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Letter from the Guest Editor

Query Optimization is the topic of this special 1issue of Database
Engineering. Thirteen short papers from academic and industrial researchers
give an overview of current optimization research and state-of-the-art
optimizer implementations.

A number of trends are evident. Queries are becoming more varied and
complex, with high-level queries, nested queries, aggregate queries, ard
groups of queries being considered. Target environments are also becoming
diverse and complicated, ranging from centralized mainframes to distributed
systems and database machine backends. Often, multiple data models are
present, both as user views and in actual storage structures.

In response, optimizers are getting smarter. They are searching larger
strategy spaces which include many sophisticated strategies, modeling costs
more accurately, and detecting opportunities for common processing over
batches of queries. 1In distributed systems, their functionality may be
distributed. Overall, there is a better understanding of the internal
structure of the query compilation process.

The first three papers deal with optimizers in centralized environments.
The next five discuss distributed environments. Hevner and Yao's paper also
touches on database machine backends and join processing models and hardware.
Then come two papers on optimization of multiple queries. Kim's paper also
comments on main memory buffer space and nested queries. The next paper
covers uniformity assumptions in cost analysis and batching queries, amd is
followed by a paper on aggregate processing. The last paper presents a model
of a physical target machine for optimization, and compares the strategy
spaces of various optimizers.

One major omission is a useful tool for testing optimizers and evaluating
their performance -- a benchmark set of database schemas and a sample
relational query load against them, perhaps with associated population
statistics. I think many researchers would appreciate seeing this kind of
information published, perhaps in Database Engineering.

My thanks to the contributors to this issue for their enthusiasm, good
ideas, and hard work, and to Won Kim for his support and helpful suggestions.

ot S. Koo

David S. Reiner



QUERY OPTIMIZATION IN INGRES

Robert Kooi* and Derek Frankforth
Relational Technology, Inc.
2855 Telegraph Ave., Suite 515
Berkeley, California 94075
(415) 845-1700

1. Introduction

Relational Technology Inc., which markets the INGRES relational database
management system, is devoting a significant effort to query optimization.
Our research is focused on two areas, the I/0 subsystem and strategies for
processing multi-variable queries. The goal of the I/O subsystem is to
minimize the time required to perform simple repetitive queries such as those
that might be found in a transaction processing environment. For
multi-variable queries we are developing techniques that will evaluate a
large set of query execution plans to find the least expensive strategy.

2. I/0 Subsystem

The I/0 system of INGRES is being changed to reflect the needs of transaction
processing type applications without significantly impacting the performance
of large queries. The major component of the new I/O system is a special
process called the kernel process (KP). The duties of the KP are as follows:

1) Maintain all locks, and handle all multi-process synchronization.
2) Manage a global page cache that is implemented in shared memory.
3) Manage a cache of open relations and their descriptions.

4) Detect and resolve deadlocks. (planned)

5) Coordinate transactions with the system log. (planned)

The KP allows INGRES to set the locking strategy based on the expected number
of I/O's that will be needed to complete the query on a per relation basis.
This allows page level locking for single record transactions, and for
multi-relation queries where the optimizer expects a low percentage of the
relation to be scanned. Relation level locking can be requested in the cases
where the whole relation will be scanned. In this case the associated locking
and ocontext switching to the KP is eliminated by opening up the relation in
the INGRES process and only allowing read access to all other users. When
page level locking has been requested and the KP notices logical sequential
read requests, it tries to start the next read before it returns the current
page, so that I/O delay time can be used to scan the current page, thus
minimizing realtime response.

When an open relation request is sent to the KP, it first checks to see if
page level locking has been requested. If so, the KP will handle all the I/O
requests for this relation. If the relation was used recently it is probably
open, and same pages that belong to it might also be in the page cache. The

* Same of the research reported here was originally conducted for a Ph.D.
dissertation by Robert Kooi, which was supported in part by NIH USPHS
Grants 5M01-RR00210 and 1P50 HD 11089 and NIAAA Grant AA(03282.



page cache is a section of memory that is mapped into the address space of
every INGRES process. The KP reads pages into the cache and then passes a
pointer to the page to the requesting process. This gets rid of the overhead
of copying pages around, which is one of the most expensive operations in CPU
time at this low level in the system. The cache logic gives preference to
system catalog pages, then to ISAM index pages, then lastly to regular data
pages. This part can be easily changed when new storage structures are added,
such as B-tree, and when system catalog accesses decrease when other planned
changes in INGRES are completed.

The expected gains on single record queries can be broken down as follows.
There is a cache of macro queries that are stored in parsed form and can be
executed, which result in CPU time savings of 45%. The relation descriptor
cache, and KP relation & page cache will cut the CPU overhead by 10-15% and
the realtime delay by 50%. The ability of the cache to delay writing dirty
pages, will cut the realtime delay by another 10%. So the expected CPU time
savings are in the 65-70% range, while the realtime response time will be
decreased by 60%. The cost of the KP is expected to be 5-10% in CPU time.
This translates into a 2-3 times performance improvement for single record
transactions.

More changes are planned to enhance the overall performance of INGRES. The
additional expected performance increases for single record queries will
amount to about 15% CPU time improvement. These changes include: a dynamic
query compiler, enhanced user process communcations, and code reorganization
to allow precompiled queries to be saved and quickly activated.

3. Multi-vVariable Query Optimization

We have developed a system that can estimate, for an arbitrary query, the
cost of a very large collection of query execution plans (QEP). The QEP
search space includes the following:

1) N-variable, equi-join, queries.

2) Reformatting (to hash, isam or sort) of relations.
3) Generalized index usage.

4) ISAM, hash, sort-merge and tid joins.

We model QEPs as binary trees where each node can be one of four operator
types: Join, Restrict-Project, Reformat and Disk-Resident-Scan. The leaves of
the binary tree represent relations or indexes (which are stored as
relations) and correspond to the Disk-Resident-Scan operator. Interior nodes
with two sons represent a Join operator, nodes with one son represent a
Restrict-Project or Reformat operator. This model can represent a very large
class of access strategies including most of those in [ROSE82], [WONG76],
[SELI79], [BLAS76], [SMIT75] and some of those in [YAO79].

The binary trees are divided into "join" and "operator" trees. The
enumeration of QEPs consists of three steps: enumeration of join trees,
generation of operator trees from a given join tree and the evaluation of the
cost of the operator trees. A join tree is a binary tree where each leaf node
is a relation or index and each interior node is a join (with two sons). For
example, the join trees for a three variable query (relations Rl, R2 and R3)
with one potentially useful index (Il on Rl) include (a partial list):
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(1) X (2) X (3) X (4) X (5) X (6) X

/ \ /' \ / \ /' \ / \ / \
/ 0\ / 0\ /\ / 0\ / 0\ / N\
X R3 X Rl X R2 X R3 X R2 / \
/ \ / \ /\ / \ / \ /-
/ 0\ / N\ / 0\ / 0\ / 0\ X X
Rl R2 R2 R3 R R3 X R2 X Rl / \ /' \
/ \ / \ / 0\ / N\
/ \ / \ I Rl R2 R3

I1 Rl I1 R3

Notice that index usage is modeled as a join, that an index may be joined
with a relation that it does not index (5) or to another index, and that the
results of intermediate join trees (R2 and R3 in (2)) are saved for use in
later join trees (6). N-way joins for N > 2 are not evaluated.

From a given join tree we generate operator trees by splicing in Reformat and
Restrict-Project operators in all possible cambinations. For example, join
tree (1) would generate the following operator trees (a partial list):

X X X
/ \ / \ / \
/ \ / \ / N\
X R3 X R3 X r-sort
/ \ / \ / \ \
/ /\ / \ \
Rl r-hash Rl r-isam r-sort r~-sort R3
\ \ / \
\ \ / \
R2 R2 Rl R2
X X X
/ \ / \ / \
/ \ / \
R3 X R3 X X R3
/ \ / \ / \
/ \ /\ /\
R2 r-hash rp r-hash r-sort r-sort
\ \ / \
\ / \ / \
Rl R2 Rl R2 Rl

Heuristics on the placement of indexes, relations and reformat operators
reduce the number of possible join and operator trees, however the number of
possibilities is still large. This leads to the following heuristic: If the
amount of time spent on optimization so far is some fraction k of the
estimated time to execute the query according to the best QEP so far, then
stop optimization and use that QEP.

In an operator tree (but not in join trees) the 1left son of a join node
represents the "outer" 1loop of the join and the right son represents the
"inner" loop. The operation of the join operator depends on the structure of
its inner and outer inputs. For instance, if the inner is hashed or ISAM then
for each tuple from the outer relation, a hash or directory lookup is
performed on the inner. If both inputs are sorted then a sort-merge join 1is
performed. If the outer is an index on the inner, then a TID lookup is done.
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Restrict~Project operators are applied to leaf nodes in order to reduce the
amount of the relation that needs to be scanned. This happens when there are
range or exact value restrictions on keys of the relation.

The cost of an operator tree is based on the estimated number of disk
accesses required except for sorts where CPU time is factored in. This is
calculated using statistics about the distributions of attributes which are
held in systems catalogs. For each attribute in the database we have a choice
of keeping nothing, minimum and maximum values, or a variable-range
histogram. The accuracy of the cost determination depends on the accuracy of
the statistics for the attributes. An initial implementation of this model
[KO0I80] was campared to an early University of California, Berkeley version
of INGRES (6.2/6) and significant improvements were found for two and more
variable queries. It was found that minimum and maximum values provide a
significant improvement over having no information and that queries executed
according to QEPs found using histograms provided approximately a thirty
percent improvement in execution time over queries executed according to QEPs
found using minimum and maximum values alone. Comparisons with the current
version of INGRES developed at RTI are currently under way.

4. Future Extensions

Future work on multi-variable query optimization will include extensions to
handle theta-joins, multiple-attribute keys, nested queries, INGRES's
aggregate functions and automatic updating of statistical information. We
also plan to allow QEPs to be saved on disk to support query campilation. A
byproduct of the query optimization is an estimate of the amount of time
required to process the query and the size of the resulting relation. We will
study how this can be used as the basis of a database design aid.
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QUERY PROCESSING IN UNIVERSAL RELATION SYSTEMSt
Jeffrey D. Ullman
Stanford University
415-497-1512

I. Introduction

Universal relation systems are designed to present the user with a view of data that is a single (universal)
relation. Just as [CODD70| proposed the relational model to free the user from navigation in the physical
database, universal relation systems attempt to free the user from navigation within the conceptual database.
However, because of the potential for ambiguity when the system is asked to infer the path or paths connecting
attributes mentioned in a query, the successful design of universal relation systems requires some subtle
mathematics and conceptual tools. Some of these ideas are described in [SAGI81], [SAGI82], [KUCK82], and
[ULLMS82a, b].

In this note we are concerned not so much with the technical details of supportmg universal relations
as with the role that a strange form of query processing, called “optimization under weak equivalence” plays
in the implementation of such systems. We focus on System/U, an example of this type of facility under
development at Stanford. People who have contributed to the implementation and/or underlying concepts
for this project include H. Korth, G. Kuper, D. Maier, and F. Sadri.

II. Weak Equivalence

Two expressions are weakly equivalent if whenever the relations that appear as arguments of the expressions -
are the projections of a single relation that is defined over all the attributes, then the expressions produce
the same answer. In contrast, the ordinary notion of equivalence, which we refer to as strong equivalence,
requires that the two expressions yield the same result for any relations as arguments, regardless of whether
the relations are the projections of a single universal relation.

Example 1: Consider a pair of relations R(A, B) and S(B, C), and the two expressions R and m4p(R < S)}
Let R consist of the two tuples {01,23}, and let S = {14}. Then RS = {014}, and mag(R > S) =
{01} 5 R. Thus, mag(R><S) and R are not strongly equivalent.

However, if R and S are the projections of one (universal) relation U(A4, B, C), then we can prove that
R = map(R >4 S). Intuitively, if there is a universal relation, the tuple 23 cannot appear in R unless there
is a tuple 3c in S, for some value of ¢, whereupon 23c¢ is in R > S, and 23 would appear in map(R < S).
Thus, R and m4p(R >< S) are weakly equivalent, even though they are not strongly equivalent. (]

III. Tableaux

There is a convenient, form for representing certain common expressions (including those built from relational
algebra operations like selection, projection, and join); in this form we can provide an optimization algorithm
that minimizes the number of “expensive” operations, principally joins. The idea originated with [CHAN77],
but assumed its most common notational form in [AHO79a, b] and [KLUGS1]. In this form, we represent
expressions as in Fig. 1. On top is an (optional) header indicating the attributes that correspond to the
columns. Next comes the summary, an indication of which symbols form the result of the expression that
this tableau denotes. Finally come all the rows. Blanks in the rows are used to denote symbols that appear
nowhere else.tt In some circumstances, we also append certain constraints among symbols, e.g., a < b.
The meaning of a tableau is defined in terms of its effect on a (universal) relation over all the attributes.
Intuitively, the result of applying a tableau to some relation u is obtained by mapping the rows into the
tuples of u in all possible ways that do not map the same symbol to two different symbols. For each such
mapping, we list the value of the summary; the tuples so listed form the result of applying the tableau.

Example 2: Consider the effect of the tableau of Fig. 1 on the relation {012, 314, 567 }. We could map both

t Work supported by AFOSR grant 80-0212.

1 We use the relational algebra notation of [ULLM82b], where mx stands for projection onto the set of attributes X, o¢ stands
for selection by condition C, and P><I stands for the natural join.

tt The reader may appreciate the similarity of the tableau form of expression to the form of queries in Query-by-Example (see
[ULLMS82b), e.g.). The summary of the tableau corresponds to placing P. in front of certain symbols in QBE.
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B C

summary  a b
(1) a b
(2) b ¢

Fig. 1. A tableau.

rows into tuple 567, which causes the summary ab to become 56. We could map the first row to 012 and the
second to 314, which gives us summary 01. Note that this mapping assigns a unique value to b. namely 1,
as all legal mappings must do. We cannot map the first row to 012 and the second to 567, since that would
attempt to map b to both 1 and 6. If we consider all possible legal mappings and accumulate the summaries,
we get the result of the tableau, {01,31,56}. []

There is a simple way to minimize the number of rows of a tableau while preserving weak equivalence.
This minimization, while we shall not show it, has the eflect of minimizing the number of joins. We reduce
the tableau by looking for mappings, from all the rows into a proper subset of the rows, where the mapping
has the following properties. ’

1. No symbol is mapped to two or more different symbols.

2. Each symbol that appears in the summary is mapped to itself.

3. Any constraints that hold on the original tableau’s symbols are implied by the constraints on the symbols
to which they are mapped.

If we find such a mapping, we may eliminate all rows that are not mapped onto by any row.

The above process is “finite Church-Rosser,” in the sense that we can apply any such mapping we see,
and still be guaranteed that after applying all the mappings we can, we shall wind up with the unique (up
to renaming of symbols) minimal tableau. :

Example 3: In Fig. 1, we can map both rows to row (1). This has the effect of mapping a and b to
themselves, as we must by rule (2). Symbol ¢ is mapped to the symbol represented by the blank in the first
row, and the symbol represented by the blank in the second row is mapped to a.

Since no row maps to row (2), we may eliminate that row, leaving the tableau of Fig. 2. While we
shall not show it, let us comment that where weak equivalence is concerned, Fig. 1 represents the expression
maB(R >4 §) discussed in Example 1, while Fig. 2 represents expression R. The existence of the mapping
we found proves the weak equivalence of these two expressions. [J

A B C
a b
(1) a b

Fig. 2. Reduced tableau.

IV. A Universal Relation System

There is an important application of the weak equivalence idea and the reduction of tableaux that we
have just described. In “System/U,” a universal relation system being implemented at Stanford [ULLM82a],
queries are interpreted as applying to one or more copies of a universal relation, and that universal relation is
constructed by taking the natural join of all relations in the database.t However, before answering the query,
we optimize this join by applying the tableau minimization algorithm discussed above. This optimization
has two beneficial eflects.

