TABLE OF CONTENTS

ABOUT ISCAS 2017	IV
ABOUT THE IEEE CIRCUITS AND SYSTEMS SOCIETY	V
WELCOME MESSAGE - GENERAL CHAIRS	VI
WELCOME MESSAGE - TECHNICAL PROGRAM CHAIRS	
CONFERENCE COMMITTEE	IX
CONFERENCE SUPPORT & SPONSORS	XI
KEYNOTE SPEAKERS	XV
PIONEERS OF CAS SESSIONS	XVIII
FUTURECAS PANEL	XIX
CASS TRANSACTIONS PAPERS	XX
LIVE DEMONSTRATIONS	XX
IOVT PANEL	XXI
PITCH YOUR STARTUP	XXII
CASS STUDENT DESIGN COMPETITION	XXII
LATE BREAKING NEWS	XXII
POSTER SESSIONS	XXIII
SOCIAL PROGRAM	XXIV
IBUKA AWARD	XXVII
2017 CIRCUITS AND SYSTEMS SOCIETY AWARD RECIPIENTS	XXVIII
ABOUT BALTIMORE AND THE VENUE	XXXVI
TUTORIALS – SUNDAY, MAY 28 TH	XXXVII
ISCAS 2018	XL
TECHNICAL SESSIONS - MONDAY, MAY 29 TH	XLI
CASS STUDENT DESIGN COMPETITION - MONDAY, MAY 29 TH	LXII
LIVE DEMONSTRATIONS – MONDAY, MAY 29 TH	LXIII
POSTER SESSION - MONDAY, MAY 29 TH	LXV
TECHNICAL SESSIONS - TUESDAY, MAY 30 TH	LXXVI
LIVE DEMONSTRATIONS – TUESDAY, MAY 30 TH	XCVII
POSTER SESSION – TUESDAY, MAY 30 TH	
PIONEERS OF CAS - TUESDAY, MAY 30 TH	CXI
TECHNICAL SESSIONS - WEDNESDAY MAY 31 ST	CXII

CMOS-bio Interfaces: Recent Trends & Future Perspectives Time: Monday, May 29 (8:00-9:30) Room: Dover A
Chair(s): Jens Anders - Universität Ulm; Donhee Ham - Harvard University
CMOS-Nano-Bio Interface Array for Cardiac and Neuro Technology
CMOS Bioelectronics: Emerging Application in Molecular Diagnostics, Microbiology, and Neuroscience
Kenneth Shepard Columbia University, United States
Towards CMOS-Based in-Vivo NMR Spectroscopy and Microscopy
Wide-Range Optical CMOS-Based Diagnostics
INVITED: Technology Trends and Commercialization of High-Density Microelectrode Arrays for Advanced in-Vitro Electrophysiology
Neuromorphic & Learning Circuits & Systems Time: Monday, May 29 (8:00-9:30) Room: Grand Ballroom I Chair(s): Scott Koziol - Baylor University; Shih-Chii Liu - Swiss Federal Institute of Technology in Zurich
Oscillation-Based Slime Mould Electronic Circuit Model for Maze-Solving Computations
Randomized Unregulated Step Descent for Limited Precision Synaptic Elements

Ultra-Low-Energy Mixed-Signal IC Implementing Encoded Neural Networks
A Fully-Synthesized 20-Gate Digital Spike-Based Synapse with Embedded Online Learning
Learning in Silicon Beyond STDP: a Neuromorphic Implementation of Multi-Factor Synaptic Plasticity with Calcium-Based Dynamics
Computing with Memory Devices Time: Monday, May 29 (8:00-9:30) Room: Grand Ballroom II Chair(s): Pierre-Emmanuel Gaillardon - University of Utah; Daniele Ielmini - Politecnico di Milano
Circuit Designs of High-Performance and Low-Power RRAM-Based Multiplexers Based on 4T(ransistor)1R(RAM) Programming Structure
Neuromorphic Devices and Architectures for Next-Generation Cognitive Computing
RM3 Based Logic Synthesis
Local Memory and Logic Arrangement for Ultra-Low Power Array Processors
Pitch Your Startup Time: Monday, May 29 (8:00-9:30) Room: Grand Ballroom III Chair(s): Geoff Barrows - Centeye; Gabriele Manganaro – Analog Devices
*Participants TBD
Interface Circuits Time: Monday, May 29 (8:00-9:30) Room: Grand Ballroom IV Chair(s): Shahriar Mirabbasi - University of British Columbia; Degang Chen - Iowa State University
A Novel 3-Tap Adaptive Feed Forward Equalizer for High Speed Wireline Receivers
A 40 Gb/s 74.9 mW PAM4 Receiver with Novel Clock and Data Recovery

Current Mode 1.2-Gbps SLVS Transceiver for Readout Front-End ASIC
A 10-Bit Linearity Current-Controlled Ring Oscillator with Rolling Regulation for Smart Sensing
{1}Consejo Superior de Investigaciones Científicas, Spain; {2}Silterra Malaysia Sdn. Bhd., Malaysia
A Low-Noise Fully-Differential Open-Loop Interface for High-G Capacitive Micro-Accelerometers with 112.2 dB Dynamic Range
Meng Zhao, Zhongjian Chen, Zhaofeng Huang, Guangyi Chen, Wengao Lu, Yacong Zhang Peking University, China
Video: Recording, Streaming, Synopsis, Evaluation & 3D Time: Monday, May 29 (8:00-9:30) Room: Grand Ballroom VII
Chair(s): Chris Lee - National Cheng Kung University
A Low-Power Video Recording System with Multiple Operation Modes for H.264 and Light-Weight Compression
{1}Inha University, Korea, South; {2}Seoul National University, Korea, South
Peer-Assisted Video Streaming with RTMFP Flash Player: a Measurement Study on PPTV
Multicamera Joint Video Synopsis
On Evaluating Perceptual Quality of Online User-Generated Videos
Internet of Video Things: Enabling Technologies Time: Monday, May 29 (8:00-9:30) Room: Grand Ballroom VIII Chair(s): Eduard Alarcon - Universitat Politècnica de Catalunya; Yen-Kuang Chen - Intel Corporation
INVITED: 3D Machine Vision in IoT for Factory and Building Automation 59 Wai Lee Texas Instruments Inc., United States
A 0.42V High Bandwidth Synthesizable Parallel Access Smart Memory Fabric for Computer Vision 60 Prashant Dubey, Kritika Aditya, Ankur Srivastava, Amit Khanuja, Jamil Kawa, Thu Nguyen SYNOPSYS India Pvt. Ltd., India; SYNOPSYS India Pvt. Ltd., United States
A Color Frame Reproduction Technique for IoT-Based Video Surveillance Application

