
 International Journal of Advanced and Applied Sciences, 8(3) 2021, Pages: 100-111

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

100

Evolution of existing software to mobile computing platforms: Framework
support and case study

Adel Alkhalil *

College of Computer Science and Engineering, University of Ha’il, Ha’il, Saudi Arabia

A R T I C L E I N F O A B S T R A C T

Article history:
Received 8 September 2020
Received in revised form
23 November 2020
Accepted 25 November 2020

Mobile computing as ubiquitous and pervasive technology supports portable
and context-aware computation. To date, there exist a significant number of
traditional computing systems–running on the web and/or workstation-
based platforms–that lack features of mobile computing, including but not
limited to ubiquity, context-sensing, and high interactivity. Software that
executes on these traditional computing systems is referred to as legacy
software that can be upgraded to exploit the features of mobile technologies.
However, legacy software may contain critical data, logic, and processes that
cannot be easily replaced. One of the solutions is to evolve legacy software
systems by (a) upgrading their functionality while (b) preserving their data
and logic. Recently research and development efforts are focused on
modernizing the legacy systems as per the needs of service and cloud-based
platforms. However, there does not exist any research that supports a
systematic modernization of legacy software as per the requirements of the
mobile platforms. We propose a framework named Legacy-to-Mobile as a
solution that supports an incremental and process-driven evolution of the
legacy software to mobile computing software. The proposed Legacy-to-
Mobile framework unifies the concepts of software reverse engineering
(recovering software artifacts) and software change (upgrading software
artifacts) to support the legacy evolution. The framework follows an
incremental approach with four processes that include (i) evolution planning,
(ii) architecture modeling, (iii) architecture change, and (iv) software
validation of mobile computing software. The framework provides the
foundation (as part of futuristic research) to develop a tool prototype that
supports automation and user decision support for incremental and process-
driven evolution of legacy software to mobile computing platforms.

Keywords:
Software maintenance and evolution
Mobile computing
Legacy software
Software architecture
Software modernization

© 2021 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*Mobile computing empowers its users to exploit
portability, context-sensitivity, and enhanced
interactivity that is lacking in traditional computing
systems (Pejovic and Musolesi, 2015). The
increasing growth of mobile computing and rapid
adoption of mobile technologies is due to the
availability of embedded sensors (device’s
hardware) that exploit freely available apps (device’s
software) to communicate with remote servers
(device’s connectivity) to perform a multitude of
tasks on the go (Lane et al., 2010; Campbell and

* Corresponding Author.
Email Address: a.alkalel@uoh.edu.sa
https://doi.org/10.21833/ijaas.2021.03.013

 Corresponding author's ORCID profile:
https://orcid.org/0000-0003-3135-9174
2313-626X/© 2021 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Choudhury, 2012). For example, a mobile device’s
software (i.e., location tracking service) can utilize
the device’s hardware (i.e., GPS) to enable portable
and context-aware computing to support activities
that range from location-driven ride-hailing to
digital matchmaking and traffic route planning
(Campbell and Choudhury, 2012). As per GSMA’s
real-time tracker, currently, there are more than 8.9
billion mobile device connections that represent
approximately five times faster growth of mobile
connections than the human population
(Intelligence, 2016). However, to support the
sustainable growth of mobile computing
technologies, the traditional computing paradigms–
software systems that run on workstation or web
platforms–must be modernized so they can execute
on mobile platforms and benefit from mobile
computing technologies (Foss and Wong, 2004;
Sørensen et al., 2003). The software that runs on
traditional computing systems is referred to as
legacy software that may be developed/based on

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:a.alkalel@uoh.edu.sa
https://doi.org/10.21833/ijaas.2021.03.013
https://orcid.org/0000-0003-3135-9174
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2021.03.013&domain=pdf&

Adel Alkhalil/International Journal of Advanced and Applied Sciences, 8(3) 2021, Pages: 100-111

101

conventional or outdated technologies that need an
upgrade (in the context of mobile computing),
however; legacy software may contain critical data,
logic, and processes that are fundamental to the
operations of a particular domain (Khadka et al.,
2013; Jamshidi et al., 2013; Bennett, 1995). For
example, an online product selling store contains all
the product-specific data and logic to provide a web-
based interface to view, select and order the
products. However, such a system lacks context-
sensitivity (e.g., dynamic location information) and
portability (i.e., computation on the go) to offer
customized offers and recommendations based on
contextualized information supported by mobile
technologies. With the ever-increasing adoption of
mobile technologies and the existence of legacy
systems, there is a need to develop solutions that
enable or enhance the modernization of legacy
software so it can benefit from the features of mobile
computing (Sørensen et al., 2003).

Software evolution refers to a systematic change
implementation in the structure and behavior of the
existing software as per the changes in the system’s
requirements and operational environments (Mens,
2008). The terms evolution, migration, and
modernization are virtually synonymous, and all
refer to adaptive change (Williams and Carver,
2010). We explicitly use the term evolution that
refers to evolving an existing software as per the
new requirements or the needs for upgraded
functionality or quality of the software. For example,
Jamshidi et al. (2013) presented a survey that
highlights solutions that support structural and
behavioral evolution of legacy or existing software
systems to cloud-based services that can be managed
via cloud computing technologies and infrastructure.
The evolution of software-intensive systems can be
categorized into different types, namely perfective,
adaptive, corrective, and preventive evolution, with
further details of each type presented in Williams
and Carver (2010). In this research, we focus on
supporting adaptive evolution that refers to
upgrading or adapting a software’s structure and
behavior as per new requirements or needs of the
new platform. Specifically, we aim to propose and
develop a process-based and increment-driven
evolution of the legacy software systems to portable,
context-aware, and interactive mobile computing
platforms. However, to support such evolution, the
primary challenge lies with exploiting a systematic
reengineering approach (i) that upgrades software
functionality but (ii) preserves the critical data, logic,
and processes that cannot be altered to ensure
correct functionality and quality of the software
(Ahmad and Babar, 2014). For example, when a
traditional (workstation-based) geographical
information system is migrated to mobile
platform(s), it contains the same geographical data
and relies on the same algorithms along with
additional features of portability, interactivity,
context-sensing, and location-awareness to capture
precise geographical information on the go (Foss and
Wong, 2004). However, the evolution of such legacy

