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Abstract—The problem of summarizing videos by short fin-
gerprints or hashes has garnered significant attention recently.
While traditional applications of video hashing lie in database
search and content authentication, the emergence of websites
such as YouTube and DailyMotion poses a challenging problem
of anti-piracy video search. That is, hashes or fingerprints of
an original video (provided to YouTube by the content owner)
must be matched against those uploaded to YouTube by users to
identify instances of “illegal” or undesirable uploads. Because the
uploaded videos invariably differ from the original in their digital
representation (owing to incidental or malicious distortions),
robust video hashes are desired. In this paper, we model videos
as order-3 tensors and use multilinear subspace projections,
such as a reduced rank parallel factor analysis (PARAFAC) to
construct video hashes. We observe that unlike most standard
descriptors of video content, tensor based subspace projections
can offer excellent robustness while effectively capturing the
spatio-temporal essence of the video for discriminability. We
further randomize the construction of the hash by dividing the
video into randomly selected overlapping sub-cubes to prevent
against intentional guessing and forgery. The most significant
gains are seen for the difficult attacks of spatial (e.g. geometric)
as well as temporal (random frame dropping) desynchronization.
Experimental validation is provided in the form of ROC curves
and we further perform detection-theoretic analysis which closely
mimics empirically observed probability of error.

Index Terms—video fingerprinting, hashing, digital signatures.

I. INTRODUCTION

With the emergence of video websites like YouTube and
DailyMotion in the past few years, content tracking and copy
right protection of multimedia files has gained increasing im-
portance. Video hashing or fingerprinting has hence assumed
significance as an algorithmic tool that can be used for anti-
piracy search of video content. Video hashing algorithms
constitute randomized video dimensionality reduction which
maps a video to a short digest called as its hash vector.
Unlike traditional hashes [1], video hashes are desired to be
robust, i.e. they must respond to “perceptual” changes to video
and not just its digital representation [2]. At the same time
for the hash to be meaningful it must reliably discriminate
between distinct video sequences. Besides discriminability and
robustness, security against adversarial attacks is desired in
video hashes which mandates that algorithmic techniques for
computing hashes from video sequences be randomized with
the help of a secret key akin to message authentication codes
(MACs) in cryptography [1].

The existing literature on video hashing comprises of two
main categories: The first class of methods are frame based
video hashing methods, that is each frame of the video is
treated as an image and state of the art image hashing tech-
niques1 are employed. The image hashes are then concatenated
or combined in a similar fashion to form a video hash [4]–
[6]. Lee et al. proposed a hashing method based on Centroid
of Gradient Orientations (CGO) whose central idea is to
extract direction (angle) information from the difference of
adjacent pixel values [4], [5]. Roover et al. proposed RAdial
projection based haSHing (RASH) [6] wherein they compute
the variance of pixel values on a set of lines articulated around
the center of the frame followed by a one-dimensional DCT
to get final hash. To make the video hash more economical,
they do the aforementioned procedure on “key” frames of the
video. Frame based hashing methods while simple to compute,
are well-known [7] to suffer from temporal attacks such as
(uniform/non-uniform) frame rate change - either incidental,
e.g. in video transcoding or intentional, i.e. deliberate removal
of parts of video to defeat hash algorithms. Key frame based
video hashing techniques [6] can further be attacked to loose
discriminability - since the resulting hash vectors will be
exactly the same as long as the attacked frames don’t coincide
with the frames that are used to calculate the video hash. The
value of temporal evolution of the video content is hence
critical for hashing, and recent effort has concentrated on
spatio-temporal video hashes [7]–[9]. A representative method
of this type is based on three-dimensional DCT which selects
the low frequency three-dimensional DCT coefficients as hash
vectors [7]. While the 3-D DCT based hash is spatio-temporal
and can offer benefits over frame-based hashing such as
increased robustness to temporal attacks, the geometric attack
(e.g. rotation, cropping) vulnerability of DCT and similar
transform domain (e.g. 3-D DWT) hashes [7] is a concern.

