queries

In the following, we first define a conceptual schema with some OCL constraints
that will be used as a running example to illustrate our method. Then, we show
the representation of the OCL constraints in the form of EDCs. Such EDCs
adds the incrementality capabilities to constraint checking. Finally, we give an
inductive translation from such EDCs to SQL queries to perform the incremental
checks of the constraints by means of relational DBMS technology.

3.1 An Illustrative Example

Consider the example in Fig. 1 of a message service application. In this class
diagram, a user sends messages to some conversation groups. There are two
kinds of conversation groups: pairs, that is, two simple users sending messages
to each other; and groups, that is, two or more users formally grouped since
some creation date. As expected, a group has some users as members and also
one user as owner.

ConversationGroup | receiver dsSentTo
1
{disjoint, complete} %
|
Pair
0.*
visFormedBy
2
0..* [ mst
G 0..* Member 2..* USEI? M d
roup group User| phone: String 1 Sends 0.* essage
creationTime: Date [ *  Owner 1| state: String sender ™S bodyf Strl_ng
owned owner| lastConnect: Date creationTime: Date

Fig. 1. Class diagram of a instant message service

OCL Constraints in Fig. 2 states some constraints that should always be sat-
isfied by the data of such schema. Concretely, MessagesinA PairBelongToPair
and MessagesInAGroupBelongToGroup state that the messages received by any
pair/group are sent by the members of such pair/group. UserlsMemberOfOwned-
Groups states that the owner of a group is also a member of such group and
finally, MessagesOfGroupAreSentAfterltsCreation states that any messages sent
to a group has to be created after the creation of the group.
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Note that we have deliberately omitted the identifier constraints of the classes
(e.g. User.allInstances()->isUnique(phone)) because they can be easily well
treated by SQL primary keys on tables.

context Pair inv MessagesIinA PairBelongToPair:
self. user->includesAll(self. msg. sender)

context Group inv MessagesIinAGroupBelongToGroup:
self.user->includesAll(self. msg. sender)

context User inv UserlsMemberOfOwnedGroups:
self. group->includesAll(self. owned)

context Group inv MessagesOfGroupAreSentAfteritsCreation:
self. msg->forAll(e|e. creationTime > self. creation Time)

Fig. 2. OCL Constraints for the previous class diagram

Given a translation of the UML class diagram into SQL tables, our goal is
to translate each OCL constraint into an SQL query in such a way that the
constraint is not violated by an update (i.e. a change over the data) if and only
if its corresponding SQL query is empty. For this purpose, we will first represent
the violations of OCL constraints by means of EDCs and, then, obtain the SQL
queries from this intermediate representation.

3.2 The EDC Representation of an OCL Constraint

The starting point of our work is the Event-Dependency Constraints (EDC)
representation of the OCL constraint violations. The translation from OCL to
EDCs can be fully automatized using the method described in [10]. For the sake
of self-containment we review the formal notion of EDC below.

An EDC is a logic formula that states when some structural events (i.e.
insertions or deletions of data) may cause the violation of a constraint. In terms
of logics, an EDC is a conjunctive query with negated base atoms and built-
in literals (i.e. arithmetic comparisons). That is, it has the form I3 A ... Al A
bily A ... A bil,, — L where each [; is a literal representing either an instance, an
instance insertion or an instance deletion; and bil; is a built-in literal. Such built-
in-literals are optional. In addition, EDCs are safe clauses, that is, any variable
appearing in a negated or built-in literal, also appears in a positive literal.

For instance, the EDCs representation of the UserlsMemberOfOwnedGroups
OCL constraint is:

—owner(G,U), cowner(G,U), ~member(G,U), ~vmember(G,U) — L (1)
—owner(G,U), owner(G,U), member(G,U), §member(G,U) — L (2)
owner(G,U), ~downer(G, U), member(G,U), dmember(G,U) — L (3)

Note that an OCL constraint is written into more than one EDC since each
EDC defines a different combination of events that may lead to the violation
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of the constraint. Concretely, Rule 1 above states that UserlsMemberOfOwned-
Groups will be violated if we insert a user U as the owner of group G, where
U is not a member of G and without inserting U as a member of G. Rule 2
identifies a violation of the same constraint when we insert U as the owner of G
while deleting U as a member of G. Finally, Rule 3 indicates a violation when
we delete U as a member of G without deleting U as the owner of G.

The length of an EDC is directly proportional to the length of the OCL
constraint, but the number of EDC rules we get for an OCL constraint is ex-
ponential to the number of navigation steps of it since there is an exponential
number of different ways to violate a constraint and each EDC captures one. To
avoid such situation, we could take out the common factor of EDCs (e.g. rules
2 and 3 could be summarized in one rule using disjunctions). In this way, we
would achieve a behavior similar to the TREAT algorithm [16] where joins are
performed using the union between a table and its new insertions. However, in
TREAT, each constraint is evaluated as many times as tables containing new
instances are accessed in the definition of the constraint. The efficiency compar-
ison of our proposal and TREAT is left out for further work since, as far as we
know, there is no tool implementing TREAT in SQL for OCL constraints.

It is worth saying that the current translation from OCL to EDCs only deals
with a fragment of OCL. However, such fragment is expressive enough to deal
with a superset of the constraints that can be specified with the constraint
patterns defined in [17], which have been shown to be useful for defining around
the 60% of the integrity constraints found in real schemas. The grammar of the
OCL constraints translatable into EDCs can be found in [10].

3.3 From the UML Class Diagram to SQL Tables

Before translating the EDCs into SQL queries, we need to translate the UML
class diagram into SQL tables. In our example, we will suppose that each UML
class/association has been translated into a different SQL table. Thus, the sig-
natures of the tables obtained from the class diagram of Fig. 1 are the following:
Pair(id) ConversationGroup(id) Group(id,creationTime)
Owner(user, group)  Member(user, group)  User(id,phone,state,lastConnect)

Sends(user, message) Message(id, body, time) IsSentTo(conversgroup,message)
IsFormedBy(pair,user)

3.4 Translating EDCs to SQL Queries

We define now an inductive translation from EDCs to SQL queries based on the
EDC length. The translation is composed by two functions: one for computing
the from clause and another for computing the where clause. Regarding the select
clause, we select the column that represents the id of the instances violating the
constraint (i.e. the self OCL instances for which the invariant evaluates to false).

Therefore, the translation of an EDC to an SQL query is given by the pattern:

SELECT sqlColumn(edc Variable(” sel f”))
FROM fromTransl(EDC')
WHERE whereTransl(EDC)
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Where sqlColumn returns the SQL column name corresponding to the given
EDC variable. The EDC variable in which we are interested is the one corre-
sponding to the OCL self variable, so, we use the function edcVariable with the
parameter “self” to obtain it. In case that there is no ”self” variable in the OCL
constraint (e.g. the constraint may be like Class.alllnstances()->forAll(e]...)),
other options should be considered like selecting the column/s corresponding to
the OCL iterator variable/s (e.g. the previous e variable).

Since EDCs use some literals to represent the insertion/deletion of instances,
we assume that our database schema contains also some public auxiliary tables
in which we temporally store the instances that are being inserted/deleted. Thus,
such literals are mapped to those auxiliary tables.

For instance, EDC 2 uses the literal cowner. Such literal is mapped to a
new auxiliary SQL table ins_owner where we temporary write the insertions of
instances of owner we are applying to the data.

Finally, recall that an EDC has the form I3 A ... A, Abily A ... Abil,, — L.
Without loss of generality, we assume that all negated literals are placed in the
end of the formula (i.e. from some I; to [,); and that all terms of a literal ; are
variables with different names. Such condition can be ensured by replacing some
terms for new fresh variables and binding such variables to its actual terms with
new built-in literals (e.g. P(X,1) would be translated to P(X,Y) A Y = 1).

Translation Base Case In the base case, the EDC is composed by just one
literal /1. Such literal is necessarily positive to ensure the safeness of the clause.
Then, the translation is as follows:

fromTransl(l1) = sqlTable(l1)
whereTransl(l1) = 0

Translation Inductive Case In the inductive case, the EDC has the form
L Al; or LAbil;, where L is a non-empty list of literals, I; is a positive or negated
literal, and bil; a built-in literal.

In the first case, if I; is positive, the translation consists in an inner join
between the translations of /; and L joining the columns corresponding to their
bound variables. If no variable is bound, then, a cross join (i.e., a Cartesian
product) is performed instead. Thus, the translation is as follows:

fromTransl(L A l;) = fromTransl(L) JOIN sqlTable(l;) ON (binding(L,l;))
whereTransl(L Al;) = whereTransl(L)

Where binding(L, ;) is a function that returns the column joins according to
the variables of {; that are bound to L.

If I; is negative, the translation consists in performing an anti join to get
those tuples of L that do not join I;. For performing the anti join, we use a left
join and check the joined columns to be null. Thus, the translation results in:

fromTransl(L A l;) = fromTransl(L) LEFT JOIN sqlTable(l;) ON (binding(L,l;))
whereTransl(L Al;) = whereTransl(L) AND columnName(l;,1) IS NULL
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Where columnName(l;, 1) returns the name of the first SQL column of the
SQL table corresponding to [;. Such column is used to check whether the joined
columns resulted into null.

Also, notice that binding(L, ;) will not be empty because all the variables of
l; are necessarily bound to L since any EDC satisfies the safeness property.

Finally, the translation when we deal with a built-in literal bil; is as follows:

fromTransl(L A bil;) = fromTransl(L)
whereTransl(L A bil;) = whereTransl(L) AND sqlComparison(L, bil;)

Where sqlComparison is a function that translates the bil; into the SQL
syntax. l.e. it changes the variables of bil; for the corresponding SQL column
names of the L variables they are bound to. Note that all variables of bil; are
bound to L because the safeness property.

Translation example To illustrate our translation, we show how the EDC in
rule 2 is specified as an SQL query. First of all, we sort the EDC literals to move
the negated ones to the end of the formula, thus obtaining the following EDC’:

wowner(G,U), member(G,U), dmember(G, U)—owner(G,U) — L
Next, by applying the translation we have just defined, we get:

SELECT TO.user
FROM ins_owner AS TO
JOIN Member AS T1 ON (T1.group = TO.group AND Tl.user = TO.user)
JOIN del_Member AS T2 ON (T2.group = TO.group AND T2.user = TO.user)
LEFT JOIN Group AS T3 ON (T3.group = TO.group AND T3.group = TO.group)
WHERE T3.group IS NULL

Lastly, and since violations of an OCL constraint are specified by means of
several EDCs, the final SQL query we obtain to check the OCL constraint is
given by the SQL union of all the queries we have obtained from each EDC.

4 Experiments

We have conducted an experiment to illustrate the scalability improvement pro-
vided by our SQL queries as compared to OCL2SQL[8] and MySQL4OCL[9]. In
this experiment, we show that we can scale up to scenarios with 5*10° instances
with 5-10% updates to check a set of OCL constraints whereas OCL2SQL and
MySQL4OCL can not deal with some of them after 1 hour of execution. Since
the time required to check a constraint is independent from the others, we stayed
at a reduced number of constraints without altering the relevance of our results.
Given the schema of a message service application in our example, the con-
ducted experiment consisted into adding some new message instances to some
conversation groups in several randomly generated database states of increasing
size. Then, we checked all the constraints of the example by means of the queries
generated by MySQL4OCL, OCL2SQL and our incremental approach.
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Table 1. Time results comparison with OCL2SQL and MySQL4OCL

5%10° 5*10* 5%10° 5*10°
1st Const. - MySQL4OCL 0.71 s 7.45 s 58.0 s >1h
1st Const. - OCL2SQL 0.17 s 0.40 s 3.37 s >1h
1st Const. - inc. 0.09 s 0.13 s 0.46 s 2.63 s
2nd Const. - MySQL4OCL 0.70 s 7.04s 58.9 s >1h
2nd Const. - OCL2SQL 0.15 s 0.54 s 3.7l s >1h
2nd Const. - inc. 0.10 s 0.12 s 0.34 s 2.38 s
3rd Const. - MySQL4OCL 0.60 s 2.06 s 17.0 s 223 s
3rd Const. - OCL2SQL 0.11 s 0.17 s 0.51 s 42.15 s
3rd Const. - inc. 0.09 s 0.09 s 0.10 s 0.10 s
4th Const. - MySQL4OCL 1.94 s 15.0 s 126 s >1h
4th Const. - OCL2SQL 0.11s 0.25 s 1.72 s >1h
4th Const. - inc. 0.09 s 0.09 s 0.24 s 1.63 s

The randomly generated data consisted in N users who randomly had already
sent N * 10 messages distributed in N/10 groups and N/10 pairs. The update
consisted in N/10 new messages. The experiments were carried out on MySQL
5.6 running on Windows 7 in a Intel T4500 2.30GHz machine with 4GB of RAM.
The database had the MySQL default indexes for primary/foreign keys.

We show our results in table 1. The title of the columns indicates the size
of the database giving the number of current preexisting messages. As it can
be seen, we are able able to check the integrity of the constraints in at most
3 seconds per constraint with a database state with 5-10° messages and 5-10*
new insertions. In contrast, OCL2SQL/MySQL4OCL cannot afford some of the
constraints after 1 hour of execution.

The result of the 3rd constraint requires to take special attention. Since
adding new messages cannot cause the violation of the 3rd OCL constraint
(UserIsMember OfOwnedGroups), our incremental approach performs in almost
constant time because the query begins from an empty auxiliary table. For the
other approaches, we argue that its better performance might be because it
contains one level less of subqueries in comparison to the other constraints.

5 Conclusions

We have proposed a method for efficiently checking OCL constraints by means of
SQL queries that perform incrementally since only the relevant constraints and
the relevant values are taken into account during the computation. In addition,
they are written in such a way not to nest any other query nor procedure inside.

To achieve it, we first specify the OCL constraint violations through an EDC
formalism. Such formalism offers the advantage of stating which events may
cause the violation of an integrity constraint. Then, each EDC is translated into
an SQL query. When doing such translation, we create some new SQL tables for
temporary storing the new instances that are going to be inserted/deleted. Such
auxiliary tables are used by our SQL queries to perform incrementally.

We made some experiments showing that our approach is able to check in
seconds four OCL constraints over an scenario containing 5-10° instances with
5-10* updates while other approaches like OCL2SQL and MySQL4OCL could
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not afford some of these constraints after 1 hour of execution. As future work, we
would like to extend the fragment of OCL we are dealing with and to implement
in SQL the rules proposed in [16] to compare the efficiency achieved in this case.
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Abstract. Development of secure cloud applications requires a supportive ap-
proach that should also enable software assessment and certification by different
mechanisms. These can assure by independent means that the required security
is present. In this paper we present a Core Security Metamodel (CSM) that is
the director of a security engineering process that also addresses security certi-
fication for cloud applications. To drive these activities with enough precision,
the CSM is constrained with OCL rules that control the creation of instances of
the metamodel. Due to their relevance for the security engineering process, we
decided to formally check their consistency leveraging on our previous mapping
from OCL to First Order Logic. We found that CVC4 returned sat in less than
30 seconds when we run it in finite model finder mode. Also, it automatically
provided a valid CSM structural instance. Instances so obtained with CVC4 can
be tuned to serve as input of the engineering process of secure cloud applications.
Their automatic generation reduces the time and effort spent in the engineering
process, reinforcing its supportive and practical side.

1 Introduction

Development of secure applications is a challenging task due to the evolvable risks
that threaten any system under design. Even worse nowadays, the exposure of systems
to cloud environments claims for a stronger development approach able to support a
large number of complex security requirements and interplay in the creation of cloud
applications. Most of the proposed approaches agree in the necessity to sit a solid and
affordable engineering process that can prevent, from design time, non-secure states due
to wrong security mechanisms used as a late solution [18]. In line with this approach,
our work stems in the definition and evaluation of a security engineering process [6]
for the CUMULUS [1] and the PARIS [4] EU projects. Our work proposes a complete
Model Based System Engineering (MBSE) methodology to address the different stages
involved in the development of secure and privacy preserving applications. It includes
early stages of the architectural design that identify the security requirements. Also, it
covers subsequent stages in which solutions are manipulated and system model trans-
formations progressively applied up to the inclusion of all the security mechanisms that
fulfill those security requirements.
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In this paper, we are focused at the first stage of the work flow: the Core Secu-
rity Metamodel (CSM), designed to gather and represent the security knowledge. The
CSM and the OCL validation rules imposed on it establish a language that supports,
validates and drives instance creation and subsequent steps of the engineering process.
Due to their relevance for the security engineering process, we decided to formally an-
alyze them. Thus, we mapped them to First Order Logic following our previous work
[13,14,21] and then used off-the-shelf tools to run the analysis. We run Z3 [15] and
CVC4 [7] as SMT solvers in the first place but they did not help us with the consis-
tency checking. Then, we employed CVC4 as a finite model finder, which returned sat
in less than 30 seconds and automatically provided a CSM valid structural instance.
Instances so obtained are manually enhanced with security knowledge later on to serve
as inputs of the engineering process of secure cloud applications. Still, their generation
can reduce the time and effort, reinforcing its supportive and practical side.

Organization. In section 2 we outline related work. In section 3 we introduce the CSM,
its OCL constraints and its intended use. In section 4 we summarize our previous map-
ping from OCL to first order logic and illustrate how CSM rules are mapped. In section
5 we report on the CVC4-based validation and instance generation. In section 6 we
illustrate how instances can be enhanced to drive subsequent steps of the engineering
process. Finally, in Section 7 we present conclusions and directions for future work.

2 Related work

In the software engineering arena there are a number of ready-to-use tools supporting
OCL. Possibly the best starting point to get introduced to a variety of them is the OCL
Portal.* Most of the tools that it contains (~ 11) are OCL parsers or evaluators. Also,
there are 3 static verification tools, one code generator and one OCL transformation
tool. For this related work, we focus in the OCL automatic verification or validation
tools that could help us as alternative or complementary formal analysis means to the
ones that we have already applied to CSM helped by Z3 [15] and CVC4 [7].

Recently published, the systematic review [17] deeply reports on 18 research lines
on static verification of UML-like structural diagrams. Taking these research results as
the starting point, we decided to focus here only on those for which the tool associated
is ready to download or use from a website and supports automatic analysis for a sig-
nificant subset of OCL. We consider these criteria as essential criteria for analysis tools
to be actually of use in real development processes.