1. By eliminating joins, the response to the query can be obtained more quickly.

2. Far more importantly, the elimination of join terms that are extraneous to the query provides the user
t Technically, it is only for the simplest databases that all the relations are joined to form the universal relation. In complicated
databases, the possibility of multiple paths among attributes is accounted for in System/U by replacing the universal relation
by the union of the maximal objects, which are, intuitively, the maximal subsets of the relations in which navigation “makes

sense.” The maximal object idea is discussed in [MAIE81] and [ULLMS82a, b], while the notion of paths that “make sense,”
which we take to mean “have a lossless join,” is discussed in [AHO79c¢].



with a more intuitive response. In particular. the system does not eliminate a response just beeause
certain tuples fail to appear in the join beeause their values do not match values in the relations that
are extraneous to the query.

Example 4: Let us consider a database with attributes £, S, D, and M, standing for employee, salary,
department. and manager. respectively, organized into three relations, £S, ED, and DM. To find the
manager of Jones. we could write in System/U

retrieve (M) where F = "Jones’

The System/U language is similar to QUEL (see [ULLM82b]), but since all tuple variables range over the
universal relation, there is no need to declare them with range statements. Moreover, since many queries,
such as the above, require only one tuple variable, we use an attribute A by itself to stand for blank.A,
where “blank™ stands for the default. or blank tuple variable.

In Fig. 3 we see the tableau representing the query in which the three relations £S, ED, and DM are
joined, and the selection implied by the where-clause and the projection implied by the retrieve-clause are
then applied. Notice how we take the natural join of relations by choosing one symbol for each attribute
(e for attribute E, and so on). For each relation we create a row that has these symbols in the eolumns for
those attributes the relation has and blanks elsewhere. Also, the selection clause is reflected by a condition
appended to the tableau; some conditions of the form A = B can be reflected by equating the symbols
corresponding to attributes A and B. Finally note how the projection of the retrieve-clause is represented
by the fact that only the symbols for the retrieved attributes appear in the summary.

E S D M

m

(1) s

(2) d

(3) d m
e = ‘Jones’

Fig. 3. Tableau for sample query.

We can reduce the tableau of Fig. 3 by mapping rows (1) and (2) to (2), and (3) to itself. In so doing,
we map symbol s to the symbol represented by the blank in row (2), column S, which is legal. Note that
we could not, for example, map row (3) to row (2) because m, since it appears in the summary, cannot be
mapped to any other symbol. Thus, the minimum tableau weakly equivalent to Fig. 3 is the one shown in
Fig. 4.

E S D M

m
e d
d m
e = ‘Jones’

Fig. 4. Mininum-row tableau.

The tableau of Fig. 4 comes from the algabraic expression 7 ps(0g—<jones’(ED >t DM)).t In comparison,
the original tableau of Fig. 3 came from a similar expression that had the relation ES included in the join.
The two expressions are weakly equivalent, as they must be, but they happen not to be strongly equivalent.
We claim that the expression of Fig. 4 should be preferred to that of Fig. 3 for the following reason. The
differences occur when Jones has a department listed for him in the ED relation, and that department has
a manager listed in the DM relation, but we have no salary listed for Jones in the E'S relation. Fig. 3 will
not produce a manager for Jones, because the join ES &<t ED > DM has no tuples for employee Jones.
On the other hand, Fig. 4 will produce the manager or managers of the department or departments Jones
works in.

t See [ULLM82b] for details about how we translate between tableau notation and ordinary relational algebra.
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We claim that the latter interpretation is with high probability the one that the user intended. It is
very unlikely that the interpretation of Fig. 3, which is “print the manager(s) of the department(s) of Jones
unless we don’t have a salary for Jones, in which case print nothing.” is what the user intended. (J

The reader should note that minimization under weak equivalence is essential for the transformation
from Fig. 3 to Fig. 4 to take place. Without using weak equivalence, we could not produce plausible
interpretations of many queries over universal relations, for the reason illustrated in Example 4: missing
tuples in relations that are intuitively outside the path connecting the attributes mentioned in the query
(as ES does not serve to connect E with M) would cause information to disappear from the answer. It is
also worth noting that for this reason we cannot simulate a universal relation system by an ordinary system
with a view facility. Even if we defined the universal relation to be a view consisting of the join of all the
relations, we could not eliminate these extraneous terms from the join in an ordinary optimization phase,
because such optimization would be performed according to the usual (strong equivalence) reduction rules.

Example 5: Let us briefly give another example of how System/U handles queries; this time we have a
situation where more than one tuple variable is needed, the old query about the employees that earn more
than their managers. In System/U this query is

retrieve (E) where M =t.E and S > t.§

Here, we use attributes by themselves to correspond to attributes of the blank tuple variable, and we use
another tuple variable t, as well. Think of the blank tuple variable as representing the tuple in the universal
relation over ESDM that corresponds to the employee, while ¢ represents the tuple of the manager, as an
employee. The clause M = t.E ensures that the employee attribute for tuple t will be the same as the
manager attribute in the tuple corresponding to the blank tuple variable.

Figure 5 shows the tableau that represents this query. Subscript 1 is used for attributes corresponding to
the blank tuple variable, and subscript 2 is used for attributes of t. The constraint M =t.M is represented
by using the same symbol in the M; and E3 columns, while constraint § > t.S becomes s; > 3, and is
appended to the tableau. We reduce the tableau by sending rows (5) and (6) to (4), and all other rows to
themselves. Note that we must send (5) and (6) to the same row, or else d2 would be mapped to\two different
symbols. Also, we cannot reduce this tableau further. For example, if we tried to map (4) to (1), (2), or
(3), the constraint s; > s, would not be implied by conditions on the symbols we mapped s; and s to. In
particular, 3, would be mapped to the symbol represented by one of the blanks in the Sp column, and there
are no constraints involving any such symbols.

E, & Dy My Ey, S M, D,

€1
(1) e 31
(2) e d;
(3) dy my
(4) my S
(5) my dy
(6) d2 my
81 > 32

Fig. 5. Tableau asking for employees who make more than their managers.

The expression represented by the reduced tableau having only rows (1){(4) of Fig. 5 is computed by
the following steps. '
1.  Take the natural join of ES, ED, and DM.
2. Take the equijoin of the result of (1) with ES, with M of the first equal to E of the latter.
3.  Select for the condition that the first S component is greater than the second S component.
4. "Project the result onto the first component (E).

Of course, this query must still“be subjected to ordinary optimization (using the strong equivalence
criterion) if it is to be implemented in an efficient way. However, the first stage, where we did tableau
reduction under weak equivalence, was essential for us to get the right expression in the first place. (]
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V. Summary of the System/U Query Interpretation Algorithm

To summarize the roles of optimization under weak and strong equivalence in a universal relation system,
let us list the steps of the Svstemy/U algorithm.  The deseription we give is a simplification ol the actual

algorithm. since here we talk about relations. rather than “objects.” which are the fundamental relationships
among attributes, regardless of whether or not they correspond to relations. Also, “maximal objects” are,
for our purposes. collections of relations in which we can find unique shortest paths connecting attributes,
as. for example. the path from K to D to M is the shortest way to conneet E and M in Example 4. Tor
more details. see [ULLMR2a. b).

1. Yor each tuple variable mentioned in the query, including the blank, assign a copy of the universal
relation. Begin by writing down the expression that is the Cartesian product of all these universal
relations (as we did in Example 5).

2. Modifv the expression of (1) by applving to it the selection and projection implied by the retrieve- and
where-clauses of the query.

3. Substitute for the copy of the universal relation associated with tuple variable ¢ the union of all the
maximal objects whose attributes include all those attributes A for which t.A (or just A, if t is “blank”)
appears in the query.

1. Substitute for each maximal object the natural join of all the relations in that maximal object.

5. Distribute the Cartesian products. selections and projections over the unions, so we have a union of
terms each of which has a tableau.

6. Using the weak equivalence criterion, reduce each tableau in this union. The method of [KUPES2] is
used.

7. Also under weak equivalence, use the technique of [SAGI80] to eliminate redundant terms of the union.

8.  Apply optimization under strong equivalence to the resulting expression. i
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l. The DBPL Project

The DBPL project at the University of Hamburg is centered around the
integration of database models and programming languages. The relational
approach to databases and Pascal-like programming languages, both known
for their well-designed data structuring capabilities, have proven as a
framework particularly suitable for that integration effort.

The DBPL project evolved fram ideas resulting fran the design and
implementation of the database programming language Pascal/R [SCHM77],
[SCHMBO] fram 1975 to 1979. The DBPL project has the objective to
investigate in more depth the issues of query optimization and
concurrency control in database programming languages. The main goal is
the design, implementation, and evaluation of language constructs that
support shared access to databases and query optimization for
calculus-oriented languages.

The DBPL approach 1is different fram other approaches to query
language design. Whereas most of the cammon interactive query languages
are directed towards the novice user [VASS82], database programming
languages address the professional programmer who needs a powerful tool
for sophisticated database access and manipulation. We believe that the
hamogeneous extension of a programming language by appropriate data types
and operations [SCHM77],[SCHM78] is a better way to support such a
programmer than providing subroutine calls or heterogeneous imbedding of
a query language in a programming language.

The usefulness of our approach is exemplified by several successful
applications of Pascal/R. The system is used for teaching database
management courses, for database applications (50 Mbytes) in fishery
research [BIOMB1], for the development of database programming
methodologies [BROD81], and as a target language for very high level
languages like TAXIS at the University of Toronto, and the natural
language system HAM-ANS at the University of Hamburg. '

The DBPL project (principal investigator: Joachim W. Schmidt)
is supported by the Deutsche Forschungsgemeinschaft (DFG)
urder grant no. Schm. 450/2-1.
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2. Query Optimization in Pascal/R

A Pascal/R programmer can query a database using a relation-valued
expression with a selection predicate. The predicate is a well-formed
formula of an applied many-sorted first-order calculus with existential
and universal quantifiers where the "sorts" are the range relations to
which a tuple variable is bound.

In ocne-sorted predicate calculus, quantifiers can be moved over
temms in which the quantifier does not occur. This is used in all
algorithms for standardization and optimization of predicates. In the
many-sorted calculus, there are two cases where the result of such a
transformation depends on whether the range relation of the quantified
variable is empty [JARKS81],[JARK82]. Therefore, the runtime system must
be able to change the standardized and optimized query before execution.

Many approaches to query optimization first translate a calculus
expression into a sequence of algebra operations and then optimize this
sequence. In contrast, our strategies are described by transformations
of relational calculus expressions and only the transformed expression is
translated into operations [JARK78],[JARKS82],[KOCH79]. This high-level
approach allows for an extension and different interpretation of query
optimization algorithms. First, as we do not predetermine the evaluation
of subexpressions, parallel or concurrent evaluation is supported
[scM79]. Second, we introduce the concept of extended range expressions
which allows a tuple variable to be bound to subrelations rather than
whole database relations [JARK82]. The application of this concept leads
to predicates which can be evaluated more efficiently by avoiding
repetitive evaluation of identical subexpressions in the case of
existentially quantified wvariables and by reducing the number of
conjunctions in the case of universially quantified variables. Finally,
the relational calculus interpretation of tree queries 1leads to an
extension of well-known semijoin algorithms to the cases of universal
quantifiers and inequality camparison operators [JARKS82].

To support this high-level approach, we introduced the language
canstruct "reference" [JARK8l] which can be used to define intermediate
results like indexes or links. The advantage of having such a high-level
tool for database system programming is that it allows the camplete query
evaluation process to be described as a nested relational calculus
expression rather than as a sequence of operations.

Two extensions to the Pascal/R query optimization approach are still
being investigated. First, we want to simplify predicates prior to their
evaluation by analysing tautologies, contradictions, and idempotency.
Second, the concept of extended range expressions will be generalized and
used for access path selection.
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3. CQuery Optimization Activities in the DBPL Project

The query optimization strategies in Pascal/R consider only one
query at a time. Presently, we are working on extending the scope of
query optimization fran one statement to a set of statements. In
database programming languages where concurrent access to databases is
supported by tools for the formulation of campound database operations
known as transactions, there are two lines of attack. First, we are
working on the simultaneous optimization of all queries contained in a
transaction, and second, we are investigating the idea of a shared guery
optimizer that processes queries of all active transactions in parallel.

Another activity is the exploration of advanced access methods with
respect to their impact on query processing algorithms. We are
especially interested in multi-dimensional access methods, i.e., access
methods that efficiently support access over attribute cambinations,
range queries and (possibly) partially specified queries. We expect a
substantial simplification of query processing algorithms fram the use of
those methods since the 1low-level tuple interface to the underlying
access method can then be replaced by a high-level set interface.

Finally, the design of a language construct called "selector"
[MAII82] for general access to selected parts of relations plays a
central role in the DBPL project. The definition of a selector
introduces a selector name and parameters, binds the selector to a
relation, and provides a selection predicate. Selectors can serve as a
relation-like description of access path to that part of a relation which
fulfills the selection predicate. Selectors provide high-level tools for
access path definition, maintenance, and use that fit particularly well
in a relational guery optimization system.

4. Current status of the DBPL Project

Query optimization and concurrency control algorithms are being
implemented on a VAX-11 under VMS. The implementation tool is the system
programming language Modula-2 which our group moved fram a PDP-11 to the
VAX-11 and adapted to the VMS enviromment [KOCH82].

Project participants in addition to the authors of this paper are
Winfried Lamersdorf, Peter Putfarken, and Manuel Reimer.
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Distributed Query Compilation and Processing in R*
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Introduction

e

* is a prototype distributed relational database system being implemented for
research purposes at the IBM San Jose Research Laboratory [WILL82). Each site
in an R* network runs an extended version of System R [ASTR76]. Objectives of
the R* project include providing users with a single system image of the DDBMS

for ease of use, and allowing autonomous control of participating sites for
availability.

R* users access the distributed database using the SQL database language
[CHAM76]. Just as System R made SQL programs independent of details of the
physical storage of data, the single system image presented by R*¥ will make SQL
programs independent of the location of data. The multi-site atomic
transactions provided by R* [LIND79] are another important aspect of the single
system image presented to users.

Site autonomy means that local administrators and users can retain control of
data stored at their own R* site [LIND80]. R* allows controlled and voluntary
sharing of data between sites, but individual sites must be able to perform
operations on local data even if they are not in communication with the rest of
the distributed database. Thus, there can be no central services, such as
deadlock detection or naming, in R¥*.

Query processing in R* is complicated by the single system image and site
autonomy objectives, and by the non-procedural nature of SQL. A further
complication is introduced because R* compiles SQL statements into low level
programs. Compilation of database queries results in considerable performance
improvements compared with interpretive execution [CHAM81].

Compilation in R¥*

Like System R, R* compiles SQL statements into low level programs called access
modules which make calls to the storage system to execute queries. Query

*Authors' current addresses: Dean Daniels: Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, PA 15213; Pui Ng:
Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA 02139
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compilation verifies the rights of a user to access the requested data, selects
a strategy for processing the query, and generates the access module to
implement the strategy. - In R* an access module is a distributed program, and
parts of an access module are stored, together with a record of the objects
(indexes and tables) on which they depend, in the databases at the sites which
will execute those parts of the query.

Compilation is a complicated distributed operation in R* and is described in
more detail in [DANI82B]. First, the site originating the query, called the
master, parses the SQL statement, performs catalog lookup to obtain schema
information needed for compilation, selects a global plan for query execution,
and generates a low level access module for the execution of its portion of the
query. The SQL statement and global plan are distributed to all other sites
participating in the query's execution, which are called apprentices.
Apprentice sites also perform parsing, catalog lookup, access planning and
access generation. However, access planning at apprentice sites is guided by
the global plan supplied by the master. The global plan contains enough
information to coordinate the operations of all participants.

