A System Infrastructure for
Strongly Consistent Transactions on Globally-Replicated Data

Faisal Nawab  Vaibhav Arora  Victor Zakhary Divyakant Agrawal Amr El Abbadi

Department of Computer Science, University of California, Santa Barbara
Santa Barbara, CA 93106
{nawab,vaibhavarora,victorzakhary,agrawal,amr} @cs.ucsb.edu

Abstract

Global-scale data management (GSDM) empowers systems by providing higher levels of fault-tolerance,
read availability, and efficiency in utilizing cloud resources. This has led to the emergence of global-
scale data management and event processing. However, the Wide-Area Network (WAN) latency sep-
arating datacenters is orders of magnitude larger than typical network latencies, and this requires a
reevaluation of many of the traditional design trade-offs of data management systems. Therefore, data
management problems must be revisited to account for the new design space. In this paper, we revisit the
problem of supporting strongly-consistent transaction processing for GSDM. This includes providing an
understanding of the limits imposed by the WAN latency on transaction latency in addition to a design
of a system framework that aims to reduce response time and increase scalability. This infrastructure
includes a transaction processing component, a fault-tolerance component, a communication compo-
nent, and a placement component. Finally, we discuss the current challenges and future directions of
transaction processing in GSDM.

1 Introduction

The cloud computing paradigm promises high-performance 24/7 service to users dispersed around the world
for cloud applications. Achieving this is threatened by complete datacenter outages and the physical limitations
of both the datacenter infrastructure and wide-area communication. To overcome these challenges, systems
are increasingly being deployed on multiple datacenters spanning large geographic regions. The replication of
data across datacenters (geo-replication) allows requests to be served even in the event of complete datacenter-
scale outages. Likewise, distributing the processing and storage across datacenters brings the application closer
to users and sources of data, enabling higher levels of availability and performance. Moving to global-scale
data management (GSDM), despite its benefits, raises many novel challenges. One of the main sources of
these challenges is the large WAN communication latency, which is orders of magnitude larger than traditional
communication latency (See Figure M). This invalidates the traditional space of design trade-offs and makes the
communication latency the dominating bottleneck.
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Figure 1: Latency of the Wide-Area Network Round-Trip Time communication (WAN RTT) compared to mem-
ory access latency [’/] and network latency within the datacenter (local RTT)

When coordination is involved in the data management task, the effect of WAN communication latency
is amplified. This makes transaction processing—a coordination-intensive task—a victim of geo-replication’s
large communication latency. The significance of transaction processing to data management systems and the
seriousness of the WAN communication challenge have led many researchers from both academia and industry
to design new and improved transaction processing protocols specifically for geo-replication [2, 3, 61T, 173, T9,
6, I8-—20, D205, PR, 31, 35]. Many of these efforts explored weakening consistency guarantees to lower the
coordination demands [7-9, 13,15, 16, I8, 19, 22,24, 3T] or explored coordination-free approaches to avoid the
cost of wide-area coordination [, P8, 35]. However, a large-body of work tackled the problem of global-scale
transaction processing while maintaining the stringent consistency guarantees of traditional data management
systems [B, 6,00, 20,23,25]. The argument for maintaining stringent guarantees is that they manifest easy-to-use
abstractions for concurrent access to data. Serializability, for example, ensures an outcome equivalent to a serial
execution [4], ridding the program developers from worrying about concurrency anomalies.

In this paper, we present a system infrastructure design for global-scale transaction processing with serial-
izability guarantees. We adopt a holistic approach where in addition to the transaction processing engine, we
improve the design of the surrounding system components that affects the performance of transactions. We
begin the paper by discussing the fundamental limits of transaction processing in geo-replication and develop a
theoretical framework of the optimality of transaction latency. Then, we present transaction processing proto-
cols that leverage the newfound knowledge about transaction latency optimality to achieve better performance in
geo-replication. Then, we present two components outside of the transaction processing engine that are essential
for transactions processing efficiency in geo-replicated systems. The first is global-scale communication and the
second is data placement. We conclude the paper with an outlook on the future of geo-replicated transaction
processing in the context of the advancements in global-scale data management systems.