Alternative tools to CVC4 for our goal could be, in principle, the ones reported next.
UMLtoCSP [12] and EMFtoCSP [16] both provide bounded automatic verification of
UML (resp. EMF) models annotated with OCL constraints. The users must limit the
search space by explicitly indicating the number of objects in each class, the number
of links of each association and the possible values of each attribute. When the tool
cannot find a satisfying instance within the specified search space, this does not mean
that the property does not hold, because it can still hold for instances outside that search

4 http://www-st.inf.tu-dresden.de/oclportal, last visited in July 2014.
5 We note that the use of these tools was eased by the output of our tool [21] that maps OCL to
FOL being SMT-LIB [8] standard.
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space (and the user may try to verify the property with wider intervals). In the same
vein, the tool UML2Alloy [5] performs bounded verification in relational logic. Also,
the extension of USE tool with relational logic for satisfiability checking [19]. From
this tool we much appreciate as an usability advantage the facility of graphical display
of the instances found as object diagrams. Finally, similar analysis can be performed
using propositional logic [20], but we could not find the BV-SAT available from a web
page, although it is reported as an automatic tool in [17]. Yet, there is a major advantage
in our approach thanks to our mapping [14], the use we make of SMT solvers supports
the OCL 4-valued logic, which is not supported by none of the tools described before.

Although they do not perform fully automatic analysis, we consider complementary
tools interactive theorem provers like, e.g. HOL-OCL [10] or the Key tool [9]. The fact
that they are not fully automatic impact their use that requires too high mathematical
background, precluding them from standard software development practice. As a final
remark, we note that HOL-OCL supports the 4-valued logic of OCL.

3 The Core Security Metamodel

In this section we explain the Core Security Metamodel (CSM) which allows the de-
scription of the security related knowledge that needs to be considered in the develop-
ment of secure cloud applications. Reflecting the complexity of the security field, the
CSM is a composition of 6 sub-models that address different security expertise sub-
areas. Thus, CSM instantiation is facilitated by these groups of related elements which
are displayed in the metamodel with different colors, as shown in Figure 1.° Next we
describe these sub-models, also to understand how they fit together.

Requirement sub-model (green): it is used to qualify security and certification require-
ments by means of security valuators, mechanisms and certified services.

Property sub-model (yellow): it is used to describe abstract security properties involved
in a security requirement, specifying its attributes and values.

Domain sub-model (brown): it is used to describe the domain or context of the CSM
instance, identifying the assets to be protected.

Solution sub-model (pink): it is used to show how the security requirements will be
achieved by means of solutions and security mechanisms.

Assurance sub-model (blue): it is used to specify the assurance profile and the
certification-related elements that would fulfill the certification requirements.

Service Level Agreement sub-model (light blue): it is used to specify SLA agreements
that may affect the security properties.

The CUMULUS engineering process aims not only at supporting experts to express
their expertise into a model, but also to orchestrate an automated sorting and processing
of that information to make it accessible and useful for non security experts. The effec-
tiveness of this approach heavily relies on the OCL validation system which supports
three goals in the CSM instantiation activity:

 CSM has been already proved its use for real applications to integrate security mechanisms
in high risk environments [23,22], but using a different security engineering process in the
context of the SecFutur Project (http://www.secfutur.eu).
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Fig. 1. Core Security Metamodel

. Perform an active validation of the modeling process. This validation raises a warn-

ing if the instance does not conform to the metamodel. It also highlights the pieces
of information that are missing or wrong. This validation helps experts to avoid
wrong specifications that would impact the run time of the system.

Check that required information is present. It validates whether a valid CSM in-

stance lacks information that is needed by the engineering activities. E.g., transitive
association between specific components, empty attributes, etc..

Guide experts during the creation of the CSM instance. They are guided towards

the next piece of information that is needed and its goal in the engineering process.

Therefore the list of OCL constraints is expected to be consistent and reactive
enough to support constant interaction with it. Our rules drive an incremental validation
system that is gradually triggered within the MagicDraw modelling framework [3].

OCL Constraints. The OCL validation package is composed of 33 rules. Out of these,
27 are structural constraints restraining metamodel associations. Next, we introduce
those OCL constraints that do not deal directly with multiplicities.

1. A domain instance must exist and be unique

inv: CP_DM_Domain.allInstances()->size() = 1

context: CP_RM_Certification_Requirement inv:
(not self.URI.oclIsUndefined()) implies
self.service_assurance_profile->notEmpty()

to a security requirement and a property
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. A certification requirement needs to be associated with a service assurance profile.

. A certification requirement must be linked directly and through a security pattern



context: CP_PM_Property inv: self.certification_requirement->notEmpty()
implies self.certification_requirement.sec_pattern.sec_requirement
->intersection(self.sec_requirement)->notEmpty()

4. A certification requirement should be directly linked to a property and a security
pattern for that property

context: CP_RM_Certification_Requirement inv:
self.property->intersection(self.sec_pattern.property)->notEmpty()

5. An asset stereotype is set up over an asset element that must be considered by an
application security requirement of that asset stereotype domain

context: CP_DM_Asset_Stereotype inv: (not
self.asset_element.oclIsUndefined()) implies
self.domain_sec_requirement.application_sec_requirement.
asset_element->includes(self.asset_element)

6. A security pattern must display a security solution

context: CP_SM_Sec_Pattern inv: (not self.URI.oclIsUndefined())
implies (not self.sec_solution.oclIsUndefined())

4 Using OCL2FOL to map CSM into First Order Logic

In this section, we first recall our mapping from metamodels and OCL constraints to
FOL [13,14,11]. Then, we map the most illustrative constraints introduced in section 3.

Type-predicates: Metamodels’ classes are mapped to unary boolean functions. E.g.,
the class CP_SM_Sec_Solution is mapped to CPSMSecSolution : Int — Bool,
There are two predicates isNull : Int — Bool and isInvalid : Int — Bool, which
return true to represent the values null or invalid (resp.);

Objects variables are mapped to integer variables, e.g, an object variable cl

of type CP_SM_Sec_Solution is mapped to an integer variable cl, such that

CPSMSecSolution(cl) holds;

Attribute-functions: Attributes are mapped to integer functions, e.g., the attribute id

of the class CP_AM_Certificate is mapped to a function CPAMCid : Int — Int.”

— Association-predicates: Association-ends are mapped, according to their multiplic-
ity, either to predicates or functions. E.g., the association realizedby between
CP_AM_Service_Assurance_Profile and CP_RM_Certification_Requirement
is mapped into CPAMSAPrealizedby : Int x Int — Bool.

— For each pair of different classes, e.g. CP_SM_Sec_Solution and CP_DM_Sec_Me-
chanism (that are not sub-classes of any other class), the predicates CPSMSecSo-
lution and CPDMSecMechanism must be disjoint, i.e: V(z) =(CPSMSecSolution(x)
A CPDMSecMechanism(z)). Similar formulas are included for all type-predicates.

— Also, we map inheritance relations. E.g., in Figure 1, there is an inheritance re-

lation from the parent class CP_RM_Sec_Requirement to the children classes

CP_RM_Application_Sec_Requirement and CP_RM_Domain_ Sec_Requirement.

7 For the sake of simplicity, we do not consider attributes with type object, neither multivalued
attributes. Also, boolean attributes are always mapped into an integer attribute.
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We map this relation as follows: V(z) (CPRMApp— SecReq(z) = CPRMSecReq(x))
and V(z)(CPRMDomainSecReq(z) = CPRMSecReq(z)).

Since, CP_RM_SecRequirement is an abstract superclass, then the following as-
sertion are included: V() -(CPRMAppSecReq(z) A CPRMDomainSecReq(z)) and
V(z)(CPRMSecReq(z) = (CPRMAppSecReq(z) V CPRMDomainSecReq(z))).

— OCL Boolean-expressions are translated to formulas, which essentially mirror
the logical structure of the OCL expressions, e.g., for the operations or, and,
implies, not, notEmpty, includes, oclIsUndefined, forAll, exists, =,
#; e.g., CP_PM_Pro- perty.allInstances()->notEmpty() is mapped into:
3(x)(CPPMProperty(x)).

— OCL Integer-expressions are basically copied, e.g. 4+, —, *. Currently, we only
cover simple operations (i.e., = and <>) over OCL String-expressions.

— OCL Collection-expressions are translated to fresh predicates that augment the
signature of the specification. Their meaning is defined by additional formulas also
generated by the mapping. E.g., select, collect, intersection, etc..

Next we show the mapping of the CSM constraints numbered 2 and 4 in section 3. ®
Their mapping well represents the one required for the other constraints. Note that, for
the constraint 4 two new fresh predicates are created: Collect1 and Intersectionl.

[2]. CP_RM_Certification_Requirement.allInstances()->forAll(c|not(c.URI.oclIs-

Undefined()) implies (not s.service_assurance_profile->notEmpty()))

V(2) (CPRMCertificationRequirement(x) A =(isNull(CPRMCRurl(x)) V isInvalid(x))

= 3(y)(CPAMServiceAssuranceProfile(y) A CPRMCRrealizedby (y, x)))

[4]. CP_RM_Certification_Requirement.allInstances()->forAll(c|c.property->in-

tersection(c.sec_pattern->collect(p|p.property))->notEmpty())
V(z)(CPRMCertificationRequirement(z) = 3(y)(Intersectionl(x,y)))
V(z,y)(Intersectionl(z,y) < (CPPMPensuredBy(y, z) A Collectl(z,y)))
V(z,y)(Collectl(z,y) < 3(z)(CPSMSecPattern(z)

A CPSMSPcertification(z, ) A CPPMPprovidedBy(y, 2)))

5 Core Security metamodel validation and instance generation

In this section we explain the analysis that we perform on the OCL constrained CSM
metamodel once it is translated to FOL.® We first tried to check whether the OCL con-
straints imposed on the CSM were or not unsatisfiable (and generate an example in the
latter case) by feeding them to the SMT solvers Z3 [15] and CVC4 [7]. However, af-
ter more than 3 hours running, they did not return any result, and we decided to stop
them. We know that this lack of result from Z3 and CVC4 is due to the fact that cur-
rent techniques for dealing with quantified formulas in SMT are generally incomplete.
In particular, they usually have problems to prove the unsatisfiability of a formula with

8 We want to note that our mapping is not yet complete but it does cover a sufficiently significant
subset of the OCL language.
° Translation available at http://www.software.imdea.org/~dania/tools/csm.html.
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Fig. 2. Automatically generated instance of the security metamodel presented in the Figure 1.

universal quantifiers (our specification is plenty of them).!” Then, we decided to employ
CVC4 as a finite model finder on our specification to check its satisfiability because the
input required by it is the same input for the SMT solvers. CVC4 performed a bounded
checking and succeeded by returning sat and automatically producing finite instances
that conform to the OCL constrained CSM. Let us note that to work with the finite
model finder CVC4, since the output of our tool [21] is SMT-LIB, we only needed to
change in our mapping the sorts Int by a finite sort U. CVC4 run less than 30 seconds
to answer SAT and return a simple CSM instance.

Then, we included additional OCL constraints to require a defined URI for all
instances of CP_SM_Sec_Pattern, to contain a minimum of two CP_RM_Attack in-
stances, and at least one instance of each of the following classes: CP_RM_Attack_Type,
CP_RM_Certification_Requirement, CP_SM_Sec_Solution and CP_SM_Sec_Me-
chanism. They ensure that generated instances contain at least a minimum amount
of information that makes them meaningful for a security expert. Then, we run CVC4
again with these additional constraints, and after less than 1 minute, the instance that
we depict in Figure 2 was returned. The instances so obtained with CVC4 match struc-
turally those obtained following the security engineering process and would allow to
skip some of its steps (provided that we could automatically tailor the instances ob-
tained by CVC4 to serve as inputs for the modeling framework). As we show next,
these instances can be enhanced with knowledge (semantics) from the security domain
so as they can serve as input for subsequent steps of the security engineering process.

6 Security enhanced CSM instances

As we already mentioned, the CSM is part of an assisted methodology, supported by the
CUMULUS modelling tool [2], that has been initially conceived to take advantage of

1 More specifically, in this case the problem is introduced by how we map certain types of
association ends into FOL. If we do not include their translation, the SMT solvers terminate,
but the instances they return are not always valid instances.
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Fig. 3. Domain Security Metamodel

the multiple capabilities provided by the MagicDraw framework [3], particularly of its
OCL validation engine. This methodology aims at supporting security experts to specify
and communicate to system engineers how to solve security issues for cloud applica-
tions. When security experts design their models, i.e., CSM instances, the CUMULUS
framework guides the construction of these instances (Domain Security Metamodels-
DSMs) with the OCL rules that are continuously validated over them, raising warnings
that claim for mandatory elements that are not yet present or errors. This process estab-
lishes a common format for the knowledge modeled, ensuring its applicability later on.
The resulting instance (i.e., a DSM) is a validated artifact ready to transform security
requirements into certification requirements and links to the solutions and mechanisms
able to assure local system architectures and their interaction with cloud platforms [6].

For example, the rule [1] in section 3 requires a unique domain instance. Experts
dealing with security knowledge in the EHealth domain in cloud environments may de-
scribe a model for non security experts so as to improve a health care process (we follow
Fig. 3). Domain specification is critical to upload DSMs into the appropriate repository,
to classify the DSM content adequately. Once a valid domain instance has been cre-
ated, the validation system triggers those rules that are not yet satisfied so as the model
has to be extended to fulfill them. In our example, the framework requests at least one
Property and one Asset_Stereotype instance to be linked with the Domain, stem-
ming from the CSM multiplicities and the constraint descriptions. Our DSM is extended
with private data as an asset stereotype to represent all the elements containing private
patient data and the security property Data Confidentiality (that would ensure that in-
Sformation is accessible only to authorized users). This modus operandi is repeated until
DSM fully conforms structurally to the CSM and its OCL constraints.

For the sake of space, we do not describe here in full the DSM creation process.
But we further describe the DSM instance in Fig. 3. It contains as security requirements
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EHealth data protection and Secure cloud storage communications, both associated
to the threat Data Disclosure. In addition, we have created an additional asset patient
record, potential attacks as Cracking or Man in the middle and, finally, a common at-
tacker type Malicious User. Probably, the most important part of a DSM is the selection
of security patterns and certification requirements. The issue to be solved is described
in the pattern, in our example, means to locally enforce data protection with remote cer-
tification to securely enable data transmission. How it should be guaranteed is specified
by the certification requirement, in our example, the usage of certified services for con-
fidentiality and in compliance with data access level 3 or above. Both plain descriptions
have consequences in the security engineering process because they limit the solutions
to be deployed for cloud applications. Recalling subsection 3, the last constraint re-
quires that for a security pattern and a solution to be linked, the URI attribute of the
pattern must be defined. This constraint demands intervention of the security expert
since they search and select from existing repositories, through an API provided by the
framework, a suitable pattern that also links a target solution, e.g., Data protection in
Storage and a security mechanism, e.g., AES. As a result of the modelling process, secu-
rity experts provide a complete artifact ready to fulfill security requirements addressing
both the local mechanisms and the remote certification requirements.

Finally, we remark that both instances shown in Figures 2 and 3 resp., are struc-
turally identical. Thus, the engineering process receive a shortcut from the use of au-
tomatic finite model finders that ease the path and reduce the time required to build
instances since they can automatically generate them. Then, instances can be enhanced
with security domain specific knowledge and trigger subsequent engineering activities.

7 Conclusions and Future Work

In this paper we have introduced a security metamodel (CSM) that is constrained by 33
OCL rules that drive the engineering of secure cloud applications. We formally analyzed
this metamodel, that is both complex and large, and its constraints, to gain confidence on
their consistency and adequacy for the engineering process. We used our previous work,
OCL2FOL [13,14,21] to automatically map the metamodel and its constraints to first
order logic. Then, we employed successfully a finite model finder, CVC4, that returns
‘sat’ for the resulting specification. We also illustrated how the instances automatically
generated by CVC4 conform to the CSM and its constraints, and are enhanced with
domain security knowledge to get ready to trigger the remaining engineering activities.
The automated approach generates an instance that matches one obtained following the
engineering process. Based on these results we can say that our formal analysis besides
providing higher assurance of the adequacy of the CSM and its rules, also reduces the
time and effort required from the security experts in the initial stage of the CUMULUS
engineering process. Particularly, since the automatic valid instances generation. Yet,
we will need to implement a converter from the CVC4 instances to a valid model input
format for MagicDraw to automate the process based on instance generation.

Acknowledgement. This research was partially supported by the 7th EU Framework
Programme project CUMULUS (Certification infrastructure for multi-layer cloud ser-
vices) grant no. 318580 and PARIS (Privacy Preserving Infrastructure for Surveillance)

41



grant no. 312504, and by the Spanish Ministry of Economy and Competitiveness Project
“StrongSoft” (TIN2012-39391-C04-04).

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

CUMULUS Project. http://cumulus-project.eu/.
D4.2: Tools supporting CUMULUS-aware engineering process V1. http://
cumulus-project.eu/index.php/public-deliverables.

3. MagicDraw Modelling Tool. http://www.nomagic.com/products/magicdraw.html.
4.
5. K. Anastasakis, B. Bordbar, G. Georg, and I.Ray. UML2Alloy: A Challenging Model Trans-

PARIS Project. http://www.paris-project.org/.

formation. In MoDELS 2007, volume 4735 of LNCS. Springer, 2007. Tool available at
http://www.cs.bham.ac.uk/~bxb/UML2A11oy/download.php, last access: June 2014.

. M. Arjona, R. Harjani, A. Mufioz, and A. Maifia. An Engineering Process to Address Security

Challenges in Cloud Computing, 3rd ASE International Conference on Cyber Security, 2014.

. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, and

C. Tinelli. CVC4. pages 171-177, 2011.

. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In Proc. of the

8th International Workshop on Satisfiability Modulo Theories, 2010.

. B. Beckert, U. Keller, and P. H. Schmitt. Translating OCL into First-order Predicate Logic.

In In Proc. of VERIFY Workshop at Federated Logic Conferences (FLoC), 2002.

A. D. Brucker and B. Wolff. HOL-OCL: A Formal Proof Environment for UML/OCL. In
FASE 2008, volume 4961 of LNCS. Springer, 2008.

F. Biittner, M. Egea, and J. Cabot. On Verifying ATL Transformations Using ’off-the-shelf’
SMT Solvers. In MoDELS, volume 7590 of LNCS, pages 432—-448. Springer, 2012.

J. Cabot, R. Clariso, and D. Riera. UMLtoCSP: a tool for the formal verification of UM-
L/OCL models using constraint programming. In ASE 2007, Proc. ACM, 2007. Tool avail-
able at http:/gres.uoc.edu/UMLtoCSP/.

M. Clavel, M. Egea, and M. A. Garcia de Dios. Checking Unsatisfiability for OCL Con-
straints. Electronic Communications of the EASST, 24:1-13, 2009.