In this paper, we propose a new video hashing algorithm
based on modeling videos as tensors and using sub-space
projections of tensors, such as low-rank tensor approximations
via PARAFAC [10]. Formally, a tensor is a multidimensional
array. An order-1 tensor is a vector, an order-2 tensor is a
matrix. A video clip which has both image content in 2-D
and temporal evolution in the third dimension can be well
modeled by an order-3 tensor. Multilinear sub-space projection

1For a thorough review of image hashing, we point the reader to [3].



techniques such as parallel factor analysis (PARAFAC) enable
a rank-r approximation of the tensor as a sum of rank-1
tensors. For an order-3 video tensor, each rank-1 tensor is
made of an outer product of three vectors. We observe that
when r is really small, e.g. r = 1, these representations are
very robust to perturbations on the original tensor. Further,
the vectors in the outer product are interpretable in that they
correspond to the spatial as well as temporal components of
the tensor. To yield a secure hash algorithm, we perform a
random 3-D tiling of the video via overlapping sub-cubes
and compute low-rank tensor approximations (LRTAs). Our
randomization strategy makes a departure from existing spatio-
temporal video hashing techniques such as 3-D DCT [7]
which create a random basis on which to project the video.
Our randomization technique in fact can capture local video
components - hence guarding against adversarial temporal
desynchronization attacks.

The rest of the paper is organized as follows. Section
II-A provides background on low-rank tensor approximations
(LRTAs), in particular PARAFAC. The randomized LRTA
video hash algorithm is subsequently proposed in Section II-B.
Section III gives both empirically estimated Receiver Operat-
ing Characteristics (ROCs) curves for probability of error and
also provides a customized detection theoretic analysis which
shows remarkable agreement with experimental ROC curves.

II. HASHING BASED ON LOW-RANK TENSOR
APPROXIMATIONS

A. Low-rank Tensor Approximation

PARAFAC tensor factorization, which is a typical low-
rank tensor approximation method, can be considered as an
extension of matrix Singular Value Decomposition (SVD)
[10]. Specifically, rank-r PARAFAC factorization of an order-
3 tensor Y ∈ RI×J×K is:

Y ≈ Jλ; A,B,CK ,
r∑
i=1

λiai ◦ bi ◦ ci (1)

where ai ∈ RI , bi ∈ RJ , ci ∈ RK are component vectors
which are usually normalized such that the `2 norm is equal
to one, A ∈ RI×r is a matrix whose columns are ai for
i = 1 . . . r. B and C are defined similarly. ◦ denotes outer
product of vectors, which means that (1) is equivalent to

yijk ≈
r∑
l=1

λl · ail · bjl · ckl (2)

If the order-3 tensor Y represents a video, then the vectors ai
and bi, which correspond to decomposition results of frontal
slices of Y, will summarize the spatial information of the
video. Simultaneously, the vectors ci will encode how that
spatial information evolves over the temporal dimension [11].

Computing the PARAFAC factorization is equivalent to
solving the following optimization problem:

Jλ; A,B,CK = arg min
λi,ai,bi,ci

‖ Y−
r∑
i=1

λiai ◦ bi ◦ ci ‖2 (3)

where ‖‖2 denotes the norm of a tensor which is defined
analogously to the Frobenius norm of a matrix:

‖ Y ‖2=

√√√√ I∑
i=1

J∑
j=1

K∑
k=1

y2ijk (4)

The problem in (3) is non-convex, hence obtaining the global
minima is hard. A rich body of numerical algorithms exists for
computing the PARAFAC representation, viz. the Alternating
Least Squares (ALS) algorithm [12], as well as its many
variants and improvements [13].

B. Video Hashing Based on Low-rank Tensor Approximations

The formal statement of our algorithm is given as follows:

Algorithm 1 LRTA Video Hash
Input:

Query video Vq .
Output:

Hash vector hK (Vq) ∈ R(M+N+P )·r.
1: [Normalization] To make sure that all videos are handled

similarly, akin to existing video hashing methods [7], we
experimentally pre-determine a desired video size of I×J
pixels per frame with a total of K frames. Then, given
any query video Vq , temporally re-sample the video so
that it has exactly K frames. Perform spatial re-sizing
of each frame to RI×J , resulting in a normalized video
V ∈ RI×J×K .

2: [Randomization] Randomly select the locations of Q
overlapping sub-cubes Vi ∈ RM×N×P , i = 1 . . . Q,M <
I,N < J, P < K, so that they approximately cover the
entire video V - see Figs. 1(a), 1(b).

3: [Rank-r PARAFAC factorization] For each sub-
cube representing a sub-video Vi, calculate its rank-r
PARAFAC tensor factorization as in (3). This results in
3 sets of r vectors corresponding to the two spatial and
one temporal dimension(s). Via concatenation, collect the
spatial components into vectors xi ∈ RM ·r , yi ∈ RN ·r
. Similarly, the temporal components are collected in a
vector zi ∈ RP ·r for i = 1 . . . Q.