software to mobile platforms can be a daunting task
due to many issues that include but are not limited
to platform compatibility, evolved requirements, and
restrictions due to resource-poverty (available
power, storage, processor) of mobile devices
(Sørensen et al., 2003). In order to overcome the
technical challenges detailed above, as well as to
avoid managerial issues involved in the migration
process, solutions are needed that support a
systematic and process-driven (automation of)
legacy software migration to mobile computing
platforms (Ahmad and Babar, 2014).

In recent years, the research and development on
software evolution have primarily focused on the
migration of existing or legacy systems to service-
oriented-and cloud-based systems (Khadka et al.,
2013; Jamshidi et al., 2013). There is a lack of efforts
that utilize the theory and practices of software
evolution to enable the modernization of legacy
software as per the needs of the mobile computing
platform. The existing research on software
evolution to mobile computing focuses on upgrading
the legacy software for mobile devices (Foss and
Wong, 2004; Sørensen et al., 2003). However, such
evolution efforts are complex, time-consuming, and
manual that hinder the process for evolution. The
state-of-the-art research suggests the need for a
systematic approach that relies on reusable
knowledge and practices, prototypes, and tool
support along with human intervention and decision
support to guide and execute legacy software
evolution to mobile computing (Matthiesen and
Bjørn, 2015).

Overview and Implications of Solution: We
propose to integrate software reverse engineering
and software change to develop a framework that
supports a systematic evolution of legacy to mobile
and provides a foundation for automation and tool
support. Specifically, we propose a framework
named Legacy-to-Mobile that relies on (a) software
reverse engineering to recover the artifacts (e.g.,
code or architecture) of legacy software and (b)
software change management to upgrade the
artifacts of legacy software as per requirements of
the mobile computing platform. A high-level view of
the proposed solution is provided in Fig. 1. Fig. 1
highlights that the proposed Legacy-to-Mobile
solution framework comprises of four processes,
namely (i) Planning the evolution, (ii) Modeling the
artifacts of legacy software, (iii) Transformation of
the legacy artifacts to mobile computing artifacts, and
(iv) Refinement of the evolved software based on
validations to ensure the desired quality and
functionality of the mobile software. The role of user
decision (human supervision) and tool support
(semi-automation) for the evolution process is
central in the proposed framework. The solution
must consider and support the structural and
behavioral changes in the legacy software during
evolution to the mobile (Mens, 2008; Williams and
Carver, 2010). Moreover, the solution must support
the performance of the evolved software in the
context of resource-limited mobile computing

Adel Alkhalil/International Journal of Advanced and Applied Sciences, 8(3) 2021, Pages: 100-111

102

devices (Pejovic and Musolesi, 2015; Lane et al.,
2010). Based on the solution proposal, we lost the
core contributions as:

 Exploiting the theory and practices of software

evolution to enable the evolution of legacy
software towards portable and context-sensitive
mobile computing applications.

 Utilizing architectural abstraction to abstract the
complexities to support the evolution of legacy
software to drive the evolutionary processes that
are lacking in the existing solutions.

 Developing an evolution process and framework
that provides a frame of reference to develop an
appropriate tool and human decision support for
process automation and customization.

The proposed research is based on two different

phases. The first phase involves the development of
a framework (scope of this paper) that serves as a
foundation for the second phase to enable
automation and customization of the process (needs
for future research).

Fig. 1: Overview of the proposed solution

Paper Organisation: Related research is
presented in Section 2. A research method is detailed
in Section 3. Solution overview as a proposed
framework is detailed in Section 4. Case study and
solution validation are in Section 5. Section 6
provides conclusions with limitations and
dimensions of future research.

2. Related research

Legacy software automates and performs critical
operations for an organization/enterprise, and such
software has long life-spans, it does not emerge from
scratch, it can be expensive or critical to replace and
requires frequent maintenance and evolution to
continue software operations (Bennett, 1995). The
research and development on the evolution or
modernization of legacy systems date back to 1970s
when the Lehman’s laws of software evolution urged
the need to frequently evolve existing or legacy
software to support its operations (Ahmad and
Babar, 2014). We present existing work that evolves
legacy software systems to modern computing
platforms. Specifically, we discuss the existing
research and development on legacy migration to
software services and cloud (in Section 2.1) that help
us to position the needs for legacy migration to
mobile computing (in Section 2.2) in the context of
exiting research.

2.1. Evolution of legacy systems to modern
computing platforms systems

Recently a lot of research and development is
done on the evolution of legacy software systems to
modern computing platforms that mainly include

service-oriented systems, cloud-based platforms, or
software product lines (Khadka et al., 2013; Jamshidi
et al., 2013; Assunção et al., 2017). Such an evolution
can support the efficiency and economy of software
operations. For example, most recently, the US
department of defense (US DoD) has been able to
achieve IT-specific process efficiency, including
enhanced software security by modernizing their
legacy enterprise mail system as a cloud-based email
system. Moreover, by means of software
modernization, US DoD has achieved an operational
economy (i.e., saving a cost of $100 m approx. per
annum) for running their IT systems on cloud
servers. In this context, a relevant example is the
evolution of Oracle client-server architecture to a
cloud computing platform (Laszewski and Nauduri,
2011).