The distributed compilation strategy used by R* supports local autonomy by
allowing each participant to check the SQL statement and independently generate
an access module! for its portions of the query's execution.. Any site in the
distributed database can be a global planner, so there is no reliance on
centralized services. Because global access planning is performed by a single
query participant, the query processing strategy selected is as efficient as the
strategy a centralized compiler would produce.

Access Planning

The R* global access planner selects a query processing strategy which minimizes
the total cost of executing a query. . Query processing cost is estimated as a
weighted sum of the CPU, disk I/O, and communications operations needed to
execute the query. Consideration of 1local processing costs in addition to
communications cost is one useful and somewhat novel aspect of the R* access
planner.

To estimate the cost of a particular access strategy, the access planner applies
statistics about the tables referenced by the query to a query processing cost
model which is based on properties of the R* storage system and join methods
[SELI80]. Using the model, the access planner selects an order of table
accesses, a method for joining each table to the intermediate query result, and
an access path (index) for each table.

When a table referenced by a query is remote, the access planner will consider
two different methods for accessing it. The first method considered is to move
the whole remote table to the desired site after performing local restrictions
and projections. Alternatively, if the remote table participates in a join,
then access requests containing join keys may be sent from the join site to the
table's storage site and only records matching the join keys need be sent in
reply. This latter method is a dynamic semijoin. The multi-site join methods
used by R* are extensions of the merge join and nested loop join used in System R
[SELI79]. For a join of two tables from different sites the access planner

16



considers performing the join at either table's storage site, or at some other
site.

Recompilation

Compilation creates dependencies of the access module on internal database
objects. The validity of an access module depends on the access paths it uses,
the data objects it references, and the access privileges on the data objects.
As a result, database actions may invalidate existing access modules and require
recompilation [NG82]. 1In general, there are three types of database actions
that may lead to invalidation of an access module, corresponding to the three
types of dependencies.

In a distributed database environment, compilation may require the cooperation
of many sites. Hence recompilation may also be a multi-site operation.
However, there are situations in which recompilation can be done on a local
basis (local recompilation) even if the original compilation involved more than
one site. For example, if the access module is invalidated by dropping an
access path at a particular site, recompilation can be done by re-generating the
access module at the same site. Thus recompilation is kept local to the site
where the invalidation originates. Local recompilation is less expensive than
multi-site global recompilation and does not depend on the availability of other
sites.

When the access module is invalidated by dropping an access path, local
recompilation can always be used but on certain occasions it 1leads to
substantial performance degradation of the compiled code. By examining the
global plan generated in the original compilation and using heuristics, R* can
identify those occasions and perform global recompilation. On the other hand,
if the access module is invalidated by changes in data objects (for example, a
table is migrated from one site to another), recompilation may require other
sites to participate. :

Current Status and Future Plans

The R* query compiler is currently being implemented. At present, the compiler
is operational for a subset of the SQL language. The access planner considers
all of the multi-site join methods mentioned above, and the access code
generator implements some of these methods. Access module dependencies are
recorded at each participant site, and global recompilation is currently used in
all cases. Local recompilation is being implemented.

Future work on query compilation in R* will include the design and

implementation of support for replicated and partitioned tables, and for
protection views [DANI82A]. Once operational experience is gained, it may prove
necessary to revise the access planner's cost model or to extend its repertoire
of multi-site join methods.

17



Acknowledgements

R* is very much a group effort. In addition ®to the authors, current members of
the R* project are: Greg Fischer, Laura Haas, Ruth Kistler, Bruce Lindsay, Guy
Lohman, Yoshifumi Masunaga, C. Mohan, Patricia Selinger, Paul Wilms, and Robert
Yost.

References

[ASTR76] M. M. Astrahan et. al., "System R: Relational Approach to Database
Management," ACM Transactions on Database Systems, June 1976.

[CHAM76] D. D. Chamberlin et. al., "SEQUEL 2: A Unified Approach to Data
Definition, Manipulation, and Control," IBM Journal of Research and
Development, November 1976.

[CHAM81] D. D. Chamberlin et. al., "Support for Repetitive Transactions and
Ad-Hoc Queries in System R," ACM Transactions on Database Systems, March 1981.
[DANI82A] D. Daniels,. 'Query Compilation in a Distributed Database System,"
Master's thesis, Department of EECS, MIT, Cambridge, MA, February, 1982. Also
research report RJ 3423 IBM Research Laboratory, San Jose, CA.

[DANI82B] D. Daniels et. al., "An Introduction to Distributed Query Compilation
in R*," Proceedings of Second International Symposium on Distributed Databases,
Berlin, September, 1982.

[LIND79] B. G. Lindsay et. al., "Notes on Distributed Databases," Research
Report, RJ 2571, IBM Research Laboratory, San Jose, CA., July 1979.

[LIND8O] B. G. Lindsay and P. G. Selinger, "Site Autonomy Issues in R*,"
Research Report, RJ 2927, IBM Research Laboratory, San Jose, CA., September
1980.

[NG82] P. Ng, "Distributed Compilation and Recompilation of Database Queries,"
Master's thesis, Department of EECS, MIT, Cambridge, MA, January, 1982. Also
research report RJ 3375 IBM Research Laboratory, San Jose, CA.

[SELI79] P. G. Selinger et. al., "Access Path Selection in a Relational Database
Management System," Proceedings of ACM-SIGMOD 1979.

[SELI80] P. G. Selinger and M. E. Adiba, "Access Path Selection in Distributed
Database Management Systems," Proceedings of the International Conference on
Databases, Aberdeen, July 1980.

[WILL82] R. Williams et. al. "R*: An Overview of the Architecture."
Proceedings of Second International Conference on Databases, Jerusalem, June,
1982. Also research report RJ 3325, IBM Research Laboratory, San Jose, CA.,
December 1981.

18



A METHODOLOGY FOR QUERY OPTIMIZATION
IN DISTRIBUTED DATABASE SYSTEMS

AChin-Wan Chung
Keki B. Irani

Program in Computer, Information and Control Engineering
and Department of Electrical and Computer Engineering
The University of Michigan
Ann Arbor, Michigan 48109
Phone: 313-764-8517

ABSTRACT

In this paper, we outline the current research on guery
optimization in distributed database systems at the
University of Michigan. Specifically, we describe by
example our model for representing sets of values of
attributes generated while processing a Qquery by a sequence
of semijoin operations. This model provides an efficient
methodology for deriving the estimates of the cardinalities
of these sets which are needed to compute the cost of query
processing. Further, we mention the intuitive ideas behind
our heuristics for deriving a sequence of semijoins.
Comparative results with the existing algorithms are
provided. :

1. INTRODUCTION

The concept of distributed database systems has emerged
as a natural solution to the information processing problems
of geographically dispersed organizations. We consider a
distributed relational database system on a point-to-point
packet switching communication network. The data
transmission delay in such a  communication network is
roughly proportional to the quantity of data transmitted.

In order to process a query which needs to reference
data from multiple sites, portions of the database at other
sites have to be transferred to the user's site. Since the
data transfer rate between sites in communication networks
can be slow [WONG77], the minimization of the inter-site
data transfer can be of importance 1in processing a
distributed query.

The usual methodology for distributed query processing
(DQP) consists of reducing the referenced relations using a
sequence of semijoins (SSJ) after initial local processing.
The semijoin strategy involves the following tasks:

(1) Estimation of the size of the relation reduced by each
semijoin of 'a SSJ. Since it is usually assumed that the
reduction of a relation is proportional to the reduction
of the set of values of its attribute, this task is that
of estimating the reduction of the latter set.
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(2) Design of an algorithm to determine an optimal SSJ

which incurs minimal total inter-site data transfer.
We discuss these problems in the subseqguent sections. For
simplicity, we assume that a relation is a wunit of
distribution and consider conjunctive equi-join queries.

The earliest work in the area of DQP 1is by Wong
[WONG77]. The semijoin strategy has been suggested in the
literature [BERN81, CHIU80, CCAB0, HEVN79a, HEVN79b]. Under
the assumption that the attributes are independent [CHIUSO,
CCA80, HEVN79a, HEVN79b], the reduction of relations by an
arbitrary SSJ cannot be estimated accurately. An improved
estimation method was introduced in [BERN81]. 1In Section 2,
we describe our own model deriving these estimates. We
think our model is simpler to implement. As far as the DQP
algorithm is concerned, the one suggested in [BERN81] is
based on the hill-climbing technique with two enhancements
to the basic algorithm. In Section 3, we outline our
algorithm and give some comparative results.

2. ESTIMATION OF THE CARDINALITY OF A REDUCED RELATION

To explain our model by an example, let us consider
four relations: SUPPLIER (S#, S_NAME), CITY (C_NAME, S#),
SUPPLY (S#, P#), and PART (P#, P_NAME). Assume that after
initial local processing, the remaining query is
FIND (SUPPLIER.S_NAME, PART.P_NAME, CITY.C_NAME)
WHERE (SUPPLIER.S# = CITY.S#) AND (CITY.S# = SUPPLY.S#)
AND (SUPPLY.P# = PART.P#).

For convenience = we represent the attributes
SUPPLIER.S#, CITY.S# and SUPPLY.S# by al, a2 and a3,
respectively and SUPPLY.P# and PART.P# by bl and b2,
respectively. The equality relation partitions these
attributes into blocks g1 = {al, a2, a3} and B2 = {b1, b2}.
We represent the set of values immediately after initial
local processing of the attribute ai by Ai for i = 1, 2, 3
and that of bi by Bi for i = 1, 2, The sets of values of
attributes change as semijoin operations are performed. The
cardinality C(a) of an attribute «, therefore, changes and
is equal to the <cardinality C(X) of the set X which
represents its values at a particular instant. These sets
of values of the attributes form the elements of lattices.

For our example, all the sets 1initially reachable by
semijoins between attributes of the same block are
represented by the two lattices shown in solid lines in the
Figure 1. (The Di in the figure 1is the domain of the
attributes in the block Bi for i = 1, 2.) For example, the
semijoin S1 from a3 to al reduces the set A1 to the set AIA3
which represents A1NA3, and the cardinality C(al) changes
from C(A1) to C(A1A3). Again, the semijoin S2 from b2 to bi
reduces B1 to B1B2 and changes the cardinality C(b1) from
C(B1) to C(B1B2). The semijoin S2, however, causes A3 to
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reduce as well, because the attributes a3 and b1 are in the
same relation. This causes the initial lattice of the block
B1 to be exten ded as illustrated by the dotted lines in the
Figure 1. The new set formed is named A3A4 as it is also a
subset of A3. The semijoin S2, therefore, also reduces the
cardinality C(a3) from C(A3) to C(A3A4). As the semijoins
are performed the lattices grow.

The estimations of the cardinalities can now be stated
in terms of this model. 1If @i and aj are two attributes and
if the sets of their values at any point in time are Xi and
Xj respectively, then a semijoin from aj to ai reduces the
cardinality of i to a new value Cn(qi) which is given by

Cn(ai) = C(g.l.b.(Xi, Xj))

We have shown that this value can be calculated from the old
value C(ai) by the following formula:

C(ai) x C(aj) = Cn(ai) x C(l.u.b.(Xi, Xj))

A recursive algorithm is written to compute
C(l.u.b.(Xi, Xj)).

D2

Bl B2

Bl1B2

AlA2A3A4

Figure 1
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1f oh is an attribute in the same relation as qi, 1its
cardinality will also be reduced. Suppose C(gh) = m. If n
and k are the cardinalities of the relation before and after
the semijoin, then the new cardinality Cn(ah) is given by

mx (1 - (1 -k/m™®)  if n/m < k
mx (1 - (1 - 1/m)k) otherwise
This is our approximation to the formula given by
[Ya077]. The error is less than 0.5% for a broad range of
values of n, m and k. This is a closer approximation than
the one suggested in [BERN81].

3. DISTRIBUTED QUERY PROCESSING ALGORITHM

The DQP problem 1is known to be NP-hard [HEVN79a].
Hence any realistic algorithm for determining a SSJ involves
heuristics. Our algorithm is no exception.

The total cost of DQP consists of the cost of moving
data to perform the semijoins and the cost of moving the
reduced relations to the wuser's site for the final
processing. The direct benefit accrued by a semijoin is the
difference between the amount by which it reduces a relation
and the amount of data transported for its execution. A
semijoin may not be directly beneficial at all or it may not
have significant direct benefit. However, it may cause
substantial benefits for the subsequent semijoins. That is
why the straight-forward hill-climbing technique does not
produce a good SSJ. Our algorithm uses a heuristic cost
function which helps search for such semijoins which can
generate indirect benefits.

The main feature of this algorithm is to select and
"visit" an unvisited block with the 1least value of a
heuristic cost function defined on the set of blocks until
no more unvisited block exists. By "visiting" a block we
mean that semijoins are scheduled which go from the
attribute with the smallest cardinality in the block towards
the one with the largest cardinality. After all the blocks
have been visited, the visits are reversed. Several control
features have been incorporated in the algorithm to increase
the robustness for random input data.

For simple queries [HEVN79b], our algorithm produces
optimal solutions. For the example in [BERN81], our
algorithm and the algorithm in [BERN81] produce the same
SSJ. For the example in [HEVN79b], the cost reported was
1324. We computed the cost of the same query using our
algorithm and the algorithm in [BERN81]. The cost for the
SSJ with our algorithm was 502 and the cost for the SSJ with
the algorithm in [BERN81] was 796.
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4, CONCLUSION

For a given initial database state, the <cost of any
sequence of semijoins to process a distributed query can be
computed efficiently and effectively using the estimation
method outlined here. A block-oriented heuristic algorithm
has been developed to determine a 1low cost sequence of

semijoins. The algorithms developed are being implemented
in PASCAL.
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l. Introduction

When a user query is submitted to a distributed database system, it usually
has to be associated with some particular instances of the distributed data
items (i.e., materializations), and broken into subqueries. These must be
distributed and scheduled properly in order to produce the final result for
the user. This paper sketches the initial transformations applied to user
queries on a distributed database system (DDBMS) called MICROBE. MICROBE is
operational at Laboratoire IMAG (University of Grenoble), on a local
broadcasting network of LSI 11 machines. This network 1s dedicated to
administrative and scientific applications.

Several techniques have been proposed for query processing, among which is
the translation of high-level algorithmic 1languages 1into some QUEL-like
internal form, on which the decomposition process is applied. This is the
case 1n the SDD-1 project [GOOD79], where a query expressed in the
Datalanguage 1s translated into QUEL statements, and further processed by a
static query decomposition algorithm. Similarly, query management in the
distributed version of the INGRES project dynamically decomposes QUEL
gtatements into one-variable subqueries to handle the distributed execution of
requests [STON80]. In both cases, however, the network of database computers
is homogeneous. This allows high-level QUEL statements to be processed
directly at the local sites.

A different approach has been implemented at Laboratoire 1IMAG for the
POLYPHEME project [ADIB80]. The query, expressed in a relational algebra
language, is translated into a binary tree of operators. This technique was
proved very useful for the subsequent decomposition step, and particularly for
the implementation of a dynamic decomposition strategy [NGUYS82].

2. Query Optimization

The approach implemented for the MICROBE project combines the advantages of
the above proposals. User statements are translated into binary trees of
relational algebra operators and submitted to the optimizer. The optimizer
restructures the query tree with respect to the properties of the relational
algebra.

The query tree is restructured so that the data which is piped from each
operator to the next one is minimized, and so that the total number of
operations involved in the query is reduced. Restructuring is with respect to
the relational algebra expression of the query, and does not take into account
the distribution of relations. Techniques 1inherited from artificial
intelligence are used for restructuring. They are related to the
transformation of grammatically defined arborescences and to natural language
recognition. The optimizer uses a set of catalogued transformation rules to
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produce an equivalent query tree from its input node configuration.

MICROBE is the only DDBMS known so far to implement such a systematic
optimization technique for user queries expressed in a high-level relational
language. The advantage of this approach is that the optimizer can be driven
by a set of simple transformation rules. These are applied to the query tree
during several recursive scans. The principle of optimization 1is to isolate
particular node configurations and apply the transformation rules where
appropriate.