C. Dania and M. Clavel. OCL2FOL+: Coping with Undefinedness. In Proc. of the MODELS
2013 OCL Workshop, volume 1092 of CEUR Workshop Proceedings, pages 53—62, 2013.
L. Mendonga de Moura and N. Bjgrner. Z3: An Efficient SMT Solver. In C. R. Ramakrishnan
and J. Rehof, editors, TACAS, volume 4963 of LNCS, pages 337-340. Springer, 2008.

C. A. Gonzalez, F. Biittner, and Jordi Cabot. EMFtoCSP: A Tool for the Lightweight Verifi-
cation of EMF Models. In FormSERA, pages 44-50, 2012. Tool at https://code.google.
com/a/eclipselabs.org/p/emftocsp/.

C. A. Gonzélez and J. Cabot. Formal verification of static software models in MDE: A
systematic review. Information & Software Technology, 56(8):821-838, 2014.

R. Harjani, M. Arjona, A. Muiioz, and A. Mafia. Towards an Engineering Process for Certi-
fied Multilayer Cloud Services, Layered Assurance Workshop. ASAC. 2013.

M. Kuhlmann, L. Hamann, and M. Gogolla. Extensive Validation of OCL Models by In-
tegrating SAT Solving into USE. In TOOLS 2011, volume 6705 of LNCS, pages 290-306.
Springer, 2011. Tool available at http://sourceforge.net/projects/useocl/.
M.Soeken, R.Wille, and R.Drechsler. Encoding OCL Data Types for SAT-Based Verification
of UML/OCL Models. In TAP, volume 6706 of LNCS, pages 152—170. Springer, 2011.
OCL2FOL Project, 2012. http://www.actiongui.org, see OCL2FOL and OCL2FOL+.
J. F. Ruiz, A. Mafa, M. Arjona, and J. Paatero. Emergency Systems Modelling using a
Security Engineering Process. In Proc. of 3rd Int. Conf. SIMULTECH. SciTePress, 2013.
J.F. Ruiz, A. Rein, M. Arjona, A. Maiia, A. Monsifrot, and M. Morvan. Security Engineering
and Modelling of Set-Top Boxes. In Proc. of ASE/IEEE BioMedCom, 2012.

42



Towards a Tool for Featherweight OCL:
A Case Study On Semantic Reflection

Delphine Longuet!, Frédéric Tuong? and Burkhart Wolff!

! Univ Paris-Sud, LRI UMRS623, Orsay, F-91405
CNRS, Orsay, F-91405
{delphine.longuet, burkhart.wolff}@lri.fr
2 Univ Paris-Sud, IRT SystemX, 8 av. de la Vauve, Palaiseau, F-91120
frederic.tuong@{u-psud, irt-systemx}.fr

Abstract We show how modern proof environments comprising code
generators and reflection facilities can be used for the effective construc-
tion of a tool for OCL. For this end, we define a UML/OCL meta-model in
HOL, a meta-model for Isabelle/HOL in HOL, and a compiling function
between them over the vocabulary of the libraries provided by Feather-
weight OCL. We use the code generator of Isabelle to generate executable
code for the compiler, which is bound to a USE tool-like syntax integrated
in Isabelle/Featherweight OCL. It generates for an arbitrary class model
an object-oriented datatype theory and proves the relevant properties
for casts, type-tests, constructors and selectors automatically.
Keywords: UML, OCL, Formal Semantics, Isabelle/HOL, Reflection.

1 Introduction

In this paper, we present a radically different approach to design, model, and
implement a tool for UML and OCL. In the conventional approach, developers
use hand-written Java programs complemented by the components generated by
parsing generators [8] and by UML frameworks like OMG’s MetaObject Facility
(MOF)[10] or Eclipse Modeling Framework Project (EMF)[9]. In contrast, in
our approach, we use the Isabelle Framework to generate a tool derived from a
formal semantics for (some part of) UML/OCL based on earlier work for Feath-
erweight OCL [3, 4, 6]. While the resulting tool — including user interface,
document generator, code generator, and proof support — cannot compete to
direct implementations such as [1, 12] with respect to speed of code-generation
and completeness of the supported OCL language, our front-end has its value as
a semantically founded reference implementation.
As a formalized theory in Isabelle/HOL, Featherweight OCL provides:

— the algebraic layer that contains the definitions of the four-valued logics
(including invalid and null) with two equalities as well as theories for
Integers and Sets,

— the state layer describing state-related operations like allInstances(), and

— the object-oriented data-type layers giving semantics to UML class models
over this, comprising the theory of accessors, type casts and tests.
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In this paper, we target to mechanize the latter. This means that our tool
generates proven theorems that make the properties of object-oriented data-type
theories explicit and which are needed as background-theory for other tools based
on automated deduction striving for semantic compliance with the standard. As
input, our tools takes a class model, which comprises:

1. Classes and class names (written as Ci, ..., C,), which become types of
data in OCL. Class names declare two projector functions to the set of all
objects in a state: C;.allInstances() and C;.alllnstances@pre(),

2. an inheritance relation = <  on classes and a collection of attributes A
associated to classes,

3. two families of accessors for each attribute a and object X in a class
definition (denoted by X.a :: C; — A and X.aGpre :: C; — A for
A € {Boolean, Integer, ...,Cq,...,Cp}),

4. two families of operation declarations f,, for each class,

5. type casts that can change the static type of an object of a class (denoted
by X.oclAsType(C;) of type C; — C;)

6. two dynamic type tests (denoted by X.oclIsTypeOf(C;) and
X.0clIsKind0£(C;) ),

7. and last but not least, for each class name C;, an instance of the overloaded
referential equality (written = ).

We use the notation e :: 7 to say that some expression e has the static type
7. Note that the phenomenon of dynamic types (“the type of an object at cre-
ation time”) vs. static types (“the type inferred by the type inference in presence
of possibly implicit casts”) is characteristic for statically typed object-oriented
languages such as Java or C+-+; apart from syntax, the object-oriented data
model presented here is in no way specific to UML/OCL. Finally, for each func-
tion induced by the class model rules must be derived treating strictness, null,
definedness, etc...Moreover, the subtype and inheritance relationship between
objects must be expressed, for example by the rule:

(X :: Ck). oclAsType(C;). oclAsType(Cy) = X

where X is an object and C}, is a sub-type of C; (i.e. C < C;). This rule means
that objects can be losslessly cast up and down again; this property is the key
for the implementation of generic classes in Java and should also hold in UML.

While in [4] we described the construction of object-oriented data-types for
UML class models conceptually and demonstrated it by an example containing
definitions and rules proven by hand, we go in the present work one step further:
We effectively construct an Isabelle plug-in for UML class models, that parses
them in concrete input syntax (inspired by the USE tool) and compiles them to
the necessary definitions, proofs, and infrastructure for execution and animation.
As a by-product, UML class models can be directly edited inside Isabelle theory
files, thus inheriting the Isabelle infrastructure including IDE, code generators,
document generators and — last but not least — the proof environment for
modeling and reasoning.
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2 Background: Isabelle and UML/OCL

2.1 Isabelle: A Guided Tour through the Framework

In this paper, we want to emphasize the use of Isabelle as a generic techni-
cal framework. As such, it offers the possibility to “drive” the core-engine by
user-programmed Standard ML (SML) programs in a logically safe way; a sys-
tem configuration (“session”) can thus contain logical definitions, proofs, text-
documentation as well as code for tactic support as well as system extensions.

In order to demonstrate some relevant system features, we present a screen-
shot in Fig. 1. The left window shows a session based on Isabelle/HOL that con-
sists of the only file Scratch.thy. One recognizes the header including theory
and the “imports Main” clause (“Main” is a synonym for Isabelle/HOL) and
then a sequence of subsections — called commands — introduced by a blue key-
word: datatype, fun, declare, ML, find _theorems, thm. .. User-interaction to Is-
abelle is document oriented, i.e. each file belonging to a session is annotated
by the prover while editing it as usual by modern IDEs. This annotation can
consist, for example, in:

— colors (here: the underlying white indicates that Isabelle checked these com-
mands and executed them without error),

— types (to be explored by tool-tips via the hovering-gesture),

— or values associated to computations inside these commands (displayed in
the “Output” window when pointing to them; see Fig. 1 (right-below)).

Isabelle sessions can be extended by user-defined commands, a feature we use
for defining Term, or for our own textual class model syntax in Fig. 1 (right):

Isabelle2013-2 - Bank_AnalysisModel.thy

Fille Edit Search Markers Folding View Utilties Magros Plugins Help Fille Edit Search Markers Folding View Utilties Magros Plugins Help
0 erateh.thy (~1) (0 Bank_Analy thy (~/ho Lexamples)) B
~ |theory Scratch  imports Main ~ |[theory Bank_AnalysisModel imports "../src/UML_Main" ".. *
keywords "Term" :: diag begin begin w
~ |datatype LIST = NIL | CONS nat LIST v|generation_syntax [deep (generation_semantics [analysis, u
[ in SML module_name M (no_signatures) ] g
> [fun height :: "LIST = nat" %
where "height NIL =0 o Class Savings < Account njz
| "height (CONS _ t) = Suc (height t)" Attributes maximum : Real End s
~ |declare [[ML_tracell Association clients \E‘
. Between Bank  [1 ee *] Role banks :
~ [ML{* val NIL = @{code NIL} Client [1 ee *] Role clients End g
val height = @{code height} \i‘
val _ = height NIL *} v|Context c: Savings
Inv A 1 "0.0 <pes (c .maximum)®
~ |ML{* Outer_Syntax.command @{command_spec "Term"} Inv B : ¢ .moneybalance <. (c .maximum)
" (Term) reads and prints an arbitrary HOL term " and 0.0 <., (c .moneybalance)’
(Parse.term >> (Isar_Cmd.print_term o pair [1)) *}
(* 2385 generated UML/OCL theorems, among others: *)
Term "height a + height b = height b + height a" [thin Upoctany_ dOWNsayings_€aSt  Upoctany_downsccouns_cast  fJupa &
<X J T
find_theorems - ) Auto update | Update | [ Detach | [100% [
85% ] . 72X .oclAsType(0OclAny) .oclAsType(Savings) = 72X [
end found 14579 theorem(s) (40 displayed): - ?X .oclAsType(OclAny) .oclAsType(Account) = ?7X 5
<X Phs -
(o e o Eegrrmeriota o Gormeretss [ - vy || s | oms
21,1 (570/589) < v 16586 (3754/4663) (isabelle, sidekick,UTF-8-Isabelle) 1 r o UGIEBIBS 48MB1:45 PM

Fig. 1. Screenshot of Isabelle/jEdit: Standard HOL (left) and UML/OCL (right)
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In the following, we describe the effect of commands in more detail (an in-
depth treatment can be found in the implementation manual); the resulting class
model compiler will be an application of the techniques demonstrated here.

The datatype command. The easiest way to understand this command is
to view it as a kind of macro (albeit its syntax is inspired by functional pro-
gramming languages) for the type declaration of LIST and a number of con-
stant definitions and theorems. Some of these definitions construct a model
of the constructors and derive its properties such as NIL = CONS n mm,
CONS n mm = CONS n’ mm’ — n = n’ and the induction rule for the type LIST.
Thus, this command constructs the theory of a freely generated data-type.

The fun command. Similarly, the fun command allows for the declaration
of recursive functions with pattern-matching. Again a conservative construction
using a recursor is used; the derivation of the equations height NIL = 0 and
height(CONS n m) = Suc(height m) is done automatically involving a termi-
nation proof. This involved construction assures logical safeness: in general, just
adding axioms for recursive equations causes inconsistency for non-terminating
functions. The resulting equations can now be used in the Isabelle simplifier.

The ML command. Isabelle itself is built on top of an SML execution en-
vironment, accessible with the ML command: ML{*3 + 4x} compiles “3 + 47,
executes it, and displays the result in the output window. However, when so-
called code-antiquotations such as @{code NIL} are used, the process is more in-
volved because SML antiquotations implicitly refer to Isabelle values. Concretely,
there is an additional processing step, resolving the needed Isabelle dependen-
cies before the SML code is actually compiled. declare[[ML_trace]] shows this
resolving step (varying depending on the antiquoted values). In Fig. 1, the two
antiquotations NIL and height imply the following generated SML code:

structure Isabelle =

struct
datatype nat = Zero_nat | Suc of nat ;
datatype list = NIL | CONS of nat * list ;
fun height NIL = Zero_nat

| height (CONS (x, t))
end (kstruct Generated_Codex)

Suc (height t) ;

This SML code reflects equivalently the one of Isabelle side (the datatype and
fun declarations). During the compilation, antiquotations are then replaced by:
val NIL = Isabelle.NIL
val height = Isabelle.height
which makes “height NIL” efficiently executable in the context of the compiled
code — no symbolic representation is any longer involved.

Defining Isar Syntax. We are adding a new command Term in Fig. 1 with
“keywords Term”; the Isar-component of Isabelle handling the “outer syntax”
is in fact reconfigurable. Generally, any command from the Isabelle core APIs is
accessible within the ML scope. So it is as well possible to implement Term for
simulating datatype, fun or any existing Isabelle command.
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In a nutshell, a combination of the techniques shown in this section will be
used to construct our compiler in HOL, compile it to SML, and bind the compiled
code to a USE tool-like syntax inside Isabelle/Isar.

2.2 UML/OCL: A Running Example

clients ‘ 1.* banks| 1..*
Client owner accounts Account accounts bank Bank

clientname : String 1 1.* id : Integer L name : String
address : String balance : Real

age : Integer 4

[ 1
Savings Current
max : Real overdraft : Real

Fig. 2. A simple class model capturing a bank account

Let us consider here a small example of a UML class model together with its
class invariants in OCL. The model of Figure 2 describes a set of clients owning
bank accounts in different banks. Each account is either a current account or
a savings account, and belongs to exactly one bank and one client. A client
cannot have more than one current account in a given bank, but as many savings
accounts as he likes. If a client is less than 25, his authorised overdraft is 250€
on every of his current accounts, otherwise no overdraft is allowed (it is set to 0).
Moreover, the balance of a savings account must be between 0 and max. Finally,
a consistency constraint has to be imposed: a client owning an account that
belongs to a given bank must be a client of this bank.

3 Method: Tool-Construction by Reflection

Although it is perfectly feasible to program the compiler for class models to a
corresponding datatype theory in SML , we choose to take even more advantage
of the Isabelle framework instead. By using Isabelle/HOL as “implementation
language” itself, we profit from the general proof-editing facilities as well as the
possibility to prove properties over the compiler. For the moment, this covers
only termination properties of the compiling functions, but the technique can in
principle be used to prove complex meta-theoretic properties such as “if the class
model is well-formed, the generated code will be type-correct wrt. HOL types”.
The overall structure of the class-model compiler of Featherweight OCL is
illustrated in Fig. 3. In the following, we will describe its components.

3.1 UML/OCL Meta-Model

Overall, the compiler has about 6000 lines of code - so we restrict ourselves
to critical code-samples in our presentation. As short example, here is how we
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Isabelle

thy
UML/OCL g Isabelle definitions
M?ta l_':g’ S)EI Mc()i:elhgaLf)‘Sf M?ta;'M(;)Ei)el and proofs
in in
- — Isar-Bindi
sar-Binding Isabelle/
SML code || (in sML) F-UML-OCL

Fig. 3. Overview of the UML/OCL data-model compiler

define the Isabelle/HOL datatype behind the abstract syntax tree of the USE
language, that we call the UML/OCL meta-model:

datatype uml class = UmlClass

string (* name of the class  *)
( string (* name *)xuml_ty )list (* attribute *)
( string (* name *)xuml operation ) list (* contract *)
( string (* name *) x string ) list (* invariant *)
string (* link to superclasses *)

In this meta-model, a sample portion of our example Fig. 2 reads as follows:

[ UmlClass “Client” [ (“clientname” , UmlType String),
(“address” , UmlType String) | [] [] “0OclAny”,
UmlClass “Bank” [ ( “name” , UmlType String) ][] [] “OclAny”,

The compilation proceeds by elementary well-formedness checks and through
a semantic elaboration. Finally, definitions for casts from Client to OclAny
were produced, for example, defined in terms of the common data-universe for
the given class model, together with proofs for cast-up-cast-down properties as
mentioned before. For a complete list of definitions and lemmas, the reader is
referred to [4].

3.2 Isabelle Meta-Model

While our meta model for Isabelle/HOL should be generic enough for represent-
ing all the concepts occurring in [4], we used a convenient abstraction wrt. to
the real meta model defined in SML. For the moment, our simplistic abstraction
is sufficiently expressive for modeling UML/OCL class models, although a long
term goal would be the creation of symbolic tests generation procedures. Here
is the Isabelle/HOL meta model describing Isabelle datatypes:

datatype hol datatype =

Datatype string (* name *)
( string (* name *)
* hol _simplety list (* arguments *))list (* constructors *)
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The previous meta model belongs to the following more general one, while a few
is presented, there is actually an abundance of constructors:
datatype hol theory = Theory datatype hol datatype
| Theory definition hol definition
| Theory lemma  hol lemma

[ [

3.3 Model-Transformation and Bindings to Isabelle/jEdit

The transformation from UML-Meta to Isabelle-Meta is purely defined in HOL
(no tricks, no axioms, no SML), following linearly the structure of [4]. By apply-
ing this generic transformation to the bank example, we obtain automatically
the definition of the object universe of [3] instantiated for the bank example:
Fig. 4 (top) shows a simple fragment of datatypes (there are also proofs).

As described in Sec. 2.1, we now define a textual format for the UML/OCL
meta-model and bind the generated (“reflected”) compiler to it. Conceptually,
it is similar to the Term command, only that UML data-models are simulated
with the raw implementation of the datatype and lemma commands, instead of
printing a term. We were inspired by the syntax of the USE tool|7] as entry point
in Isabelle/jEdit. Finally, the interactive editing of the bank example leads to
2385 definitions and derived theorems, the source code is in Fig. 4 (bottom).

4 An Empirical Evaluation

This section gives some experimental results on run-time executions of the gen-
erated compiler. We study the following scenario: we build a sample of class
models, where in each class model, every class inherits explicitly from one class,
except OclAny standing as the only root: thus we have a tree where each class in-
herits implicitly from all classes present in the path of ancestors going to 0clAny.
For example, Current is an explicit subclass of Account, while Current also im-
plicitly inherits from OclAny. Attributes and associations between classes are
not considered here; as a shorthand, the “subclass” word alone will designate an
explicit subclass.

We present Fig. 5 a table reporting the number of theorems associated to each
tested class model. Numbers of generated theorems are indicated by powers of
1000 (so Kilo and Mega), and those in italic are an estimation based on the size of
the generated file. The class models we are measuring can be identified uniquely
by pairs (X, Y) where X is the exact number of subclasses of every class having at
least one subclass; and Y is the depth of the inheritance tree (without OclAny, so
the minimum is one for a tree containing at least 0clAny with another element,).
Class-models appear sorted in the table according to the following priority: 1) by
row using the total number of classes in the class model, ¢ represents the cardinal
without OclAny; then 2) by column using the depth of the inheritance tree.
For instance, class models in the row [(1,30), (2,4), (5,2),(30,1)] are sorted in
decreasing order by depth, all having 31 classes (¢ = 30, OclAny counts for 1).