Evolving Legacy Software to Service-driven
Architectures: In the context of legacy software
evolution, Khadka et al. (2013) presented a survey of
existing research focusing on the solutions of legacy
to Service Oriented Architecture (SOA) evolution.
The results of the SLR provide a repository of
research solutions to support evolution. In Winter
and Ziemann (2007), the horseshoe model for
incremental evolution of legacy software to SOA is
presented. The horseshoe model provides a generic
framework that requires processes, patterns, and
tool support for legacy evolution to SOAs.

Modernization of Legacy Software for Cloud-
based Platforms: In Jamshidi et al. (2013), the
authors present a Cloud Reference Migration Model
(Cloud-RMM) that supports a process for migration
of legacy software to cloud computing systems.
Cloud-RMM is developed based on analyzing the
existing solutions and consolidating them in a
process for migration to the cloud. Some of the

Adel Alkhalil/International Journal of Advanced and Applied Sciences, 8(3) 2021, Pages: 100-111

103

recent projects (Mohagheghi and Sæther, 2011;
Alonso et al., 2013; Frey and Hasselbring, 2011)
support migration of legacy systems to cloud-based
environments (IaaS) and (PaaS). In recent years,
some internationally collaborated on research and
development projects such as REMICS (Mohagheghi
and Sæther, 2011), CloudMig (Alonso et al., 2013),
and ARTIST (Frey and Hasselbring, 2011) to support
a systematic approach for codifying the legacy
systems.

Legacy Migration to Software Product Lines
(SPLs): In Assunção et al. (2017), the authors
performed a mapping study to investigate the
existing research on the re-engineering of existing
systems to SPLs. The mapping study has identified
open challenges and areas for future research that
highlight the need for tool prototypes that automate
the migration.

2.2. Legacy software to operate on mobile
computing platforms

In contrast to the research and development on
legacy software evolution to service-based (Jamshidi
et al., 2013) and cloud-driven platforms (Khadka et
al., 2013), there is much less research on legacy
evolution to mobile. One of the pioneering works on
legacy software evolution towards mobile computing
platforms is presented in Pope (1996) that enabled
the migration of software applications from a
resource-rich work-station based computing
environment to more self-reliant mobile computers.
In the last decade and specifically beyond the year
2010, the rapid emergence and adoption of mobile
devices, affordable networking, and free software
apps have made mobile computing an ideal platform
adopted by legacy software as part of software
modernizations. The primary motivations for legacy
modernization as per mobile platforms are to
achieve context-sensitivity and enhanced usability of
the existing systems. For example, the research in
Foss and Wong (2004) supported the migration (by
re-engineering the source code) of a Windows-based
software running on a desktop machine towards a
Palm OS-based app running on Personal Digital
Assistant (PDA). In a similar study (Fan and Wong,
2016), the authors present a solution that enables
the modernization of the user interfaces (UIs) of
legacy software by evolving them to interactive and
touch-based interfaces to facilitate the ease of use for
legacy software. In terms of the partial tool support
for legacy evolution to mobile, the only work is
Williams and Carver (2010) and Canfora et al.
(2004), which enabled the migration of desktop-
based applications to hand-held device platforms.
The existing research lacks a systematic approach
and solution(s) to enable legacy software evolution
to mobile computing platforms. In order to support
the current and future research, the role of patterns,
processes (as reusable knowledge and practices),
along with frameworks and tool support, is vital to
support the evolution.

Conclusive Summary: After presenting an
overview of the research state-of-the-art on legacy
software evolution, we now present a summary of
the comparison between existing research and
proposed solution as in Table 1. We have used four-
element criteria with source, and target represents
the existing (evolution from) and modernized
(evolution to) platform. Moreover, tool support and
the human decision represents support for
automation and user intervention in the evolution
process. Based on the data in Table 1, we can
conclude that our proposed solution is conceptually
similar to Winter and Ziemann (2007) that followed
an incremental and process-driven approach for the
evolution of legacy software to the mobile computing
platform. Based on the approach in Alonso et al.
(2013) and Frey and Hasselbring (2011), we aim to
provide tool-supported automation and human
decision-driven supervision to execute and guide the
software evolution. Moreover, in contrast to the
existing research of legacy modernization, we focus
on the evolution of legacy software to mobile
computing platforms that are currently lacking in the
existing research.

3. Research methodology

We now present the research methodology we
adopted to conduct this research. The methodology
is detailed based on illustrations in Fig. 2. The
section also introduces concepts that will be used
throughout the paper.

3.1. Outlining the research hypothesis

As in Fig. 2, the first step of the methodology is to
outline the research hypothesis. Research hypothesis
provides us the foundation to develop the process
and validate the hypothesis based on a case study
based approach. We outline the research hypothesis
as:

A systematic identification of the literature helps
to empirically design the process that supports an
incremental evolution of existing software systems
to mobile computing platforms.

After outlining the hypothesis, we now conduct
this research into two distinct phases, as per Fig. 2,
with each phase detailed below.

3.2. Phase I: Conducting the systematic mapping
study

The first phase involves a systematic literature
review that is conducted by following the guidelines
and recommendations for undertaking the
systematic mapping studies (Petersen et al., 2008).
Systematic mapping study allows a systematic
identification, analysis, and review of the existing
research that provides the strengths, limitations, and
research gaps in the topic under investigation.