3. Query Decomposition

Once a query tree has been optimized, it is submitted to the decomposer.
This module 1is in charge of the localization and fragmentation of the request
into local subtrees. These are dedicated dynamically (during query execution)
to particular execution locations at distributed database sites.

In previous proposals, the distributed execution strategy was entirely
planned prior to the execution of any of its parts. In contrast, MICROBE
relies on a dynamic decomposition strategy [NGUY8lb], [NGUY82]. It does not
require statistics on the database (except for cardinalities and widths of
relations) or estimations of the size of the partial results produced by a
query. (This kind of information is indeed difficult to maintain accurately,
and costly to compute and retain, as shown in the usual static decomposition
algorithms.) The system attempts to minimize a given cost function of CPU
time and transfer costs of partial results [NGUY8lb].

Dynamic query decomposition was first proposed for the POLYPHEME project.
The designers of the distributed version of INGRES also implemented a dynamic
query decomposition algorithm, which they proved to be usually more efficient
than any static strategy. .

The query decomposition process in MICROBE will be illustrated with an
example. The tree resulting from the translation of a request is optimized
via algebraic transformations. Suppose this yields the query tree of Fig. 1.

intersect

rroJect (Name) prodect (Name)
] []

Joiﬁ (S5=SS) select (Address=Grenoble)
|

FrroJect (SS'NAME) pProdect (SS) QTUDENT
1 ]

STUDENT select (C=1)
t

REGISTERED

Fid. 1 Query tree to be decomrosed.

3.1 Initial localization

The query tree is now ready for decomposition and distributed execution.
The decomposition algorithm attempts first to localize as many nodes in the
tree as possible. If the relations STUDENT and REGISTERED are located at
sites S1 and S2 respectively, the lowermost monadic subtrees will be localized
and sent for execution at Sl and S2 immediately (Fig. 2).
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intersect

rroJect (Name)
'

select (Address=Grenoble)
]

STUDENT

rroJect (Name)
!

Join (§5=8S)

rrodect (SSeNAME)
|

STUDENT

rrodJdect (S
|

select (C=1)

S1

S1

!
REGISTERED S2

Fig, 2 Initial localization of auery tree.

3.2 Dynamic localization

For the 1localization of the remining nodes (the INTERSECT, PROJECT, and
JOIN operators), a dynamically updated threshold value is used to anticipate,
whenever possible, the assigmment of execution locations [NGUY81b]. This
threshold is updated by a dynamic programming technique [NGUY82]. In the
above example, if the volume of the result of the PROJECT (SS,NAME) on the
STUDENT relation is 1less than the initial value T of the threshold, the
result will be transferred to the execution site of the brother subtree
“(PROJECT (SS) on SELECT (C=1) on REGISTERED), i.e. S2. The JOIN operator will
therefore be assigned to site S2 for execution, as well as the PROJECT (NAME)

operator (Fig. 3).

S2 ”/::::;:}>
!
K\\\Join

proJect (SS»NAME)
'

STUDENT

intersect

prodect (Name)
!

éelect (Address=Grenoble)

Name)

(8S8=8S)

pro.Ject (SS)
!

select (C=1) 51

S1 S2

!
REGISTERED

Fig. 3 Query tree after first decomposition ster.

The initial threshold value T, is set to the average volume of the STUDENT
and REGISTERED relations. It 1is then updated according to a predefined
function. The new value T, and every localization decision are broadcast to
all sites participating in the query, here Sl and S2.

The decomposition algorithm will subsequently wait for the first partial
result Rl of the INTERSECT node operands to complete. It will then be
possible to assign the execution location of the INTERSECT operator. If the
volume of Rl is 1less than T | Rl will be transferred to the site of its
brother subtree. Suppose Rl "is the result of the PROJECT (NAME) on SELECT
(ADDRESS=GRENOBLE). Rl will be transferred to S2. The INTERSECT operator is

therefore scheduled at site S2 for execution (Fig. 4).
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rroJect (Name)
)

Join (85=S%)

rrodect (SS,NAME) prodect (SS)
! !

TUDENT select (C=1)

1

REGISTERED

Rl

Fig. 4 Final decomposition of auery tree.

3.3 Further comments

No hierarchical partitioning of database sites 1is done for query
decomposition. All sites involved in the processing of a query, i.e. those
sites where the relations are located, run the same decomposition algorithm.
The initial query tree (Fig. 2) is first broadcast to all of them. Subsequent
decomposition decisions are taken only when an exclusive privilege is held,
implemented by a circulating token. This avoids conflicting decisions from
two sits localizing simultaneously a common father operator [NGUY82].

It has been shown that this dynamic query decomposition algorithm is fully
compatible with a dynamic data allocation strategy in a multi-user DDBMS
[NGUYS81b].
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1. Introduction

Tmproving the performance of data retrieval operations in file pro-
cessing systems and database systems has remained an important goal
since the advent of computers. As improved computer technology and new
methods of viewing and structuring data have evolved over the years,
researchers have developed algoritims for data access optimization based
upon the new system enviromments. To make database systems more avall-
able to a wide range of users, relational query 1languages (e.g., SQL,
QUEL, QBE) are being employed 2as a user-friendly interface for data
access. Research today on query optimization is very active as evi-
denced by the number of papers on this topic presented at recent data-
base research conferences such as SIGMOD and VLDB. Query optimization
will remain a challenging research area in the future as new technolo-
gies, such as VLSI and networking, are used in database systems. New
application environments for database systems, such as office informa-
tion systems and engineering databases, will also provide new research
impetus.

In this short paper, we overview our current research on query pro-
cessing and optimization in the Database Systems Research Group at the
University of Maryland. We discuss our recent results in the areas of
query interfaces for database machines {Section 2), efficient join pro-
cessing algorittms (Section 3), and query optimization in distributed
systems (Section 4). 1In each section we provide a brief discussion of
our future research directions.

2. Query Interfaces for Database Machines

Database machines have been proposed as hardware solutions to the
problems of efficiency and reliability in many database systems "DATA
81]. The objective is to offload database management functions from the
host computer to a specially designed, dedicated back-end computer whose
sole function is to maintain the database and to process database
requests. A database machine interfaces with the front-end host computer

* Portions of this research are supported by NSF Grant
MCS81-07047.
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through a high-level language interface. The major function of the host
computer 1is to translate end user queries into the database machine
language, send it to the database machine., receive results from the
database machine and organize and display the results to the user. TIn
principle we can deal with two separate, independent query languages in
the system, the user query 1language and the database machine query
language, with the host computer providing the intermediate translation
step.

-We have implemented a SQL-type interface (CHAM 76] for the IDM-5090
relational database machine [BRIT 80]. Although both the query language
and the database machine are based on the relational data model,
discrepancies 1n their detailed operations made the implementation non-
trivial. Based on this experience we presented a design for a database
machine language interface in [LUO 82}.

Database applications have many varieties. They differ in type of
operations and data models. A database machine cannot possibly support
all these access requirements directly. It is only feasible to provide a
basic set of operations from which other operations can be derived. This
set of operations must be complete, efficient, flexible, and extensible.
They also must be non-procedural in order for the query access paths in
the database machine to be used effectively. 1In view of these require-
ments, we have chosen to base the proposed database machine language on
the relational data model. The advantage of the relational model is 1its
simplicity and high level of operation.

The user interface language must be adapted to the application
enviromment and the skill level of the user. We have investigated the
problem of supporting user query languages based on the relational,
hierarchical, and network data models. The translation from the user
query language to the database machine language provides a level of
implicit query optimization, since the database machine language is
designed to make the most beneficial use of the machine”s capabilities.

In particular, we have studied the office application enviromment.
The wusers of an office information system are expected to be non-
programmer professionals. The language that they use must be friendly
enough for non-specialists to learn and use with a minimum of training.
We have developed a screen oriented form query tanguage 'LUO 81]. The
form data model [HOUS 76] allows a natural format for business and
office information. In order to develop a simple user interface the idea
of query-by-example [ZLOO 80] is applied to specify queries on forms.
Additional procedural constructs are then 1introduced to enhance the
capability of the 1language. The 1language 1s termed the Form Query
Language (FQL). FQL can be shown to translate quite easily into a data-
base machine language [LUO 82].

3. Database Join Processing

In relational query processing,'clearly the most complex operation
to optimize is the join. Since it is usually a time-consuming operation
that accesses a large amount of data, finding efficlent join processing
strategies is an important method of 1improving database system
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performance. In [YAO 79], a model of database query evaluation is
presented from which the access costs of query processing can be
analyzed and optimized. The optimization procedure decomposes an arbi-
trarily complex query into two-variable sub-queries. Methods for decom-
position are usually heuristic in nature (e.g., [WONG 76]). An optimiza-
tion procedure selects the least costly access strategy for each sub-
query by considering the detailed database storage structures and access -
costs. Join processing strategies are formed by different combinations
of operation modules such as sorting, indexing, storage accessing, and
merging.

A number of software methods for the processing of two-variable
joins have been designed and implemented. Sort-merge techniques, nested
loop techniques, together with the use of indexes provide a wide range
of potentially beneficial join processing strategies [SELT 79, YAO 79}.
These software approaches, however, have the 1limitations that large
optimization programs must be implemented, controlled, and maintained.

Our recent research has developed the design of a two-dimensional
join processor in hardware [TONG 81). The_join processor inputs values
from the join attributes on different dimensions of a matrix structure.
Comparators test equality at each matrix intersection and the join
result is formed as output. We have compared this design with several
other proposed join processor designs [TONG 82]. The proposed join pro-
cessors can be classified into three categories: (1) one-dimensional
array with pipelining, (2) one-dimensional array with broadcasting, and
(3) two-dimensional array. Our analysis shows that the two-dimensional
array approach has significant advantages in terms of both processing
speed and hardware complexity. In addition, the two-dimensional array
processor has a simple organization. The regularity of its design makes
it suitable for VLSI implementation. A small-scale experimental VLSI
chip has already been implemented. The experimentation of a more com-
plete join processor array is being planned.

* Qur future research directions include extending cost models of
two—variable joins to models that handle the analysis and optimization
of n-variable joins where n > 2. The benefit of wusing the extended
models for query optimization will be studied. The performance trade-off
comes from the additional cost and complexity of optimizing an n-
variable join versus the savings from reducing the number of decomposi-
tions required to break a query into n-variable sub-queries. As an
extension we will also investigate the implementation of the n-variable
join strategies in VLSI architecture.

4. Query Optimiiation in Distributed Systems

Distributed query optimization continues to be a major research
effort 1in our group. In previous work we defined a cost model for ‘query
processing on distributed systems, developed ,optimization algorithms
that we proved derive optimal processing strategies in certain system
enviromments, and extended the optimization techniques into algorithms
for general query enviromments [HEVN 78, HEVN 79a, HEVN 79b]. In TKERS

a star network and the performance is analyzed Our recent research has
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extended ‘this prior work in several ways.

_ We have developed an improved algorithm of polynomial complexity
for the optimization of general queries "APER 82]. Three versions of the
algorithm are presented; one for response time optimization and two for
total time optimization. The response time version 1s proved to derive
minimum response time processing strategies under the assumptions of our
cost model. While neither total time version can guarantee to derive
optimal total time strategles, an analysis shows that close-to-minimum
total times are found for most queries.

Recent surveys of distributed query research have led to qualita-
tive and quantitative analyses of proposed algorithms for query optimi-
zation. In [HEVN 82] a classification taxonomy 1is introduced. Algo-
rithms are classified based upon the order in which the following optim-
ization decisions are made. .

a) Materialization - The selection of specific data copies to process
the query. :

b) Operation Order - The ekecution order of query operations as
- represented by a directed access graph.

In [SACC 81] algorithms are compared by comparing query performance on a
common cost model. In both of these studies guidelines are given to
identify the distributed system enviromments in which the different
algorithms perform most effectively. ’

A future direction will be to extend our research to the optimiza-
tion of database transactions. A transaction is a database application
sistent database state [GRAY 81],_Distr1buted optimizaticnkof a transac-
tion differs from distributed query optimization. Requests for data
retrieval are embedded within the procedural structures of a program,
such as conditionals (IF-THEN-ELSE) and iteration (DO-WHILE). Particular
emphasis in a transaction must be placed on points at which data is
locked and unlocked and on commit points.

~ Our preliminary work on this question is reported in [HEVN 81)}.
None of the query optimization algorithms are directly applicable for
transaction optimization because of the procedural constructs that limit
the range of optimization in a transaction. For example queries within
a_conditiqnal statement may not be executed in a particular application
run. Therefore optimizing their execution together with queries outside
of the conditional may not be beneficial. Our proposed approach uses a
two-step data flow analysis to form an effective transaction processing
strategy. The goals of the optimization are to maximize parallel -pro—
cessing of data independent queries and to group data dependent queries
into units of potential optimization within the transaction. = A number
of interesting research problems include the best use of parallelism on
a network, the placement and storage of {intermediate results during
transaction execution, and the importance of recognizing common subex-
pressions in a transaction in order to minimize redundant processing in
the system.
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1. INTRODUCTION

In this paper we describe ongoing research on query optimization at
Computer Corporation of America. This research is being carried out in
the context of MULTIBASE and the two ADAPLEX database management sys-
tems. These are briefly described below,

The ADAPLEX LDM (Local Database Manager) and DDM (Distributed Data-
base Manager) are systems that directly support a general-purpose data-
base application programming language, ADAPLEX, which is the result of
embedding the database sublanguage DAPLEX [SHIP81)] in Ada,.®*#% A DDIM query
is mapped into a strategy consisting of single-site queries that are
processed locally by the LDMs, and data movement commands for shipping
the results of single-site queries between sites.

MULTIBASE is a system that provides a wuniform, integrated query
interface to a heterogeneous distributed collection of pre-existing
databases., Database integration is accomplished by describing the sche-
mas of the local databases in a common data model, DAPLEX, and then
defining a global view tailored to the wuser's application over these
DAPLEX representations; the view definition incorporates directives for
resolving differences between the local databases [DAYA82al. A user
formulates queries in DAPLEX over his global view. A global DAPLEX
query is first modified by the Global Data Manager (GDM) into a DAPLEX
.query over the 1local schemas, It is then decomposed into single-site
DAPLEX queries that are shipped to the local sites., A Local Data Inter-
face (LDI) at each site translates queries sent to it into queries (or
programs) in the data language of the local host system. The GDM merges
the results of these single-site queries into the final answer. The GDM
has an ADAPLEX LDM available to it for managing schema and view defini-
tions, storing auxiliary data required for database integration, and
merging the results of single-site queries to produce the final answer.

#This research was jointly supported by the Defense Advanced Research
Projects Agency of the Department of Defense (DARPA) and by the Naval
Electronics System Command (NAVELEX) under contract N00039-82-C-0226.
The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing those
of DARPA, NAVELEX, or the U.S. government,

##Ada is a trademark of the Department of Defense (Ada Joint Program
Office).
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The reader is referred to [SMIT81, LAND82] for overviews of MULTI-
BASE and to [CHAN81, CHANB2] for overviews of the ADAPLEX LDM and DDM.

2. QUERY PROCESSING IN THE LDM, DDM, AND MULTIBASE

One issue common to these three systems is the processing of DAPLEX
qQueries, albeit in somewhat different environments., DAPLEX is a high-
level procedural language. The processing of a DAPLEX query has two
main steps: decompilation and optimization. Decompilation transforms
the query into an envelope, which is a non-procedural internal represen-
tation of the data selection component of the query, and a postprocess-—
Aing program that formats and prints the retrieved data. The principal
advantage of decompilation is that it separately identifies the data
selection requirements of the query, which can then be subjected to
optimization. This allows for more optimization than is found in embed-
ded relational query language systems such as PASCAL/R [SCHM77] and
RIGEL [ROWET9].