Since the generated UML/OCL theorems serve for solving (the most automat-
ically) UML/OCL formulas manually entered by the user, our goal is to continue
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datatype typesavings
datatype typeoidsavings
datatype typeaccount

datatype typeoidaccount
datatype typeociany

datatype typeoidociany

mKsavings oid int| real|
mkoidsavings typPesavings real|
mkAccounthavings typeOidSavings
mkAccount_Checks typeOidChecks
mkAccm,m oid

kaidAccount t’/ypeAccount intlrealL
mKoclAny Client typeoidciient
kaclAny_Bank typeOidBank
kaclAnyiAccount type()idAccount
kaclAnnyavings typeoidSavings
mKoclAny _Checks typeoidchecks
kaclAny oid

mkoidociany typPeociany

Class Bank Class Current < Account
Attributes Attributes
name String overdraft Real
End End
Class Client Association clients
Attributes Between Bank [1 *]
clientname String Role banks
address String Client [1 *]
age Integer Role clients End
End
Association accounts
Class Account Between Account [1 *]
Attributes Role accounts
id Integer Client [1]
balance Real Role owner End
End
Association bankaccounts
Class Savings < Account Between Account [1 *]
Attributes Role accounts
max Real Bank [1]
End Role bank End
Context c: Savings
Inv A ‘0 < (c .max)*
Inv B ‘c .balance <= (c .max) and 0 <= (c .balance)®
Context c¢c: Current
Inv A €26 < (c .owner .age) implies (c .overdraft = 0)°
Inv B ‘c .owner .age <= 25 implies (c .overdraft = -250)°¢
Context c: Client
Inv A ‘c .accounts ->collect(banks) = c .banks‘

Fig. 4. Modeling the bank account in UML/OCL with Isabelle/jEdit
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c ‘ depth ¢ depth 5 depth 4 depth 3 depth 2 depth 1

12 | (I,0) 14K (3,2) 12K (c,1) 1IK
4 | (1,c) 20K (2,3) 17K (c,1) 16K
20 | (1,c) 52K (4,2) 39K (c,1) 89K
30 | (1,c) 155K (2,4) 121K (5,2) 115K (c,1) 115K
39 | (1,c) 330K (3,3) 240K (c, 1) 240K
42 | (1,c) 409K (6,2) 288K (c,1) 29K
56 | (1,c) 964K (7,2) 649K (c,1) 661K
62 | (I,c) 1.8M (2,5) 907K (c,1) 882K
72 | (1,c) oM (8,2) 1.8M (c,1) 1.3M
84 | (1,c) 3.8M (4,3) 2.1M (c,1) 2.1M
90 | (L,c) 4.2M (9,2) 2.5M (c,1) 2.5M

Fig. 5. Number of theorems generated

to generate new UML/OCL theorems, while keeping an objective of shortening
the size of proofs whenever applicable. In a class model with only OclAny as class,
we obtain a theory comprising 182 theorems proven automatically; by adding
another class, we reach 384 theorems.

Besides the constraint on the generation of a high number of theorems, time
or space involved for performing the generation is obviously a criteria to consider
as enhancement: we need at least 9G of RAM memory for generating in 1 min one
of the three examples of ¢ = 56 classes. For ¢ = 90, 28G becomes mandatory to
be executed in 7 min; however, there are substantial potentials for optimization.

5 Conclusion

We have shown a method to construct semantic-based tools for textual domain-
specific languages (DSLs) based on UML and OCL. Based on Isabelle/HOL the-
ories that capture the semantic essence of a DSL (in our case: class-models plus
OCL invariants and contracts), we describe model-transformation from a for-
mal UML meta-model to an Isabelle meta-model that generates the necessary
properties automatically. Compared to conventional implementations of code-
generators for OCL, the resulting tool is clearly not competitive in terms of
compilation size of models, essentially because each theorem is complemented
with a proof of a certain size. On the other hand our tool is unique that it actu-
ally generates a large number of theorems resulting from class-models which are
necessary for symbolic execution and UML/OCL interactive proving. Moreover,
our tool — for which we still see a large potential of optimization — can serve
as reference environment for the UML/OCL language.

Related Work. The idea to use SML for supporting data-type theories is in
itself very old and deeply linked from the very beginning with theorem proving
environments such as Edinburgh-LCF, HOL4, HOL-light, Isabelle and Coq. The
application to object-oriented data-type theories is also not new — earlier works
in this line are [11], for example. In contrast to [5], we applied these techniques
to UML under closed-world assumption for a standard-conform 4-valued logics
for OCL, which is seen as the semantic framework for DSL’s. This is particularly
important and challenging since heterogenous system specifications need to be
combined in a seamless way, and since semantically correct tools have to be
developed for these language combinations.
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Future Work. It is our ultimate goal to develop the technology up to the point
that it can be used for automated test-generation following the lines of [2]. We
expect that the approach can be applied to textually presented sequence models,
state-machines or MARTE-profiles.
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Realizing Model Simplifications with QVT
Operational Mappings

Alexander Kraas

Poppenreuther Str. 45, D-90419 Niirnberg, Germany
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Abstract. After parsing the input of a textual modeling language, fur-
ther processing steps may be required before the result can be mapped
to corresponding elements in a model. For instance, such a processing
step can be the simplification of syntactic constructs. An approach for
model simplification resting on transformation patterns is presented in
this paper. The presented approach rests on the refinement of a derived
base transformation with the superimposition of mapping operations.
The transformations are specified with the Operational Mappings part
of the Query/View/Transformations (QVT) specification.

Keywords: QVT-O, Transformation, Patterns, Simplification

1 Introduction

In general, modeling languages can be classified into textual as well as graphical
modeling languages. However, also hybrid approaches using both kinds of mod-
eling exist. For instance, the Specification and Description Language (SDL) [9]
can be considered as such a language. Further processing steps (e.g. simplifica-
tions) may be required after the textual input of a hybrid modeling language is
parsed and represented in terms of a Concrete Syntax Tree (CST). According
to the taxonomy given in [1], model simplification is an approach where particu-
lar syntactic constructs are transformed into more primitive constructs. Usually,
dedicated frameworks for language transformations, such as Stratego/XT [7],
can be utilized for this purpose. However, an access to an already existing model
may be required for the simplification of the textual input of a hybrid language.
If a CST is defined in terms of a metamodel, the Query/View /Transformations
(QVT) [8] specification supports such an transformation scenario.

Since the general realization of transformation patterns by using the Rela-
tional Language of QVT is already discussed in [3], in this paper the implemen-
tation of patterns for model simplification by using the Operational Mappings
of QVT is discussed. The QVT features transformation extension and superim-
position of mapping operations play a key role for the presented approach. Even
if these features are defined in the QVT specification [8], only less information
concerning their combined application can be found in the literature. Hence,
the successful application of the approach for the textual SDL editor of the SU-
MoVal framework [10] is used in this paper to illustrate the implementation of
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simplification patterns. The transformations within the SU-MoVal framework
are executed by the QVT operational component (QVTo) [12] of Eclipse.

The rest of this paper is structured as follows. The proposed approach and
transformation patterns for model simplification are introduced in section 2.
Related work is discussed in section 3 and a conclusion is given in section 4.

2 Transformation Patterns for Model Simplification

An approach to implement patterns for model simplification with QVT Oper-
ational Mappings (QVT-O) is presented in this chapter. After the general ap-
proach is discussed, a transformation example is introduced in section 2.2, which
is used to explain the approach more descriptive in subsequent sections. Finally,
the realization of exemplary patterns for model simplification is discussed in
section 2.4.

2.1 General Approach

The presented approach to simplify models by using QVT Operational Map-
pings (QVT-0) rests upon a common endogenous base transformation (Tcp)
that is extended by another transformation (Tgp) implementing a particular
simplification pattern.

Control flow

Tep
transformation TCB transformation TSP
instance of maln(.) ain()
extends mapping A::mapA(i PRI R
mapping B::mapB() : appinj\B::mapB() : B,‘

1
1
[l
1
1 -
1

1

mapping C::mapC() :

Tgp Overriding mapping /

operation

Fig. 1. Conceptual overview

Derivation of a common base transformation: As shown in part A of
Fig. 2, the required transformation T¢p is derived from a metamodel (MM) and
the input model (My) and the output model (Moyr) are instances of MM. The
purpose of T¢p is to produce only a one-to-one copy of model Myy and therefore,
a particular mapping operation for each metaclass is contained in T¢op. Even if
a higher-order transformation could be applied to derive T¢p from a metamodel
MM, transformation T¢p is generated with a Model-to-Text (M2T) approach so
that its source code can be partially reused to specify transformation Tgp.
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In order to achieve that transformation Tcg makes a copy of My, all ele-
ments of My are mapped to equal elements in Moyr. Hence, Tog implements
an entire rewrite system that consists of contextual mapping operations that
invoke other mapping operations in a nested manner to map the properties of
an input element.

Realizing a simplification pattern: When a model simplification pat-
tern is implemented by transformation Tgp, the control flow of T¢pg has to be
redirected at points where the relevant elements to be simplified occur. Usually,
such points are mapping operations that are defined in the context of the rele-
vant metaclasses. After the mapping operations in Tcp are identified, they have
to be overridden by corresponding mapping operations (see part B of Fig. 2) in
Tgp, which implement the desired simplification pattern.

2.2 Transformation Example and Required Metaclasses.

In order to make the approach discussed in the following sections more descrip-
tive, a transformation example resting on a metamodel for representing parse-
trees of the concrete syntax (CS) of the Specification and Description Language
(SDL) [9] is used. This example is taken from the SDL-UML Modeling and
Validation framework (SU-MoVal) [10].

Since the concrete syntax of SDL makes use of so-called short hand notations
that have to be transformed to equivalent language constructs, this is considered
to be a good case study for model simplification. In particular, the transforma-
tion example consists of the transformation of a mathematical or logical in-line
operator to a corresponding operation application. For instance, the concrete
syntax expression 1 + 1 is transformed to "+" (1, 1).

ExpressionCS

attribute
+/isConstant : Boolean

BinaryExpressionCS

attribute o
+leftOperand : ExpressionCS - I
+rightOpperand : EgpressionCS OperationApplicationCS
+operationldentifier : IdentifierCS attribute
+resolvedOperation : String [0..1] +operationidentifier : IdentifierCS
+resolvedOperation : String [0..1]
+actualParameters : ActualParameterCS [0..*]

| OperatorApplicationCS ‘

Fig. 2. Binary expression metaclass

As shown in Fig. 2, the BinaryExpressionsCS metaclass is a sub-type of
ExpressionCS and it is used to represent mathematical or logical inline opera-

95



tors (e.g. + operator) within SDL expressions. After application of the transfor-
mations patterns discussed in the subsequent sections, an instance of Binary-
ExpressionCS is transformed to an OperatorApplicationCs.

2.3 Derivation of a Common Base Transformation

The derivation of a transformation from a metamodel by using a Model-to-
Text (M2T) transformation is out of scope of this paper. Hence, the derivation
approach is only discussed on a high-level of abstraction. For instance, the M2T
tool Acceleo [11] is used for the derivation task during the implementation of
SU-MoVal [10].

Transformation Main Part. As shown in the code example below, the re-
quired main operation of Tcp is empty, because the concrete behavior is speci-
fied by a transformation that extends T¢g. Furthermore, the input and output
parameters of Tcp have the same type because Top is an endogenous transfor-
mation.

modeltype CS uses ConcreteSyntax ("http://...");
transformation TCB(in inp:CS, out outp:CS)
main() { // Nothing to do here !}

Mapping Operations for Metaclasses. For each metaclass of the example
metamodel CS, a corresponding mapping operation for Top is derived. Depend-
ing on the kind of a metaclass (abstract or non-abstract), two different kind
of mapping operations are generated. In addition, the context (self) and the
result type of a mapping operation correspond to the currently processed meta-
class.

For each abstract metaclasses, a disjunctive mapping operation is introduced
consisting of an ordered list of mapping operations for all subclasses of that
metaclass (e.g. ExpressionCS). An important fact is that attributes, if any,
of an abstract metaclass cannot taken into account by a disjunctive mapping
operation. Instead, these attributes are processed by each mapping operation
listed as disjunctive alternative.

mapping CS::ExpressionCS::mapExpressionCS() : CS::ExpressionCS
disjuncts
CS::EqualityExpressionCS: :mapEqualityExpressionCs,
CS: :PrimaryCS: :mapPrimaryCs,
CS: :TypeCoercionCS: :mapTypeCoercionCS,
CS: :MonadicExpressionCS: :mapMonadicExpressionCs,
CS::CreateExpressionCS: :mapCreateExpressionCs,
CS: :RangeCheckExpressionCS: :mapRangeCheckExpressionCs,
CS::BinaryExpressionCS: :mapBinaryExpressionCS {}
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In contrast to abstract metaclasses, all owned and inherited attributes of a
non-abstract metaclass (e.g. BinaryExpressionCS) are processed for the deriva-
tion of the body of a corresponding mapping operation.

mapplngCS :BinaryExpressionCS: :mapBinaryExpressionCS()
CS::BinaryExpressionCS {

result.resolvedOperation := self.resolvedOperation;

result.operationIdentifier := self.operationIdentifier.map
mapIdentifierCSQ);

result.leftOperand := self.leftOperand.map mapExpressionCSQ);

result.rightOperand := self.rightOperand.map mapExpressionCS();
result.resolvedType := self.resolvedType;

Processing of Metaclass Attributes. In general, the mapping operation for
a non-abstract metaclass assigns each owned or inherited attribute of an input
object (self) to a corresponding attribute of the result object (result). Since
QVT-O distinguish between assignments to mono- or multi-valued properties
or variables, this has also to be considered during the processing of attributes.
Hence, a simple assignment (’:=’ operator) is used for the mapping of an at-
tribute with an upper multiplicity of 1. In contrast, attributes with an upper
multiplicity of >1 are assigned with a composite assignment (’+=’ operator).

result.myProperty := self.myProperty.map mapMySubclassA(Q);
result.myProperty += self.myProperty->map mapMySubclassA(Q);

The attribute type is another property that is taken into account during the
derivation process. Usually, a type dependent mapping operation is invoked, be-
fore the value is assigned to the output object. This is not the case for attributes
with a primitive (e.g. String) or an enumerated type for which the input value
is just copied to the corresponding attribute of the output object.

result.myProperty := self.myProperty;
result.myProperty += self.myProperty;

Design Principles and Used Features of QVT-0O. Apart from the discussed
extension mechanism also the access mechanism of QVT-O could be considered
to access mapping operations of Tcp. However, this mechanism does not support
transformation inheritance so that the transformation control flow cannot be
redirected through superimposition of mapping operations of Tgp.
Furthermore, QVT-O supports the inheritance and the merge of mapping op-
erations. These features where not taken into account for the presented approach,
because they induce a combined execution of all involved mapping operations.
If these features would be used, the mapping rules for a particular metaclass
had to be specified in different mapping operations. Instead, the discussed ap-
proach recommends to process all inherited and owned attributes of a metaclass
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within one mapping operation of Tcg. The advantage for the implementation
of transformation patterns is a better maintainability and a lower complexity,
because required mapping rules can be specified within one overriding mapping
operation of Tgp.

Since the inheritance and the merge of mapping operations are not used,
also the QVT-O feature of abstract mapping operations is not required in order
to process abstract metaclasses of MM. Instead, disjunctive mapping operations
are used for this purpose, because they make a fine grained manipulation of the
transformation’s control flow possible.

2.4 Exemplary Transformation Patterns for Model Simplification

Resting on the already introduced approach (see Sec. 2.1), exemplary transfor-
mation patterns for model simplification are discussed in more detail in this
section. For this purpose, the transformation example of section 2.2 is used in
the following paragraphs.

Top-level Simplification. A model can be represented as a tree structure of
nested model elements, which are instances of different metaclasses of a meta-
model. The most simple use case for model simplification is the transforma-
tion of top-level elements only. If this pattern is applied to the transforma-
tion example (see Sec. 2.2), only the top-level instances of BinaryExpressionCS
will be transformed to a corresponding OperatorApplicationCS and nested
BinaryExpressionsCS will be preserved (see example output O; shown in Fig. 3).

| platform:/resourcdconstlaintCounUmodels@r platform:/resource/ConstraintC nunt]models
<4 Statements CS1 4 Statements CS1

4 4 Compound Statement CS 4 4 Compound Statement CS
4 4 Statements CS24 4 4 Statements CS24
4 ¥ Assignment Statement CS 27 4 4 Assignment Statement CS 27

4 Vanable Identifier CS 29 4 Variable Identifier CS 29
4 _Binary Expression CS$33> 4 << Qperator Application CS 3>

< Vanable A CS34 4 Identifier CS"+"
4<% Binary Expression CS 38 <4 Actual Parameter CS 45

> Literal CS 4 < Actual Parameter CS 46
> Literal CS
4 Identifier CS"/" 4 Literal
< Identifier CS"+" 4 Literal CS
<4 Variable Definition Statement CS 8 4 Identifier CS"/"

<% Variable Definition Statement CS8

Fig. 3. Example input model and output model 1

In order to realize this pattern for the given transformation example with
QVT, the transformation T¢cp is extended by transformation InfixOperation-
ToOperator. Within the main() method of this transformation, the root element
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of the model is selected and an appropriate mapping operation of the T¢p trans-
formation is invoked. According to the presented approach, the control flow of
the transformation remains in T¢p, as long as one of its mapping operations
is overridden by another operation specified in the InfixOperationToOperator
transformation.

transformation InfixOperationToOperator
(in input : CS, out output : CS) extends TCB;
main() {
input.rootObjects() [CS::StatementCS]->map mapStatmentCS(Q); }

In order to transform each occurrence of BinaryExpressionscCS, the control
flow within T¢p is redirected at points where associated mapping operations are
invoked. Therefore, the operation mapExpressionCS() is overridden as follows:

mapping CS::ExpressionCS::mapExpressionCS() : CS::ExpressionCS
disjuncts
CS::EqualityExpressionCS: :mapEqualityExpressionCs,
CS::PrimaryCS: :mapPrimaryCs,
CS: :TypeCoercionCS: :mapTypeCoercionCs,
CS: :MonadicExpressionCS: :toOperatorApplication,
CS::CreateExpressionCS: :mapCreateExpressionCs,
CS: :RangeCheckExpressionCS: :mapRangeCheckExpressionCs,
CS::BinaryExpressionCS: :toOperatorApplication {}

The last line (bold printed) of mapExpressionCS() is modified in compari-
son to the overridden operation in T¢g. That is because the control flow shall
be redirected to the toOperatorApplication() operation that implements the
mapping of a BinaryExpressionCS to an OperatorApplicationCs.

mappingCS: :BinaryExpressionCS: :toOperatorApplication()
CS::OperatorApplicationCS {

result.resolvedType := self.resolvedType;
result.resolvedOperation := self.resolvedOperation;
result.operationIdentifier := self.operationIdentifier;

result.actualParameters := OrderedSet {
object ActualParameterCS { expression := self.leftOperand },
object ActualParameterCS { expression := self.rightOperand }};

Since only top-level instances of BinaryExpressionCS shall be transformed
by the toOperatorApplication() operation, all attributes of an input element
are assigned directly to the created output element (without invoking any other
mapping operation).
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Recursive Simplification. The objective of the pattern for recursive simpli-
fication is to transform all model elements of a particular kind. This is realized
with a recursive call of the mapping operation, if required. After applying a re-
cursive simplification pattern for the given transformation example, the input
model I (shown in Fig. 3) is transformed to the output model 02 (see Fig. 4).
As expected, all instances of BinaryExpressionCS in the output model 02 are
transformed to instances of OperatorApplicationCs.