4: [Arithmetic averaging] The final hash hK is as follows:

hK =
[ ∑Q

i=1 xi

Q ;
∑Q

i=1 yi

Q ;
∑Q

i=1 zi

Q

]
∈ R(M+N+P )·r

Characteristics of the Proposed Algorithm:

• We guard against intentional guessing and forgery of
the hash by computing the LRTA hash from randomly
selected overlapping sub-cubes or sub-videos which alto-
gether roughly cover the whole video. That is, the loca-
tions as well as sizes of these sub-cubes2 are determined
by a pseudo-random number generator (PRNG). The

2For notational ease, the sizes of each sub-video/cube in Step 2 are defined
to be the same - they may be varied in practice to increase randomization.



(a) Randomization with secret key K1

(b) Randomization with secret key K2

Fig. 1. Randomly distributed overlapping sub-cubes in a video as determined
using two different secret keys K1 and K2.

secret key K serves as the seed to this PRNG. Because
the key is unknown to the attacker, the randomized loca-
tions and sizes of these sub-videos impart the necessary
entropy to the hash. Further, by defining smaller sub-
videos from which to compute the hash, we capture local
components of the video. This in turn greatly improves
the resilience of the hash against adversarial attacks of
temporal desynchronization where selected frames are
removed from the video to defeat the hash algorithm.
One example of the distribution of these sub-cubes under
two different keys is shown in Fig. 1, where 8 sub-
cubes ∈ R32×32×32 are selected randomly. For ease of
visualization, only 3 sub-cubes are shown in each video
∈ R64×64×64. Sub-cubes are overlapping because related
research in image hashing [3] shows that overlap can
make the hash more robust against estimation attacks.

• The averaging operator in Step 4 prepares vectors that
consolidate the spatio-temporal information from each of
the sub-cubes while keeping the hash to be a manageable
length for practical applications. Randomized linear com-
binations (with the help of the secret key K) could also
be performed in this step which can facilitate a robustness
vs. security trade-off.

(a) One frame of an original
video

(b) The same frame after
compression and AWGN

Fig. 2. Corresponding frames from an original video and its distorted version

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Illustration of hash robustness

A preliminary experiment is provided here which illustrates the
ability of the proposed hash algorithm to effectively capture
robust and informative spatio-temporal video features. The
video frame shown in Fig. 2(a) undergoes compression and
white noise addition resulting in the video frame in Fig. 2(b).
We address the video hashing methods in [7], [4], [6] as
DCT, CGO and RASH, respectively. All videos are normalized
to R64×64×64 based on which DCT, CGO and RASH hash
vectors are computed. For the frame based methods, i.e. CGO,
RASH, the number of features per frame (or key frame) was
calibrated such that each of these hashes ∈ R128. Likewise, a
robust set of 128 low-frequency 3-D DCT values as described
in [7] (barring the DC coefficient) was chosen. To maintain
approximate consistency in hash lengths across algorithms,
in our proposed algorithm we compute PARAFAC with rank
r = 1 on 8 (randomly selected) sub-videos ∈ R42×42×42 and
therefore synthesize an LRTA video hash ∈ R126. Figs. 3(a)
through 3(d) plot the actual hash vectors extracted from the
videos in Figs. 2(a) and 2(b) corresponding to the four hash
algorithms above against the index of the hash vector. The
correlation between the hash vectors of original vs. distorted
video is worth investigating in Figs. 3(a) through Fig. 3(d).
In particular, for the proposed LRTA video hash (Fig. 3(a))
this correlation is particularly well pronounced for indices 85
through 126 (the final 42 entries) because they largely encode
temporal information while the applied distortion is a spatial
attack applied to each frame.

Analogously we apply a temporal attack (with no additional
spatial distortion to the individual frames), i.e. temporal sub-
sampling3 by a factor of 4 to another video and visually
examine correlation between original and distorted hash vec-
tors in Figs. 4(a)-4(d). It may be inferred from Fig. 4(a) that
now the first 84 (spatial) coefficients of the LRTA video hash
are virtually indistinguishable from its attacked version. We
note that such characteristics are not exhibited by the hash
algorithms and corresponding plots in Figs. 4(b)-4(d). This
ability of the LRTA hash to discriminatively capture the spatial
and temporal information present in the video makes it robust

3The missing frames are estimated by linear temporal interpolation.



(a) LRTA

(b) 3-D DCT

(c) CGO

(d) RASH

Fig. 3. Plot of hash vectors (vs. index) extracted from an original video
and its attacked version. The spatial attack involved compression and noise
addition applied to each video frame.

against a wide variety of incidental as well as adversarial
attacks as formally validated in the next Section.