Optimization of the envelopes is performed at two levels: local (in
the ADAPLEX LDM and each MULTIBASE LDI) and distributed (in the ADAPLEX
DDM and the MULTIBASE GDM). At the local level, the objective is to
minimize local processing costs by proper access path selection, At the
global level, the objective is to minimize the amount of data moved
between sites and to exploit parallel processing at different sites.
Local and distributed optimization are described in the next two sec-
tions.

3. LOCAL OPTIMIZATION
3.1 Optimization in the LDM

The LDM must support extensive optimization of single site ADAPLEX
queries, The LDM optimizer incorporates several extensions to rela-
tional optimization techniques. Some of these extensions are required
due to the richness of ADAPLEX and the functional data model. Other
extensions could also be applied to relational languages embedded in
programming languages.

The richness of ADAPLEX has two main implications for the LDM
optimizer. First, unlike relational languages, ADAPLEX allows the user
to explicitly control the grouping of entities and the elimination of
duplicates. This grouping implies an order of performing joins. The
LDM takes advantage of the explicit grouping specifications to maintain
hierarchical temporaries, This use of hierarchical temporaries greatly
reduces the size of data that must be sorted, saved on disk, and passed
back to the user program. In addition, the LDM optimizer analyzes other
join orders, and will, if cost effective, normalize the temporaries
(into first normal form). Of course, the re-ordering and re-grouping
that may be required after performing these alternative sequences of
Jjoins must be included in the associated cost estimates.

Second, the LDM optimizer takes advantage of the explicit entity-
to-entity functions that can be specified in the functional data model.
(For example, the "works-in" relationship may be represented by a func-
tion from the Employee entity type to the Department entity type.) These
are implemented by pointers and serve as fast access paths for perform-
ing Jjoins of the two entity types between which a function is defined.
The LDM optimizer compares the costs of using and not using these fast
access paths.

34



The LDM optimizer uses several additional optimization strategies
that could be exploited by more ambitious optimizers for embedded rela-
tional queries., First, it attempts to optimize over several nested "for
each" 1loops in the query. Many embedded relational query language sys-
tems such as PASCAL/R [SCHM77] and RIGEL {ROWE79] optimize the qualifi-
cation of one "for each" 1loop at a time, Optimization over several
loops allows the LDM to consider more join strategies, and can reduce
the communication and synchronization overhead between a user program
and the LDM. Second, the LDM uses a leveled hill climbing search stra-
tegy for limiting the number of join orders that it considers. The user
can specify an optimization level, N; the optimizer enumerates join
sequences of length N at each stage of optimization. When N is one,
this strategy is very similar to the ‘f"greedy strategy"™ of INGRES
[WONG76]. Finally, the LDM optimizer considers several strategies for
processing arbitrarily nested universal and existential quantifiers.

For details of decompilation and optimization in the LDM, see
[RIES821.

3.2 LDI Optimization in MULTIBASE

MULTIBASE must interface with a wide variety of Database Management
Systems: some (e.g., CODASYL) have procedural, navigational data manipu-
lation languages; others (e.g., ADAPLEX LDM and relational systems) have
high-level query languages. Because these systems differ substantively
in the level of direct control over access path selection that they give
to programmers, different optimization techniques are necessary.

High~level query language systems are themselves equipped with
query optimizers, and so MULTIBASE assumes that no optimization is
necessary in the LDI; the LDI need merely transliterate the DAPLEX
single-site query into a query in the local language.

Navigational systems, however, require a DML program to specify an
appropriate route through the database., The LDI usually has a choice of
programs, each of which specifies a sequence of access path traversals.
In [DAYA82b] we describe an access path optimizer for navigational sys-
tems such as CODASYL. We have identified a class of queries, the tree
queries, that can be effectively optimized. The LDI optimizer decom-
poses the single-site query sent to it into tree queries, enumerates the
strategies for processing each tree query, estimates their costs,
selects the cheapest strategy for each tree query, merges these into an
overall strategy for the single-~site query, and compiles this strategy
into a loop program in the host DML. The analysis is considerably com-
plicated by the presence of quantifiers in tree queries,

4, DISTRIBUTED OPTIMIZATION
4,1 Optimization in the DDM

The DDM optimizer extends distributed query optimization techniques
used in other systems such as SDD-1 [BERN81] and System R* [SELI80].
Both SDD-1 and R* focus on conjunctive queries (i.e., queries involving
only selections, projections, and joins). SDD-1's strategy is to reduce
data by a sequence of semijoins, then ship the reduced data to a single
site, where the result is produced by joining. R® and the DDM consider
mixed join and semijoin strategies, The main difference is in the han-
dling of horizontally partitioned data. Consider, for example, the
query R P4 S, where R is horizontally partioned into R1, R2; and S into
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S1, S2. Both SDD-1 and R* replace the original query by the union of
the four queries Ri D4 Sj, 1 £ i,j £ 2. This is not always a good
strategy. The DDM will consider the options of first performing one or
both of the unions before the join (i.e., the possibility of left and/or
right distributing the join over the union).

As Wwith the LDM, additional extensions to the optimizer are neces-
sitated by the richness of ADAPLEX: the presence of quantifiers, uni-
directional outer joins, user control over duplicate elimination, etc.

The overall optimization technique is the following. First, local-
ize selections. Then, enumerate join orders. For each join of horizon-
tally partitioned entity sets, determine whether it is cost-effective to
distribute the join over the union, For each non-local operation,
select a site for performing the operation, and determine whether it is
cost-effective to do semijoin reductions before each join., Work is
currently in progress on developing a cost model, heuristics for stra-
tegy enumeration, and heuristics for selecting copies of replicated data
to be used in processing a query. For details of DDM optimization, see
[DAYAB2c].

4,2 Global Optimization in MULTIBASE

The overall approach to global optimization in MULTIBASE is very
similar to that in the DDM. However, there are some differences.
First, instead of disjoint horizontal partitions, we may have overlap-
ping data in two or more local databases, For example, two Employee
databases may contain data on overlapping sets of employees. In fact,
the overlapping data might be inconsistent. For instance, the salary
values of an employee may be different in two databases, In the
integrated global view, this inconsistency may be resolved by defining a
generic entity type Employee, whose Salary value is defined to be some
aggregate function (e.g., average or sum) of the Salary values in the
two databases. Now we have to be careful in 1localizing selections or
distributing Jjoins over unions, For example, if the aggregate function
used to define Salary is "average", then the selection of employees
based on their salaries cannot be done completely locally at the two
sites. We have derived a set of rules for distributing selections and
joins over unions for various aggregate functions, Also, the reduction
step considers the option of a "semiunion" reduction before performing a
union, In our example, the semiunion partitions the employees in a
local database into two subsets: those contained only in that database,
and those having corresponding records in the other database. For the
first subset, the selection can be performed 1locally; for the second
subset, the salary values must be retrieved to perform the aggregation
and selection in the GDM.

A second difference is that not all sites are powerful enough to
process joins, unions, semijoins, semiunions, quantifiers, etc. Missing
capabilities are compensated for in the GDM,

Finally, a global query may be posed over a global view that is
defined over several intermediate levels of views, each involving gen-
eralization and aggregation, For these, query modification and global
optimization proceed recursively from level to level. We depart from
the usual approach to view processing, in which a query against the view
is first modified all the way down to the local schemas, and only then
optimized, To see why a different approach is necessary, consider a
view, Employee, defined by generalizing two overlapping subtypes,
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Employeel and Employee2. In the wusual approach, a query against
Employee would be modified into the union of three subqueries against
Employeel1-Employee2, Employee2-Employeel, and Employee1() Employee2.
However, if Employeel and Employee2 are stored at separate sites, then
it would be inefficient to separately optimize and execute these three
subqueries, Our approach is to reduce (if possible and if cost-
effective) Employeel and Employee2 per the query's qualification and
target 1list, then move them to the GDM, and partially materialize the
view, If Employeel is itself a generalization of overlapping subtypes
stored at separate sites, this procedure is applied recursively to its
subtypes.

For details of global optimization in MULTIBASE, see [DAYA82d].
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Processing Multiple Queries in Database Systems1
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Abstract

Research activity on qQuery evaluation and optimization has been centered around
processing single queries. While a need for grouping queries for simultaneous
evaluation on a database has been recognized, very 1little has been proposed.
This paper discusses our ongoing research in that direction. The effect of
grouping queries is to reduce local processing at a node by minimizing access to
a particular relation. Similarly, data transfer across the nodes of a distri-
buted database can be reduced. The result is enhanced system utilization. The
process of decomposition and optimization of multiple queries i1s under investi-
ation, as well as the characterization of environments where this grouping can
e used effectively.

1. INTRODUCTION

The majority of present work on querK processing and optimization pertains to
processin§ of queries exprfsseg ﬁn igh lével, non—grocedural languages for the
relational data model. See [KIM8O] for references. uerz processing systems, in
general, attempt to minimize the cost of processing a se

ing the cost of each query separately. Individual plans are generated f?r each
querg and executed on the database in succession. However, as shown in [GRAN80O]
it should be possible to group a set of queries over a database and minimize the
cost of processin% them as a unit. The commonality that exists among a set of
queries, in terms of access to relations, oin/semi-join operations and data
transfers can be used to reduce the overall cost of their evaluation. Below we
outline the general problem of multi-query evaluation and other associated prob-
lems and discuss results of preliminary investigations.

of queries by minimiz-

The main goal of query optimization has been to retrieve relevant data from a
database with as little local processing and data transfer across nodes as pos-
sible. The criteria for optimization has varied widely in the literature, rang-
in% from minimizing CPU time in centralized databases to parallel transfer of
information and queueing delays in distributed systems. Also database semantics
have been used to reduce queries to semantically equivalent queries, which can
be evaluated more efficiently. See fKINGB1 for a detailed discussion and addi-
tional references.

2. PROBLEM CHARACTERIZATION

Grouping a set of queries for simultaneous evaluation allows common intermediate
results to be computed and/or transferred only once. Joins and semi-joins
occurring in several queries can be carried out simultaneously, accessing rela-
tions in common onl{ once. This could substantially reduce the local processing
required. Common intermediate data for different queries can be rouped and
transferred once, saving substantial data transfer time in distributed data-
bases. Some environments where grouping several queries for simultaneous
evaluation is meaningful and beneficial are:

- where transactions are submitted in a batch-processing environment;
- in an interactive environment where Qqueries come 1in at a steady rate
queries within g small time 1interval can be grouped without having to
delay the response);

- where a database supports several external views (a single query may turn
out to be a disjunction of several queries on conceptual views, all of
which can be processed simultaneousl{);

- in deductive databases, deductive axioms applied to a single query may give
rise to several disjunctive queries, which can be grouped together.

Determining the utility of multiple query evaluation requires that several sub-
problems be investigated:

- determining the probability that the same relation name appears in a set of
queries;

1This work was supported by NASA grant NAG-1-51 and by NSF grant MCS-7919418.
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- estimating the optimum number of queries that need to be grouped for cost
effective plan generation;

- developing decomposition and glan generation algorithms for a set of
queries treated as a single unit;

- estimating intermediate result sizes for multigle query decomposition;

- c?aiagter zing processing environments where this kind of grouping is bene-
ficial;

- estimaéing the cost difference in optimizing a set of queries sequentially
and that of ogtimizing as a single unit;

- determining the overhead and bookkeeping involved 1in executin§ a single
plan for a set of queries and distributing the answers to the rightful ori-
ginators of the query; .

Solutions to the sub-problems listed above will enable us to characterize the
problem ff multiple-query processing in general. For a detailed discussion
refer to [CHAKB2). Development of good decomposition and plan generation algo-
rithms 1including intermediate estimation is a central issue in this investiga-
tion. The effectiveness of the algorithm depends on the amount of common compu-
tation that can be performed on the frouped queries. The analysis of this algo-
rithm and its comparison with sequential execution of queries does not seem to
be straight forward. Intermediate bookkeeping required can be a deciding factor
for the utility of this approach in general. If bookkeeping is prohibitive it
ma{ vitiate any advantage in processing efficiency achieved. Theoretical compu-
tation of the optimum size and the selection of queries for grouping does not
appear to be straight forward. The optimum size computation is the difficult
roblem. However, in deductive databases, the disjuncts derived from a goal
end to have common computations and can ﬁe grouped without much analysis.

3. JUSTIFICATION FOR GROUPING QUERIES

In a preliminary investigation [CHAK82] we have considered a worst case situa-
tion in which queries are considered independent. 1In this event we are
interested in determining whether there will be overlap of relation names for a
set of given queries. This overlag in relation names can be converted into com-
mon retrieval operations and used to evaluate the set of queries efficiently.
We have considered a simple model and computed the probability with which the
same relation names appear in more than one independently generated queries
against a relational model. We describe below a probabilistic model and the
assumptions for computing the overlap probabilities.

Each query is assumed to be in the algebraic form

Wp &g (R1° X R2° X ... X Rn"),

where yw and & ojection an lection operator espectively; T contains
the afgfggutesafﬁ Eﬁejanswer regagfon; ;spa predicages?fn %he ¥6rm of 8oolean
expression of simple clauses); and each Ri° is either a relation in the database

or derived from union or difference operations. The string (R1° X R2° X ... X
Rn’) is called the matrix of the query.

3.1 Definitions of Elements of the Probabilistic Model

Let DB be the database of interest.

Let N be the number of relations in the database DB.
Let qi denote the i-th query.

The physical length of the query q, denoted by Lq, is a positive integer count
of gﬁ%“aEEuEI‘Eﬁﬁmber of relatién names presen€ in the matrix of the query q.
Relation names are counted as many times as they occur.

The commonality among a set of queries is expressed in terms of the "overlapping
of relation names"™ and is defined as follows: :

A relation name Ri is said to belong (occur) to (in) the query g, denoted by
Ri ¢ q, if the relation name RI‘Eﬁ%eaFE‘Iﬁ the matrix of the query q.

n queries ql1, 92, ... , qn are sald to one-overlap, if there exists at least one
relation name Ri € DB such that Ri € qI for = 1 to n.

Similarly, n queries q1, q2, ... , qn are said to k-overlap if there exists at
least k relation names R1§ R2é 3.. i Rk, each R1"¢” DB for 1 = 1 to k and such
n =

that R1 € qj for 1 = 1 to a to n.

n queries ql1, q2, ... , qn are said to exactly k-overlap, if there exists
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exactly k relation names R1, R2, ... Rk, each R1 ¢ DB for 1 = 1 to k and such
that R1 ¢ qj for 1 = 1 to k an J = i to'n. :

3.2 Assumptions about the Model

Assumptions about the elements of the model can vary according to the database
usage environment. Possible assumptions are:

(a) Relationships among queries: Queries can be assumed to be statistically
independent of each other. Another possibility 1is to assume that the
queries are correlated in some specific manner.

(b) Length consideration of the queries: The thsical length is used in all dis-
cussions in this paper. Other lengths such as the unique length where only
distincet relation names are counted are also possible.

(c¢) Distribution of quer{ lengths: The length distribution is an important fac-.
tor in overlap estimation. Though the length of the query can be arbi-
trarily large theoretically, in practice queries tend to be small. The
gamma distribution with parameters o and B has the following properties:
There is a reasonable probability that a query with a small number of rela-
tions will occur, while for a query with a modest to 1ar%e length the proba-
bilit{ drops to zero rapidlx. This seems to be a good irst approximation
for he query lengths. The values of O and B can be varied to approxi-
mate realistic situations. The gamma distributﬁon is represented by

—aX B
Fx) = 1 B?%T).Q for x>0

for positive integer values of R . The mean and the standard deviation are
B/a andVf/q respectively.

Based on the above assumptions the grobability of k-overlap of n queries can be
computed. However initially the probability of one-overlap has been computed for
two queries under the assumption that the queries are independent and the gamma
distribution approximates the physical length of the queries.