Object-Based on-Line Video Summarization for Internet of Video Things
A 142MOPS/mW Integrated Programmable Array Accelerator for Smart Visual Processing
Biometrics & Biomedical Signal/Image Processing Circuits & Systems: I Time: Monday, May 29 (8:00-9:30) Room: Grand Ballroom IX Chair(s): Zhiping Lin - Nanyang Technological University; Danilo Demarchi - Politecnico di Torino
Architecture for Complex Network Measures of Brain Connectivity
Non-Invasive Blood Pressure Estimation Using Phonocardiogram
Towards an on-Chip Signal Processing Solution for the Online Calibration of SS-OCT Systems
Automatic Endosomal Structure Detection and Localization in Fluorescence Microscopic Images
LLC Encoded Bow Features and Softmax Regression for Microscopic Image Classification
ADC Circuit Techniques Time: Monday, May 29 (8:00-9:30) Room: Grand Ballroom X Chair(s): Jose Silva-Martinez - Texas A&M University; George Yuan - Hong Kong University of Science and Technology
A 200MS/s, 11 Bit SAR-Assisted Pipeline ADC with Bias-Enhanced Ring Amplifier
A 10-b Statistical ADC Employing Pipelining and Sub-Ranging in 32nm CMOS

Analog Bandwidth Mismatch Compensation for Time-Interleaved
Sampling Time Calibration Method for Multi-Channel Interleaved ADCs
A Power Minimized 74 fJ/Conversion-Step 88.6 dB SNR Incremental ΣΔ ADC with an Asynchronous SAR Quantizer
Wireless Communication Receivers for 5G Time: Monday, May 29 (8:00-9:30) Room: Laurel AB Chair(s): Christoph Studer - Rice University; Miroslav Velev - Aries Design Automation
A Wideband Blocker-Resilient Direct ΔΣ Receiver with Selective Input-Impedance Matching
An 1.1 V 0.1-1.6 GHz Tunable-Bandwidth Elliptic Filter with 6 dB Linearity Improvement by Precise Zero Location Control in 40 nm CMOS Technology for 5G Applications
Near-Field Dual-Use Antenna for Magnetic-Field Based Communication and Electrical-Field Based Distance Sensing in mm³-Class Sensor Node
FPGA Design of Low-Complexity Joint Channel Estimation and Data Detection for Large SIMO Wireless Systems
A Low-Noise Cartesian Error Feedback Architecture 132 Jinbo Li, Qun Jane Gu University of California, Davis, United States
Many-Core Systems Time: Monday, May 29 (8:00-9:30) Room: Laurel CD Chair(s): Vasily Moshnyaga - Fukuoka University; Danella Zhao - University of Louisiana at Lafayette
Dark Silicon-Power-Thermal Aware Runtime Mapping and Configuration in Heterogeneous Many-Core NoC

Application Resource Management for Exploitation of Non-Volatile Memory in Many-Core Systems
Setareh Behroozi, Iraklis Anagnostopoulos Southern Illinois University Carbondale, United States
Activation of Secure Zones in Many-Core Systems with Dynamic Rerouting
Demystifying the Cost of Task Migration in Distributed Memory Many-Core Systems
A Low Latency Feature Extraction Accelerator with Reduced Internal Memory
Advanced Video Coding & Standardization Time: Monday, May 29 (8:00-9:30) Room: Kent AB Chair(s): Wen-Hsiao Peng - National Chiao Tung University; Tokunbo Ogunfunmi - Santa Clara University
A Cam Enabled Fast Video Motion Estimation Based on Locality Sensitive Signatures
Fast Intra Coding Unit Size Decision for HEVC with GPU Based Keypoint Detection
Depth-Projected Determination for Adaptive Search Range in Motion Estimation for HEVC
Measurement-Domain Intra Prediction Framework for Compressively Sensed Images
A Low-Cost Approximate 32-Point Transform Architecture
Mini-Tutorial Time: Monday, May 29 (8:00-9:30)

Room: Essex AB

Memristor-CMOS hybrid circuits and systems for brain-inspired computing

Kyeong-Sik Min{1}, Fernando Corinto{2}

Kookmin Univ., Seoul, Korea{1}; Politecnico di Torino, Turin, Italy{2}

Welcome Session and Keynote Time: Monday, May 29 (9:30-11:00) Room: Grand Ballroom V-VI

Opening Remarks and Welcome from the Conference Co-Chairs

Pamela Abshire, University of Maryland, College Park, MD, USA

Ralph Etienne-Cummings, Johns Hopkins University, Baltimore, MD, USA

The BRAIN Initiative: Building, Strengthening, and Sustaining

Miyoung Chun, Executive VP of Science Programs, The Kavli Foundation

Wearable Sensing Systems Time: Monday, May 29 (11:30-13:00) Room: Dover A Chair(s): Ravinder Dahiya - University of Glasgow; Hadi Heidari - University of Glasgow
Electronic Skin and Electrocutaneous Stimulation to Restore the Sense of Touch in Hand Prosthetics
Lucia Seminara{3}, Marta Franceschi{3}, Luigi Pinna{3}, Ali Ibrahim{3}, Maurizio Valle{3}, Strahinja Dosen{1}, Dario Farina{2} {1}Georg-August-Universität Göttingen, Germany; {2}Imperial College London, United Kingdom; {3}Università di Genova, Italy
High Resolution and Linearity Enhanced SAR ADC for Wearable Sensing Systems
A Low-Power Low-Noise CMOS Voltage Reference with Improved PSR for Wearable Sensor Systems
Information-Processing-Driven Interfaces in Hybrid Large-Area Electronics Systems
A 310 nW 14.2-Bit Iterative-Incremental ADC for Wearable Sensing Systems
50 years of Circuits, Systems & Signals: A Session in Honor of Prof. Sanjit K. Mitra (Part I) Time: Monday, May 29 (11:30-13:00) Room: Dover BC Chair(s): PP Vaidyanathan - California Institute of Technology; Yao Wang - New York University
A Historical Overview of Dr. Sanjit Mitra's Academic, Research and Professional Activities
Filtering and Enhancement of Color Images in the Block DCT Domain