2 Transaction Processing

In this section, we present the development of transaction processing protocols that target reducing transaction
latency on geo-replicated data. This begins by understanding the source of the latency inefficiency in traditional
transaction processing systems (Section IZ1). Then, we develop a lower-bound formulation for transaction
latency on geo-replicated data (Section ZZJ) and use this newfound understanding to develop Helios [23], a
transaction processing protocol that achieves the lower-bound (Section IZ3).

2.1 The Latency Limit of the Request-Response Paradigm

There is a fundamental coordination latency limit due to the polling nature of traditional protocols that we call
the Request-Response paradigm. In the Request-Response paradigm, the coordination for a request starts after
the request is made, where the node making the request polls other nodes to inquire about their state and detect
conflicts. The request is served only after receiving a response from other replicas. This makes a Round-Trip



Time (RTT) of communication inevitable—an expensive cost in GSDM. This applies to both centralized and
quorum-based protocols.

The limit of the Request-Response paradigm leads to the question: Is it possible to avoid the Request-
Response paradigm limit on coordination or is it a fundamental limit on performance? Our work Message
Futures [21]] demonstrates the possibility of breaking the limit of the Request-Response paradigm by an obser-
vation that coordination of future requests can start before they arrive. As requests arrive, they are assigned to a
predetermined future coordination point. We call this approach Proactive Coordination. Coordination points are
judiciously calculated to ensure conflicts are detected. A coordination point still needs an RTT for coordination.
However, because a request is assigned to a coordination point that already started, the request’s observable
latency is less than RTT. Message Futures is the first protocol that shows the possibility of faster-than-RTT coor-
dination for all the replicas of a distributed system. Also, it introduces Proactive Coordination, a new approach
to coordination that overcomes the limitations of the Request-Response paradigm.

2.2 Theoretical Lower-Bound on Coordination Latency

Breaking the RTT latency barrier via the Proactive Coordination paradigm invalidates the previously held con-
vention that coordination cannot be performed faster than the RTT latency. Thus, it opens the question: What
is the lower-bound on coordination latency? This is a fundamental question in understanding the extent of the
effect of the wide-area latency limit on coordination latency. Such a lower-bound, if proven, will provide system
designers and researchers with a theoretical foundation on what is achievable by current and future systems.

Our objective now is to develop a lower-bound on commit latency of transactions on replicated data stores
while maintaining serializability [4]. Maintaining serializability requires coordination between replicas (dat-
acenters in our case). The communication latency necessary for this coordination imposes a limit on commit
latency, which is the time duration to decide whether a transaction commits or aborts. Achieving low commit
latency is the focus of this study. Consider two datacenters A and B with unique commit latencies L4 and Lp,
respectively. We show in this section that the summation of L 4 and Lp must be at least the Round-Trip Time
(RTT) between A and B. Note that this is a summation which means that the commit latency of a datacenter
can be lower than RTT.

The lower-bound result extends to larger groups of datacenters by applying the lower-bound to all pairs in
the group. This will allow us to judge whether the group of datacenters can commit with a certain set of commit
latency values. We are particularly interested in minimizing the average commit latency of all datacenters. We
call the minimum average latency a Minimum Average Optimal (MAQ) latency or optimal latency for short.

2.2.1 Theoretical model and assumptions

We consider a theoretical model that consists of datacenters with communication links connecting them. Each

transaction undergoes two phases. First, the transaction is issued and it becomes visible to the datacenter. At

that stage it is called a preparing transaction. Then, at a later time the datacenter decides whether it commits or

aborts and it becomes a finished transaction. The time spent as a preparing transaction is the commit latency.
The following are the assumptions on communication and computation for this model.