Adel Alkhalil/International Journal of Advanced and Applied Sciences, 8(3) 2021, Pages: 100-111

104

Table 1: Comparison between existing solutions and proposed research
Solution Reference Source Target Tool Support Human Decision

Evolution of Legacy Software to Service-Oriented Architectures
(Khadka et al., 2013; Winter and

Ziemann 2007)
Legacy Enterprise

Software
SOA No No

Modernization of Legacy Software to Cloud-based Platforms
(Jamshidi et al., 2013; Mohagheghi and
Sæther, 2011; Alonso et al., 2013; Frey

and Hasselbring, 2011)

Legacy Software
Cloud Computing
(SaaS, PaaS, IaaS)

Yes
(Alonso et al., 2013; Frey
and Hasselbring, 2011)

Yes
(Alonso et al.,

2013)
Migration of Legacy Software to Software Product Lines

(Assunção et al., 2017) Legacy Software
Software Product

Line
No No

Migration of Legacy Software to Mobile Computing Platforms

Proposed Solution Legacy Software Mobile Platform
Yes

(Future Work)
Yes

(Future Work)

Fig. 2: Overview of the research methodology

Literature Identification and Data Extraction: As
the first step, we identified the literature in terms of
published research on software evolution for mobile
computing. Literature identification is followed by a
qualitative selection of quality research to exclude
any research studies that do not meet a pre-defined
quality criterion. Once the research studies were
selected, the next step involved data extraction from
the identified studies. Data extraction is done by
locating the relevant information in a given research
study. For example, type of evolution as design-time
evolution or runtime evolution, type of software that
needs to be evolved, i.e., workstation-based system
or web portal. The extracted information is
maintained for data synthesis in the next step.

Data Synthesis and Analysis; Data synthesis step
involves a systematic mapping of the extracted data.
The main purpose of data synthesis is to find
recurring themes of research in the existing
literature. The recurring themes help us to classify
the research based on the focus and contributions of
the research in terms of overlapping or distinct
research contributions. After data is synthesized, in
this phase, the last step is data analysis. The data
analysis step primarily focuses on mapping the
existing research contributions, their strengths, and
limitations, along with the research gap that needs a
solution to address them. Extended details of the

results of the mapping study are published in Sultan
(2019).

3.3. Phase II: Designing the validating the
evolution process

After conducting the mapping study, Phase II
involves designing and validating the evolution
process. Both of these steps are detailed below:

 Design the Evolution Process: The evolution
process aims to address the shortcoming of the
existing research (Sultan, 2019) and outlines a
process-centric and incremental evolution of the
existing software to mobile computing platforms.
The process is divided into different activities that
are illustrated in Fig. 3. Fig. 3 demonstrates four
distinct activities that constituent the evolution
process. These activities are referred to as
Planning, Modeling, Transformation, and
Evaluation. The evolution process and all its
underlying activities are detailed in Section 4.

 Case Study-based Validation of the Evolution
Process: The last step in the research methodology,
as per Fig. 2, is case study based validation of the
evolution process and outlined hypothesis (Section

Adel Alkhalil/International Journal of Advanced and Applied Sciences, 8(3) 2021, Pages: 100-111

105

3.1). Case study-based validation allows us to
develop some use cases for the evolution. Use-
cases provide scenario-based practical
demonstration and evaluation of the process. Case
study based validation of the process and
hypothesis are detailed in Section 5.

Fig. 3: Process view for software evolution to mobile

computing

4. Process-centric solution for legacy-to-mobile
evolution

We now present the framework that is named as
Legacy-to-Mobile that enables an incremental
evolution (i.e., step-by-step change implementation)
of legacy software to the mobile computing platform.
A high-level view of the proposed framework is
presented in Fig. 2 that highlights processes and
activities that enable software evolution.
Incremental evolution refers to step-wise change
management in existing software to support its
incremental evolution. We now present the
framework in terms of the framework processes and
activities along with the income and outcome of each
process that drives legacy evolution.

The processes refer to what needs to be done?
While the activities highlight how it is to be done? As
illustrated in Fig. 2. We have provided a summary of
all the processes and their underlying activities in
Table 2. Table 2 also represents a structured catalog
to capture and presents the process activities,
incomes, and outcomes of each process, along with
process automation and supervision. We now
discuss each individual process of the framework
based on the illustrations from Fig. 2 and a summary
of processes in Table 2.

4.1. Process I: Planning for legacy evolution

The first process in legacy to mobile evolution, as
presented in Fig. 4, relates to the planning for
systematic management and execution of changes in
the legacy software. The evolution plan guides the
further processes. This process aims to investigate:
How to develop an evolution plan that

accommodates the needs of legacy evolution and
feasibility for executing such evolution to support an
incremental change of legacy software as per the
needs for mobile computing platforms.
Process Income and Outcome: As the initial
process of the framework, the planning process does
not require any input to the process. Instead, the
needs and motivations for legacy evolution can be
considered as the pre-requisites for evolution
planning. The outcome of the process is an evolution
plan that acts as a blueprint and a documented
reference for the stakeholder before proceeding
further with the evolution.
Activity A-Feasibility Study: The first activity
during evolution planning is to conduct a feasibility
study that aims to assess the costs and benefits of
the desired evolution. Moreover, the feasibility study
investigates if it would be practically feasible to
evolve the legacy system. The feasibility study must
be conducted by the stakeholders (e.g., users,
owners, engineers) of the software system that is the
candidate for the migration.
Activity B-Platform Analysis: After the feasibility
study, the next activity relates to analyzing the
source (legacy) and the target (mobile) platform. The
platform analysis is critical to understand if the
legacy platform has some constraints that can hinder
the evolution. Moreover, the analysis for the target
platform highlights that the migrated software must
be efficient in terms of exploiting the resource of
resource-constrained mobile devices.
Process Automation and Supervision: Evolution
planning is a manual process that requires active
human intervention (stakeholders’ needs and
requirements) to guide the legacy evolution. Active
human supervision and intervention are required in
order to support the process execution.