On Secure Communications Without Eavesdropper Channel State
INVITED: Photonic Allpass Filter: a Versatile Building Block for All-Optical Signal Processing
Deep Learning Systems Time: Monday, May 29 (11:30-13:00) Room: Grand Ballroom I Chair(s): Jinhu Lu - Chinese Academy of Sciences; Wei Xing Zheng - Western Sydney University
INVITED: Unsupervised Learning Using Adversarial Networks Soumith Chintala
Pipelined Parallel Contrastive Divergence for Continuous Generative Model Learning
DFGNet: Mapping Dataflow Graph Onto CGRA by a Deep Learning Approach
Optimizing Deep Neural Network Structure for Face Recognition
Evaluation of Neural Network Architectures for Embedded Systems
Brain Circuits & Systems Time: Monday, May 29 (11:30-13:00) Room: Grand Ballroom II Chair(s): Wouter Serdijn - Delft University of Technology; Andreas Demosthenous - University College London
High Density, High Radiance μLED Matrix for Optogenetic Retinal Prostheses and Planar Neural
Stimulation
A Precision Pseudo Resistor Bias Scheme for the Design of Very Large Time Constant Filters
Roberto Puddu, Caterina Carboni, Lorenzo Bisoni, Gianluca Barabino, Danilo Pani, Luigi Raffo, Massimo Barbaro Università degli Studi di Cagliari, Italy
A High Input Impedance Low Noise Integrated Front-End Amplifier for Neural Monitoring
An Integrated Passive Phase-Shift Keying Modulator for Biomedical Implants with Power Telemetry Over a Single Inductive Link

Memristive Model for Synaptic Circuits	232
Oscillators, Phase-locked Loops & Others I Time: Monday, May 29 (11:30-13:00) Room: Grand Ballroom III Chair(s): Jorge Fernandes - Instituto de Engenharia de Sistemas e Computadores-ID; Shahriar Mirabbasi - University of British Columbia	
INVITED: a ±10ppm -40 to 125°C BAW-Based Frequency Reference System for Crystal-Less Wireless Sensor Nodes	233
On the Mechanisms Governing Spurious Tone Injection in Fractional PLLs	237
A Wide Tuning-Range ADFLL for mW-Socs with Dithering-Enhanced Accuracy in 65 nm CMOS	238
David Bellasi, Philipp Schönle, Qiuting Huang, Luca Benini Eidgenössische Technische Hochschule Zürich, Switzerland	230
A Novel Segmentation Scheme for DTC-Based ΔΣ Fractional-N PLL Tuan Minh Vo, Carlo Samori, Andrea Leonardo Lacaita, Salvatore Levantino Politecnico di Milano, Italy	242
0.5 kHz – 32 MHz Digital Fractional-N Frequency Synthesizer with Burst-Frequency Switch	246
Temperature Compensated Circuits Time: Monday, May 29 (11:30-13:00) Room: Grand Ballroom IV Chair(s): Degang Chen - Iowa State University; Shahriar Mirabbasi - University of British Columbia	
A 0.9V-VDD Sub-nW Resistor-Less Duty-Cycled CMOS Voltage Reference in 65nm for IoT	250
A 2.1-ppm/°C Current-Mode CMOS Bandgap Reference with Piecewise Curvature Compensation	254
Ruocheng Wang, Wengao Lu, Yuze Niu, Zhaokai Liu, Meng Zhao, Yacong Zhang, Zhongjian Chen Peking University, China	∠54

A Sub-1 V, Nanopower, ZTC Based Zero-VT Temperature-Compensated Current Reference
Temperature Compensation of Floating-Gate Transistors in Field-Programmable Analog Arrays
A 9-nW on-Chip Constant Subthreshold CMOS Transconductance Bias with Fine-Tuning
Computational Image Sensors Time: Monday, May 29 (11:30-13:00) Room: Grand Ballroom VII Chair(s): Joseph Lin - Massachusetts Institute of Technology; Charbel Rizk - Johns Hopkins University
Reducing Electrical Power Dissipation in Computational Imaging Systems Through Special-Purpose Optics 270 David Stork, Thomas Vogelsang, James Tringali, Patrick R. Gill, Mark Kellam, Evan Erickson Rambus Inc., United States
Neuromorphic Readout Integrated Circuits and Related Spike-Based Image Processing
Characterization of RTN Noise in the Analog Front-End of Digital Pixel Imagers
Block-Matching Optical Flow for Dynamic Vision Sensors: Algorithm and FPGA Implementation
Min Liu, Tobi Delbruck Universität Zürich / Eidgenössische Technische Hochschule Zürich, Switzerland
Spatiotemporal Compressed Sampling for Video Compression
Internet of Video Things: System Architecture, Framework, & ApplicationTime: Monday, May 29 (11:30-13:00) Room: Grand Ballroom VIII Chair(s): Yen-Kuang Chen - Intel Corporation; Eduard Alarcon - Universitat Politècnica de Catalunya
INVITED: Improving Driver Safety Using Deep Learning on Embedded Devices
Internet of Video Things in 2030: a World with Many Cameras
A Framework for Visual Fog Computing

A Multi-Agent Based System for Run-Time Distributed Resource Management
Distributed Video Codec with Spatiotemporal Side Information
Biometrics & Biomedical Signal/Image Processing Circuits & Systems: II Time: Monday, May 29 (11:30-13:00) Room: Grand Ballroom IX Chair(s): Gianluca Setti - Università degli Studi di Ferrara; Danilo Demarchi - Politecnico di Torino
LightProbe: a 64-Channel Programmable Ultrasound Transducer Head with an Integrated Front-End and a 26.4 Gb/s Optical Link
A Microstimulator with Parameter Adjustment for Bladder Dysfunction
On the Use of Compressive Sensing (CS) for Brain Dopamine Recording with Fast-Scan Cyclic Voltammetry (FSCV)
Tensor-Based Fusion of EEG and FMRI to Understand Neurological Changes in Schizophrenia
Evrim Acar{1}, Yuri Levin-Schwartz{2}, Vince D. Calhoun{3}, Tulay Adalı{2} {1}University of Copenhagen, Denmark; {2}University of Maryland, Baltimore County, United States; {3}University of New Mexico, United States
A Power-Area-Efficient Impedance Sensor Design for 10 × 10 Microelectrode Array Sensing
Xinyuan Ge, Tsz Ngai Lin, Jie Yuan Hong Kong University of Science and Technology, Hong Kong
SAR ADCs Time: Monday, May 29 (11:30-13:00) Room: Grand Ballroom X Chair(s): Mohamad Sawan - Polytechnique Montréal; Jose Silva-Martinez - Texas A&M University
High-Resolution SAR ADC with Enhanced Linearity
Seven-Bit 700-MS/s Four-Way Time-Interleaved SAR ADC with Partial Vcm-Based Switching
Dezhi Xing{2}, Yan Zhu{2}, Chi-Hang Chan{2}, Sai-Weng Sin{2}, Seng-Pan U{2}, Rui Paulo Martins{2}, Fan Ye{1}, Junyan Ren{1} {1}Fudan University, China; {2}University of Macau, China; {2}University of Macau, Portugal