* Compute power: Infinite compute power is assumed in the model. The datacenter does not experience
any overhead in processing and storing transactions. We make this assumption to focus our attention
on communication overhead.

* Communication links: Sending a message through a link takes a specific latency to be delivered to the
other end. Links are symmetric and take the same amount of time in both directions. Note that different
links could have different latencies. However, triangle inequality must hold.
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Figure 2: Two transactions, ¢ and ¢, executing in a scenario with two datacenters

* Arbitrary read-write transactions: All datacenters have no restrictions on their choice or order of objects
to be read or written in a transaction. Additionally, each transaction must have at least a single write
operation. Thus, the model does not apply to optimizations for read-only transactions and disjoint data
manipulation techniques. Also, transactions must try to commit, hence aborting all transactions is not
allowed.

* Knowledge: Each datacenter A knows precisely every preparing and finished transaction that exists at
another datacenter B up to the current time minus half the RTT between them, i.e., now - w. This
reflects the fastest time a datacenter knows about any event in another datacenter. In a realistic setting this
is a lower bound of such knowledge.

* Commit latency: We assume that the commit latency at each datacenter is fixed. This assumption sim-
plifies the presentation. The discussions can be extended to the general case by taking each point in
time in isolation.

2.2.2 Lower-bound proof

Intuition. For any two concurrent conflicting transactions, at least one of them must be able to detect the other
before committing. Otherwise, both transactions will commit, which could result in incorrect executions. Here,
we show that there is a lower-bound on commit latency. If the commit latency is lower than the lower-bound,
then two conflicting transactions could commit without detecting each other, thus possibly violating correctness.

Formulation. Consider two datacenters A and B and a transaction ¢ executing at datacenter A and trans-
action t’ executing at datacenter B that could be conflicting with ¢. Figure @ shows these transactions. In the
figure, s(t) is the transaction’s start time, ¢(¢) is the commit request time, and c(t) is the commit time. Trans-
action t’s read and write-set are visible at the commit request time. Given the knowledge assumption, B knows
about ¢ starting from time ¢(t) + w. Transaction ¢ is preparing from time ¢(¢) until time ¢(¢) when it
is committed. Three zones are defined at datacenter B with respect to ¢: (1) The awareness zone where B can
possibly know about ¢, (2) The influence zone where B’s transactions can be known to ¢, and (3) the critical
zone where B is neither in the awareness nor influence zone.

Lemma 1: The sum of the commit latencies of two datacenters is greater than or equal to the RTT between
them, i.e., L4 + Lp > RTT(A, B), where Lx is the commit latency at datacenter X.

Now, we present a description of the intuition behind this lemma (based on the proof in the original paper [23]).
Consider the scenario in Figure @ . The time when ¢ requests to commit is ¢(¢) and the time it commits is ¢(¢),
ie., c(t) — q(t) = L(t). Based on transaction ¢, we can divide the timeline in B to three regions: (1) Awareness
zone: this zone contains the events at B that can be affected by ¢. This zone starts from the earliest point of time



Protocol \ Ly \ Ly \ Lo \ Average
Leader-based (A leader) \ 0 \ 30 \ 20 \ 16.67
Leader-based (C leader) \ 20 \ 40 \ 0 \ 20
Majority 20 [ 30 | 20 | 2333
Optimal (MAO) | 5 [25]15] 15

Table 1: Possible commit latencies, L4, Lp and Lo, for three datacenters with Round-Trip Times
RTT(A,B) =30, RTT(A,C) =20,and RTT(B,C) = 40.