4.2. Process II: Modeling the legacy software
system

After the planning, the next process is the
modeling (i.e., structural representation) of the
legacy system that needs to be transformed.
Modeling provides an overall structural view of the
legacy software as a blueprint of the system. The
model can abstract the implementation-specific
complexities of the software with a design or
architectural view that presents a graphical (high-
level) view of the software. Therefore, the model as a
high-level graphical representation of the legacy
software allows us to analyze and transform the
system at a higher level of abstractions (Ahmad et al.,
2019; 2014).
Process Income and Outcome: The income to this
process is the specification (source code or design)
of the legacy software system that is the candidate
for evolution. The outcome is the model (high-level
view of the system) in terms of the design or
architecture of the legacy system that needs to be
evolved.
Activity A–Specification Analysis: The first activity
of this process is to analyze the specifications of the

Adel Alkhalil/International Journal of Advanced and Applied Sciences, 8(3) 2021, Pages: 100-111

106

legacy software. The analysis allows us to view and
analyze the system representation that can be
represented as a model for its evolution.
Activity B–Structural Constraints: In the
represented model, we need to identify the
constraints that may be enforced on the structure,
and that needs to be preserved. Structural
preservation is also vital to ensure the structural
integrity of the source model.

Process Automation and Supervision: Legacy
system modeling is a manual process that means the
model can be generated from the source code
specifications in an automated way. However, user
intervention and supervision are required to ensure
that the represented model represents correct
specifications.

Fig. 4: Overview of the legacy-to-mobile framework for incremental evolution of legacy software to the mobile computing

platform

4.3. Process III: Transformation of legacy
software system

After modeling the legacy software, the third
phase of the process corresponds to the
transformation of the legacy software as a mobile-
enabled application. Software transformation refers
to the addition, removal, or modification of software
components and modules to enable software
evolution. Transformation-driven evolution of the
existing software enables and incremental evolution
of the software as per new requirements and
business needs.

 Process Income and Outcome: The income to this

activity is the legacy software model that needs to
be evolved. The outcome is the transformed model
as a mobile-enabled software application.

 Activity A–Legacy Modeling: is achieved through
a high-level design or architectural representation
of the existing software. High-level modeling
complex details with a global view of the system
with software represented as architectural
components and connectors.

 Activity B–Legacy Transformation: Legacy
transformation supports change management in
the architectural model to support its evolution.

 Process Automation and Supervision: Legacy
transformation is a semi-automated process where
the software model is transformed in an automated
way. Human supervision is required to ensure
consistency of transformation and ensuring no
violation in the transformed structure of the
software.

4.4. Process IV: Refinement of the legacy
software system

The last process is about the refinement and
validation of the transformed software. Validation
ensures that the evolved mobile application provides
acceptable performance. Specifically, during
validation, we need to ensure the accuracy of
predictions, computation efficiency of the software
when it is being executed on resource-constrained
mobile devices with limited computation and
processor resources.

Adel Alkhalil/International Journal of Advanced and Applied Sciences, 8(3) 2021, Pages: 100-111

107

 Process Income and Outcome: The income to the
process is the transformed software. The outcome
is the validated software in terms of its accuracy of
predictions and computational efficiency of the
evolved software.

 Activity A–Validating the Prediction Accuracy:
The first activity is to measure the accuracy of
prediction that is analyzed through precision and
recall of the recommendations.

 Activity B–Ensuring Computation Efficiency: We
measure the CPU usage of the resource-
constrained mobile devices when the device is
operating and when it is in the idol.

 Process Automation and Supervision: Validation
is a manual activity where data generated from the
evolved software is analyzed against the
benchmark to assess the efficiency and accuracy of
the system.

5. Case study-based validation: Software
evolution for mobile computing

We now present a case study based validation of
the evolution process. Case-study based approach is
driven by scenarios that help us to demonstrate the
evolution process and also perform its validations.
Case study and process validation are presented in

dedicated subsections below. Specifically, the case
study for software evolution is in Section 5.1,
whereas validation of the evolved software is
presented in Section 5.2.

5.1. Case study for software evolution to mobile
computing

The case study for software evolution to mobile
computing is being adopted from the smart city
market scenario in Khan et al. (2020) and Alreshidi
and Ahmad (2019), as illustrated in Fig. 5. In Fig. 5a,
we show the existing software that is a web-based
system for online product selling and product
recommendations. The web-based system has the
following shortcomings:

 Lack of Context Sensitivity: The existing system

lacks context-sensitivity such as the current
location of the user, time of the day, and geo-
proximity of the user to a particular marketplace.
Due to a lack of context-sensitivity, the system is
unable to provide context-aware recommendations
to the end-users.

 Lack of Portability: The existing web-based system
lacks portability and requires execution on typical
workstations to offer proper functionality.

Table 2: Overview of the framework process and activities along with process incomes and outcomes

Framework
Processes

Process
Activities

Process
Income

Process
Outcome

Process
Automation

(Tool Support)

Process Supervision
(Human Decision)

Process I
Evolution
Planning

- Perform Trade-off
Analysis

- Identify Level of
Evolution

None

Evolution Plan
- Motivations
- Challenges

- Level of Evolution

No Yes

Planning for the evolution of the legacy software by taking into consideration the source and target platforms, benefits, and limitations along
with the required efforts for the solution.