A 12-Bit 40-MS/s Calibration-Free SAR ADC
A Calibration-Free 13-Bit 0.9 V Differential SAR-ADC with Hybrid DAC and Dithering
Montréal, Canada A Low-Complexity Correlation-Based Time Skew Estimation Technique for Time-Interleaved SAR ADCs
Armia Salib, Barry Cardiff, Mark Flanagan University College Dublin, Ireland
MIMO Systems Time: Monday, May 29 (11:30-13:00) Room: Laurel AB Chair(s): Christoph Studer - Rice University; Lan-Da Van - National Chiao Tung University
Power-Aware Space-Time-Trellis-Coded MIMO Detector with SNR Estimation and State-Purging
Kai-Ting Shr, Chieh-Yu Chen, Jin-Wei Jhang, Yuan-Hao Huang National Tsing Hua University, Taiwan
ADMM-Based Infinity Norm Detection for Large MU-MIMO: Algorithm and VLSI Architecture
A Cholesky Decomposition Based Massive MIMO Uplink Detector with Adaptive Interpolation
Design of an SVD Engine for 8×8 MIMO Precoding Systems
Algorithm and Architecture for Joint Detection and Decoding for MIMO with LDPC Codes
Emerging & Reconfigurable Architectures Time: Monday, May 29 (11:30-13:00) Room: Laurel CD Chair(s): Xinmiao Zhang - Case Western University; Keshab K. Parhi - University of Minnesota at Minneapolis
FPGA Implementation and Comparison of AES-GCM and Deoxys Authenticated Encryption Schemes
Sandhya Koteshwara{2}, Amitabh Das{1}, Keshab K. Parhi{2} {1}Intel Corporation, United States; {2}University of Minnesota Twin Cities, United States
Robust 7-nm SRAM Design on a Predictive PDK

A Fast FPGA-Based Deep Convolutional Neural Network Using Pseudo Parallel Memories
Fast Cycle-Accurate Compile Based Simulator for Reconfigurable Processor
Hierarchical Functional Obfuscation of Integrated Circuits Using a Mode-Based Approach
Video Coding Implementations Time: Monday, May 29 (11:30-13:00) Room: Kent AB Chair(s): Saeid Nooshabadi - Michigan Technological University; Lu Yu - Zhejiang University
A Dual-Clock VLSI Design of H.265 Sample Adaptive Offset Estimation for 8K Ultra-HD TV Encoding
Jianbin Zhou, Dajiang Zhou, Shihao Wang, Shuping Zhang, Takeshi Yoshimura, Satoshi Goto Waseda University, Japan
H.265/HEVC Encoder Optimization with Parallel-Efficient Algorithm and QP-Based Early Termination
Caoyang Jiang, Saeid Nooshabadi Michigan Technological University, United States
A Hardware-Friendly Hierarchical HEVC Motion Estimation Algorithm for UHD Applications
High-Level Synthesized 2-D IDCT/IDST Implementation for HEVC Codecs on FPGA
A Higher Order Transform Domain Filter Exploiting Non-Local Spatial Correlation for Video Coding
Qing Zhang, Lu Yu Zhejiang University, China
Novel Memory Technologies Time: Monday, May 29 (11:30-13:00) Room: Essex AB Chair(s): Alyssa Apsel - Cornell University
Highly Configurable Hybrid GC-eDRAM/SRAM Bitcell for Robust Low-Power Operation
Maximization of Crossbar Array Memory Using Fundamental Memristor Theory
{1}Chungbuk National University, Korea, South; {2}iDataMap Corporation, Australia; {3}Korea Advanced Institute of Science and Technology, Korea, South; {4}University of Western Australia, Australia

TECHNICAL SESSIONS - MONDAY, MAY 29TH

A Time-Division Multiplexing Signaling Scheme for Low-Power Multi-Drop Memory Links
Dynamic Reference Scheme for Variation-Resilient STT-MRAM Sensing
Universal Performance Parameters for Resistive Switching Devices
Testing & Verification Time: Monday, May 29 (14:00-15:30) Room: Dover A Chair(s): Degang Chen - Iowa State University; Igor Filanvosky - University of Alberta
An Ultra Low-Power Capacitively-Coupled Chopper Instrumentation Amplifier for Wheatstone-Bridge
Readout Circuits
{1}Hamad Bin Khalifa University / Hong Kong University of Science and Technology, Hong Kong; {2}Hong Kong University of Science and Technology, Hong Kong; {3}University of Western Australia, Australia
Multi-Standard Low-Power DDR I/O Circuit Deisgn in 7nm CMOS Process
A Self-Test on Wafer Level for a MEM Gyroscope Readout Based on ΔΣ Modulation
Accurate Spectral Testing of the Signals with Amplitude Drift
Floating-Gate FPAA Calibration for Analog System Design and Built-in Self Test
50 years of Circuits, Systems & Signals: A Session in Honor of Prof. Sanjit K. Mitra (Part II) Time: Monday, May 29 (14:00-15:30) Room: Dover BC Chair(s): PP Vaidyanathan - California Institute of Technology; Yao Wang - New York University
INVITED: Tidbits on Tunable Analog Filters and Image Demosaicing
Henrique S. Malvar Microsoft Research, USA
Second-Order Analog Filter Sections with Independently Tunable Center Frequency and Bandwidth
Antonio Petraglia, Mariane Petraglia, Manoel Perez