In order to implement the recursive transformation pattern for the given
transformation example, a slightly modified variant of the already discussed
InfixOperationToOperator transformation is used. Hence, the toOperator-
Application() mapping operation is modified in a way so that also for nested
elements dedicated mapping operations are invoked instead of copying them.

result.actualParameters := OrderedSet {
object ActualParameterCS { expression :=
self.leftOperand.map mapExpressionCSQ) },
object ActualParameterCS { expression :=
self.rightOperand.map mapExpressionCSQ) } }

s

The additional map operation calls (bold printed) in the code snippet shown
above realize the recursive call to the toOperatorApplication() mapping op-
eration. When one of the mapExpressionCS() operations is invoked, appropri-
ate mapping operations defined in T¢p are processed as long as an instance of
BinaryExpressionCs shall be mapped. If this is the case, the control flow of the
transformation is redirected to the toOperatorApplication() operation once
again.

| platform:/resource/Cons(rathounU’modeIs/O ) platform:Iresource/(onstramlcountfmodel
4 Statements CS1 4 4 Statements CS1

4 4 Compound Statement CS 4 4 Compound Statement CS
4 4 Statements CS24 4 4 Statements CS24
4 4 Assignment Statement CS 27 4 4 Assignment Statement CS 27

4 Variable Identifier CS 29 4 Variable Identifier CS 29

« & Dpmumioroka I
4 Identifier CS™+"

4 Actual Parameter CS 45 4 <'='

4 4 Actual Parameter CS 46 < IdentfierC5 7/

4 & Operator Application C5 38 < Actual Parameter CS45
< Identiier % Actual Parameter CS 46

4 4 Actual Parameter CS47 4 Identifier CS"+"

4 Literal CS <4 Variable Definition Statement CS8
4 4 Actual Parameter CS48

> Literal CS

<4 Variable Definition Statement CS8

Fig. 4. Output models 2 and 3
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Simplification of Leaf Elements. The transformation pattern for simplifi-
cation of leaf elements can be considered as opposite of the already presented
top-level simplification pattern. A simplification of leaf elements applied to the
transformation example causes a mapping of leaf BinaryExpressionCS elements
to corresponding OperatorApplicationCS elements, whereas top-level elements
of that kind are only copied to the output model (see output model 03 in Fig. 4).

A modified variant of the InfixOperationToOperator transformation can be
used to implement the simplification of leaf elements. Therefore, the mapBinary-
ExpressionCS() operation, which just makes a copy of the input element, is
added as an additional mapping alternative to the disjunctive mapping operation
mapExpressionCS(). It is important to add mapBinaryExpressionCS() after
toOperationApplication(), because the disjunctive alternatives are processed
in sequential order.

mapping CS::ExpressionCS::mapExpressionCS() : CS::ExpressionCS
disjuncts

CS::BinaryExpressionCS::toOperatorApplication,
CS: :BinaryExpressionCS: :mapBinaryExpressionCS {}

A when clause is added to the toOperatorApplication() operation, be-
cause it shall only be invoked for input elements that have no further nested
BinaryExpressionCS elements. If the condition of the when clause is not ful-
filled, the mapping operation is not invoked.

mappingCS: :BinaryExpressionCS: : toOperatorApplication()
CS: :OperatorApplicationCS
when { self.allSubobjectsOfType
(CS::BinaryExpressionCS)->size() = 0 }

3 Related Work

Many works [2,3,6] concerning the refinement of endogenous transformations
and the implementation of transformation patterns with the QVT Relational
Language (QVT-R) exist. In addition, the usage of the AtlanMod Transforma-
tion Language (ATL) for this purpose is analysed in [4, 6]. Even if the mentioned
works discuss possible approaches, the analysis of the ATL Transformation Zoo
in [5] comes to the conclusion that transformation superimposition is rarely used
in practice.

In contrast to before mentioned works, the approach presented in this paper
rests on the QVT Operational Mappings (QVT-0O) [8], which is an imperative
transformation language and not a relational language as used by the mentioned
works. Furthermore, instead of introducing only a copy pattern for QVT-O trans-
formations, the presented work discuss the refinement of generated copy patterns
towards essential patterns for model simplification.
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4 Conclusion

The approach for model simplification by using the QVT Operational Mappings
presented in this paper is not only restricted to the used metamodel of the
textual notation of SU-MoVal [10]. That is because the rules for the derivation
of a common base transformation, which is the starting point for all discussed
simplification patterns, are also applicable to each other kind of metamodel.

In addition, the applicability of the approach is not limited to the patterns
discussed in the section before, because further patterns for simplification can
be realized in a similar manner. As a matter of principle, also other kind of
endogenous model transformations could be implemented in the same manner,
because the area of model simplification is only used as an exemplarily use-case
in order to demonstrate the overall approach. A running transformation example
and further information can be obtained from the SU-MoVal homepage [10].
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Abstract. Common Data Model is an abstract data model for scientific datasets
that can be constrained by OCL. To hide complexity of OCL, CdmCL is pro-
posed as a specific textual constraint language for CDM. CdmCL is based on
the CDM structure and results in a set of constraint categories. CdMCL provides
a user-friendly front end in order to define constraints which are subsequently
translated to OCL. The conformity tool is based on an existing OCL checker in-
tegrated in EMF. CdmCL is experimented on the OceanSITES standard.

Keywords: OCL, common data model, conformity, constraint generation

1 Introduction

To improve interoperability, scientific dataset modeling follows standards like
Unidata’s Common Data Model (CDM) [1]. Since CDM is a general purpose model,
scientists use specific standards like OceanSITES [2] for specific data modeling. A
standard defines a set of additional constraints, classically expressed in a natural lan-
guage. To check if CDM data conforms to a standard, like OceanSITES, a code-
oriented checker is used classically. Thus, the constraints are not formalized and a
modification in the standard results in a manual modification of the code.

To handle the problems of a code-centric approach, constraints can be implement-
ed using Object Constraints Language (OCL) [3]. OCL is a formal language that sig-
nificantly improves the clarity of models and makes them more precise [4]. But unfor-
tunately, it is difficult to write correct OCL statement as many OCL constraints re-
sults in inaccurate and erroneous constraints [5], [6].

In this paper, we propose a textual domain specific constraint language CdmCL to
reduce the complexity of handling OCL syntax. CdmCL is dedicated for scientific
data standards. It is based on a set of constraints categories deduced from the CDM
structure. Then, OCL constraints are generated and used by an OCL checker integrat-
ed in the Eclipse Modeling Framework (EMF) [7].

The paper is organized as follows. In the first section, CDM is introduced. Then
OceanSITES is presented as a motivating example. CdMCL and the conformity tool
generation are then presented before to be evaluated on OceanSITES. Before to con-
clude, related works are discussed.
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2 Common Data Model

Unidata’s Common Data Model (CDM) is an abstract data model for scientific da-
tasets. It is based on three layers, data access layer, coordinate system layer and scien-
tific feature type layer. Our work focuses on data access layer also called syntactic
layer that handles data modeling part. The complete data model and detailed descrip-
tion is given in [1]. The main classes (see Figure 1) are:

— DataSet: a file, such as NetCDF file, characterized by a file name (location).

— Group: a container for dimensions, attributes, variables and nested subGroups.

— Dimension: the array shape of a Variable, characterized by a name and a length;

— Variable: a container for data, characterized by a name, a dataType, a set of dimen-
sions that define its array shape, and optionally a set of attributes.

— Attribute: a metadata to characterize a Variable or a Group, characterized by a
name, a dataType and a value.

rou
B DataSet \ i
. 1 0..*
‘ y v lsubgroups |E NamedElement |

| 2 location: EString )
B Group = - T
i > T name : EString

globaIAttrib(L)lte

dimensions variables 1
0..% 0.* P
B Attribute

5 1.* = H ] | |
| B Dimension L‘ |8 Variable = dataType : DataType
7 length : EInt [shapes— T dataType : DataType _ 0.*| 2 value : EString
| I | attributes|

Fig. 1. An excerpt of the Common Data Model ecore (CDM.ecore)

3 OceanSITES

OceanSITES [2] is a worldwide system for gathering and measuring scientific da-
ta especially for time series sites, called ocean reference stations. It conforms to the
CDM model but with some constraints. The OceanSITES User Manual holds around
30 pages of constraints expressed in natural language. These constraints are of differ-
ent forms: naming conventions, possible attribute values, constraints on dimension
length and many others. As example, a DataSet should hold instances of Dimension
called TIME, LATITUDE, LONGITUDE, instances of Attributes called data_type and
format_version, and an instance of Variable called TIME. The variable TIME should
be of double datatype. Figure 2 illustrates a small excerpt of OceanSITES standard
from the manual to the left and a small excerpt of CDM data respecting the OceanS-
ITES standard to the right.

To check the data conformity to OceanSITES, a Java tool already exists [8]. Since
constraints are not formalized and the tool is hand-coded, there is no guaranty on
checking. Furthermore, for each different data format, a particular tool should be de-
veloped. To avoid constraint edition ambiguity and to reduce conformity tool devel-
opment, we present now the CdmCL language.
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Page 12

Dimensions Example y—| OceanSITES Manual
TIME TIME=unlimited CDM instance respecting OceanSITES
LATITUDE LATITUDE=1 o
LONGITUDE |LONGITUDE=1 |[* €%

data_type

Global Attributes iSEYes tvpe= Page 10

"OceanSITES
time-series data”

=109150
=
= g

<4 Dimension TIME spLength
4 Dimension LATITUDE ®length
4+ Dimension LONGITUDE=Length

format_version

format version

=

Variable

Page 14

Type, name, dimension, attributes
Double TIME(TIME);
TIME:long_name = “time”;

=

Value "= OceanSITES time-series data

4 |Attribute format _version
Value =11

4 4|Variable TIMF |

—|Data Type "= double

|Shapes "= Dimension TIME|
<4 Attribute long_name

<+ L/‘\ttribute data_type |

®»Value = time

Fig. 2. Excerpts of OceanSITES manual and CDM instance

4

4.1

CdmCL Language

Concept References

This work focuses on the automatic generation of OCL constraints from CdmCL.
On the one hand, the CdmCL front end needs to be human readable and close to the
classical standard. Therefore, Xtext has been used to define the textual grammar. On
the other hand, each CdmCL concept has a semantic expressed using OCL.

In standards, most of the constraints are related to a specific instance of a named
CDM concept (Variable, Dimension and Attribute): “the attribute named data_type
can hold either the value OceanSITES metadata, or OceanSITES profile data”; “the
dimension of the variable named TIME is the dimension TIME”. Thus, CdmCL is
structured by three abstract classes DimensionConstraint, VariableConstraint and
AttributeConstraint (see figure 3). Then, to express a constraint related to a specific
instance, CdMCL follows the three different scenarios, defining nine concrete con-

cepts:

— Constraint is applied to a specific CDM concept referenced by its name: aDimen-
sionConstraint, aVariableConstraint or anAttributeConstraint.

— Constraint is applied to items whose name matches a specific regular expression:
TemplateDimensionRegex, TemplateVariableRegex, or TemplateAttributeRegex.

— Constraint is applied to a set of items, characterized by a set of names: Tem-
plateDimensionList, TemplateVariableList or TemplateAttributeList.
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[H cdmbefinition _ [E Namedetement |
| & comment : EString ———{>{ ¥ name : EString |
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0.* |, variables
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Fig. 3. An excerpt of the ecore CdmCL model (CdmCL.ecore)

4.2  Common Constraints

The following section introduces the constraints that are common between Dimen-
sionConstraint, VariableConstraint and AttributeConstraint.

Mandatory: This constraint verifies that the name of the related concept exists. For

the template list concept, an extra Boolean attribute or permits to indicate whether
one of the items of the list is mandatory or all the items are mandatory. As an exam-
ple, figure 4 presents the CdmCL expressions and the corresponding OCL statements
for aDimension called DEPTH (a single dimension) and a TemplateDimensionList
(coordinate dimension list holding LATITUDE and LONGITUDE).
The values between parentheses permit the definition of dimension length and are
explained in the next section. Figure 5 presents a CDM instance to the left respecting
the OceanSITES standard, thus the instance is valid, whereas the other instance is not
valid because the mandatory dimension LONGITUDE and the mandatory variable
TIME  are missing, thus the OCL  constraints checkMandato-
ry dimension LONGITUDE and checkMandatory variables TIME are violated.

Repetition: This constraint checks that a name of a concept is never repeated.

Format: This constraint verifies that names of a set of concept have a specific
format, either uppercase, lowercase or matches a specific regular expression.

User Defined Constraints: This concept increases the flexibility of the language,
by allowing the user to enter manually an OCL statement. However, it is the user’s
responsibility to verify the correctness of the OCL statement regarding the CDM met-
amodel. These constraints are defined in the context of Group.
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[dimensions {
isMandatory isUnlimited TIME(,);
isMandatory <dimensionsList> from namelList CoordinatesDimensionsList (1,1)

cdmCL

variables {
isMandatory TIME(double)
}

nameList{CoordinatesDimensionsList("LATITUDE", "LONGITUDE")}

inv checkMandatory_dimensions_TIME:
self.dimensions->exists(e | e.name.matches('~TIME$'))
inv checkMandatory_dimensions_LATITUDE:
self.dimensions->exists(e | e.name.matches('~LATITUDES'))
OCL inv checkMandatory_dimensions_LONGITUDE:
self.dimensions->exists(e | e.name.matches('~LONGITUDES'))
inv checkMandatory_variables_ TIME:
self.variables->exists(e | e.name.matches('~TIME$'))

Fig. 4. Mandatory constraint example with CdmCL and OCL correspondence

4|+ Group | 4 4 Group
<4 Dimension TIME <4 Dimension TIME
<4 Dimension LATITUDE <4 Dimension LATITUDE
<4 Dimension LONGITUDE <4 Dimension PRESSURE
4 4 Variable TIME 4 4 Variable TEMP
Valid W Not valid

Fig. 5. CDM data respecting and not respecting OceanSITES standards

4.3  Concept Related Constraints

In addition, other constraints are related to specific concepts.

e Dimensions length constraints: The length value for a dimension can be a
limited or unlimited (any positive value). For the limited length, it can be a
specific value, a value in a range, greater than or equal to a specific value,
smaller than or equal. To achieve these constraint objectives, dimensionCon-
straint concept has two Integer attributes called minLength and maxLength

and one Boolean attribute called IsUnlimited (see table 1).

case Min | Max | isUnlimited Description
1 - - true Length is unlimited, i.e. any positive value
2 X X false Length is equal to x, a specific value
3 y false Length is between x and y, y>x>0
4 -1 false Length is greater than x
5 -1 y false Length is smaller than y
6 -1 -1 false No constraint on length

Table 1. Dimension length constraints categories

Figure 6 illustrates the OCL statement generated for aDimension TIME with un-
limited dimension length who’s CdmCL is given in figure 4. The concept related
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constraints are built all in the same way. The first part of the OCL constraint (ex-
ists, select) defines the context of the specific concept (here the TIME Dimen-
sion). Then, the second part expresses the constraint itself (forAll).

inv checkDimensionlLength_TIME:
self.dimensions->exists(e | e.name.matches('~TIME$')) implies
self.dimensions->select(e | e.name.matches('~TIME$'))->forALL( length >= 1)

Fig. 6. Dimension length OCL constraint

e Variable shape constraint: A variable is characterized by a set of shapes
i.e. a set of dimensions (see figure 1). A variable can have a shape of the
same name as the variable’s name. For example a variable named TIME is
associated with a dimension named TIME. Moreover, a variable can be asso-
ciated with a dimension or a set of dimensions. For example, a variable
named TIME_QC is associated with dimension named TIME. To accom-
plish this type of verification, we have two concepts SimilarDimensionCon-
straint and/or a set of PredefinedShape concept for a VariableConstraint.
On one hand SimilarDimensionConstraint concept allow the generation of an
OCL invariant that verifies that a variable is associated with a dimension of
same variable’s name. On the other hand PredefinedShape concept permits
to verify that a variable is associated with any preexisting dimensions. Figure
7 illustrates the previous discussion and presents the CAMCL representation
along with the OCL to be generated.

e  VariableConstraint and AttributeConstraint DataType: This constraint
verifies that the variables and the attributes can have any data type from a list
of data types.

. Attribute Value Constraint: A constraint on the value of an Attribute, the
possible categories are given in table 2.

Case Constraint
Unique value | The value should have this and only this value

Regular Expr | The value should match the regular expression

Range A range of values between min and max, similar to dimension length
List The value can be any value from a list of values.
Standard The value matches a regex given by a standard (e.g. ISO8601).

Table 2. Attribute’s value constraints categories

5 Conformity tool and experiment

Based on CdmMCL, we developed a conformity checker for netCDF' files which
conform to CDM metamodel. The tool architecture is shown in figure 8. It is devel-
oped in Java and based on the Eclipse Modeling Framework (EMF). First, the tool
transforms the CAMCL model into OCL statements in a separated file. This part

! NetCDF (Network Common Data Form ) is a CDM compliant file serialization format
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(CdmCL20CL) uses Xtext APL, and the library we developed for the transformation
of CdmCL expressions to OCL constraints. Then, the tool transforms a NetCDF file
into an instance of CDM model. This part (nc2CDM) is simply based on the Java
NetCDF API and on the CDM Java API (provided by EMF). Finally, the tool checks
the conformity of the CDM file to the CDM metamodel enriched with the generated
OCL file, and indicates whether it is valid or not. This part is based on the integrated
OCL checker of the EMF modeling tool.