Modeling

- Specification
Analysis

- Structural
Constraints

Legacy Software
Specifications

Legacy Software
Model

Yes Yes

Modeling of the legacy software to understand the overall structure of the legacy software and identify areas that require structural changes
during evolution.

Transformation

- Change
Implementation

- Property
Preservation

Legacy Software
Model

Target/Evolved
Software Model

Yes Yes

Transformation of the legacy software structure by means of change implementation to evolve it as per the requirements of the new
platform/software.

Refinement

- Consistency
Conformance
- Structural

Optimizations

Target/Evolved
Software Model

Refined Software
Model

No Yes

Refinement of the transformed software by means of optimizations to support both the desired functionality and quality of the evolved
software.

Due to the above two limitations, there is a need
for the evolution of the existing web-based product
recommender systems as context-sensitive mobile
recommender systems. The evolved system, as in
Fig. 5b, is a mobile-enabled application that supports
portability, context-sensitivity, and enhanced
interactivity. As illustrated in Fig. 5b, the evolved
application takes into account the user’s location,
preferences, and historical data to provide context-

sensitive recommendations to the user. It is vital to
mention that the evolution of existing systems (Fig.
5a) to the mobile system (Fig. 5b) is enabled through
the evolution process (Section 4, Fig. 4). We now
present validation of the evolved software in terms
of (i) accuracy of system recommendations of the
items of interests and (ii) computation efficiency of
the system on resource-constrained mobile devices.

Adel Alkhalil/International Journal of Advanced and Applied Sciences, 8(3) 2021, Pages: 100-111

108

Fig. 5: (a) Web-based Online Portal (before evolution) and (b) Mobile-based system (after evolution)

5.2. Validation of the evolved mobile system

In this section, first, we present system accuracy
for recommendations that are measures based on
precision and recall of the recommendations. We
then present the computation efficiency of the
system when it is being executed on resource-
constrained mobile devices.

5.2.1. Precision and recall of recommendations

The precision of the recommended measures
accuracy of the recommended items, whereas recall
of the recommendation estimates the ratio of correct
recommendations from total recommendations by

the system. Both the precision and recall are
illustrated in Fig. 6 and derived based on a minimum
of 50 trials from 3 different groups of users.
Evaluation results suggest a satisfactory level of
precision and recall such that precision values vary
from 35 to 46 in 50 trials, whereas the recall value
varies between 22 to 42 in different cases. Based on
the results of validation, we can conclude that the
evolved software has fair accuracy of the
recommended items. However, diverse datasets with
more rigorous validation are required to further
enhance the accuracy of recommendation that is
considered as part of future work.

Fig. 6: Overview of the system accuracy for recommendation

0

5

10

15

20

25

30

35

40

45

50

Group 1 Group 2 Group 3

System Precision System Recall

Adel Alkhalil/International Journal of Advanced and Applied Sciences, 8(3) 2021, Pages: 100-111

109

5.2.2. Computation efficiency of the evolved
software

It is vital to measure the computation efficiency of
the evolved software. Measuring computation
efficiency is vital to ensure that the evolved software
functions properly when migrated from resource-
rich workstations to resource-constrained mobile
devices. We highlight the results of the device’s CPU
utilization in Fig. 7. Fig. 7 is based on 100 trials to
measure how the execution of the evolve software

impacts the CPU. The data in Fig. 7 shows
satisfactory performance with the device using from
2 to 5 percentage of the overall CPU. This means that
when the mobile application is running and active, it
can take up to 5% of the CPU. Alternatively, when the
application is inactive (running in the background),
it takes only 2% of the CPU. Further trials are needed
to validate the CPU utilization on different devices
and different mobile platforms.

Fig. 7: Overview of the system computation efficiency

6. Conclusions, limitations, and future research

The proposed solution aims to support the
research and solutions based on software evolution.
More specifically, the solution exploits the 'law of
continuing change' to support the evolution-driven
modernization of the legacy software systems so
they can be deployed and executed on mobile
computing platforms. Since the last decade, the
research on software evolution has started to get
significant attention, also highlighting some of the
critical challenges that relate to the planning,
execution, and automation of software evolution.
Automation of software evolution is a significant
challenge as it requires tool support along with
appropriate user supervision and decision support
to execute a significant number of changes in an
efficient way. To date, there is no research and
development on tool support for the modernization
of the legacy systems to other (modernized)
computing platforms.

Potential Limitations of the Research: We also
discuss two potential limitations of the proposed
solution. Addressing these limitations also reflect
possible dimensions of the future work.

Limited Validation with Single Case Study:
Currently, the proposed evolution process is
validated based on a single case study as in Fig. 5.

The case study-based approach provides scenarios
for demonstrative validation of the core concepts of
solution. However, only a single case study could
limit the generalization of the results and
applicability of the solution. Therefore, there is a
need for further case studies and evolution scenarios
to validate the solution in a different context.

Diversity of Scenarios for Validating Accuracy and
Computation Efficiency: The accuracy or
recommendations and computation efficiency of the
mobile system are evaluated based on a total of 50
trials organized into 03 distinct groups as in Fig. 6
and Fig. 7. The results help us to validate the
performance and functionality of the evolved
software. However, there is a need for more trials
and more groups with different data sets to avoid
any bias and limitations of validations. In the future,
we plan to extend the validation based on new data
and case studies for evolution.