Unsupervised Video Orchestration Based on Aesthetic Features
Signal Processing and Climate Understanding
Tunable FIR Digital Filters Using FIR Approximation of Spectral Transformation
Deep Learning for Embedded Real Time Systems Time: Monday, May 29 (14:00-15:30) Room: Grand Ballroom I Chair(s): Tinoosh Mohsenin - University of Maryland; Azalia Mirhoseini - Google Brain
Tightly Integrated Deep Learning and Symbolic Programming on a Single Neuromorphic Chip
INVITED: Towards Closing the Energy Gap Between Hog and CNN Features for Embedded Vision
Amr Suleiman{1}, Yu-Hsin Chen{1}, Joel Emer{2}, Vivienne Sze{1} {1}Massachusetts Institute of Technology, United States; {2}Massachusetts Institute of Technology / Nvidia Corporation, United States
PACENet: Energy Efficient Acceleration for Convolutional Network on Embedded Platform
TinyDL: Just-in-Time Deep Learning Solution for Constrained Embedded Systems
End-to-End Scalable FPGA Accelerator for Deep Residual Networks
Ultra-efficient Approaches Enabling Long-term, Mobile EEG for Brain Monitoring
Time: Monday, May 29 (14:00-15:30) Room: Grand Ballroom II
Chair(s): David Hairston - US Army Research Laboratory; Tinoosh Mohsenin - University of Maryland
Wireless Brain Computer Interfaces Enabling Synchronized Optogenetics and Electrophysiology
Gabriel Gagnon-Turcotte, Léonard L. Gagnon, Guillaume Bilodeau, Benoit Gosselin Université Laval, Canada

An EEG Artifact Identification Embedded System Using ICA and Multi-Instance Learning
Online Adaptive Data Acquisition Enabling Ultra-Low Power Real-World EEG
INVITED: Towards Signal Processing Assisted Hardware for Continuous in-Band Electrode Impedance Monitoring
INVITED: Work Towards a Fieldable Multi-Channel EEG System for Continuous Monitoring
Oscillators, Phase-locked Loops & Others III Time: Monday, May 29 (14:00-15:30) Room: Grand Ballroom III Chair(s): Nathan Neihart - Iowa State University; Ayman Fayed - Ohio State University
Charge-Controlled Oscillators and Their Application in Frequency Synthesis
An Area-Efficient, 0.022-mm², Fully Integrated Resistor-Less Relaxation Oscillator for Ultra-Low Power Real-Time Clock Applications
A 5-Bit Phase-Interpolator-Based Fractional-N Frequency Divider for Digital Phase-Locked Loops
Jianfu Lin, Hanjun Jiang, Baoyong Chi Tsinghua University, China
Below-Ground Injection of Floating-Gate Transistors for Programmable Analog Circuits
Analytic Modeling of Static Noise Margin Considering DIBL and Body Bias Effects
Innovations in Acoustics Time: Monday, May 29 (14:00-15:30) Room: Grand Ballroom IV Chair(s): Muyinatu Bell - Johns Hopkins University; Ralph Etienne-Cummings - Johns Hopkins University
INVITED: Programmable Electronic Stethoscope
Echo Flow Patterns Influence Bat Flight Behavior

INVITED: Automatic Vascular Flow Reconstruction with Doppler Ultrasound
INVITED: Perceptual Signal Processing for Audio-Visual Beamforming with the Eigenmike Microphone Array and an Omni-Camera
Advanced Beamforming Methods for Ultrasound and Photoacoustic Imaging
Image Sensors Time: Monday, May 29 (14:00-15:30) Room: Grand Ballroom VII Chair(s): Shoushun Chen - Nanyang Technological University; Viktor Gruev - University of Illinois Urbana-Champaign
A 1600 by 1200, 300 mW, 40 fps Multi-Spectral Imager for Near-Infrared Fluorescence Image-Guided
Surgery
A Novel Smoothness-Based Interpolation Algorithm for Division of Focal Plane Polarimeters
Analysis of CMS Noise Reduction for 65 nm CIS
Dead Time Effects in the Indirect Time-of-Fight Measurement with SPADs
Energy-Efficient & Secure IoT Time: Monday, May 29 (14:00-15:30) Room: Grand Ballroom VIII Chair(s): Emre Salman - Stony Brook University; Milutin Stanecevic - Stony Brook University
INVITED: Internet of Things and EDA: an Industrial Perspective
Energy Efficient AC Computing Methodology for Wirelessly Powered IoT Devices
Variance-Based Digital Logic for Energy Harvesting Internet-of-Things
A Novel Approximate Computing Based Security Primitive for the Internet of Things

Power Efficient AES Core for IoT Constrained Devices Implemented in 130nm CMOS
Wireless & Implantable/Injectable Technology Circuits & Systems I Time: Monday, May 29 (14:00-15:30) Room: Grand Ballroom IX Chair(s): Andrew Mason; Virgilio Valente - University College London
A 3-Coil Simultaneous Power and Uplink Data Transmission Inductive Link for Battery-Less Implantable Devices
Min Li, Dake Liu, Chen Gong, Wan Qiao Beijing Institute of Technology, Sweden; Beijing Institute of Technology, China
A Rectifier/AC Shunt Regulator Combo Circuit with Inherent AM Demodulation Front-End for Wireless Powered Implants
A Wireless Neuroprosthetic for Augmenting Perception Through Modulated Electrical Stimulation of Somatosensory Cortex
A Wireless System for Combined Heart Optogenetics and Electrocardiography Recording
A Model Based Approach for Realizing a Safe Wireless Biotelemetry System
Sigma-Delta Converters Time: Monday, May 29 (14:00-15:30) Room: Grand Ballroom X Chair(s): George Yuan - Hong Kong University of Science and Technology; Jose Silva-Martinez - Texas A&M University
A Class of 1-Bit Multi-Step Look-Ahead Σ-Δ Modulators
Passive Loop Filter Assistance for CTSDMs

Current-Mode Multi-Path Excess Loop Delay Compensation for GHz Sampling CT ΣΔ ADCs
A 3rd Order MASH Switched-Capacitor ΣΔM Using Ultra Incomplete Settling Employing an Area Reduction Technique
Subtractive Dithering Technique for Delta-Sigma Modulator
Communication Circuits and Systems Time: Monday, May 29 (14:00-15:30) Room: Laurel AB Chair(s): Zhiyuan Yan - Lehigh University; Christoph Studer - Rice University
Spurs-Free Single-Bit-Output All-Digital Frequency Synthesizers with Forward and Feedback Spurs and Noise Cancellation
An Efficient Parallel Resampling Structure Based on Iterated Short Convolution Algorithm
A Low-Voltage High-Swing Colpitts VCO with Inherent Tapped Capacitors Based Dynamic Body Bias Technique
Asychnronous Sampling Based Hybrid Equalizer
A High Temperature Variable Gain Amplifier Based on GaN HEMT Devices for Downhole Communications 572 Mohammed Ehteshamuddin, Jebreel Salem, Dong Ha Virginia Polytechnic Institute and State University, United States