when B can receive ¢, which is q(t) + w. (2) Influence zone: this zone contains the events that can affect

the outcome of ¢. An event can affect the outcome of ¢ if it is received before the commit point, ¢(¢). Events
at B that can arrive by the commit point are ones with a timestamp lower than ¢(t) — w. Events at B
with a higher timestamp cannot be received at A by time ¢(¢) because half an RTT is required to communicate.
(3) Critical zone: this zone represents the time duration that is neither in the awareness zone nor in the influence
zone. We postulate that it is impossible for a transaction to have requested to commit and commits in the critical
zone. To show this, consider a transaction ¢ at B that requests to commit and commits in the critical zone.
Transaction ¢’ will not affect the outcome of ¢, since ¢’ is not in the influence zone. Also, ¢ will not affect ¢/,
since t’ is not in the awareness zone. However, ¢’ can conflict with ¢. Since ¢’ is not aware of ¢ and ¢ is, likewise,
not aware of ¢/, both transactions successfully commit. This potentially results in an inconsistency, and is thus
not allowed. To summarize, a transaction that starts at the beginning of the critical zone at B cannot commit with
a commit latency smaller than the duration of the critical zone. This duration is equal to RTT(A, B) — L(t).
Thus, the sum of L 4 and L must be greater than or equal to RTT(A, B).

The lower-bound shows a direct trade-off between the commit latencies of two datacenters. Given this lower-
bound we are now able to judge whether a set of commit latencies are achievable or violates the lower-bound
for scenarios with more than two datacenters by applying the lower-bound to each pair of datacenters.

Example. Consider an example of three datacenters, A, B, and C. The RTTs between the datacenters
are: RTT(A,B) = 30, RTT(A,C) = 20, and RTT(B,C) = 40. Table [ shows four achievable commit
latencies and the average commit latency of the datacenters. The first two represent a leader-based replication
approach, where a single leader is responsible for committing transactions. In this approach, the leader commits
immediately, and the other datacenters commit latencies are the RTT to the leader. Note how each pair of
datacenters satisfies the lower-bound, e.g., when A is the leader L4 + Lp = 30 = RTT(A, B). The third row
represents a majority replication approach. For the case of three datacenters, the commit latency of a datacenter
is the RTT to the nearest datacenter. These replication protocols experience different average commit latencies:
16.67, 20, and 23.33. However, the minimum average commit latency (MAOQO) that is achievable for this scenario
is 15. The fourth row in the figure show the commit latencies, L 4, Lp, and L¢, that achieve an average commit
latency of 15 while not violating the lower-bound.

MAO solutions, such as the one in the previous example, can be derived using the following linear program-
ming formulation:

Definition 2: (Minimum Average Optimal)
The Minimum Average Optimal commit latencies for n datacenters is derived using a linear program with the
following objective and constraints:

Minimize > ,.r La

subjectto  Vaper La+ Lp > RIT(A,B)

and Vacr Ly>0

where R is the set of datacenters. This formulation follows directly from Lemma 0. Minimizing the latency



is our objective and the constraints are the correctness conditions that commit latencies are not negative and
Lemma [ is satisfied. We will use this methodology to derive the commit latency values used with the Helios
commit protocol. This linear program can be adapted to objectives other than average latency [23].

2.2.3 Summary

The lower-bound result shows that the coordination latency can be faster than what is previously achieved by
traditional protocols and even faster than what is achieved by Message Futures. The model of coordination, in
addition to being essential for deriving the lower-bound, advances our understanding of the cost of global-scale
coordination. It also brings a newfound understanding of the latency characteristics of traditional and Proactive
Coordination protocols.

2.3 Achieving the Lower-Bound Transaction Latency

The lower-bound model inspired a protocol based on Proactive Coordination, called Helios [Z3] that theoreti-
cally achieves the lower-bound, thus proving that the lower-bound is tight. Experimental evaluation shows that
Helios approaches the lower-bound in a real global-scale deployment. Next, we provide an intuition of how
Helios achieves the lower-bound and refer the interested reader to the full paper [23].