3.3 One-overlap Computation for Two Queries

Let the queries be q1 and Q2. Let there be N relations in the database. The
probability of one-overlap can be expressed by the following formula:

Prob (one-overlap) = 1 - Prob (no-overlap)

The Prob (no-overlap) can be expressed as:

Prob (no-overlap) = Ef['i Prob (no-overlapl|L1,L2,m1,m2) #
n .Prob (mi1,m2IL1,L2) 1 * Prob (L1,L2)

under the constraint 1 < m1 < L1 and 1 { m2 < L2.

This formula expresses the no-overlap probability as the summation of the pro-
duct of no-overlap grobabilit for given 1en§ths L1 and L2, for queries q1 and
q2 resgectively and the probabi it{ of mi distinct relation names appearing in
Qi. This is further summed over all possible length values to obtain the proba-
bility of no-overlap regardless of the lengths involved. ml1 and m2 ensure that
all queries of lengths L1 and L2 are separated into mutually exclusive classes
so that their individual probabilities can be summed.

As noted previously, the gamma distribution is assumed to represent the 1length

distribution. It is shown in [CHAK82] that the probability of no-overlap for a
specific value of L1 and L2 is given by the formula: :

g Prob (no-overlap|L1,L2,m1,m2) ® Prob (m1,m2|L1,L2) =

r

L2 i -
(q-}) > ] i4 ®
151' N~ 321 KL ML

min (N,L1)
number of integer solutions of X14X2+ ... X{ = L1; 1 < 1 { k.

where Kk

3
[
wan
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Ki}J
Mij

ways in which i distinet relation names can be
chosen out of N relations for the j-th solution.
multinominal coefficient for the j-th solution with
1 distinct relations adding up to L1.

Figure 1. shows curves plotted with Pr?b (one-overlap) along the Y-axis and B
(a parameter of the gamma distribution) algng the X-axis for different values of
N (the number of relations in the database) and @ . This is only a representa-
tive graph which has been drawn for different values of a ., The a and
values are significant in that they help adjust the distribution of the auery
lengths for a given database. The Figure shows, for example, a value of 0.4 for
the probability of one-overlap for a database that contains éen relations, for
the o value of 1 and B value of 4. This means that 40% of the time there
will be at least one relation overlap among two randomly selected queries on the
database. a and B values suggest the average lengths of queries for which
this computation holds i. e., in this case.

Let T1 be the average time taken to execute the glan for a single query and T2
be the average time taken to execute a s ngle plan for two queries. The
?xpgcted average time for evaluating 2 queries in these two cases are 2%T1 and
0.0%#28T1 4 .4%T2) respectively. f T2 = p'I1 hege 1 <z p <= 2 then the
xgected_average time to evaluate two queries is 2 Tl'YO. + O.Z'B). If p 1is
ubstantially 1less than 2, there is an advantage. gf g % as low as 1, then we
ave the expected average {1 ® (2% ?) or a savings of

20%. 1If E is 1.5 there is a savings of 10%. We have considered a worst case
situation Where queries are independent of one another.

4. DECOMPOSITION OF MULTIPLE QUERIES

A general algorithm for decomgosition and plan feneration of multiple queries is
belng developed. Queries which have overlagp ng relation names are grouped to
start with and a single query graph (called the super-graph) is constructed. A
super- ragh or a multi-query graph can be thought of as the superimposition of
individual query-graphs. From this graph it is Yossible to generate a plan
exploiting the commonality among the qQueries. Below we illustrate the idea of a
super-graph with an example. Given the following database:

BOOKS %Title, Author, Pnami, Le_no)

e
s
h me for two queries Is 0.

PUBL Pname, Paddr, Pcity
BORR (Name, Addr, éity Casd no) .
LOANS (Card_no, Lc_no, Pate) — and queries

Ql: List the books that have been borrowed before 1/1/78, and
Q2 Find the borroweg s name and publisher’s name and ciéy for all the books
borrowed before 1/1/78.

The suger-graph for Q1 and Q2 is as shown in Figure 2. This %raph is used to
generate a single plan for all the queries which make up the graph. The plan
generg:ion using this graph facilitates proper grouping of common retrieval
operations. :

5. SUMMARY

We have proposed an approach for reducing the cost of query evaluation on a
given database by grouping queries. Techniques agplied to optimizing individual
2ueries such as semantic information, syntactic information and knowledge based

nformaiion can also be agglied. We believe that grouping queries 1is promising
in terms of the cost reduction possible in query processing.

Multiple query processing can be achieved at two levels. At the query 1level,
several queries can be grouped to start with and a single plan generated. This
gaper provides a rationale ‘for rouging queries as well as a formal Justifica-

ion. The discussion in section indicates that even in the worst case where
queries are independent of one another, there can be a gain in groupin queries
for common retrieval. Secondly, parallel Yr?cessing of several queries can be
achieved in a limited manner at a lower leve interface to the ph¥sica1 data-
base) by groupinf lans that are to be executed at that point. This can help
those cases where 1t 1s difficult to group queries at the query level. A prel-
imingry algorithm has been developed to generate a plan for decomposing a set of
queries.

We have described the problem of multigle query optimization in a general frame-
work and discussed the results of preliminary investigation very rieflg. More
research is needed in terms of decomposition and plan generation algorithms, and
the means to identify commonality among queries and group them. stimation of
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reduction in the cost of processing using this approach has to be compared with
other optimization schemes to substantiate the approach.
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Some Thoughts on the Future Direction of Query Processing
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There are several areas of research in query processing which I believe will have
a large impact on the performance of database systems. They include global opti-
mization of multiple queries, optimal use of main-memory buffer space to reduce
page 1/0s in processing queries, and optimization of SQL-like nested queries.
This paper elaborates only on these topics. However, there are a few emerging
areas of research where a fresh new approach to query processing may generate some
important results. One of them is the management of statistical databases
[BATE82], in which a typical query requires retrieval of a large volume of data
and correlation of various underlying relations (record types). Another is the
logical integration of heterogeneous database systems [DAYA82], in which a query
expressed in some language must be translated and optimized into a semantically
equivalent query (queries) in another language.

1. Global Optimization of Queries

Optimizers in presently operational relational systems only attempt to minimize
the cost of processing a single query. The cost of sequentially processing a set
of n queries is simply the sum of the cost of processing each of the n queries.
The sequential processing of a set of queries is usuvally appropriate for an
online, interactive use of a database system. However, this approach may be high-
ly inefficient for batch processing of queries embedded in conventional
high-level, algorithmic programming languages. Often, it may also be inefficient
for processing a set of queries which may be explicitly issued as a unit by the
user in interactive mode or which may be automatically triggered to check for pos-
sible violation of integrity constraints when the user issues a data manipulation
statement (update, insert, or delete).

If the cost of processing a set of queries is to be significantly lower than the
sum of the cost of processing each of the queries, each subset of the queries which
references the same relation(s) must be processed simultaneously when the
relation(s) are fetched. A strategy which enables the simultaneous processing of
a set of queries requires global knowledge of the characteristics of the queries.
Global knowledge of both internal database characteristics (such as the size of
relations and available access paths) and query characteristics (such as the
relations and columns the query references and the expected size of the query
result) makes it possible to determine not only the subsets of a given set of que-
ries for simultaneous processing, but also a near-optimal set of secondary indexes
and sorted copies of relations for processing the given set of queries.

A two-stage strategy for optimizing a set of queries and data manipulation state-
ments based on preprocessing of queries is offered in [KIM8Ob] as a first-cut sol-
ution to this problem. The first (or compile-time) stage is a compile-time
analysis of the query and database characteristics. It consists of two phases:
Phase C.1 and Phase C.2. Phase C.1 determines an optimal set of indexes and sorted
copies of relations, while Phase C.2 derives an optimal sequence of groups of que-
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ries and data manipulation statements for simultaneous processing. Compile-time
analysis of a given set of queries makes use of query characteristics and the
access paths for processing each of the queries which a conventional single-query
optimizer has determined.

The second (or run-time) stage executes the program which contains the set of que-
ries and data manipulation statements. This stage in general must also consist of
two phases: Phase R.1 and Phase R.2. Each group of queries and data manipulation
statements selected for simultaneous processing is executed during Phase R.1 in
the order determined during the compile-time stage. The results of the preproc-
essed queries are stored on the disk and the initial program is modified to
replace all preprocessed queries with references to their stored results. Those
queries which require unique access paths, which other queries cannot also take
advantage of, may be excluded from processing during Phase R.1. During Phase R.2
the modified program is run in order to process such queries and to further proc-
ess and output the results of the preprocessed queries.

During Phase R.1 the main-memory buffer is partitioned into three areas: an input
area to hold the data pages that contain tuples of the relation(s) and secondary
indexes on the relation(s); a program area to hold all the procedures required for
processing a given set of queries simultaneously; and an output area to hold the
results of the queries until they are written to the disk.

The possibility of keeping the intermediate results (or temporaries) of a query
and using them in processing other 'similar' queries is explored in [FINK82].
This approach may be effective when a given set of queries consists of queries
that can be processed using the results of processing other queries in the set.

2 Optimal Use of Main-Memory Buffer Space

In [KIM80a] a new method of scanning relations is presented which takes maximum
advantage of available main-memory buffer space. This method, called the
nested-block method, is superior to the nested-iteration method for computing the
product of relations, and can often outperform the merge join for computing the
join of relations. It is shown in [KIM81] that the method is usually also superior
to the existing method of computing the division of a relation by another
relation. In order to demonstrate the performance enhancement that a systematic
use of main-memory buffer space may bring about, this new application of the nest-
ed-block method is illustrated here.

The binary division of a relation of degree 2, R1(Cl, C2), by a unary relation,
R2(C2), yields a unary relation Rt(Cl). The quotient, Rt, can be obtained by
grouping the dividend, R1, by the values in the C1 column, and extracting the C1
values from each group of tuples that contain in the C2 column all the values of R2.
Since the dividend needs to be grouped by the values of the quotient column, sort-
ing of the dividend relation has been suggested as a method for implementing the
relational division. The algorithm below provides a description of the use of the
nested-block method (in conjunction with hashing) for implementing the binary
division of R1 (C1l, C2) by R2 (C2).

Consider dividing R1 by R2, shown below. Assume that the values in the C2 column

of R1 and C2 column of R2 are drawn from the same domain. That is, the Cl column
of R1 is the quotient column for the division.
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R1 R2

C1 C2 C2
c x3 x1
b x1 x2
a x2 x2
a x3 x3
b x3
a x1
a x2
b x4
c x1
b x5

1. Duplicates, if any, are removed from R2. -

2. An initially empty list is constructed for each C2 value in the duplicate-free,
R2'.

3. For each Rl tuple, if the C2 value matches a C2 value in R2', the Cl value of
the R1 tuple is appended to the list for the C2 value of R2'; otherwise, the R1
tuple is discarded.

4. After R1 has been completely scanned, each of the resulting lists of Cl values
is sorted and duplicates removed. The following three lists are obtained.

x1l: a, b, ¢
X2: a
x3: a, b, c

5. Those C1 values of R1 that appear in every list belongs to the quotient of the
division of Rl by R2. This step in effect merge joins all the lists. This is
one more reason why each of the lists is sorted on step 4. For the present
example, only one value, 'a', is inserted into the quotient of the division.

The I/0 cost of the nested-block method of computing the division of R1 by R2 is
expected to be just P1 + P2, where P1 and P2 are the size in pages of R1 and R2,
respectively. In contrast, the conventional, approach based on sorting requires
2*Pl*log P1 + 2%P2*log P2 + P1 + P2, where log is to the base m when an m-way merge
sort technique is used.

3. Optimizing SQL-like Nested Queries

One of the most interesting features of SQL is the nesting of query blocks to an
arbitrary depth. Nesting of query blocks makes it possible to generalize a simple
predicate of the form 'column operator value' to 'column operator query',
'query operator query'. Without this capability, the power of SQL is consider-
ably restricted. In [KIM82] a query nested to an arbitrary depth is shown to be
composed of five basic types of nesting. Four of them have not been well under-
stood and their implementation in System R suffers from the use of the inefficient
nested-iteration method. Alternative ways of interpreting queries which involve
these types of nesting have provided the basis for the algorithms developed in
[KIM82], which transform the queries to equivalent nonnested queries which exist-
ing optimizers are designed to process more efficiently. The algorithms are also
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combined into a coherent strategy for completely processing a general query of
arbitrary complexity.

A nested predicate may cause one of four basic types of nesting, according to
whether the inner query block, Q, has in the WHERE clause a join predicate that
references the relation of the outer query block and whether the column name in
the SELECT clause of Q has associated with it an aggregate function (SUM, AVG,
MAX, MIN, COUNT). A division predicate yields a fifth basic nesting.

One difficulty which [KIM82] does not fully address is the semantic ambiguity
associated with duplicate tuples that result from evaluating the inner query
blocks. Presently, in order to guarantee semantic equivalence of a nested query
and its nonnested counterpart, the nonnested form of the query must be processed
by first performing the projection and restriction operations on the relation cor-
responding to the relation referenced in the inner query block of the nested
query.
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ABSTRACT

Nearly all cost analysis for query evaluation make several
uniformity assumptions for modelling data base contents and data
placement on devices. We describe how these assumptions often
lead to upper bounds on the true costs. We also discuss batching
queries to reduce the system workload, and we comment on our
current interests in query evaluation in distributed data base
environments.

1. Irnplications of Uniformity Assumptions

Most of the analytic models used in data base performance evaluation are
based on the following assumptions concerning data base contents, data place- .
ment on devices and user requests: 1) The attribute values of the records of a
file are uniformly distributed over the domain of valJues of each attribute, and
attribute values of any two attributes are independent. We will call this the
uniformity and independence of attribute values in the file assumption. 2) The
likelihood that a block contains records qualifying in a query is the same for
any block of the file. We will call this the random placement assumption. 3)
The user queries in a time period are uniformly distributed over all the attri-
bute values. We will call this the wuniformity of atiribute values in queries
assumption.

These assumptions may be unrealistic in some actual data base environ-
ments. Often data bases describe populations such as the employees of an
organization, the students of a university, the people under security surveil-
lance. In contrast to the uniformity and independence of attribute values
assumption, populations tend to have only a few members with extreme attri-
bute values, and the values of their attributes are often correlated. The ran-
dom placement assumption may also be unrealistic in certain environments.
Consider an employee data base where new employee records are inserted at
the end of the file. In this data base, records that qualify in queries asking for
employees with high salaries, high responsibility levels and many years of
experience are more concentrated at the begining of the file rather than being
uniformly spread over the blocks of the file. Such non-uniform distributions of
the qualifying records in a query over the blocks of a file may also occur in
clustered files as result of correlations and other dependencies among the clus-
tering attribute and the other attributes of the file. Finally, the assumption of
uniformity of attribute values in queries may be unrealistic in certain .
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environments because users may be more interested in a subset of the attri-
bute values (for example high salaries). In [CHRIB1] we present evidence from
actual data base environments that these assumptions often are not satisfied.
However, these assumptions are easy to use in analytic models, and in some
cases they are approximately satisfied.

Since these assumptions are widely used in data base performance evalua-
tion, it is important that we understand the impact on data base performance
of using these assumptions when they are not actually satisfled. We have shown
that these assumptions lead to cost estimations that are often pessimistic.

Some of the results presented in [CHRIBRa] are the following: The block
access cost function is

c(Pf. - PP = 1°+f(1—(1—ﬂ-°)")
i=1

where n is the number of records qualifying in a query Q, M is the number of blocks in
the file, I2 is the cost of accessing the indices, and P,,Ois the probability that Q accesses
block i. This function has the property of being “‘Schur concave” [MARS79]. Schur
concave functions have some important majorization properties. As a result of being
Schur concave the above function acquires higher values as the probability distribution

becomes less skewed, and it maximizes for a uniform distribution P? :I} Thus the

random placement assumption is pessimistic. The difference in the cost can be high.

An analogous result has been shown for the distribution of attribute values.
For uniform queries over all the values of an attribute, the average block
access cost function is Schur concave with respect to the distribution of
records over the attribute values. Thus the more skewed the distribution, the
less the expected cost. The average cost is greatest for uniform distributions of
attribute values. Since it is well known that in many actual data base environ-
ments skewed distributions of attribute values are common, this assumption is
also pessimistic.