Low Power Architectures Time: Monday, May 29 (14:00-15:30) Room: Laurel CD	
Chair(s): Zhiyuan Yan - Lehigh University; Yun Chen - Fudan University	
Dark Memory and Accelerator-Rich System Optimization in the Dark Silicon Era	
Integration of Energy-Recycling Logic and Wireless Power Transfer for Ultra-Low-Power Implantables	577
Hsin-Tzu Lin{1}, Yi-Chung Wu{2}, Ping-Hsuan Hsieh{3}, Chia-Hsiang Yang{2} {1}National Chiao Tung University, Taiwan; {2}National Taiwan University, Taiwan; {3}National Tsing Hua University, Taiwan	511
Seeking Low-Power Synchronous/Asynchronous Systems: a FIR Implementation Case Study	581
Reducing Power, Area, and Delay of Threshold Logic Gates Considering Non-Integer Weights	585
Power-Rail ESD Clamp Circuit with Hybrid-Detection Enhanced Triggering in a 65-nm, 1.2-V CMOS Proc	
Guangyi Lu, Yuan Wang, Yize Wang, Xing Zhang Peking University, China	589
Visual Signal Enhancement, Presentation & Analysis Time: Monday, May 29 (14:00-15:30) Room: Kent AB Chair(s): Chris Lee - National Cheng Kung University; Wan-Chi Siu - Hong Kong Polytechnic University	
Image Co-Segmentation via Saliency Co-Fusion	593
Koteswar Rao Jerripothula{1}, Jianfei Cai{2}, Junsong Yuan{2} {1}Graphic Era University, India; {2}Nanyang Technological University, Singapore	
Complexity Reduction by Modified Scale-Space Construction in Sift Generation Optimized for a Mobile	
Chulhee Lee{2}, Hyuk-Jae Lee{2}, Chae Eun Rhee{1} {1}Inha University, Korea, South; {2}Seoul National University, Korea, South	594
Low-Lighting Video Enhancement Using Constrained Spatial-Temporal Model for Real-Time Mobile Communication	595
Xinwei Gao, Haibo Deng, Yaoyao Guo, Chenchen Gu, Yongfang Shi, Anlin Gao, Licai Guo, Xunan Mao, Jing L Tencent Holdings Limited, China	.V
Detection of Abandoned Objects Using Robust Subspace Recovery with Intrinsic Video Alignment	500
Lucas Thomaz{2}, Allan Da Silva{2}, Eduardo Da Silva{2}, Sergio Netto{2}, Hamid Krim{1} {1}North Carolina State University, United States; {2}Universidade Federal do Rio de Janeiro, Brazil	วชช
Subpixel Rendering Without Color Distortions for Diamond-Shaped PenTile Displays	603

ULP Circuits for Implantables & Wearables Time: Monday, May 29 (14:00-15:30) Room: Essex AB Chair(s): Alyssa Apsel - Cornell University
A Chopper Capacitively-Coupled Instrumentation Amplifier Capable of Handling Large Electrode Offset for Biopotential Recordings
Self-Sustainable Smart Ring for Long Term Monitoring of Blood Oxygenation
0.4-to-1-V Voltage Scalable ΔΣ ADC with Two-Step Hybrid Integrator for IoT Sensor Applications in 65nm LP CMOS
Kinetic AC/DC Converter for Electromagnetic Energy Harvesting in Autonomous Wearable Systems61
Robin Bolt{1}, Michele Magno{1}, Thomas Burger{1}, Aldo Romani{2}, Luca Benini{1} [1]Eidgenössische Technische Hochschule Zürich, Switzerland; {2}Università di Bologna, Italy
Dual-Band Wireless Power Transfer System Using Circular Defected Ground Structure Resonators for Biomedical Applications

cass student design competition - monday, may 29th

CASS Student Design Competition Time: Monday, May 29 (14:00-15:30) Room: Atlantic Chair(s): Eduardo da Silva - Universidade Federal do Rio de Janeiro
INDEPENDENT CLEANING ROBOT USING THE OPEN-HARDWARE PLATFORM ARDUINO
AUTOMATED MINIATURE GREENHOUSE FOR DOMESTIC ORGANIC GARDEN
A MAN-MACHINE INTERACTION SYSTEM BASED ON EEG, EOG AND MACHINE LEARNING
SMART PET CLOTHING: GUARDIAN OF HEALTH AND MOOD

^{**}CASS Student Design Competition posters/demos will subsequently be on display in the poster hall in Harborside Ballroom during the Tuesday Poster Session from 15:00-16:30.

Live DEMonstrations – monday, may 29^{th}

Demonstration Session I Time: Monday, May 29 (14:00-17:00) Room: Harborside Ballroom Chair(s): Jennifer Blain Christen - Arizona State University; Shih-Chii Liu - Swiss Federal Institute of Technology in Zurich
O-1 - Live Demonstration: Photon Counting and Direct ToF Camera Prototype Based on CMOS SPADs
Ion Vornicu, Ricardo Carmona-Galán, Ángel Rodríguez-Vázquez Consejo Superior de Investigaciones Científicas / Universidad de Sevilla, Spain
O-2 - Live Demonstration: a 1600 by 1200, 300 mW, 40 fps Multi-Spectral Imager for Near-Infrared Fluorescence Image-Guided Surgery
O-3 - Live Demonstration: Event-Driven Real-Time Spoken Digit Recognition System
O-4 - Live Demonstration: Hardware Implementation of Convolutional STDP for on-Line Visual Feature Learning
O-5 - Live Demonstration: Multiplexing AER Asynchronous Channels Over LVDS Links with Flow-Control and Clock-Correction for Scalable Neuromorphic Systems
O-6 - Live Demonstration: Dynamic Voltage and Frequency Scaling for Neuromorphic Many-Core Systems
Sebastian Höppner{1}, Yexin Yan{1}, Bernhard Vogginger{1}, Andreas Dixius{1}, Johannes Partzsch{1}, Prateek Joshi{1}, Felix Neumärker{1}, Stephan Hartmann{1}, Stefan Schiefer{1}, Stefan Scholze{1}, Georg Ellguth{1}, Love Cederstroem{1}, Matthias Eberlein{1}, Christian Mayr {1}, Steve Temple {2}, Luis Plana {2}, Jim Garside{2}, Simon Davison {2},David R. Lester {2}, Steve Furber{2} {1}Technische Universität Dresden, Germany; {2}University of Manchester, United Kingdom
O-7 - Live Demonstration: a 768×640 Pixels 200Meps Dynamic Vision Sensor
O-8 - Live Demonstration: a TiO2 ReRAM Parameter Extraction Method
O-9 - Live Demonstration: mNET: a Visually Rich Memristor Crossbar Simulator
O-10 - Live Demonstration: a Pulsar Signal Receiver System for Navigation 621