4 cdmCL —

TIME_QC(byte) isMandatory TIME(double)
shapeConstraints {(TIME)} SimilarDimensionConstraint
OCL

inv checkVariableShape TIME_QC: inv checkVariableShape TIME:

self.variables->exists(e | self.variables->exists(e |
e.name.matches('~TIME_QC$") e.name .matches('~TIME$"))implies

) self.variables->select(e |

implies (self.variables->select(e | e.name.matches('~TIME$'))->forALL( r |
e.name.matches('"TIME_QC$")) r.shapes->exists(e | e.name = r.name ))
->forALL( r | r.shapes->exists(e |

e.name.matches('~TIME$"'))))

Fig. 7. CdmCL representation for two variables one with PredefinedShape concept and the
other with SimilarDimensionConstraint concept and their corresponding OCL

The tool has been tested on OceanSITES. Due to the lack of space we express
only the OceanSITES global attributes standard given in figure 2 in CdmCL. The
CdmCL shown in figure 9 indicates that a global attribute named data_type is manda-
tory, of type string and has any of the values presented by the list dataTypeGlobal-
List. This list hold the values OceanSITES metadata, OceanSITES profile data,
OceanSITES time-series data or OceanSITES trajectory data. Furthermore, it indi-
cates that a global attribute named format_version, of type string and should hold the
value “1.1”. The CdmCL expressions and the generated OCL after using
CdmCL20OCL tool are given in figure 9.

cdmCL20CL >%‘ OceanSITES.OCL ‘

> OCLChecker
i
myData.nc '——- nc2CDM >% myData.CDM

Legend : ‘ data }M

Fig. 8. CdmCL conformity tool architecture

OceanSITES.cdmCL {1

r->
tool > i onforms to

The generated OCL file is then used with the CDM model to check the conformity
of an input netCDF file. If the input file does not respect the constraints, a message
indicates that the input file does not conform to CDM model with the set of OCL
violated constraints. Figure 10 presents an excerpt of CDM data converted from a
netcdf file. These data are validated with this generated OCL. It is seen that the left
instance is valid whereas the right instance is invalid because the global attribute for-
mat_version value constraint is violated.
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globalAttributes { valuelist{

isMandatory data_Type (string) dataTypeGloballList (

value in valuelist dataTypeGloballist "OceanSITES metadata",

example "OCEANSITES time-series data"; "OceanSITES profile data",
isMandatory format_version (string) "OceanSITES time-series data”,
value = "1.1" "OceanSITES trajectory data")}

-- "format version" example "1.1";

inv checkMandatory_globalAttributes_data_Type:
self.globalAttributes->exists(e | e.name.matches('~data_Type$'))

inv checkMandatory_globalAttributes_format_version:
self.globalAttributes->exists(e | e.name.matches('~format_version$'))

inv checkDataType_globalAttributes_data_Type:
self.globalAttributes->exists(e | e.name.matches('~data_Type$'))
implies self.globalAttributes->select(e | e.name.matches('~data_Type$'))

->forALL( e | e.dataType = DataType::string )

inv checkDataType_globalAttributes_format_version:

self.globalAttributes->exists(e | e.name.matches('~format_version$'))

implies self.globalAttributes->select(e | e.name.matches('~format_version$'))

->forALL( e | e.dataType = DataType::string )
inv checkGlobalAttributeValue_data_Type:

self.globalAttributes->exists(e | e.name.matches('~data_Type$'))

implies

self.globalAttributes->select(e | e.name.matches('~data_Type$'))->forAlLlL(g |
g.value.matches('~0ceanSITES metadata$') or
g.value.matches('~0OceanSITES profile data$') or
g.value.matches('~0OceanSITES time-series data$') or
g.value.matches('~0ceanSITES trajectory data$'))

inv checkGlobalAttributeValue_format_version:
self.globalAttributes->exists(e | e.name.matches('~format_version$'))
impliesself.globalAttributes->select(e | e.name.matches('~format_version$'))
->forAlLL(g | g.value.matches('~1.1%"'))

Fig. 9. CdmCL and generated OCL for OceanSITES

Figure 10 illustrates that the right version is invalid because format_version con-
straints was violated, but in reality this global attribute can have the value of 1.2 and
even 1.3 since OceanSITES standard has been evaluated to the new version 1.3 with
backward compatibility. Therefore by just modifying the CdmCL format_version
value to hold the values (1.1, 1.2 or 1.3), we can have the new standard OCL repre-
sentation without any professional interference and the instance will be valid with

respect to OceanSITES version 1.3.

< [Attribute data_type | 4 [Attribute data_type |
Value "= OceanSITES time-series data Value "= OceanSITES time-series data|

4 |Attribute format_version 4 |Attribute format version
Value "=1.1 Value =12
valid W Not valid &
Fig. 10. Valid and Invalid cdm instance with respect to OceanSITES standard version 1.1
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Experimenting CdMCL on OceanSITES, it is observed that more than 90% percent
of the constraints are achieved in the CdMCL except the constraints that are related to
multiple CDM concepts at the same time. For example, a constraint verifies the exist-
ence of either a variable named TIME with attribute named QC_indicator or a varia-
ble named TIME_QC.

inv userDefinedConstraint_oneTimeQC:

(not self.variables->exists(e | e.name.matches('~TIME_QC$')))

and self.variables->select(e | e.name.matches('~TIME$'))

.attributes->exists(e | e.name.matches('~QC_indicator$"'))

xor self.variables->exists(e | e.name.matches('~TIME_QC$'))

and ( not self.variables->select(e | e.name.matches('~TIME$'))
.attributes->exists(e | e.name.matches('~QC_indicator$')))

Fig. 11. User defined OCL constraints

For CdmCL syntax readability, the two global attributes of OceanSITES given in
figure 2 are represented by approximately eight lines in CdmCL expressions and gen-
erate around 30 lines of OCL statements. One page of textual constraints from the
standard is expressed by around 25 lines in CdmCL and generates around 300 lines of
OCL.

The language CdmCL was introduced to OceanSITES users (standard reader) and
they confirm the expressiveness and the readability of CdmCL.

6 Related Works

Several studies are proposed to support OCL integration on modeling processes.
The Dresden OCL Toolkit [9] proposes an OCL library and the recent version pro-
vides an OCL-to-Java Code Generator. USE (UML-based Specification Environment)
[10] is a tool to facilitate the validation of UML models with OCL constraints. USE
supports consistency, independence of constraints, and relevance of constraints analy-
sis. These OCL tools are complementary to the proposed approach and can be used to
facilitate the management of the generated OCL constraints.

In the domain of OCL generation, [11] propose OCL automatic generation from
UML class diagrams. The approach aims at simplifying the process of generation of
OCL statements. The approach involves expressing constraints by a class diagram. In
the addressed domain, most of the constraints are related to specific instances. Fol-
lowing this approach would result in too many classes (one per instance constrained),
and the class diagram syntax is far from the scientific standard edition.

In [12], the authors propose to convert natural language expressions to the equiva-
lent OCL statements. The expressions are constraints and pre/post conditions related
to UML diagrams. OCL generation is based on the Semantic Business Vocabulary
and Rules language (SBVR) to avoid inconsistencies. With CdmCL, we prefer to
define a DSL because, in a small and well identified domain, it promotes the devel-
opment of efficient and accurate solutions [13]. As a DSL, CdmCL disambiguates
scientific standard edition. And in addition, it is close enough to the natural language
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so that its use does not require technical skills on OCL. However, the creation of a
DSL usually requires both domain knowledge and language development expertise
[13]. But, the production cost of CAMCL is low since it relies directly on OCL seman-
tics, while hiding unnecessary OCL features. Thus, translation to OCL may be direct-
ly done without considering SBVR intermediate level.

7 Conclusion

This paper proposes a domain specific constraint language for CDM. The language
structure is based on CDM structure and results in a set of constraint categories. These
categories permit to define constraints in a human readable language and serves in the
automatic generation of OCL. The approach hides the complexity of writing OCL
manually and increases the productivity by generating a large number of OCL state-
ments for few lines written in CdMCL. Furthermore, any standard edition and con-
formity checking can be done easily without OCL and programming interference.

In perspective, we are working on developing domain specific operators to auto-
mate scientific data migration from a standard to another one.
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Abstract. During the development of real-time embedded system, the
use of UML models as blueprints is a common practice with a focus on un-
derstandability rather than comprehensiveness. However, further in the
development, these models must be completed in order to achieve the
necessary validation and verification activities. They are typically per-
formed by using several formal tools. Each tool needs models of the sys-
tem at a given abstraction level, which are precise and complete enough
with respect to how the tool processes them. If UML is appropriate for
capturing multiple concerns, its multiple partial views without a global
one increase the difficulty of locating inconsistency or incompleteness is-
sues. Therefore, ensuring completeness is time consuming, fastidious, and
error prone. We propose an approach based on the use of a UML textual
syntax closely aligned to its metamodel: tUML. An initial prototype is
described, and examples are given.

1 Introduction

Using sketchy models is common during software systems development. Such
models (also called contemplative models) are just drawings that cannot be au-
tomatically processed (e.g., transformed into code, or verified). In the use of
such models as blueprints, the focus is on communication rather than on com-
pleteness. The UML language is a good candidate for that kind of practice. It is
primarily a graphical notation, and it offers a relatively large set of diagrams for
representing various concerns. Moreover, as it is a standard, one can expect that
it is known by developers, and also by stakeholders. Therefore, it helps commu-
nicating a better understanding about the system under study, and supports a
better collaboration with various specialists.

However, such contemplative use of UML models is only partially satisfactory.
Part of the effort to produce them cannot be automatically reused in further
development phases. Going from contemplative to productive models is a key
challenge of model-driven approaches [4]. In these approaches, development can
be seen as a set of successive model transformations steps in order to produce
code from analysis models. Each step should be partially automated.
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In real-time embedded system development, this is even more important.
The reliability and complexity of such systems require numerous verifications
and validations activities all along the development process. These activities
are based on the use of tools such as model checkers, theorem provers, code
generators, and test generators. The use of UML in this context presents some
issues. It has no standard formal semantics, and many semantic variation points.
A many-diagram model may contain inconsistencies, and no global view helps
their discovery. UML is semi-formal: a given drawing may have different inter-
pretations. UML expressivity is not completely satisfactory for this domain.

Solutions to these issues have been developed. UML extensions have been
defined (e.g., the MARTE! profile) to adapt it to the real-time domain. Numer-
ous works propose a variety of translations from part of UML to different formal
languages [6,10,9]. These translations enable detection of some inconsistencies
[5], and other verification activities.

These solutions require that the verified model parts be precise, complete, and
unambiguous. Other parts may remain sketchy [12]. However, it is difficult for
an engineer to go from a sketchy model to a precise one. This typically requires
detailed knowledge of: the UML specification, and the specific semantics given
to it by a given verification tool [2]. Even if some UML editors assist users, this
work is difficult and long. It is generally necessary to fill-in hundreds of property
sheets accessible from a potentially large number of distinct graphical views.

In this work, we propose an approach to bridge the gap between sketchy
and (partially) precise models. We put some efforts in making it as independent
of specific UML editors as possible. It is based on the use of a specific textual
syntax called tUML that closely follows the UML metamodel structure, as well
as on the use of additional constraints on models. Neither text nor graphical is
better than the other. However, by complementing graphical tools with textual
ones, we can get both their respective advantages.

We illustrate our approach with the pacemaker case study presented in [3].
It is actually while working on this case study that we initially had the idea to
develop the presented approach. We started by playing the role of the designer
defining a sketchy model. Then, we had to complete it so that it can be verified.
This task is now much easier thanks to our tUML prototype.

Section 2 presents the approach in four steps: an overview of tUML (Sec-
tion 2.1), a description of our prototype (Section 2.2), an explanation of its
usage (Section 2.3), and a discussion (Section 2.4). Then, Section 3 compares
tUML to some related works. Finally, we conclude in Section 4.

2 Approach

2.1 tUML Presentation

tUML is a textual concrete syntax for a subset of the standard UML metamodel.
A detailed definition and justification of this subset is beyond the scope of this

! http://www.omgmarte.org/
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Fig. 1. Class diagram of Cardiologist

paper. Roughly, it consists of the parts of the UML metamodel that correspond to
the three following diagrams: 1) class diagrams, 2) composite structure diagrams,
and 3) state diagram. These diagrams are typically the ones used to model real-
time embedded systems. We do not attempt to cover the whole UML metamodel,
but built our subset bottom-up, making sure we can verify what we model [8].
Additionally, we use a specific action language restricted to what we can verify.

In order to illustrate: 1) the tUML textual syntax, and 2) its relations with
the standard graphical notation, we use the pacemaker case study introduced in
[3]. In this case study, a pacemaker is designed as a UML model, of which a full
description does not belong here. Therefore, we only briefly mention what is nec-
essary to understand this paper. A Cardiologist active object is responsible for
applying a heart-assistance policy such as TriggeredPacing by piloting Leads.
A Lead active object brokers access to actual physical leads placed on the heart
of the patient. Cardiologist and Lead are software components that are part
of an implanted PulseGenerator. The overall System consists of a PulseGen-
erator, which can communicate with an external DeviceControlMonitor. We
reuse three figures from [3], which correspond to our three UML metamodel
parts of interest: classes, composite structure, and state machines.

Classes. Figure 1 (corresponding to Figure 9 from [3]) is a partial view of class
Cardiologist, and related interfaces in the standard class diagram notation.
Cardiologist implements interface ICardiologist_Provided?, which defines
messages it can receive from its controller. It also implements interface ILead_-
Required, which defines messages it can receive from Leads. Cardiologist uses
interface ILead_Provided, which defines messages it can send to Leads.
Listing 1 is an excerpt of the corresponding tUML definition. Class Cardi-
ologist is defined as implementing two interfaces (line 1), and using a third one

2 All interface names from original case study have been simplified to increase clarity.
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Listing 1. Cardiologist excerpt

class Cardiologist behavesAs SMCardiologist implements
«»ICardiologist_Provided, ILead_Required {
// [ports]
private operation analyseMode () ;
private operation generatePulse();
public operation getAcceleration();
stateMachine SMCardiologist {
region Region0O {
// [state machine contents]

11}

usage Usage0 of ILead_Provided by Cardiologist;

! System

+ dcm:DeviceControlMonitor{1]
<<ClientServerPort>>

Lr[ +pgCom:1_DCM[1]

pg:PulseGenerator[1]

+dcmCom:I_GP[1]

Fig. 2. Composite Structure diagram of System

(line 10). These interfaces have the same names as those in Figure 1. Lines 3 to
5 contain the definitions of operations owned by the class. Comments starting
with two slashes end with the line. They are used here to stand for actual ports
(line 2) and state machine contents (line 8), which are not detailed. Lines 6 to 9
correspond to an element not shown in the class diagram: a state machine (not
detailed here) that specifies the behavior of this active object.

Composite Structure. Figure 2 (Figure 5 in [3]) is a partial view of the
System’s architecture in the standard composite structure diagram notation.
This architecture consists of a DeviceControlMonitor named dcm owning a
port called pgCom, a PulseGenerator named pg owning a port called dcmCom,
and a connector between the ports.

Listing 2 is an excerpt of the corresponding tUML definition. Class System is
defined at lines 1-4 as consisting of a PulseGenerator part at line 2, a Device-
ControlMonitor part at line 3, and a connector at line 4. Class PulseGenerator
is defined at lines 5-9 with a port at line 7. This class is also composite but its
parts (line 6) and connectors (line 8) are not detailed here. Class DeviceCon-
trolMonitor is defined at lines 10-11, and only contains a port (line 11).

State Machines. Figure 3 (Figure 12 in [3]) is a partial view of a composite
substate of Cardiologist’s behavioral state machine in the standard state di-
agram notation. State TriggeredPacing is composed of states StartingPulse
and WaitingPulse, as well as of an initial pseudo-state. It also contains four
transitions: 1) one transition from the initial pseudo-state to StartingPulse,
2) one transition from StartingPulse to WaitingPulse triggered after a given
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Listing 2. System composite structure

1 class System {

2 public composite pg[l—1] unique : PulseGenerator;

3 public composite dcm[l—1] unique : DeviceControlMonitor;
4 connector Connector0 between dcm.pgCom and pg.dcmCom; }
5 class PulseGenerator {

6 // [parts]

7 public composite port dcmCom[l —1];

8 // [connectors between parts]

5 }

10 class DeviceControlMonitor {

11 public composite port pgCom[l—1]; }

( TriggeredPacing \

StartingPulse

after currentMode.RP SensedPulse / generatePulse Jafter currentMode.pulseDelay / generatePulse

WaitingPulse

Fig. 3. State diagram showing part of the behavior of Cardiologist

time (currentMode.RP), and two transitions from WaitingPulse to Starting-
Pulse triggered: 3) by SensedPulse message, with generatePulse effect, and
4) after a given time (currentMode.pulseDelay), with the same effect.

Listing 3 is an excerpt of the corresponding tUML definition. State Trig-
geredPacing is defined at lines 1-9 as consisting of region Region0. This region
itself consist of an initial pseudo-state (line 7), two states StartingPulse (lines
8) & WaitingPulse (line 9), and four transitions (lines 3-6). Each transition has
a name. Each transition with a trigger refers to an event by name (escaped be-
tween double quotes because they contain spaces). Events are defined in a part
of the model not shown here. Finally, the two transitions having an effect specify
it as an empty opaque behavior (lines 5-6), with only its name specified.

2.2 Prototype

Now that tUML has been presented, we will describe its current prototype im-
plementation. Eclipse Modeling® has been used in the following way:

— Eclipse UML provides the UML abstract syntax implementation (very
close to the standard), on top of EMF (Eclipse Modeling Framework). Tools
based on Eclipse UML (e.g., Papyrus) are directly compatible with tUML.

— TCS [7] is used to define the textual syntax. It provides three elements: 1)
an extractor from Eclipse UML abstract syntax to concrete tUML textual
syntax, 2) an injector from tUML textual syntax to Eclipse UML, and 3) an
editor (see Figure 4) tuned for tUML textual syntax.

3 http://www.eclipse.org/modeling/
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Listing 3. Cardiologist state machine except

state TriggeredPacing {
region Region0 {

Initial0—>StartingPulse : TransitionO;

StartingPulse—>WaitingPulse : Transitionl : ”"TE — currentMode.RP” /;

WaitingPulse —>StartingPulse : Transition2 : "SE — SensedPulse” /
—opaqueBehavior generatePulse ;;

WaitingPulse—>StartingPulse : Transition3 : ”"TE — currentMode.