B. Quantitative Measures of Hash Deviation

We extensively test the LRTA video hash’s performance
under most typical distortions/attacks applied to video data.
This includes:
• Incidental signal and image processing attacks: E.g.

compression, random contrast changes, blurring and ad-
dition of white Gaussian noise (AWGN)

• Geometric attacks: E.g. Individual frame rotation, crop-
ping and rescaling.

• Temporal attacks: E.g. Frame rate change, temporal
desynchronization via random frame deletion.

Hashes were computed from a database of n = 1000
original videos obtained from YouTube and their respective
distorted versions. To facilitate evaluation, we define a quan-
titative measure

D =

∑n
i=1 ‖hK(Vi)−hK(A(Vi))‖

n∑n
i=1

∑i−1
j=1 ‖hK(Vi)−hK(A(Vj))‖

n·(n−1)
2

(5)

(a) LRTA

(b) 3-D DCT

(c) CGO

(d) RASH

Fig. 4. Plot of hash vectors (vs. index) extracted from an original video and
its attacked version. The temporal attack involved temporal sub-sampling by
a factor of 4. No other spatial attack was applied to individual video frames.

Here, Vi denotes the ith video in the database of size n, A(V)
denotes the attacked version of a video V. Since D represents
the ratio of the Euclidean distance between visually similar
videos and between visually different videos, the smaller D
is, better the performance of the algorithm. The characteriza-
tion of various attacks and corresponding quantitative results
(values of D) across the 4 hash algorithms discussed in Section
III-A are provided in Tables I and II respectively. From Table
II, it is readily apparent that the proposed LRTA video hash
is either the best or in the worst case the second best across
all the attacks. It is worth emphasizing that RASH owing to
its choice of radial features [6] exhibits excellent robustness
under rotation.

C. ROC Curves

In this Section, we provide detailed statistical evaluation for a
few carefully selected and particularly strong attacks. Receiver
operating characteristic (ROC) curves are commonly used to
compare the performance of different hashing algorithms. We
employ the widely used energy detector, i.e. the `2 norm of
the difference of hash vectors for making inferences. Given a
query video, we want to judge whether it is a visually different



TABLE I
INCIDENTAL AS WELL AS ADVERSARIAL VIDEO ATTACKS

Attack Parameter Setting
Compression Motion JPEG with quality factor 10

Contrast enhancement Increase contrast to 100(AVS7.1)
Blurring Circular averaging filter with radius 10
AWGN σN=110

Frame rotation 5 deg counterclockwise
Frame cropping 25% cropping

Frame rate change Subsampling by a factor of 2
Frame rate change Subsampling by a factor of 4
Frame rate change Subsampling by a factor of 8

Random frame deletion Deletion of 16 frames

TABLE II
NORMALIZED HASH DEVIATION UNDER DIFFERENT ATTACKS

Attack LRTA DCT CGO RASH
Compression 0.0097 0.0126 0.1281 0.0091

Contrast enhancement 0.4208 0.4693 0.4766 1.1265
Blurring 0.1293 0.0289 0.4137 0.3096
AWGN 0.3487 0.2138 0.5247 0.6023

Frame rotation 0.2003 0.4031 0.8924 0.1048
Frame cropping 0.6114 0.9103 0.6591 0.3526

Frame rate change (Factor 2) 0.1043 0.0810 0.2463 0.1770
Frame rate change (Factor 4) 0.1773 0.1857 0.3429 0.2855
Frame rate change (Factor 8) 0.2721 0.4089 0.4503 0.5000

Random frame deletion 0.1301 0.1719 0.2635 0.1600

video with the reference video or just an attacked version of
reference video. Clearly, this is a binary hypothesis testing
problem where we define hypothesis H1 to be that the query
video is similar with reference video while hypothesis H0 to
be that the query video is different with reference video. In
this setting, the miss and false alarm probability (respectively
PM and PF ) are defined as follows:

PM (τ) = Pr(‖ hK(V)− hK(A(V)) ‖> τ) (6)

PF (τ) = Pr(‖ hK(V)− hK(A(V′)) ‖< τ) (7)

where A(V) denotes the attacked version of a video V and V′

represents a completely different video.
We evaluate 4 distinct hash algorithms: the DCT, CGO

and RASH hash algorithms [7], [4], [6] and the proposed
LRTA video hash. The parameters for these algorithms are
as described in Section III-A so they are all approximately
the same length. A database that consists of 1000 good
quality videos was obtained from YouTube and used in our
experiments. Each video was normalized to R64×64×64 prior
to hashing. Our proposed algorithm implemented PARAFAC
tensor factorization using tensor toolbox provided by Sandia
National Labs [14]. The MATLAB code for all algorithms,
and finally the evaluation scripts for ROC Curves are available
at:http://signal.ee.psu.edu/VideoHashing.htm