Dimensions of Future Research: The scope of the
existing solution is an incremental evolution of
existing software towards a portable mobile-enabled
system. In the future, we aim to extend the scope of
existing work to emerging domains such as big data
and block-chain systems. This means that instead of
throwing away existing software, we can
incrementally evolve them as big data analytics and
block-chain based systems. Such a solution would

0.00 1.00 2.00 3.00 4.00 5.00 6.00

Trial 1 - 10

Trial 11 - 20

Trial 21 - 30

Trial 31 - 40

Trial 41 - 50

Trial 51 - 60

Trial 61 - 70

Trial 71 - 80

Trial 81 - 90

Trial 91 - 100

Idol Mode

Running Mode

Adel Alkhalil/International Journal of Advanced and Applied Sciences, 8(3) 2021, Pages: 100-111

110

need case studies from legacy systems and
customization of the evolution process (Fig. 4) that
can address the emerging challenges of evolving
legacy software towards modernized computing
platforms such as big data and block-chain systems.
Moreover, mobile security is another concern that
needs to be addressed as part of future work (Sajjad
et al., 2018; Ahmad et al., 2019).

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of
interest with respect to the research, authorship,
and/or publication of this article.

References

Ahmad A and Babar MA (2014). A framework for architecture-
driven migration of legacy systems to cloud-enabled software.
In the Proceedings of the WICSA 2014 Companion Volume,
Association for Computing Machinery, Sydney, Australia: 1-8.
https://doi.org/10.1145/2578128.2578232

Ahmad A, Alkhalil A, Altamimi AB, Sultan K, and Khan W (2019).
Modernising legacy software as context-sensitive and portable
mobile-enabled application. IEEE Computer Society,
Washington, USA.

Ahmad A, Jamshidi P, and Pahl C (2014). Classification and
comparison of architecture evolution reuse knowledge-A
systematic review. Journal of Software: Evolution and Process,
26(7): 654-691. https://doi.org/10.1002/smr.1643

Ahmad A, Malik AW, Alreshidi A, Khan W, and Sajjad M (2019).
Adaptive security for self-protection of mobile computing
devices. Mobile Networks and Applications, 1-20.
https://doi.org/10.1007/s11036-019-01355-y

Alonso J, Orue-Echevarria L, Escalante M, Gorroñogoitia J, and
Presenza D (2013). Cloud modernization assessment
framework: Analyzing the impact of a potential migration to
Cloud. In the IEEE 7th International Symposium on the
Maintenance and Evolution of Service-Oriented and Cloud-
Based Systems, IEEE, Eindhoven, Netherlands: 64-73.
https://doi.org/10.1109/MESOCA.2013.6632736

Alreshidi A and Ahmad A (2019). Architecting software for the
internet of thing based systems. Future Internet, 11(7): 153.
https://doi.org/10.3390/fi11070153

Assunção WK, Lopez-Herrejon RE, Linsbauer L, Vergilio SR, and
Egyed A (2017). Reengineering legacy applications into
software product lines: A systematic mapping. Empirical
Software Engineering, 22(6): 2972-3016.
https://doi.org/10.1007/s10664-017-9499-z

Bennett K (1995). Legacy systems: Coping with success. IEEE
Software, 12(1): 19-23. https://doi.org/10.1109/52.363157

Campbell A and Choudhury T (2012). From smart to cognitive
phones. IEEE Pervasive Computing, 11(3): 7-11.
https://doi.org/10.1109/MPRV.2012.41

Canfora G, Di Santo G, and Zimeo E (2004). Toward seamless
migration of Java AWT-based applications to personal
wireless devices. In the 11th Working Conference on Reverse
Engineering, IEEE, Delft, Netherlands: 38-47.
https://doi.org/10.1109/WCRE.2004.38

Fan X and Wong K (2016). Migrating user interfaces in native
mobile applications: Android to iOS. In the IEEE/ACM
International Conference on Mobile Software Engineering and
Systems, IEEE, Austin, USA: 210-213.
https://doi.org/10.1145/2897073.2897101
PMCid:PMC4778641

Foss A and Wong K (2004). On migrating a legacy application to
the palm platform. In the 12th IEEE International Workshop on
Program Comprehension, IEEE, Bari, Italy: 231-235.
https://doi.org/10.1109/WPC.2004.1311065

Frey S and Hasselbring W (2011). The clouding approach: Model-
based migration of software systems to cloud-optimized
applications. International Journal on Advances in Software,
4(3 and 4): 342-353.

Jamshidi P, Ahmad A, and Pahl C (2013). Cloud migration
research: A systematic review. IEEE Transactions on Cloud
Computing, 1(2): 142-157.
https://doi.org/10.1109/TCC.2013.10

Khadka R, Saeidi A, Idu A, Hage J, and Jansen S (2013). Legacy to
SOA evolution: A systematic literature review. In: Ionita AD,
Litoiu M, and Lewis G (Eds.), Migrating legacy applications:
challenges in service oriented architecture and cloud
computing environments: 40-70. IGI Global, Pennsylvania,
USA. https://doi.org/10.4018/978-1-4666-2488-7.ch003

Khan A, Ahmad A, Rahman AU, and Alkhalil A (2020). A mobile
cloud framework for context-aware and portable
recommender system for smart markets. In: Mehmood R, See
S, Katib I, and Chlamtac I (Eds.), Smart infrastructure and
applications: 283-309. Springer, Cham, Switzerland.
https://doi.org/10.1007/978-3-030-13705-2_12

Lane ND, Miluzzo E, Lu H, Peebles D, Choudhury T, and Campbell
AT (2010). A survey of mobile phone sensing. IEEE
Communications Magazine, 48(9): 140-150.
https://doi.org/10.1109/MCOM.2010.5560598