LIVE DEMONSTRATIONS - MONDAY, MAY 29TH

Diogo Brito, Joao Santos, Jorge Fernandes, Gonçalo Tavares Universidade Técnica de Lisboa / Instituto de Engenharia de Sistemas e Computadores - Investigação , Portugal
O-11 - Live Demonstration: FPGA Demonstration of Spiking Support Vector Networks Based on Growth Transform Neurons
John Mackay, Ahana Gangopadhyay, Shantanu Chakrabartty Washington University in St. Louis, United States
O-12 - Live Demonstration: Feature Extraction System Using Restricted Boltzmann Machines on FPGA
Kodai Ueyoshi{2}, Takao Marukame{3}, Tetsuya Asai{2}, Masato Motomura{2}, Alexandre Schmid{1} {1}École Polytechnique Fédérale de Lausanne, Switzerland; {2}Hokkaido University, Japan; {3}Toshiba Corporation, Japan
O-13 - Live Demonstration: Convolutional Neural Network Driven by Dynamic Vision Sensor Playing RoShamBo
Iulia-Alexandra Lungu, Federico Corradi, Tobi Delbruck Universität Zürich / Eidgenössische Technische Hochschule Zürich, Switzerland
O-14 - Live Demonstration - Multilayer Spiking Neural Network for Audio Samples Classification Using SpiNNaker
Juan P. Dominguez-Morales, Antonio Rios-Navarro, Daniel Gutierrez-Galan, Ricardo Tapiador-Morales, Angel Jimenez-Fernandez, Elena Cerezuela-Escudero, Manuel J. Dominguez-Morales, Alejandro Linares-Barranco Universidad de Sevilla, Spain
O-15 - Live Demonstration: a Compact All-CMOS Spatiotemporal Compressed Sensing Video Camera
Tao Xiong{2}, Jie Zhang{3}, Chetan Singh Thakur{2}, John Rattray{2}, Sang Chin{1}, Trac Tran{2}, Ralph Etienne-
Cummings{2} {1}Boston University, United States; {2}Johns Hopkins University, United States; {3}Massachusetts Institute of Technology, United States
O-16 - Live Demonstration: Event-Based Image Processing on CMOS Mihalas-Niebur Neuron Array Transceiver
O-17 - Live Demonstration: FPGA Neural Array Emulation for Real-Time, Event-Based Simultaneous Dewarping and Filtering for Aerial Vehicles
O-18 - Live Demonstration: a Stimulation Platform for Optogenetic and Bionic Vision Restoration
Francesco Galluppi{2}, Guillaume Chenegros{3}, Didier Pruneau{2}, Gilles Cordurié{3}, Charlie Galle{3}, Nicolas Oddo{3}, Xavier Lagorce{1}, Christoph Posch{1}, Joel Chavas{2}, Ryad Benosman{3} {1}Chronocam, France; {2}Gensight Biologics, France; {3}Université Pierre-et-Marie-Curie, France

Poster session – monday, may 29^{th}

Sensory Systems Time: Monday, May 29 (15:30-17:00) Room: Harborside Ballroom
Chair(s): Piotr Dudek - The University of Manchester; Timothy Constandinou - Imperial College London
O-19 - Photon Counting and Direct ToF Camera Prototype Based on CMOS SPADs
O-20 - Highly Linear Integrate-and-Fire Modulators with Soft Reset for Low-Power High-Speed Imagers
Michele Dei, Roger Figueras, Josep Maria Margarit, Lluís Terés, Francisco Serra-Graells Consejo Superior de Investigaciones Científicas, Spain
O-21 - Color Temporal Contrast Sensitivity in Dynamic Vision Sensors
O-22 - Real-Time Trajectory Calculation and Prediction Using Neighborhood-Level Parallel Processing
Mahir Gharzai, Dingyi Hong, Joseph Schmitz, Michael Hoffman, Sina Balkir University of Nebraska-Lincoln, United States
O-23 - Dark Current Reduction by an Adaptive CTIA Photocircuit for Room Temperature SWIR Sensing
Andrew Berkovich{3}, Alexander Castro{3}, Mohammad Islam{2}, Fow-Sen Choa{2}, Geoffrey Barrows{1}, Pamela Abshire{3} {1}Centeye, Inc., United States; {2}University of Maryland, Baltimore County, United States; {3}University of Maryland, College Park, United States
O-24 - A Battery-Less, 255 Na Quiescent Current Temperature Sensor with Voltage Regulator Fully Powered by Harvesting Ambient Vibrational Energy
O-25 - A Passively Compensated Capacitive Sensor Readout with Biased Varactor Temperature Compensation and Temperature Coherent Quantization
O-26 - Optimum Synchronous Phase Detection and its Application in Smart Sensor Interfaces 65 Sining Pan, Kofi Makinwa Technische Universiteit Delft, Netherlands

Biomedical Signal Processing Time: Monday, May 29 (15:00-17:30) Room: Harborside Ballroom Chair(s): Nitish Thakor - Johns Hopkins University; Timothy Constandinou - Imperial College London
P-27 - Motion Artifact Reduction from PPG Signals During Intense Exercise Using Filtered X-LMS 662 Khawaja Taimoor Tanweer{1}, Syed Rafay Hasan{2}, Awais Mehmood Kamboh{1} {1}National University of Sciences and Technology, Pakistan; {2}Tennessee Technological University, United States
P-28 - An Accurate Method for Fourier Synthesis of Photoplethysmographic Signals
P-29 - An Optical Tracker Based Registration Method Using Feedback for Robot-Assisted Insertion Surgeries
P-30 - Palmprint Recognition Using Deep Scattering Network
P-31 - On-Chip ID Generation for Multi-Node Implantable Devices Using SA-PUF
P-32 - An Aided Information to Characterize ECG Signals as Normal or Abnormal
P-33 - An Accurate Automatic System for Distinguishing Neuropathy and Healthy Electromyography Signals
Salim Lahmiri{1}, Mounir Boukadoum{2} {1}École de Technologie Supérieure, Canada; {2}Université du Québec à Montréal, Canada
P-34 - Real-Time Clustering Algorithm That Adapts to Dynamic Changes in Neural Recordings
Mason{2} {1}Imperial College London, United Kingdom; {2}Michigan State University, United States; {3}University of Newcastle, United Kingdom
P-35 - Receiver Echo Cancellation with Real-Time Self Calibration for Passive Implanted Neuron Recorders
Maryam Shafiee, Sule Ozev Arizona State University, United States