—»pulseDelay” / opaqueBehavior generatePulse;;
initial pseudoState InitialO;
state StartingPulse;
state WaitingPulse; 1}

— ATL [1] transformations are used to implement four elements: 1) constraints
(in OCL) to check on tUML models, 2) qualified names computation and
resolution whereas TCS only supports simple names by itself, 3) visualization
in the form of a PlantUML* export, and 4) bridges with other tools.

Other tools could have been used (e.g., Xtext), but we prefer familiar ones.

The PlantUML export enables graphical rendering of tUML models. Fig-
ures 1 and 3 have actually been generated through this process. Figure 2 is
however still the original from [3] because PlantUML cannot properly render it
yet. A non-standard context diagram can also be rendered. It is a specializa-
tion of the communication diagram in which a non-ordered list of all exchanged
messages (with directions) is shown on each edge.

Our prototype notably has the following limitations. Conversions between
textual and abstract syntax currently work on whole models, and graphical in-
formation is not synchronized yet. Fine-grain synchronization would be helpful
but is not mandatory in our approach. Apart from tools based on Eclipse UML,
only a Rhapsody import has been implemented so far.

2.3 Using tUML to Fix Sketchy Models

The previous sections gave an overview of tUML and of its prototype implemen-
tation. This section will give an overview of how they can be used to fix sketchy
models. Before creating models and fixing them, it is first necessary to consider
how they will be used (e.g., for code generation, or verification). Then, an expert
can define what a correct model precisely is in that context. This will typically
lead to a list of custom validation constraints. This work does not need to be
performed for each model, but only for each usage of models (e.g., for a given
code generator, or for a given verification tool).
The user typically follows the five-step process described below:

1. Creating Sketchy Model. A modeling tool is first used to create a sketchy
model. This is generally done with a graphical UML editor.

2. Converting to tUML. Using the extraction tool presented previously, the
user serializes the model in tUML.

4 http://plantuml.com/
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Fig. 4. Screenshot of tUML editor showing composite state TriggeredPacing

3. Identifying Problems. Issues are identified by applying standard UML
constraints, as well as custom constraints if applicable. They are shown in
the tUML editor. If no problem is identified, then we can go to step 5

4. Fixing Problems. The user can tune the model in order to fix problems.
This is often easier to do textually because all information is presented at
once. In comparison, a graphical editor often requires opening various prop-
erty sheets. Then, we go back to step 3 in order to check if the tackled issues
are fixed, and if some issues remain.

5. Use Fixed Model. Now that all identified problems have been fixed, the
model can be used in four notable ways: 1) reloading the model in the
original UML tool, or another one, 2) generating code, 3) verifying the
model using formal methods, and 4) rendering the model using tools such
as PlantUML (see prototype description).

Our pacemaker example was initially created as a sketchy model, not to be
automatically processed. Later, we decided to attempt to use some verification
tools [8]. We defined five specific constraints in addition to the standard ones.
tUML helped us discover and pinpoint (see error markers in Figure 4) more than
thirty issues mostly in the modeling of communication. We can notably mention:
1) opaque behaviors with no body (e.g., in Listing 3, which is not obvious on
Figure 3), 2) undetailed communications (e.g., call to private operation gener-
atePulse with no body), and 3) use of non-defined signals in triggers. To fix
them, we select a language for opaque behaviors, and we fill-in the blanks.

2.4 Discussion

After presenting tUML, its implementation, and its usage, we now discuss the
advantages and drawbacks of our approach. Firstly, tUML has all the benefits
of a textual language, such as: 1) global search and replace, 2) relatively easy
editing with no need to click through numerous property pages, 3) support for
diff /patch and text-based version control systems, and 4) no need to focus on
graphical layout (indentation being much easier). Other advantages of tUML
when compared with the standard UML graphical notation include:
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— Transparency. All model elements are immediately visible, and no aspect
of the model is hidden away in property sheets accessible via multiple clicks.

— Global view. Whereas the graphical notation fragments the model into
separate diagrams, tUML provides a single global view.

— Reduced redundancy. There is no need to duplicate elements (even par-
tially) across various diagrams.

— Proximity to metamodel. The textual syntax of tUML follows the UML
metamodel very closely.

Proximity to the UML metamodel notably has the advantage that it is rel-
atively easy to figure out where a given aspect of the UML metamodel can
be accessed. Moreover, this enables relatively precise reporting of errors as text
markers, even though they are actually identified on the abstract syntax. Graph-
ical editors cannot always do this. For instance, in Papyrus, some errors on class
members are shown on their owning class in the class diagram.

Although this is not due to the textual nature of tUML, the automatic gen-
eration of views presents some advantages as well. Even though tUML models
typically come from graphical UML editors, this has the advantage of reformu-
lating the models in a different way, possibly helping to spot issues. Moreover,
the non-standard context diagram is especially helpful in finding messages that
are missing (e.g., when their emission or reception are not properly modeled).

Of course, tUML also has some limitations:

— Verbose. All model elements have to appear in a single text file. Therefore,
even though they are visible, details of interest may actually be drowned
in unnecessary details. Global view is thus both an advantage and a draw-
back. To mitigate this issue, generation of partial textual views should be
investigated. Synchronization with the whole model may become an issue.

— Non-standard. Because it is not standard, tUML needs to be learned even
by UML experts. This adds one difficulty to its usage.

— Incomplete. Only a subset of UML is currently supported. This subset is
especially targeted at real-time embedded systems. Using tUML in other
contexts may prove difficult (e.g., if one needs activities).

— Textual. Finally, even though most advantages of tUML are due to its
textual nature, some users may not accept to type UML code.

3 Related Work

UML is best known for its graphical notation, but tUML is not the first proposed
UML textual notation. The OMG has notably standardized two of its ancestors®:

— HUTN initially seems to provide a solution since it promises automatic
derivation of a human-usable textual notation from any metamodel. How-
ever, this genericity leads to relatively verbose syntaxes.

5 nttp://www.omg.org/spec/HUTN/, and http://www.omg.org/spec/ALF/
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— AIf defines a specific textual syntax for a UML subset. The OMG thus
acknowledges the fact that HUTN is not fully adapted to this kind of use.
Unfortunately, Alf is limited to a different subset of UML, which is not
adapted to real-time embedded systems. tUML is thus significantly different
from Alf. Notably, Alf only provides activities to specify behavior, whereas
tUML focuses on state machines. Moreover, Alf specifies a new metamodel
that is closer to its concrete syntax than the standard UML metamodel.
Although a bidirectional mapping to the standard UML metamodel is also
provided, such a gap between textual and graphical notations may make the
job of fixing models for formal verification purposes more difficult.

Most non-standard textual UML notations aim at producing sketchy models
by leveraging auto-layout tools. We cannot describe them all® here, but two
notable ones are:

— TextUMLY is relatively close to tUML but does not follow the UML meta-
model as closely (notably wrt. its action language).

— PlantUML has the advantage of being less verbose and more permissive
than all other mentioned approaches. However, its objective is only to au-
tomatically generate visual diagrams. It does not follow the standard meta-
model. Moreover, it is so permissive that many elements (e.g., class mem-
bers, and transition labels) can be represented by arbitrary text. Apart from
following very strict conventions, there is no way to guarantee that these
elements actually follow the UML syntax.

Some approaches like UML/P [11] also offer a textual representation of UML
models, and specific constraints to check them. However, the supported UML
subset differs: UML/P is not specific to real-time embedded systems, and notably
includes additional diagrams that our approach [8] is not yet able to verify. It
also seems to lack composite structure diagram, which we need.

4 Conclusion

In this paper, we have presented an approach that helps fixing incomplete UML
models to make them suitable as input for verification and validation activities
and tools. This approach relies on tUML: a specific textual notation for UML
that notably follows its metamodel very closely. A prototype implementation has
been used on a couple of case studies (including the pacemaker one presented
here), and half a dozen different models. tUML significantly helped in discovering
issues, and therefore in fixing them.

We have so far demonstrated the worth of the approach, but its development
is still in progress. It should be further studied and refined, notably by applying
it to more case studies, including industrial ones. This would lead to a complete
evaluation. This should bring out more kinds of constraints to check on models,

5 See http://modeling-languages.com/uml-tools/#textual for a bigger list.
" https://github.com/abstratt/textuml/
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as well as help figuring out in which direction the supported UML subset should
be extended. All sketchy models issues cannot be resolved automatically. It could
nonetheless be useful to provide quick fixes® in order to not only pinpoint issues,
but also partially automate their resolution.

A possible extensions of our work on tUML would be to propose it to the
OMG as an extension of Alf, which notably lacks support for state machines.
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Abstract. During the panel session at the OCL workshop, the OCL
community discussed, stimulated by short presentations by OCL experts,
potential future extensions and improvements of the OCL. As such, this
panel discussion continued the discussion that started at the OCL meet-
ing in Aachen in 2013 and on which we reported in the proceedings of
the last year’s OCL workshop.

This collaborative paper, to which each OCL expert contributed one sec-
tion, summarises the panel discussion as well as describes the suggestions
for further improvements in more detail.

1 Introduction

While OCL is nearly 20 years old [6], it is still an evolving language and there
is an ongoing effort in academia to improve it. This is also witnessed by the
constant updates to the official OMG standards and the current standardisation
efforts that will eventually results in OCL version 2.5. Already as a follow up
of the last OCL workshop, a number of OCL experts met in November 2013
in Aachen to discuss possible improvements of the OCL (see the report on the
OCL meeting in Aachen in the proceedings of the OCL workshop 2013 [2]).
The panel session provided a platform for the OCL community to discuss
the presented proposal for improving the OCL as well as to discuss the general
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future of textual modelling. The following sections, each of them contributed by
one expert of the field, discuss the different areas for improvements that were
discussed during the panel session.

2 Frame Conditions for OCL

Achim D. Brucker. Traditionally, OCL operation contracts do only specify
the intended changes to the system state. In general, there is no guarantee that
other parts of the system remain unchanged. In particular, the default post
condition true allows arbitrary changes to the system state.

We suggest to introduce a new method, called _->modifiesOnly(), that
allows to explicit specify frame conditions, i.e., what can be modified by an
OCL operation.

2.1 Motivating Example

When using contracts, or pairs of preconditions and postconditions for state
transition there arises the need to specify exactly which parts of the system
are allowed to be modified and which have to stay unchanged, i.e., we have to
specify the frame property of the system. Otherwise, arbitrary relations from
pre-states to post-states are allowed. For most applications this is too general:
there must be a way to express that parts of the state do not change during a
system transition, i.e., to specify the frame properties of system transition. As

pre: 0 < a
post: balance = balance@pre+a

’
’

context Account::deposit(a:Integer):Boolean ﬁ

Account C
2 balance:Integer ustomer
a id:Integer & & id:Integer
. 0 1.* owner|& name:String
= getld():Integer accounts Sl
- getBalance(%:Integer = 8 : .g .
= deposit(a:Integer):Boolean = see‘ctﬁa;rnr;eé((?.ssgrrilrrllg).Boolean
= withdraw(a:Integer):Boolean =8 : g

Fig. 1. Consider a state transition constrained by the operation specification for the
operation deposit. Obviously, only the attribute balance of one specific object should
be changed, but how can this be specified?

an example, consider Figure 1 with an particular focus on the specification of the
operation deposit of the class Account. This specification only describes which
part of the system should change, i. e., the balance of the context object (which
is an Account object) should be increased. But this is not specified, which parts
of the system should remain unchanged, e. g., the id of the context object.
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One solution to solve this frame problem would be an implicit invariability
assumption on the meta-level which would somehow express “all things that are
not changed explicitly remain unchanged.” But this is neither formal nor precise
and thus not usable within a formal framework for object-oriented specifications.

Another possibility is to enumerate, in the postcondition of the operation,
all path expressions that should remain unchanged, e. g., in our example a first
attempt to do so would be:

context Account::deposit(a:Integer):Boolean

post: balance = balance@pre+a

post: id = id@pre

post: owner = owner@pre

post: owner.id = owner@pre.id@pre
post: owner.name = owner@pre.name@pre

But this is also not sufficient, as it would still not describe if objects not re-
lated to our context object (of type Account) must remain unchanged or not.
Enumerating all classes (and attributes) using static path expressions (e.g.,
Customer: :name = Customer: :name@pre) is tedious and moreover leads to con-
tradictions if the name attribute of the owner of the context object should be
changed.

Our Proposal. This framing problem is well-known (one of the suggested solu-
tions is,e. g., [5]). We suggest to introduce an OCL method that explicitly allows
to specify what might be changed during a system transition. We define

(S:Set (0clAny))->modifiesOnly ():Boolean

where S is a set of objects (i. e., a set of 0c1lAny objects). This also allows recursive
operations collect the set of objects that are potentially changed by a recursive
function. Obviously, similar to @pre the use of ->modifiesOnly() is restricted
to postconditions.

In our formalisation, called Featherweight OCL [3], we encode the set S as
a set of object ids (oid). The semantics of the _->modifiesOnly() operator is
defined such that for any object whose oid is not represented in S and that is
defined in pre and post state, the corresponding object representation will not
change in the state transition. A simplified presentation is as follows:

s ! __ /

I[X->modifiesOnly()](o,0") = {L ) ) ) it X - L vl e X
VieM.oci=0"1i otherwise.

where X' = I[X](o,0") and M = (dom o N dom o’) — {OidOf z| z € "X"'}.
Thus, if we require in a postcondition Set{}->modifiesOnly() and exclude via
_.oclIsNew() and _.oclIsDeleted() the existence of new or deleted objects,
the operation is a query in the sense of the OCL standard, i. e., the isQuery prop-
erty is true. So, whenever we have 7 F X >excluding(s.a)->modifiesOnly()
and 7 F X->forAll (z|not(z = s.a)), we can infer that 7 F s.a £ s.a @pre.
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3 Extending OCL with Functions

Tony Clark. The current OCL standard does not support functional abstrac-
tion. This is surprising given the origins of OCL and its relationship, with respect
to extensive support for collection processing, to functional programming lan-
guages such as ML and Haskell. OCL can currently be used to specify operations
on classes. It would be useful to extend this notion so that OCL could be used
to define a self supporting, albeit high-level and side-effect free, executable sys-
tem that could be used for a variety of purposes including scripting, simulation,
model management, etc. Adding functions to OCL is a step in this direction.

In this regard, a functional abstraction in OCL will provide a new type of
expression that defines an anonymous function comprised of a sequence of named
arguments and a body, which is any OCL expression. The denotation of such an
expression is a function that can be applied to the requisite number of argument
values causing the function definition body to be evaluated. Since a function is a
value it can be named in the usual way, for example by passing it as an argument
to another function or (equivalently) binding in a let-expression. Free variables
within the body of a function definition will exhibit lexical scoping, meaning that
the life-time of the function, and any associated free variable values, may outlive
that of the binding scope in which it is defined. Since the name of a function is
not an intrinsic part of its definition, recursive functions are to be established
using a new binding mechanism provided by let that is designated as recursive.

Having outlined above the characteristics of functions, their use within OCL
is motivated as follows:

abstraction Currently OCL lacks a mechanism for abstracting patterns of def-
initions and then reusing them throughout a system specification. This may
take the form of a collection of domain specific functions that provide, for
example, arithmetic calculations. Furthermore, the higher-order aspect of
functions will facilitate patterns over functions, for example by defining cal-
culations involving sorts where the sort-relationship (alpha-sort, numeric-
sort, ascending, descending, efc.) is passed as an argument.

modularity Current OCL specifications can be long-winded where expressions
contain a great deal of detail. Functions, especially locally defined functions,
can help to reduce the complexity both in terms of size and readability.
Functions allow parts of a specification can establish a collection of private
reusable abstractions. Functions can be the basis of defining both general-
purpose and domain-specific library modules for OCL.

iteration OCL provides a string support for processing collections. The itera-
tion processing expressions are built-in to the OCL language when this is not
necessary. They can all be defined in terms of a small number of primitive
collection operations and recursive functions (as demonstrated by functional
languages whose libraries contain a much larger range of collection opera-
tors). Languages should strive for both semantic universality and semantic
parsimony with regard to their intended domain; currently OCL provides
neither.
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3.1 Proposal

This section proposes the addition of anonymous function definitions and func-
tions, and associated language support, to OCL. This section provides a brief
overview of how this might be achieved.

MonRec
*| LetEind
bindings
1
in OCLExpression | 1 Rec
body value
1
Yariable
_ DataType | 1 range
name ; String
0..*
domain

Fig. 2. Abstract Syntax Extension

Types Figure 2 shows the proposed extensions to the OCL abstract syn-
tax model that are necessary to support function definitions. A new type
FunExpression is introduced as a sub-class of OCLExpression, it has any num-
ber of (ordered) arguments defined as variables, and a body. The existing LetExp
class is extended to allow two different types of binding: recursive and non-
recursive. The DataType class is extended to produce a new data type called
FunType whose domain and range types describe the argument and body types
of a function respectively.

Concrete Syntax OCL functions are supported by a small concrete syntax ex-
tension. A function expression including domain and range types can be written
as follows (assuming the availability of a function sqrt):

fun(x:Integer ,y:Integer):Integer
sqrt (x*x + y*y)
end

We can name the function:

let
distance = fun(x:Integer,y:Integer):Integer sqrt(x*x + y*xy)
end

in distance (100,200)

end
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which suggests the following sugar:

let distance(x:Integer,y:Integer):Integer = sqrt(x*x + y*xy)
in distance (100,200)
end

At the top-level of a specification we might allow distance to be available ev-
erywhere:

let distance(x:Integer,y:Integer):Integer = sqrt(x*xx + y*y);

In the above definition, the name distance will not refer to the function being
defined (if anything it will refer to a definition in a surrounding scope). To achieve
a recursive function, an extra keyword is used:

let rec
size(s:Sequence(T)):Integer = if s->isEmpty
then O
else 1 + size(s->rest());

3.2 Examples

To see how higher-order features of functional-OCL can be used to good effect,
consider the case of OCL without built-in iteration. The select expression can
be achieved using a function called select that is defined in the context of a
polymorphic type Sequence(T). The function select takes a function q as an
argument; q acts as a predicate on each element of the collection. The function
select recursively processes the collection and returns a collection containing
only those elements that satisfy q:

context Sequence(T)::select(q:(T)->Boolean):Sequence(T) =
let s:Sequence(T) = self->rest()->select(q)
x:T = self->first()
in if q(x)
then s->prepend(x)
else s
end
end

Now any occurrence of S->select(e | p) can be translated to:
S.select(fun(e) p end) and all other OCL iteration constructs can be
treated the same way. This significantly reduces the number of semantic
primitives for OCL and provides a basis for new collection processing operations
based on higher-order functions, for example:

context Sequence(T)::foldr(g:(T,T’)->T’,x:T’):T’ =
if self->isEmpty
then x
else g(self->first(),self->rest().foldr(g,x))
end
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Once defined, this can be used as the basis of many different sequence operations:

context Sequence (Boolean)::allTrue():Boolean =
self.foldr (and, true)

context Sequence(Boolean)::anyTrue():Boolean
self.foldr (or,false)

context Sequence(Integer)::sum():Integer
self.foldr (+,0)

context Sequence(Integer)::product():Integer
self.foldr (*x,1)

context Sequence(T)::size():Integer =
self.foldr (fun(x) x + 1 end,O0)

context Sequence (Sequence(T))::concat():Sequence(T) =
self.foldr (fun(1l1,12) 1li1->append(1l2) end,Seq{l})
context Sequence(T)::reverse:Sequence(T) =
self.foldr (fun(x,1l) 1->append(Seq{xl}) end,Seq{})

4 Implicit Strict Downcasts in OCL Collection
Operations

Martin Gogolla. Current OCL allows to select elements of a particular type
from a heterogeneous collection and to apply subtype specific operations to the
selected elements.