Similar results have been obtained for the independence of attribute
values assumption. Uniformity and independence of attribute values have also
been shown to be pessimistic when the cost function is the number of attribute
values which participate in a join (following a selection).

These results have some important implications for data base perfor-
mance. For performance predictors for data base designs, they suggest that
large errors may be introduced by using these assumptions. For relational
query optimization, these results imply that optimizers based on these assump-
tions will choose exhaustive strategies (like sequential scan or sorting) more
often than necessary. For data base design, these results imply that exploita-
tion of non-uniformity and dependencies of attribute values, non-random place-
ment of qualifying records in the blocks of a file, and non-uniformity of queries
could reduce the overall system cost.
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2. Batching Queries

The number of users that access a commmon file at one time may be large.
From the systems point of view, batching of requests nearly always reduces the
work. Thus for overloaded sites batching of requests may be necessity rather
than choice. From the on-line user’'s point of view, the desirability of batching
depends on its effect. In order to batch a number of queries a waiting period is
required. On the other hand, since the time required to process a batch of n
queries is less than the time required to process the n queries individually, and
because the load of the system decreases, the average response time may
decrease [SHNE76]. This is more realistic in high activity environments where
the waiting period is short.

Batching of requests jis easier and more profitable for sequentially
accessed files than for tree structures. When the levels of the tree are many
the probability that more than one requests refer to the same path is small and
therefore the profitability of batching decreases. Moreover, updates are
difficult to batch in B-tree organizations because as result of the update other
nodes in highar levels of the tree may have to be accessed [SHNE76]. Batching
becomes even harder for multiattribute queries because a number of tree
structures may have to be accessed and the resulting pointers to be merged.

When the number of queries batched is very large, sequential scan of the
file is an alternative, possibly more profitable strategy. However, for on line
environments where the number of batched requests cannot be very large
without deterioration of responce times, sequential scan of a large file may be
an expensive strategy.

We have investigated an alternative approach [CHRIB2b]. We use an access
file which is much smaller than the file itself as an access mechanism. The
access file contains abstractions of the attribute values of the attributes of the
file. The access file is sequentially scanned to provide pointers to the qualifying
records of the file. A superset of the qualifying records is retrieved and exam-
ined for gqualification before it is returned to the user. As a result of the
sequential scan batching of queries becomes easy, and since the access file is
small, more profitable than the sequential scan of the whole file for a moderate
number of queries in the batch. Moreover, the system can make efficient use of
its buffers.

In this environment the parameters of the access file design depend on the type and
distribution of the user requests as well as on the data base contents. Closed form
formulae for the optimal choice of parameters have been derived. We have used a similar
access method in an environment where queries may refer to non-formatted data as well

[TSIC82], [CHRI82¢].
3. Distributed Query Processing

We are also investigating some problems in distributed data base environ-
ments. Our model is a star network environment with (partially ) replicated
data. Previous approaches examining query evaluation in this type of environ-
ment have not considered queueing delays introduced in the communication
lines. However, queries submitted in a satellite may be processed in the satel-
lite or in the central site depending on the communication delays due to
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queueing as well as on query type, data base contents, and speed of devices.
The performance model should take into account all these factors.
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1. Introduction

Since an increasingly important part of information processing today
involves the taking of counts, sums, averages, and other statistical or aggregate
quantities, we have been investigating the access path selection problem for
these statistical queries., The language we have been using is the "Abe" statisti-
cal query facility being developed at the University of Wisconsin. The Abe query
language is powerful, yet simple. It is a pure relaticnal calculus language with a
friendly full-screen user interface.

It turns out that the access patterns in computing a query having aggre-
gates are virtually identical to those encountered in computing a simple join.
We use three scan procedures for computing aggregates: one is like a file (or
segment) scan; one is analogous to an index scan; and one is similar to a merg-
ing scan. The first two types of scans combine to form a nested loops join.

The rest of this report is divided into two parts: The first part briefly
describes the Abe language, and the second part discusses Abe access paths.

2. Abe Background

Space limitations do not permit us to give an extensive description of the
Abe query language. We will give a brief introduction to the language and a few
examples. More examples can be found in [KlugB1].

Abe (Aggregates by example) is a domain calculus language with aggregates.
It uses 2-dimensional tables as QBE does, but the methods for forming aggre-
gates are more general, and the semantics are rather simple.

In more detail, an Abe query consists of a top-level query and some number
of subqueries in a tree structure. A top-level query or a subguery consists of an
output list, an optional conditicn box, and zero or more relation tables. An out-
put list is simply a list of items. A condition boz is a list of conditions, each con-

dition being a pair of items connected by one of the operators "=, "#", "<,
"< 'Y or =", Arelation table for a relation R(A,B,C,...) is a table labeled 'R’
having one or more rows and having columns labeled AB,C... An ifem

represents a single value and is used to fill in the above tables and lists. It is one
of the following four objects: a constant such as the number 10 or the string
"joe'"; a wvariable which is an identifier such as gmana (single underlining indi-
cates variables), or a fized variable which is also an identifier such as
(double underlining indicates fixed variables).” Fixed variables only appear in
subqueries where some parent query has an ordinary variable of the same name.
Finally, an aggregate expression (or simply, an aggregate) is an aggregate func-
tion (count, max, min, ave, sum) followed by a column indicator (except for
count) followed by the name of a subquery.

*This work was supported in part by NSF Grant MCS8102864
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Suppose we have the following relations:

division{dvname,manager, budget)
department(dname, division, manager, budget)
employee(ename, salary, dept, seniority)

We could ask the following query:

How many divisions have more then 1000 employees and a budget less than

850000007

This query would be expressed in Abe as in Figure 1. (each level is a separate

“screen” or "window" on the terminal):

output list

conditions

Emt (BIGDIVS> I

|

|

l

|
)

output [ist

conditlons

lase

count (DIVEMFS) > 1880

1

I bud < 5822002

1

—

[;ivlslon dvname manager budget
div kud

output list conditions

[eee l i

[deparlmonl dname divicion |manager
dep div

[;;p|oyae enome calary dept senlority |recrultaer
emp dep
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The rules for evaluating a query such as this one are briefly:

(1) Find a match for rows in the relation tables with tuples in the database.
Constants match only themselves. Variables match anything subject to the
condition that all cccurrences of the same variable must match the same
value. Fixed variable matching is described in the next paragraph.

(2) Fvaluate conditions in the condition box. Evaluate any aggregates by
replacing fixed variables in the subquery by the current values of the
corresponding ordinary variables.

(3) If the conditions are all true, generate an output list tuple.

(4) Repeat steps (1)-(8) until no more matches are found.

3. Abe Access Paths

In this section we give the basic ideas involving access paths for evaluating
queries with aggregates.

First consider the two main implementations for ordinary joins [SELI79]:
the sort-merge and the nested loops algorithms. To join relations R and S on
columns X and Y, resp., using a sort-merge, R and S would first be sorted on
their join columns if necessary, and then simultaneous scans would be made on
both relations, joining tuples in blocks having the same join column value:

R S R S
5 2 g b 0 C n b 0 0 n
b 0 5 h SORT q O 0 k MERGE b 0 0 k
c 5 0 n{ ™™ |e 3 2 g| =% 1q 0 0 n
d 4 4 p d 4 3 my{ concat- |q 0 0 k
e 3 0 k a o 4 p enate e 3 3 m
qg O 3 m c 5 5. h d 4 4 p
a 5 5 h
¢ 5 5 h

Nested loops joins generally require an index on the inner relation. To do the
above join on R and S using a nested loops algorithm with S as the inner relation,
a scan is made on R, and for every qualifying tuple t in R, the X value of t is used
as an entry value into the index on column Y of S. The index gives the tuple ids
for all tuples in S having the same value in Y, and a scan returns these tuples.
They are concatenated with t and output:

NESTED LOOPS

R 0 )
/_—M
scan A scan __— 0_ ]

o e B and
b 0 concat- 0T "
~--1 - - et enate — B

There are two important points to understand in applying sort-merge and
nested-loops algorithms to access paths for aggregates: The first is that (at
least in Abe) aggregates are almost never computed by themselves; they are
always applied to some subquery and their values are used in a parent query in
the condition box or the output list. Thus we can consider an aggregate compu-
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tation as a binary operation of joining the subquery aggregate values to the
parent query tuples. The second point is that the access patterns for computing
aggregates are almost identical to those for computing ordinary joins. For
example, to compute the join of department with employee, we need to, for
every department tuple, access all related employee tuples and output the join
tuple. To compute the query which lists departments having more than 100
employees, we need to, for every department tuple, access all related employee
tuples and compute the count. Thus we have aggregate sort-merge and aggre-
gate nested-loops algorithms. Pictures for these algorithms can be obtained
from the above pictures by replacing "concatenate” by 'accumulate’. For

example, for each department tuple, we access all related employee tuples and
increment a counter for each employee tuple.

Now we will briefly discuss when an aggregate sort-merge might be better
than an aggregate nested-loops, and vice versa. In general, a sort-merge is
better when a high percentage of the tuples in the specified relations will parti-
cipate in the output. A nested loops is better when a small percentage of the
tuples in the specified relations will participate in the output. Consider the two
queries (expressed in English): Q1: List all departments and their employee
counts. QR: List departments with budgets in the highest 10% of department
budgets and their employee counts. If we used a nested loops to evaluate Q1,
employee pages would be accessed many times, leading to an inefficient access
path. If we used a sort-merge for Q2, the work of sorting the employee relation
would be 90% wasted since only 1/10-th of the employee partitions would be
selected. This has been known for some time for ordinary joins, but it has not
been generally recognized that the same rules apply for computing aggegates.

Many details of the access procedures, their cost functions, and several
examples can be found in [KLUGBZ2].

4. Current and Future Work

We are currently working on an implementation of access path selection
using these ideas. We still need to consider how ordinary joins interact with
aggregate computations. In the first example of this paper, there is a subquery
which is an argument to an aggregate and which itself contains a join. There
may be several ways to evaluate this query efficiently.
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Abstract

Relational query optimizers generally take a two-step approach to
generating a data access strategy for a query. First, they develop a set of
possible join strategies (J-strategies). Second, they refine their strategies
by considering computation graphs showing data movement, caching, sorting,
index creation, and join implementations at the physical level (P-strategies).
Each optimizer has a characteristic strategy space -- the potential
J-strategies and P-strategies it considers to respond to queries.

We briefly characterize our J-strategy space [ROSE82a], and compare the
J-strategy spaces of different optimizers. We then describe a virtual machine
capable of supporting the P-strategies from all the optimizers we have seen
(except for operations on unnormalized objects). Finally, we comment on
efficiency issues in strategy space generation and searching.

Two-Level Strategy Spaces

Given a query, relational query optimizers generally take a two-step
approach to data access strategy generation. First, they develop a set of
possible join strategies (information combination patterns). We may view
these strategies as being supported by a virtual machine called the abstract
join machine. Second, perhaps interleaved with J-strategy generation, they
refine their strategies by considering data movement, caching, sorting, index
creation, and join implementations at the physical level. We may view the
resulting computation graphs of operators (P-strategies) as being supported by
a virtual machine called the abstract physical machine (P-machine). Cost
models refer to the P-machine.

Each optimizer has a characteristic two—level strategy space =-— the
potential J-strategies and P-strategies it considers to respond to queries.
The two-level view makes it easier to give fairly uniform descriptions of the
set of strategies searched, explicitly or implicitly, by a given optimizer.

In [ROSE82a], we suggest implementing a query optimizer which allows a full
range of P-strategies for each Jjoin in a J-strategy. Enhancements to the
strategy space may occur at either level without affecting the other. Joins
involving indexes can be added at the J-strategy level, for example, or a new
join implementation or storage structure at the P-strategy level.

Achieving Leverage By Extending The Use Of Joins

In [ROSE82a], the basic joinable data objects are tables, collections of
identically structured first normal form objects accessed by the run-time
system. Under this fairly abstract definition, not only relations but also
certain indexes, Codasyl set links, and other direct access structures (DAS's)
may be regarded as joinable tables.
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We consider a number of sophisticated DAS processing techniques, which
greatly broaden the J-strategy space searched, and reducer I/ costs
substantially for some queries. Two DAS's may be joined (on value or pointer
fields) to produce an access list table, which no longer supports keyed
access, but is a joinable entity. Thus an access list table may be joined
with an underlying table. A DAS may also be joined with a foreign table
(semijoin).

We recognize DAS's which contain all fields required by the query from
their underlying tables, and may therefore be referenced instead of the
underlying tables. Such DAS's (and access list tables) are called shadow
tables. '

Codasyl record types may also serve as tables. In [ROSE82b], we show how
Codasyl set memberships can be represented by set-based join predicates.
([MANO82] uses a similar approach.) The 1link structure acts as a DAS which
supports the join. This approach allows the full range of Jjoin
implementations and access strategies in the P-strategy space to apply to
Codasyl set processing. It is also possible to use "artificial" joins to
obtain a relational view of hierarchical data stored positionally without
explicit pointers (e.g. CBOL records, PL/1 structures).

By extending its concept of a join to a variety of situations where
information is being combined, an optimizer can obtain more generality and
flexibility for little additional cost in code and complexity.

Comparing J-Strategy Spaces Of Different Optimizers

Some factors which yield a large J-strategy space are allowing multiple
temporary results to exist, considering a large number of consecutive joins
before choosing which join is to be performed first, and extending joins to
model sophisticated manipulations of DAS's and Codasyl set traversals. Of
course, larger strategy spaces are a mixed blessing, usually requiring more
time to implement, generate, and search, so there is merit in imposing
restrictions on them. :

We will compare the J-strategy spaces of several current optimizers. IBM's
System R [SELI79] considers implicit join trees whose left subtrees represent
successive accunulated temporary results, and whose right subtrees consist of
single relations joined in one at a time. Multiple temporary results cannot
exist. Since each left subtree always represents the outer loop of a join,
and each right subtree the inner, Jjoin implementations in a System R
P-strategy depend on the positions of operand tables in the parent J-strategy.
In a sense, the two levels of the strategy space are not orthogonal. System R
also recognizes (but does not construct) shadow tables.

The University of California's INGRES system [WONG76] picks the cheapest
join to do first, processes that join, and then reexamines the remaining
joins. While INGRES can in theory generate any possible tree, in fact it
generates very few alternatives with its "greedy" lookahead heuristic.
(Actually, the tuple substitution technique leads to a J-strategy which is
acyclic but not a tree when one substitutes for a relation which participates
in more than one join.) INGRES's interpretive strategy allows more accurate
cost estimation than in System R, since the sizes of intermediate results are
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known, but System R considers entire access strategies before committing
itself to the first join. Join implementations in INGRES's P-strategies are
not independent of their parent J-strategies, since a merge scan may be used
only for the final join. All preceding joins are done by tuple substitution,
which is equivalent to a nested loops implementation.

An interesting variation of the INGRES heuristic appears in the ADAPLEX
design of Computer Corporation of America [CHAN81]. A compile-time parameter
called the "optimization level" is set to a value n. The optimizer finds the
cheapest n joins and performs them first, regardless of whether the joins are
connected. Then all remaining sets of n joins are considered, and so on. If
n=1l, this is the INGRES heuristic. '

Our optimizer design [ROSE8B2a] considers all join trees (i.e., allows
multiple intermediate results of arbitrary complexity), and includes certain
DAS's and access list tables as joinable entities in J-strategies, permitting
semijoins and index intersections to be generated. The expanded INGRES
optimizer [KOOI82] takes a similar approach to our design (the commercial
version no longer uses tuple substitution), although it does not dynamically
build new indexes or consider Codasyl record and set type processing.