To provide an intuition of the Helios commit protocol, consider the scenario in Figure D. The figure shows
the timeline of two datacenters, A and B. At A, a transaction ¢ is issued at time ¢(¢) and committed at time ¢(t).
Transaction ¢ commits immediately after receiving a log of events from B that is shown as an arrow going from
B to A. This log carries transactions that were issued up to the time of sending the log, including transaction ¢’
(assume t' is issued at the time of log transmission). The time the log was sent from B is ¢(t'). ¢(t') is also the
commit request time of #'. Helios receives the log in order (via a FIFO channel), meaning that all transactions,
preparing or finished, at B prior to or at time ¢(t') are known to A at time ¢(t).

Transactions at B must not conflict with ¢. The approach to avoid conflicts is influenced by the way the
lower-bound latency was developed in Section 2. However, here we do not make any assumptions regarding
clock synchronization or communication. Rather, we rely on the exchanged event logs and received transaction
timestamps. A transaction, ¢’, at B is either issued during the influence zone, critical zone, or awareness zone.
If ¢ starts during the influence zone, then transaction ¢ will detect it because the log will contain a record of #'.
If ¢/ starts in the awareness zone, then it will detect ¢. Thus, for these two cases, conflicts will be detected. An
undetected conflict can arise only if ¢’ starts and commits within the critical zone. Thus, if ¢’ is issued in the
critical zone, Helios must ensure that it does not commit until it is in the awareness zone, which means that B
will detect the conflict between ¢ and ¢'.

3 Global-Scale Data Communication

In the previous section, we have tackled the problem of coordination latency and building transaction commit
protocols that ameliorate the impact of the large WAN communication latency. However, large applications
that receive large amounts of requests may face the problem of scaling inter-datacenter communication. Typi-
cal communication protocols used by data management systems are not built for WAN environments and large
communication demands. This leads to the increase in the demand and stress on the network I/O, which trans-
lates into significant communication latency overhead. To combat this challenge, we developed Chariots [27],
a scalable inter-datacenter communication platform. Chariots implement a communication layer to be used by
transaction processing engines such as Message Futures and Helios that we presented earlier. Chariots maintains
the causal order of the communicated events. This is because Message Futures and Helios rely on a causally con-
sistent communication solution called the Replicated Dictionary [33]. However, these communication solutions
cannot scale, and Chariots offer a scalable alternative for causally-consistent communication systems.
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Figure 3: The components of the multi-data center shared log. Arrows denote communication pathways in the
pipeline.

To enable higher levels of scalability, Chariots adapts the following design features:

* (1) Highly-available stateless control. This approach has been identified as the most suitable to scale out
in cloud environments [[1]. Communicated data is represented in the form of immutable records in a
distributed shared log. The architecture of Chariots consists of three types of machines: Log maintainers
are responsible for persisting the log’s records and serving read requests. Indexers are responsible of
access to log maintainers. Finally, control and meta-data management is the responsibility of a highly-
available cluster called the Controller.

* (2) Fast data ingestion. To achieve this, Chariots implements a distributed log that allows inserting records
arbitrarily to any log node without coordination with other log nodes. All coordination is done lazily in
the background, in summarized batches, to reduce the impact on ingesting new records.

* (3) Efficient causal-dependency enforcement. To achieve this, a pipeline design is adopted to process
inter-datacenter communication. Chariots pipeline consists of six stages depicted in Figure B. The first
stage contains nodes that are generating records. These are Application clients and machines receiving the
records sent from other datacenters. These records are sent to the next stage in the pipeline, Batchers, to
batch records to be sent collectively to the next stage. Filters receive the batches and ensure the uniqueness
of records. Records are then forwarded to Queues where they are ordered. After it is ordered, a record is
forwarded to a log node that constitutes the Log maintainers stage. The local records in the log are read
from the log nodes and sent to other datacenters via the Senders.

The arrows in Figure B represent the flow of records. Generally, records are passed from one stage to
the next. However, there is an exception. Application clients can request to read records from the Log
maintainers. Chariots support elastic expansion of each stage to accommodate increasing demand. Thus,
each stage can consist of more than one machine, e.g., five machines acting as Queues and four acting as
Batchers.