Set{4,’VII’,’IV’,7}->
selectByKind (Integer)->
collect (i | ix*i)
==> Bag{16,49} : Bag(Integer)

As an example, consider the above evaluation on a heterogeneous collec-
tion with Integer and String elements. Due to the relatively new operation
selectByKind this task can be formulated in a more condensed way than in
older OCL versions.

Set{4,’VII’,’IV’ ,7}->
select (x:0clAny | x.o0clIsTypeOf (Integer))->
collect(x | let i:Integer=x.oclAsType(Integer) in ix*i)
==> Bag{16,49} : Bag(Integer)

As shown above, evaluations of this kind were possible in OCL from the very
beginning by employing select, type assertions, collect, and type downcasts,
however more notational overhead was needed when compared to the formulation
with selectByKind.

The proposal that we put forward here is to reduce the notational overhead
even more by allowing explicit downcasts from more general types to more special
types in collection operations by explicitly giving a subtype to a variable that is
used in the collection operation.
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Set{4,’VII’,’IV’,7}->
collect(i:Integer | ix*i)
==> Bag{16,49} : Bag(Integer)

Starting from types S and G with S<G and a term COL evaluating to a col-
lection of type Collection(G), the general translation schema for such explicit
downcasts in collection operations would look as indicated below: the central
idea is that a call for colOp is replaced by a select call and a colOp call; the
variable s is typed through the more special type S and the OCL expression
expr[s] uses s in contexts where the more special type S and not the more
general type G is expected; the operation colOp can be any collection operation,
not only as in the above example the collection operation collect.

COL->col0p(s:S | exprl[s])
==>
COL->
select(x | x.0clIsTypeOf (S))->
colOp(g:G | let s:S=g.oclAsType(S) in expr[s])

In particular applications of this construct in the context of
type generalization seem to be useful. For example, assume we have
Female<Person, Male<Person, the following evaluation would be possi-
ble.

Set{ada,bob,cyd,dan,eve}->
collect (f:Female | f.husband.firstName)
==> Bag{’Dan’,’Dan’}

The discussion at the workshop brought up reservations about the use of the
colon : at the crucial point of giving a subtype to the variable. In order to avoid
accidental use of the subtyping mechanism, using a new, differentiating syntax
was discussed. Some proposals are indicated below. The lasts syntax proposal
employing brackets are referring to the syntax proposed for patterns matching
(inspired from Haskell).

Set{ada,bob,cyd,dan,eve}->
collect (f<:Female | f.husband.firstName)

Set{ada,bob,cyd,dan,eve}->
collect (feFemale{} | f.husband.firstName)

Set{ada,bob,cyd,dan,eve}->
collect(f:Female{} | f.husband.firstName)

5 Active Operations for OCL

Frédéric Jouault. Before its 2.0 version (when it was still defined as a part of
UML [8]), OCL only had three kinds of constraints: inv for classifier invariants,
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as well as pre and post respectively for preconditions and postconditions of
operations?. Starting with version 2.0, additional kinds of constraints appeared:
body to implement (side-effect free) operations, as well as init and derive
respectively to specify initial values, and to implement derived features.

A derived feature is a feature (attribute or association end), which has a
value that is computed from the values of other features. The fact that a feature
is derived is specified in a class diagram (e.g., in UML), not in OCL. In gen-
eral, the value of a derived feature is specified in OCL as an invariant. However,
the computation of the value of a derived feature is not always trivial from an
invariant. Consequently, derive constraints were introduced in the OCL spec-
ification as a special case of invariants. They work by specifying an expression
that evaluates to the value of the derived feature. The computation of the value
of a derived feature becomes as simple as evaluating that expression.

Although the more recent derive kind of constraint is useful, it notably does
not address the 3 following issues that arise when working with derived features:

— Changeability is limited to read-only access. Writable derived features
must typically be achieved by actual implementation (e.g., in Java), not
by modeling in OCL.

— Observability is generally not possible because derived features are com-
puted by evaluating the specified OCL expressions, which typically happens
on-demand. Arguably, this is more an implementation issue than a modeling
one. However, it is a real problem for modeling tools. For instance, a model
editor that displays the value of a derived feature cannot directly listen for
its changes.

— Direct use of invariants to specify derived features should also be possible,
but is generally not supported by tools. When derive is used instead of inv,
the person writing the constraint must decide how to compute the derived
features. Ideally, tools should be able to do this from more general invariants.

In this section, we propose to extend OCL with active operations [1]. Ba-
sically, active operations enable incremental synchronization of collections. In
some cases, bidirectionality is even possible.

Here are three concrete benefits of integrating active operations in OCL:

— Changeability is achieved by relying on bidirectionality of active opera-
tions. This works independently of whether inv or derive is used.

— Observability is possible because active operations incrementally update
derived features as soon as there is a change in the values they depend on.
This is also independant of the use of inv or derive.

— Direct use of invariants becomes possible without having to rewrite them
into derive constraints (whether manually or automatically). This means
that inv may be used instead of derive.

Active operations perform their work by producing side-effects on models:
some collections get updated when other collections are changed. We believe they

9 def “definition” constraints enable expression reuse but do not constrain models.
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are nonetheless compatible with OCL because: only “when OCL expressions are
evaluated, they do not have side effects” [9], but active operations do not work by
evaluating OCL expressions. With active operations, OCL constraints are used
in way that is similar to how constraints are used in constraints programming:
they specify the form of desired solutions, not how to compute them.

5.1 Motivating Example

Consider Figure 3: a Transporter handles several Transports, each associated
to a Truck and a Driver, which are two kinds of Resources. The set of all re-
sources used by a Transporter is captured as the resources association. Finally,
a Transporter has three derived features: derivedResources, trucks, and drivers.
Note that from a modeling point of view derivedResources is redundant with
resources. However, from a pedagogical point of view we need both derived and
non-derived versions of the same relation.

Transporter

resources[*]

/drivers : Driver[*] Resource

Jtrucks : Truck[*] /derivedResources[*]

transports[*]

Fig. 3. Transporter class diagram

Listing 1.1 gives a set of OCL constraints over the class diagram depicted in
Figure 3. Constraint C1 specifies with an invariant that all derivedResources of a
transporter must be used in at least one transport. Constraint C2 specifies how
the derivedResources derived feature can be computed. One can observe that C1
logically implies C2. Nonetheless, C2 must generally be specified so that tools
may actually be able to compute the value of the derived feature. With active
operations, the more general C1 is enough and C2 is redundant. Nonetheless,
C2 would also work without C1. Note that in this case derivedResources cannot
trivially be made writable because adding a resource to a transporter may then
require the creation of a new instance of class Transport. This may be captured
in the class diagram by specifying derivedResources as read-only. It should be
noted that UML also provides a specific built-in mechanism for derived unions,
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which is roughly equivalent to what we are doing here with C1. However, UML
specifies that derived unions must be read-only whereas we can do better with
active operations.

Similarly, constraint C3 specifies with an invariant that non-derived resources
correspond to the union of derived drivers and trucks. Constraint C4 and C5
respectively specify expressions that can be used to directly compute the values
of drivers and trucks. One can observe that C3 logically implies C4, and C5.
Nonetheless, C4 and C5 must generally be specified so that tools may actually
be able to compute the values of the derived features. With active operations,
the more general C3 is enough and C4 and C5 are redundant (but would still
work). Additionally, C3 is usable in both directions: resources, drivers, and trucks
are all writable features. Moreover, even if C3 did not exist, C4 and C5 would
be usable bidirectionaly to update resources when either drivers or trucks was
updated.

-- [C1] all derivedResources must be used by transports

context Transporter inv:

self.derivedResources = self.transports.driver->union(
self.transports.truck)

-- [C2] implementation of /derivedResources derived feature
context Transporter::derivedResources : OrderedSet (Resource)
derive: self.transports.driver->union(self.transports.truck)

-- [C3] resources are the wunion of drivers and trucks
context Transporter inv:
self .resources = self.drivers->union(self.trucks)

-- [C4] implementation of /drivers derived feature
context Transporter::drivers : OrderedSet (Driver)
derive: self.resources->select(e | e.oclIsKindOf (Truck))

-- [C5] implementation of /trucks derived feature
context Transporter::trucks : OrderedSet (Truck)
derive: self.resources->select(e | e.oclIsKindOf (Truck))

Listing 1.1. OCL constraints for the class diagram of Figure 3

We have seen above that with active operations, not only are C1 and C3
enough, but they are also enough for the tools to be actually able to compute
the values of derived features. Concretely, here is how active operations work for

C3:

— Initialization consists in setting drivers and trucks to appropriate values
by doing something similar to what C4 and C5 specify, but by only relying
on information given in C3. Additionally, the active operations engine starts
to listen for changes in either resources, drivers, or trucks.

— Synchronization is triggered whenever a change is performed, and the
model is considered to be in a stable state only after it is done. If resources
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is modified, then either drivers or trucks is updated with the new element. If
either drivers or trucks is modified, then resources is updated with the new
element. Should these features be ordered, active operations may preserve
ordering (e.g., by considering that union is equivalent to concatenation).

Once synchronization has ended, the model is again in a stable state, and the
invariant satisfied.

5.2 Conclusion

Active operations address concrete shortcomings of OCL when used with derived
features. They are compatible with its semantics, even though they require a
different execution engine. Algorithms proposed in [1] can be used to implement
active operations, and cover most OCL operations on collections. We do not
foresee any issue with missing ones.

6 Purpose-specific Fragments of OCL

Ernest Teniente.'® An important direction on the improvement of OCL should
be devoted to analyze how can we make this language broadly used in industry.
In this proposal, we suggest to identify purpose-specific fragments of OCL, each
of them devoted to a different goal in software development, as a significant
step in this direction. Having purpose-specific fragments of OCL would help its
learning and understanding while showing up the benefits of its use.

6.1 Motivation

OCL is aimed at defining all relevant aspects of a specification that cannot be
stated diagrammatically. It is a formal language, intended to be easy to read
and write and it can be used for a number of different purposes: as a query
language, to specify invariants in UML class diagrams, to describe pre- and post
condictions on operations and methods, to describe guards, to specify target sets
for messages and actions, etc. [7].

OCL is proposed to be used in software development, mainly at the initial
stages of this process, because it is intended to fill the gap between natural and
classical formal languages being understandable but formal at the same way;
and it is expected to be widely used in industry because of the advantages it
provides to the automation of code generation or to automated reasoning. This
is particularly important in the context of model-driven development.

Providing an answer to the question "How can OCL be improved?” should
take all these issues into account. So, the aim of this contribution is not to
propose some additional, missing, feature of the language to make it better in

10 This work has been partially supported by the Ministerio de Ciencia e Innovacién
under project TIN2011-24747
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some sense but trying to contribute to the debate of why OCL is not used
(almost) in industry and to propose a possible solution to it.

There are two possible reasons for that: either the industry does not build
(UML) models or OCL is too complex already to be understood by people from
industry. In the first case, there would still be a long way to go as far as mod-
eling in industry is concerned and making the language more expressive would
not solve the problem. In the second, it seems clear that considering additional
features of the language would not help people to better understand OCL.

Some issues allow to illustrate the difficulties to understand OCL. For in-
stance, when learning about the use of OCL expressions in UML models in the
OCL specification document [7], we find the following sentence: ”everywhere in
the UML specification where the term expression is used, an OCL expression
can be used (...), but other placements are possible too. The meaning of the
value, which results from the evaluation of the OCL expression, depends on its
placement within the UML model”. Does it mean that we need to read the
whole UML specification also to know when an OCL expression can be used?
How do we know the different values that an expression can take depending on
its placement? How can we easily learn that?

Additionally, some aspects are difficult to explain or may even look like con-
tradictory. A couple of examples follow. Being OCL a declarative language, is
the iterate construct declarative? How can we justify that? When should tuple
types be used? What are they useful for? Which is the relationship between the
expressive power of OCL and that of well-known languages such as relational
algebra or first-order logic?

Under these considerations, and bearing in mind that our purpose is getting
OCL to be used in industry, my guess is that we should not actually extend
OCL further but trying to simplify or to structure it in such a way that it can
be better understood. This is further discussed in the next section.

6.2 Purpose-specific Fragments of OCL

One way to improve the understanding of OCL, thus facilitating its adoption by
industry, would be to identify purpose-specific fragments of the language. Each
fragment should be devoted to a particular purpose or use of the language in
software development. So, we could identify a fragment to define invariants in
UML class diagrams, another one to specify pre- and postconditions of operation
contracts, a third one to state model transformations, etc.

Different fragments would share several OCL operators but probably none
of them would require the whole set of actual operators because of its particular
purpose. Note that we are not advocating for simplyfing the language nor for
removing some operators. We are just proposing to structure the language in such
a way that understanding each fragment is easier than understanding the whole
OCL. Moreover, knowing that the fragment is aimed at an specific purpose would
also facilitate knowing the formal semantics of the language and the comparison
with other languages for the same purpose.
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The definition of the expressions and the operators of each fragment should
be performed in an incremental way, going from the basic concepts and the
most common patterns found in its purpose to the most complex and specific
issues. Thus, for instance, in the fragment devoted to specify invariants in UML
class diagrams one could start by showing how to build expressions that specify
invariants tied to a contextual instance and obtained through the navigation
of binary associations and, afterwards, proceed with more difficult cases like
explaining the particular usage of the alllnstances operator (i.e. when is it strictly
required and why) or the navigation through n-ary associations.

Having a purpose-oriented structure of the language would allow also iden-
tifying the tools that allow the automation of software development with that
purpose in mind. This is particularly important because without the existence
of such tools it will be very difficult for industry to adopt the OCL language. In
fact, the best way to convince industry about the usefulness of the use of OCL
would be to show the economical benefits they would get and also the improve-
ment on the quality of the final product obtained, and this can only be achieved
by means of practical tools.

Finally, and is it clearly happens in the Java community, we would also need
books so that people can do self-learning of each specific fragment of OCL.
Right now, there are only a very few books, rather introductory, explaining how
the elements of the OCL language can be used to complement UML models
[4, 10, 11]. Moreover, they are ten years old already and aimed at covering the
most common usages of OCL thus being too general as far as self-learning for
an specific purpose is concerned.

6.3 Conclusion

Simple is better, definitely. So, if we want the OCL language to be widely used
in industry we need to structure it in such a way that it is easily understandable,
easy to learn and so that the benefits it provides to software development are
out of discussion. One way to achieve this is by considering purpose-specific
fragments of the language as advocated in this paper. Tools and books for each
of the fragments are also required.

7 Patterns in OCL

Burkhart Wolff. Pattern-Matching is a widely used and well-known concept in
functional programming leading to concise and readable code. They are partic-
ularly valuable for defining model-transformers and compilers, a domain where
OCL is prominently used.

With the advent of Tuples (called records in the functional programming
literature) we could also introduce pattern-matching wherever variables were
bound, so in definitions of recursive functions, quantifiers, select-operators, ...

Moreover, we suggest the concept of shadow classes which can be associate
to each class-definition A (allowing objects in a state) a shadow - tuple A{a,

, z} (so: a value) that is amenable to pattern matching.
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7.1 Pattern Matching in Collection Types

OCL possesses hidden second-order combinators, implicitly accepting a lambda
buried under first-order notation. These are:

->iterate ->exists ->forall ->select
->collect ->any ->isUnique.

For all these constructs, we propose to allow:

S->select ( PATTERN | P (x1,...,xn))

or in the general case:

S->select ( PATTERN1 | P1 (x1,...,xn)
Q ...
@ PATTERNm | Pm (x1,...,xmn))

For example:

S->select(Seq{_, 3, a, b, ...} | a >= 15 and a = b)

which filters from a Collection of Sequences integers those who have a 3 as second
argument, and where the third argument is larger 15 and identical with the forth
argument. It can be seen as shortcut for:

S->select (X | X->nth(2) = 3 and X->nth(3) >= 15
and X->nth(3) = X->nth(4))

Similarly, a construction like:

S->select(Set{3, a, b, ...} | a >= 15 and a b)

could be seen as shortcut for:

S->select (X | X->includes (3) and
X->exists(a b | a >= 15 and a = b))

With respect to Tuples (called usually records in functional programming
languages), the following notations are possible:

S->select (Tuple{name="mueller’,sex=male,age=x, ...} |
x >= 21)

Note that to be on the safe side, we propose to allow the ... notation for unused
labels in a tuple, but allow the pattern-match notation only when the tuple type
can be completely inferred.

7.2 Shadow Tuples of Classes

The power of the pattern-matching mechanism is further increased if a seamless
transition between objects and corresponding tuples is supported. For example:
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class Employee is Person
+ salary : Integer [0..1]
+ dept_id : Integer [1]
end

induces the implicit declaration of the shadow-tuple:

Employee{salary : Integer; dept_id : Integer;
sex: Sex; name: String }

(where Person provides the remaining attributes sex and name) which motivates
the pattern matching notation:

Employee.allInstancesO0f ()
->select (Employee{salary=x,dept_id=5,... 1} |
x <> null and x>2000 )

Access to the implicit object id is forbidden; and we suggest to construct shadow-
tuples completely, i.e. not producing partial tuples or the like which tends to
complicate the type inference. The ”...” notation is thus only used in patterns,
not in declaration of tuples (introducing a concept like extensible records as in
Isabelle).

8 Conclusion

The lively discussion both during the panel discussion as well as for each paper
that was presented showed again that the OCL community is a very active
community. Moreover, it showed that OCL, even though it is a mature language
that is widely used, has still areas in which the language can be improved. We
all will look forward to upcoming version of the OCL standard.

Acknowledgments. We would like to thank all participants of this years OCL
workshop for their active contributions to the discussions at the workshop. This
lively discussions are a significant contribution to the success of the OCL work-
shop series.
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