A Simple But Powerful P-Machine

Recall that an optimizer's P-machine is the abstract physical machine which
supports the operators appearing in P-strategy computation graphs. A
well-designed P-machine should support a small set of primitive operators.
The operators should be at a high enough level of abstraction to hide
unnecessary details of data access and manipulation from the optimizer.
However, they should be versatile enough ard at a sufficiently 1low level to
express a broad range of access strategies, including, if required, strategies
for environments such as distributed systems, database machines, and systems
where data may be stored under several different data models.

In [ROSE8B2a)], we define a P-machine which supports four operators on tables
—- scan, join, sort, and create direct access structure (create-das). Tables
are collections of identically structured access records, which are first
normal form data objects accessed by the run—-time system. The operators take
tables into tables. The operators are partial (do not apply to every physical
state of every table), amnd some have several implementations, each with
different input requirements. The join operator includes merge scan and
nested loops equijoins [SELI79], and could also include other implementations
such as nested blocks [KIM80]. We regard these as different implementations
of the same operator, since they produce the same 1logical result in terms of
information combination, although the sort order and other physical attributes
of the result may differ. :

Tables may be on disk (d), in main memory (m), or in stream state (s)
(equivalent to tuple-by-tuple passage through a main memory buffer). The scan
primitive, used to move tables from one location to another, has two
implementations. Sequential scan moves tables to and from stream state
(&->s, m——>s, s=-->d, s—>m). Transitions between disk and main memory are
assumed to pass through stream state. Das-scan uses an existing index, hash
table, Codasyl set 1link, or other DAS to bring a table into stream state
(d->s, m->s). Here the DAS does not act as a table, but as a physical
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access accelerator. There is no separate packaging of Select and Project
operators as in the relational algebra, because applicable predicates and
projections are applied (essentially for free) by the scan operator
(duplicates are not removed). In a distributed database, a version of the
scan operator would be used for site changes.

Sort sorts its operand table (s——>s), amd create-das caches its operand
table (s-->d, s—-->m) and as a side effect creates a stream—state DAS on it.
Stream state is a convenient way for operators to interface, and saves the
cost of creating temporaries. In the expanded INGRES optimizer [KOOI82], sort
and create—das are combined in a "Reformat" operator.

Except for manipulations of non first normal form data objects
(e.g. indexes in the design of [YAO79]), the P-machine described above is
capable of supporting the strategy spaces of all the optimizers we have seen
[CHAN8l1], [KOOI82], [MAKIS8l], [SELI79], [WONG76].

Note that tables and the operators defined on them form an abstract data
structure. Since certain DAS's may be regarded as tables, the four primitive
table-manipulation operators apply to them as well as to base relations. For
example, an index may be sorted on its pointer field to make access to its
underlying table more sequential.

Generating And Searching Strategy Spaces —— Efficiency Issues

A P-strategy is a computation graph, a directed, acyclic graph whose input
nodes represent tables available at the start of the computation, and whose
interior nodes represent P-machine operators and intermediate tables. The
P-strategy space can be represented by superimposing all alternative
computation graphs for the query. During superimposition, intermediate tables
which are equivalent with respect to future processing of the query are
combined.

This formulation permits the use of standard graph searching and
manipulation techniques by the optimizer. The most important of these is
cost-based -pruning, a form of dynamic programming which eliminates all but the
cheapest P-strategy path leading to each intermediate table. This enables us
to find the cheapest in a large set of P-strategies without necessarily
generating them all. '

Where J-strategies and P-strategies are generated in an interleaved
fashion, it is possible to delay investigating P-strategies for joins which
produce relatively large intermediate tables, hoping to find cheaper
P-strategies involving smaller tables. Intermediate table sizes may be
calculated from initial table sizes and predicate selectivities as
J-strategies are constructed. »

Of course, the easiest way to 1limit the size and complexity of the
P-strategy space is to limit the size and complexity of the J-strategy space.
For example, joins of DAS's with another table may be restricted or bypassed

entirely, or the optimization level may be lowered in a CCA-style optimizer
[CHANSL].

A number of miscellaneous heuristics may help as well. Adaptive tuning

59



techniques [REIN81] may be used to dynamically adjust the J- and P-strategy
spaces based on the characteristics of the incoming query stream, or to adjust
cost model parameters (such as the CPU/ I/0 cost tradeoff) based on current
resource utilization. Thresholds may be set to avoid spending more
optimization time than the current best P-strategy would require to actually
execute.

Summary

We have examined the common two-step approach to relational query
optimization, where join strategies (J-strategies) are generated first, and
then refined into computation graphs composed of data movement, caching,
sorting, index creation, and join implementation operators at the physical
level (P-strategies). We may view P-strategies as being supported by a
virtual machine called the abstract physical machine (P-machine).

We briefly characterized our J-strategy space [ROSE82al, and compared the
J-strategy spaces of different optimizers. We then described a P-machine
capable of supporting the P-strategies from all the optimizers we have seen
(except for operatlons on unnormalized objects). Finally, we commented on
efficiency issues in strategy space generation and searching.
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Workshop Announcement On
Self-Describing Data Structures For Information Exchange

Time: October 27 & 28, 1982
Location: University of Maryland, College Park, Maryland 20742, USA
Sponsored by: Department of Computer Science, University of Maryland

NASA, Goddard Space Flight Center, Greenbelt Maryland

Program Committee: Nick Roussopoulos, (Chairman), University of Maryland
Richard desJardins, Computer Technology Associates
Edward P. Greene, NASA, Goddart Space Flight Center
John Mylopoulos, University of Toronto

The notion of a self-describing data structure is intended to be used as an
information exhange protocol as well as a model for managing large bodies of
knowledge about data. Some of the most important properties of a Self-Describing
Data Structure (SDDS) are briefly outlined below:

An SDDS captures its description in its body. The description must be such,
so that very little external (meta) knowledge is required to interpret the SDDS.
Restructuring of an SDDS is done via a set of disciplinary operators which quaran-
tee that the results of applying them on an SDDS is also an SDDS. The semantics
of the results and the descriptions of the derived SDDS are inherited from the
descriptions of the operands. The evolution of an SDDS is captured in its
description by including its derivation, i.e. the operand(s), the operator used to
derive the result SDDS, the time of derivation, and the name of the user. Thus,
from the SDDS description, one can follow its derivation and the derivations of
its ancestors to obtain a complete history of its existence.

A Self-Describing Model is a data description management tool for an SDDS.
It maintains data descriptions and their evolution through time. This is in con-
trast to the conventional database models and management systems which only deal
with changes in the data values but not changes in the data (schema) description.
It also differs from a data dictionary system because the latter does not expli-
citly model time, data description evolution, and deductive mechanisms for pro-
perty inheritance of these descriptions.

For the first workshop on SDDS we have solicited position papers on

models and modeling primitives of SDDS and knowledge evolution,
deductive mechanisms for property inheritance,

management tools for knowledge about data descriptions and its catalog,
techniques for dealing with multiple views of the same data and the
descriptions of these multiple views,

techniques for modeling user-to-data dynamic relationships and integration
of views, etc.

For more information on the workshop program contact Nick Roussopoulos, Dept.

of Computer Seci., Univ. of Maryland, College Park, Md 20742, Tel:301-U54-4251,
454.2001.

61



Call For Papers And Workshop Information
Seventh Workshop on Computer Architecture for
Non-Numeric Processing

Snowbird, Utah, March 6-9, 1983

Sponsored by: ACM SIGARCH, SIGIR, and SIGMOD
Computer Science Department, University of Utah

As the costs to design, implement, and maintain a
large scale system change from where hardware
costs predominate to where software costs do, it is
reasonable to explore computer architectures which
differ from the classic numerically-oriented machine.
Front end processors, performing protoco!
translations, are now common in data
communications systems, and a variety of backend
processors for database and information retrieval
applications are available or currently under
development. New architectures are being developed
for robotics, searching and sorting, artificial
intelligence, highly available systems, workstations,
and text processing.

In the past, this workshop has been a primary
avenue for those engaged in research and
development of a variety of specialized non-numeric
systems to discuss their current activities and future
directions. It has proved invaluable to students
conducting research in computer architecture,
allowing them to present preliminary results of their
work, and receive comments and suggestions from
others in the field.

Registration Information

The workshop will be held at the Snowbird Ski and
Summer Resort, located in Little Cottonwood Canyon
near Salt Lake City, Utah. Transportation is available
from the Salt Lake airport. The registration fee of
$300 includes double occupancy rooms for three
nights, breakfast, and the workshop banquet. The
remaining meals and any skiing expenses are the
responsibility of the participants. Rooms will be
available for check-in at 3:00 PM Sunday, March 6,
and the first workshop session will be held at 7:30 that
evening.

Because of severely limited space, attendance at
the workshop will be by preregistration only. Rooms
have only been reserved for the workshop
participants. If you wish to bring along family
members, you should contact the Workshop
Chairman or Snowbird as soon as possible. For

Workshop General Chairman:
Lee A. Hollaar

Department of Computer Science
University of Utah

Salt Lake City UT 84112

(801) 581-3203
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those wishing to arrive on Saturday, rather than
Sunday, a limited number of rooms are available, at
an additional $45.

To register for the workshop, write the Workshop
General Chairman by January 1, 1983, indicating your
name and affiliation, mailing address and telephone
number, your interest and background in computer
architecture for non-numeric processing, and whether
you have submitted a paper. Inciude the appropriate
registration fee ($300 normally, $345 for early arrival).
Acceptances will be sent out on January 15, 1983,
and registration checks for those we are unable to
accomodate will be returned. Priority on registration
will be given to those submitting a paper for
presentation.

Instructions for Authors

We invite papers on current or proposed work in all
areas of specialized computer architecture for non-
numeric applications, such as: data communications,
information management and retrieval, workstations,
highly available systems, robotics, artificial
intelligence, searching and sorting, and text
processing. Presentations will last from 30 to 45
minutes, with half the time devoted to the presentation
of the paper and half to discussion. In addition, a final
session, to be organized at the workshop, will consist
of a number of short presentations for those wishing
to present or discuss a concept, but unable to prepare
a full length paper.

Authors should to submit four copies of their paper
to the Program Chairman by November 15, 1982.
Papers should be approximately 5000 words in
length, and include a short abstract. Consideration
will also be given to extended abstracts of about 1000
words; appropriate references and figures should be
included. All submissions will be acknowledged and
authors will be notified of acceptance by December
31, 1983. It is anticipated that the workshop
proceedings will be published as a special joint issue
of the newsletters of the sponsoring SIGs.

Workshop Program Chairman:
Roger L. Haskin

IBM Research Laboratories, K52-282
5600 Cottle Road

San Jose CA 95193

(408) 256-6353



ANNOUNCING

The 3rd
International
Conference on

DISTRIBUTED
COMPUTING
SYSTEMS

Miami/Ft. Lauderdale, Florida ® October 18-22, 1982

SPONSORED BY

@ exx compuTeR soceTY

THE INSTITUTE OF ELECTRICAL AND ELECTROMCS ENGINEERS INC
in Cooperation with

information Processing

Society of Japan (IPSJ)

Institut National de

Recherche en Informatique

et en Automatique (INRIA)

SCOPE

The scope of this conference encompasses the technical aspects of specifying, designing, implementing, and
evaluating distributed computing systems. In such systems, there is a muitiplicity of interconnected processing
resources able to cooperate under system-wide control on a single problem, often with minimal reliance on
centralized procedures, data, or hardware. The location of computing resources may span the spectrum from
physical adjacency to geographical dispersion. The topics of interest include the following aspects of distributed

computing systems:

INCLUDING SIMD
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General Chairman
H. J. Siegel
Purdue Univ.
School of EE
West Lafayette, IN 47907
Program Chairman
Carl G. Davis
Ballistlc Missile
Defense Advanced
Technology Center
Tutorlal Chairman
K. H. Kim
Univ. of South Fiorida
Exhibits Chairman
Edith W. Martin
Deputy Undersec. of Def. (Res. &
Adv. Tech.), Pentagon, Rm 3E 114
Washington, D.C. 20301
Standing Committee Chairman
Charles R. Vick
Auburn Univ.
Awards Chairman
T.Y. Feng
Ohio State Univ.
Treasurer
Duncan H. Lawrie
Univ. lllinois - Urbana
Local Arrangements
H. Troy Nagle, Jr.
Auburn Univ.
Publications Chairman
Ben Wah
Purdue Univ.
Professional Socleties Liaison
S. Diane Smith
Univ. Wisc. - Madison
Publicity Chairman
Bill Buckles
Univ. Texas - Arlington

O SYSTEM AND HARDWARE ARCHITECTURE,

DECENTRALIZED CONTROL, EXECUTIVES,
AND OPERATING SYSTEMS

DISTRIBUTED DATABASES

LOGICAL AND PHYSICAL
INTERCONNECTION NETWORKS
SOFTWARE ENGINEERING AND
PROGRAMMING LANGUAGES

The conference will include technical presentations, panel discussions, tutorials & exhibits.

SURVIVABILITY, RELIABILITY, AND FAULT
TOLERANCE

SPECIFICATION, VERIFICATION, AND
VALIDATION

DESIGN METHODOLOGIES

VLSI-BASED SYSTEMS

ANALYSIS, MODELING, AND MEASUREMENT
COMPUTER COMMUNICATION
APPLICATIONS, INCLUDING SIMULATION

ogoooo o ad

TUTORIALS ‘

Complementing the Conference there will be two full days set aside for
tutorials. The following have been tentatively selected:

“Pragmatic View of Distributed Processing,” by Ken Thurber
“Microcomputer Networks,” by Harvey Freeman

“Fault-Tolerant Computing,” by Vic Nelson and Bill Carroll
“Decentralized Control,” by Bob Larson, Paul McEntira and John O’Reiley

PROGRAM COMMITTEE

Bob Arnold (Honeywell) Bill McDonald (Systems
Geneva Belford (U. Iil.)  Development Corp.)
Bill Carrofl (U. Texas-Arlington) Vic Nelson (Auburn U.)
Glenn Cax (General Peter Ng (U. Missouri) Clarence Giese (Dept.
Research Corp.) Dan Siewicrek (Carnegie- of Army AIRMICS)
Barry Gilbart (Mayo Clinic) Meiion U.) Bob Heath (U. Kentucky)
J. C. Huang (U. of Houston) Harold Stone (U. Mass.) Lana Kartashev
Robert Keller (U. Utah) Ken Thurber (Architecture (U. Nebraska)
Annetta Krygiel (Defense Tech. Corp.) Jack Lipovski (U. Texas-
Mapping Agency)

Bharat Bhargava
(U. Pittsburgh)
Doug DeGroot (1BM)

John Musa (Bell Labs)
Chong Nam (Systems
Control. Inc.)
C. V. Ramamoorthy
{UC/Berketay)
Aznigl Rosenfeid
(U. Maryland)
Steve Smoliar (Schium-
berger-Dotl Resaarch
Joe Urban (U. South-
westarn La.)

Larry Wittie (SUNY/Butf.) Austin)
Mike Liu (Ohio State U.)

Ken Batcher {Goodyear)

Intarnational Associats Chairpeople

Helmut Kerner, Austria Mariagiovanna Sami, Italy
C. M. Woodside. Canada Hideo Aiso, Japan

Paul Pearson, England J. Wilmink, Netherlands
Gerard Le Lann, France R. C. T. Lee, Taiwan with tennis, goif. swimming,
Herbert Weber, Germany Leah J. Siegef, U.S.A. shopping, and boating.

Additionat Program Committee Members will be chosen by the International Associate Chairpeople.

———.--—_—_—-——_--——-—-—__——-—_-——_
If you wish to receive a copy of the Advance Program for the Third Internationai Conference on Distributed
Computing Systems, clip and mail this coupon to: Harry Hayman, IEEE Computer Society, 1109 Spring
Street, Suite 201, Silver Spring, MD 20910.

CONFERENCE LOCATION
Diplomat Hotel in Hollywood,
Florida near the international
airport at Miami. Beachfront resort

NAME EMPLOYER

STREET

CITY STATE 2P COUNTRY
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