4 Global-Scale Data Placement

The success of the cloud model has led to the continuing increase of the number of public cloud providers
in addition to the increase in the amount of resources offered by these providers. This includes an increase
in the number of available physical datacenters, which raises the question: at which datacenters should data
be placed? This is called the Global-Scale Data placement problem, or placement problem for short. The
challenging aspect of the placement problem, is that developers want to optimize a diverse set of objectives that
are sometimes in conflict, such as monetary cost and performance. This problem has been tackled by providing
frameworks to reason about placement decisions [[I, 17,26, 30,32]. However, these solutions are not suitable for
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Figure 4: The average latency, of all the clients in 9 datacenters, to reach the closest quorum (2 out 3) for all the
possible (g) = 84 different placements sorted by latency.

our system infrastructure because they target systems with relaxed access abstractions [[I, 177, 26, 32] or systems
with different coordination patterns [BU].

To fill the gap in global-scale placement systems, we present DB-Risk [34], a data placement framework that
targets multi-leader strongly-consistent transactional systems. DB-Risk embeds the commit protocol constraints
into an optimization to derive both the data placement and the commit protocol configurations that minimize the
overall transaction latency. Figure B shows the effect of only changing the placement on the average obtained
latency for all the clients in a multi-leader protocol (i.e., Paxos). Clients are equally distributed at nine of
Amazon’s datacenters in California, Oregon, Virginia, Sao Paulo, Ireland, Sydney, Singapore, Tokyo, and Seoul.
As shown in Figure B, changing only the placement while fixing all the other parameters (the protocol, the
workload distribution, etc.) can lead to a significant change of 1.75x between the minimum and the maximum
reported average latency.

In developing DB-Risk, we discovered counter-intuitive lessons about data placement and transaction exe-
cution practices. The most notable lesson is what we call Request Handoff, which is choosing the datacenter
that will drive the execution of the transaction (the coordinator). The transaction latency is mainly affected by
the distance between the client and the coordinator, the distance between the coordinator and the other partici-
pants, and finally the number of communication rounds required between the coordinator and the participants to
serve the request. Different transaction management protocols choose the coordinator based on some intuitive
heuristics, such as choosing the closest replica to the client. However, the choice of the coordinator can, in fact,
drastically affect the request latency.

Request Handoff, in addition to other lessons, can be used to achieve better performance by being aware of
the latency diversity and asymmetry of the WAN links. They are also applicable to both Paxos-based commit-
ment protocols [B, 20, 5] and leader-based commitment protocols [A, TU]. DB-Risk incorporates these lessons,
the commitment protocol constraints, and the application requirements in an optimization to find the placement
that minimizes the average transaction latency.

S The Future of Global-Scale Transaction Processing

In this section, we discuss some of the open challenges and future directions in the area of global-scale transac-
tion processing.

Edge Resources. Emerging edge datacenter technologies, such as micro datacenters and cloudlets, have the
potential to bring data even closer to end users. This has motivated many mobility and Internet of Things (IoT)
systems to adopt the edge computing model, also called by other names such as fog computing [8]. However, for
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data management tasks that require updating data, many edge computing systems still rely on storage solutions
that do not utilize edge datacenters. We envision extending GSDM system beyond traditional datacenters to
cover edge datacenters. Such a direction will complement and enhance existing edge computing frameworks
by providing a unified storage abstraction at the edge that is globally synchronized and supports transaction
processing. Edge data management enjoys the benefits—and faces the challenges—of edge computing [29].
For example, in this new model, the data management system can leverage edge datacenters for tasks such as
maintaining copies for fault-tolerance and to offload smaller instances to serve requests at edge location close to
users. The incorporation of edge datacenters changes the model of geo-replication. The number of replicas is no
longer confined to a small number of datacenters, rather to a potentially large number of edge datacenters. Also,
the Round Trip Time (RTT) between a datacenter and nearby edge datacenters is an order of magnitude lower
than typical inter-datacenter RTT. Significant research and practical effort is needed to accommodate GSDM
systems to this new environment. However, utilizing edge datacenters will improve the performance of GSDM
systems and will enable emerging edge and mobile applications.