Laszewski T and Nauduri P (2011). Migrating to the cloud: Oracle
client/server modernization. Elsevier, Amsterdam,
Netherlands.
https://doi.org/10.1016/B978-1-59749-647-6.00001-6

Matthiesen S and Bjørn P (2015). Why replacing legacy systems is
so hard in global software development: An information
infrastructure perspective. In the 18th ACM Conference on
Computer Supported Cooperative Work and Social
Computing, Association for Computing Machinery, Vancouver,
Canada: 876-890.
https://doi.org/10.1145/2675133.2675232

Mens T (2008). Introduction and roadmap: History and challenges
of software evolution. In: Mens T, and Demeyer S (Eds.),
Software evolution: 1-11. Springer, Berlin, Germany.
https://doi.org/10.1007/978-3-540-76440-3_1

Mohagheghi P and Sæther T (2011). Software engineering
challenges for migration to the service cloud paradigm:
Ongoing work in the REMICS project. In the IEEE World
Congress on Services, IEEE, Washington, USA: 507-514.
https://doi.org/10.1109/SERVICES.2011.26

Pejovic V and Musolesi M (2015). Anticipatory mobile computing:
A survey of the state of the art and research challenges. ACM
Computing Surveys (CSUR), 47: 3.
https://doi.org/10.1145/2693843

Petersen K, Feldt R, Mujtaba S, and Mattsson M (2008). Systematic
mapping studies in software engineering. In the 12th
International Conference on Evaluation and Assessment in
Software Engineering, Bari, Italy, 12: 1-10.
https://doi.org/10.14236/ewic/EASE2008.8

Pope S (1996). Application migration for mobile computers. In the
Third International Workshop on Services in Distributed and
Networked Environments, IEEE, Macau, Macau: 20-26.
https://doi.org/10.1109/SDNE.1996.502443

Sajjad M, Abbasi AA, Malik A, Altamimi AB, and Alseadoon IM
(2018). Classification and mapping of adaptive security for
mobile computing. IEEE Transactions on Emerging Topics in
Computing, 8(3): 814-832.
https://doi.org/10.1109/TETC.2018.2791459

Sørensen CF, Wang AI, and Hoftun Ø (2003). Experience paper:
migration of a web-based system to a mobile work
environment. In the 21st IASTED International Multi-

https://doi.org/10.1145/2578128.2578232
https://doi.org/10.1002/smr.1643
https://doi.org/10.1007/s11036-019-01355-y
https://doi.org/10.1109/MESOCA.2013.6632736
https://doi.org/10.3390/fi11070153
https://doi.org/10.1007/s10664-017-9499-z
https://doi.org/10.1109/52.363157
https://doi.org/10.1109/MPRV.2012.41
https://doi.org/10.1109/WCRE.2004.38
https://doi.org/10.1145/2897073.2897101
https://doi.org/10.1109/WPC.2004.1311065
https://doi.org/10.1109/TCC.2013.10
https://doi.org/10.4018/978-1-4666-2488-7.ch003
https://doi.org/10.1007/978-3-030-13705-2_12
https://doi.org/10.1109/MCOM.2010.5560598
https://doi.org/10.1016/B978-1-59749-647-6.00001-6
https://doi.org/10.1145/2675133.2675232
https://doi.org/10.1007/978-3-540-76440-3_1
https://doi.org/10.1109/SERVICES.2011.26
https://doi.org/10.1145/2693843
https://doi.org/10.14236/ewic/EASE2008.8
https://doi.org/10.1109/SDNE.1996.502443
https://doi.org/10.1109/TETC.2018.2791459

Adel Alkhalil/International Journal of Advanced and Applied Sciences, 8(3) 2021, Pages: 100-111

111

Conference on Applied Informatics, Innsbruck, Austria: 1033-
1038.

Sultan K (2019). Migration of existing software systems to mobile
computing platforms: A systematic mapping study. Available
online at: https://dspace.auk.edu.kw/handle/11675/5753

Williams BJ and Carver JC (2010). Characterizing software
architecture changes: A systematic review. Information and

Software Technology, 52(1): 31-51.
https://doi.org/10.1016/j.infsof.2009.07.002

Winter A and Ziemann J (2007). Model-based migration to
service-oriented architectures. Available online at:
https://www.cs.vu.nl/csmr2007/workshops/2-
%20winterziemann.pdf

https://dspace.auk.edu.kw/handle/11675/5753
https://doi.org/10.1016/j.infsof.2009.07.002
https://www.cs.vu.nl/csmr2007/workshops/2-%20winterziemann.pdf
https://www.cs.vu.nl/csmr2007/workshops/2-%20winterziemann.pdf

	Evolution of existing software to mobile computing platforms: Frameworksupport and case study
	1. Introduction
	2. Related research
	2.1. Evolution of legacy systems to modern computing platforms systems
	2.2. Legacy software to operate on mobile computing platforms

	3. Research methodology
	3.1. Outlining the research hypothesis
	3.2. Phase I: Conducting the systematic mapping study
	3.3. Phase II: Designing the validating the evolution process

	4. Process-centric solution for legacy-to-mobile evolution
	4.1. Process I: Planning for legacy evolution
	4.2. Process II: Modeling the legacy software system
	4.3. Process III: Transformation of legacy software system
	4.4. Process IV: Refinement of the legacy software system

	5. Case study-based validation: Software evolution for mobile computing
	5.1. Case study for software evolution to mobile computing
	5.2. Validation of the evolved mobile system
	5.2.1. Precision and recall of recommendations
	5.2.2. Computation efficiency of the evolved software

	6. Conclusions, limitations, and future research
	Compliance with ethical standards
	Conflict of interest
	References