We implemented and applied two severe geometric (spatial)
desynchronization attacks: 1.) random local bending, and 2.) a
composite attack comprising of severe MPEG4 compression,
random contrast adjustment, and rotation by 5 deg counter-
clockwise. Example video frames before and after the attack
are shown in Figs. 5(a)-5(c). The corresponding ROC curves
for the 4 hash algorithms are in Figs. 6(a) and 6(b). It may

(a) One frame of the
original video

(b) Frame after random
bending

(c) Frame after MPEG
4 compression, rotation
and random contrast ad-
justment

Fig. 5. Video frame under spatial desynchronization (geometric) attacks

be inferred from Fig. 6(a) that for the local random bending
attack (which involves several local rotations), RASH and
LRTA are the most competitive with RASH being mildly better
owing to its inherent robustness to rotation which has been
observed in past work [6] as well. Since CGO is based on
angle information, it is very vulnerable against random local
geometric bending [4]. Under the tough composite attack (Fig.
6(b)) , the LRTA video hash outperforms the others.

We also tested against a temporal desynchronization attack
which is representative of undesirable uploads of copyrighted
video content to YouTube. In this attack, half of the video
frames, i.e. 16 frames from both ends of the normalized
video (∈ R64×64×64), are randomly deleted. The ROC curves
across the 4 hash algorithms are plotted in Fig. 6(c) which
clearly establishes the temporal robustness of the LRTA video
hash. Unsurprisingly, the frame based hashing methods such
as RASH and CGO do rather poorly against such a strong
temporal attack. The spatio-temporal approaches, i.e. the 3-
D DCT [7] and proposed LRTA video hash do much better
with LRTA affording the lowest errors owing to its ability to
better preserve spatial information under temporal attacks and
localization as introduced by our randomness strategy.

D. Detection Theoretic Modeling and Validation

Video hashing is well modeled as binary hypothesis testing in
a detection theoretic setting. Here H0 represents the hypothesis
that the query video has “visually different” content from
the reference video V; correspondingly, H1 represents the
hypothesis that the query video is an attacked/distorted version
of the reference video V. Let y be the hash of the query video,
x be the hash of reference video, and z be the hash of an
arbitrary video that is “perceptually” different from V. Then,
consistent with (6) and (7), the following binary hypothesis
testing problem results:

H1 : w = n ∼ fw|x,H1
(w) = fw|H1

(w) (8)

H0 : w = z− x + n ∼ fw|x,H0
(w) (9)

where “|” denotes “condition on”. w , y−x and n denote the
noise on the hash vector due to the signal/image processing
attack. (8) is valid since noise n is assumed to be independent
of x. Experimentally we determine that w can be well modeled



by a multivariate Gaussian Mixture Model (GMM) comprising
of individual colored Gaussian components, i.e.

fw|H1
(w) =

M∑
i=1

ciri(w) (10)

M∑
i=1

ci = 1 (11)

fw|x,H0
(w) =

N∑
i=1

diqi(w) (12)

N∑
i=1

di = 1 (13)

where ri(w) ∼ N (µ1i,Σ1i), i = 1 . . .M and qi(w) ∼

(a) ROC Curves. Attack: Random Local Bending.

(b) ROC Curves. Attack: MPEG 4 compression, rotation and random contrast
adjustment.

(c) ROC Curves. Attack: Temporal desynchronization via random frame
dropping.

Fig. 6. Statistical Evaluation of Video Hashing Algorithms Via Receiver
Operating Characteristic (ROC) Curves.

N (µ0i,Σ0i), i = 1 . . . N . When using the energy detector
as in Section III-C, the detection statistic is a quadratic form

of multivariate colored Gaussian mixtures for which, an ana-
lytical closed form p.d.f (probability density function) is not
known. To circumvent this, we first estimate the GMM param-
eters {ci,µ1i,Σ1i}Mi=1 and {di,µ0i,Σ0i}Ni=1 using expectation
maximization (EM), and subsequently predict the theoretic
ROCs using numerical Monte-Carlo techniques. These numer-
ical Monte-Carlo estimates based on our detection theoretic
model are plotted for the LRTA Video hash algorithm in Fig.
6(b) alongside the experimental ROC curve and remarkably,
their agreement is near perfect.
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