Flexible Fault-tolerance. Even with GSDM and efficient coordination, achieving a low end-to-end latency
is a challenge. This is due to the needed latency to coordinate access between different replicas to maintain
consistency, and the latency to replicate data across datacenters for fault-tolerance. Reducing and controlling the
latency of coordination by relaxing consistency has been the topic of many research efforts including ours. The
remaining frontier is investigating relaxing fault-tolerance to reduce and control the need for synchronous WAN
communication. We argue that analogous to how some applications may have relaxed consistency requirements,
some applications may have relaxed fault-tolerance requirements. We envision an exploration of the trade-
off between fault-tolerance and latency in the context of edge data management, while preserving strongly
consistent abstractions. Such exploration may lead to methods to control the fault-tolerance level in a way
that result in achieving higher performance for weaker fault-tolerance levels. Also, there may be methods to
relax the requirements of fault-tolerance and find a spectrum of durability guarantees with various performance
characteristics.

Emerging WAN Techniques. Leveraging advances in WAN research from the networking community is
an important step towards building efficient GSDM systems. Networking techniques, like Software-defined
Networking (SDN), are now being applied to the context of WANs (e.g., BWE [[[4] and B4 [TZ]). A promising
opportunity is to develop GSDM systems that integrate these advances in networking.

6 Concluding Remarks

We believe that to make GSDM a reality, it is essential to provide intuitive and easy-to-use abstractions for
application developers. Our goal is to enable web and cloud programmers to build their applications to benefit
from the opportunities of GSDM. To achieve this, we focused on providing abstractions at the database layer
that are intuitive by providing strong consistency, thus ridding the programmer from thinking about concurrency,
replication, and other complexities related to the GSDM environment.

Each one of our proposed protocols treats wide-area coordination as the main bottleneck. This approach
has turned to be rewarding in terms of novel designs that achieve a much higher performance than traditional
counterparts in GSDM environments. We believe that the principles we propose in these protocols will impact
the design of a wide-range of problems that share the aspect of wide-area coordination.

We handle strongly consistent transaction processing in GSDM. We have proposed a theoretical formulation
of the performance limit imposed by wide-area latency, in addition to a transaction management paradigm called
proactive coordination. The theoretical formulation enables finding a lower-bound transaction latency in global-
scale environments. This lower-bound result provides a guide to system designers and researchers to reason
about latency limits in multi-datacenter environments. Proactive coordination is a paradigm for transaction
commit protocols where coordination for future transactions start before they are issued. We have shown how
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this general concept can be used to implement two GSDM transaction commit protocols: (1) Message Futures,
that breaks the RTT barrier for transaction latency, and (2) Helios, that is able to achieve transaction latency close
to the theoretical lower bound. Message Futures and Helios combine traditional concurrency control approaches
such as the use of timestamp ordering, log propagation, loose-time synchronization, and certification with the
concepts that we propose in the paper such as proactive coordination and lower-bound latency.

In the course of developing global-scale systems, we encountered a common challenge in managing com-
munication between globally-distributed nodes. This motivated Chariots, our work to provide a communication
platform for GSDM systems. Chariots maintains a shared log abstraction between nodes in various datacenters.
Chariots targets both scalability within the datacenter and across datacenters. Within the datacenter, Chariots
includes a distributed shared log system, which removes coordination from the path of appending operations.
Chariots then provides a framework to replicate distributed, shared logs across datacenters. Chariots guarantees
causal order of events in the shared log, which is sufficient to implement strongly consistent protocols on top
of it, including Message Futures and Helios. Also, we addressed the data placement problem of geo-replicated
databases and find that a special treatment for strongly-consistent systems is needed. We envision that the
presented designs will aid and inspire future protocols in global-scale data management.
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