Dorian Haci, Yan Liu, Timothy Constandinou Imperial College London, United Kingdom Optimization and Manufacturability Time: Monday, May 29 (15:30-17:00) Room: Harborside Ballroom Chair(s): Meng-Fan Chang - National Tsing Hua University; Gehm Moraes - Pontifical Catholic University of Rio Grande do Sul
Time: Monday, May 29 (15:30-17:00) Room: Harborside Ballroom Chair(s): Meng-Fan Chang - National Tsing Hua University; Gehm Moraes - Pontifical Catholic University of Rio
Q-37 - Efficient SVM-Based Hotspot Detection Using Spectral Clustering
Q-38 - Non-Linear Library Characterization Method for FinFET Logic Cells by L1-Minimization
Q-39 - A Grid-Based Detailed Routing Algorithm for Advanced 1D Process
Q-40 - Design of a Digital IP for 3D-IC Die-to-Die Clock Synchronization
Q-41 - A Survey of Path Search Algorithms for VLSI Detailed Routing
Q-42 - Power-Efficient, Gate-Based Digital-to-Time Converter in CMOS
Q-43 - Impacts of Different Shapes of Through-Silicon-Via Core on 3D IC Performance
Q-44 - Stability of Rotary Traveling Wave Oscillators Under Process Variations and NBTI730 Ragh Kuttappa, Leo Filippini, Scott Lerner, Baris Taskin Drexel University, United States
Q-45 - A Multi-Measurements RO-TDC Implemented in a Xilinx Field Programmable Gate Array734 Safa Berrima{2}, Yves Blaquière{1}, Yvon Savaria{2} {1}École de Technologie Supérieure, Canada; {2}Polytechnique Montréal, Canada
Q-46 - On the Use of Approximate Adders in Carry-Save Multiplier-Accumulators
Q-47 - A Framework to Automatically Generate Heterogeneous Organization Reconfigurable Multiprocessing

{1}Universidade Federal de Santa Maria, Brazil; {2}Universidade Federal do Rio Grande do Sul, Brazil	
Q-48 - Efficient Computation of the Sensitization Probability of a Critical Path Considering Process Variations and Path Correlation Pavan Kumar Javvaji, Spyros Tragoudas Southern Illinois University Carbondale, United States	746
Q-49 - A Low Cost Technique for Scan Chain Diagnosis Satyadev Ahlawat, Darshit Vaghani, Rohini Gulve, Virendra Singh Indian Institute of Technology Bombay, India	750
Q-50 - Robustness of Sub-22nm Multigate Devices Against Physical Variability	754
Q-51 - METS: a Multiple Event Transient Simulator Adam Watkins, Spyros Tragoudas Southern Illinois University Carbondale, United States	758
Communication Methods Time: Monday, May 29 (15:30-17:00) Room: Harborside Ballroom Chair(s): Hsi-Pin Ma - National Tsing Hua University; Tokunbo Ogunfunmi - Santa Clara University	
R-52 - A 8-Gb/s 0.256-pJ/b Transceiver for 5-mm on-Chip Interconnects in 130-nm CMOS	762
<i>R-53 - A 17.5-Gb/s Transceiver with a MaxEye-Based Autonomous Adaptation</i>	766
R-54 - A 25 Gb/s 470 μW Active Inductor Equalizer for Ground Referenced Signaling Receivers	770
R-55 - Secure Authentication and Access Mechanism for IoT Wireless Sensors	774
R-56 - A 170nW CMOS Wake-Up Receiver with -60 dBm Sensitivity Using AlN High-Q Piezoelectric Resonators Scott Block, Xiaonan Jiang, Brad Harris, Can Cui, Jeronimo Segovia Fernandez, Rajeevan Amirtharajah, Dav Horsley, Hooman Rashtian, Xiaoguang Liu University of California, Davis, United States	778 ve
R-57 - High Temperature VCO Based on GaN Devices for Downhole Communications	782
R-58 - A 9.4 pJ/Bit 432 MHz 16-QAM/MSK Transmitter Based on Edge-Combining Power Amplifier Yanshu Guo, Songping Mai, Zhaoyang Weng, Heng Liu, Hanjun Jiang, Zhihua Wang Tsinghua University, China	786
R-59 - Adaptive Baseband Pre-Equalization for RF Impedance Matching Correction	790

R-60 - On Envelope-Tracking for SOA Amplification of Multicarrier Signals
R-61 - A 1 – 8 Gb/s Optical Wireless Communication Dual-Mode Receiver
R-62 - 16-Channel Modular Platform for Automatic Control and Reconfiguration of Complex Photonic Circuits
Emanuele Guglielmi, Marco Carminati, Francesco Zanetto, Andrea Annoni, Francesco Morichetti, Andrea Melloni, Marco Sampietro, Giorgio Ferrari Politecnico di Milano, Italy
R-63 - Phase Noise Analysis of a Homodyne Radar System Driven by a Phase-Locked Loop
R-64 - Multi Component Carrier, Sub-Band DPD and GNURadio Implementation
R-65 - Design Guidelines for the High-Speed Dynamic Partial Reconfiguration Based Software Defined Radio Implementations on Xilinx Zynq FPGA
Video Signal Processing & Coding Algorithms Time: Monday, May 29 (15:30-17:00) Room: Harborside Ballroom Chair(s): Qi Tian - University of Texas at San Antonio; Jianfei Cai - Nanyang Technological University
S-66 - An Adaptive and Low-Complexity All-Zero Block Detection for HEVC Encoder
S-67 - A Convolutional Neural Network Approach for Half-Pel Interpolation in Video Coding
S-68 - Fast Rate Distortion Optimization with Adaptive Context Group Modeling for HEVC
S-69 - Fast Rate Distortion Optimized Quantization Method for HEVC
S-70 - Complexity Reduction by Modes Reduction in RD-List for Intra-Frame Prediction in 3D-HEVC Depth
Maps

S-71 - An Efficient Non-Selective Adaptive Motion Compensated Frame Rate Up Conversion
S-72 - Low-Power and High-Throughput Hardware Design for the 3D-HEVC Depth Intra Skip
{1}Universidade Federal de Pelotas, Brazil; {2}Universidade Federal do Rio Grande do Sul, Brazil
Complex Networks & Models Time: Monday, May 29 (15:30-17:00) Room: Harborside Ballroom Chair(a): Vashifumi Nichia Takushima University Faderica Bizzarri Balitaaniaa di Milana
Chair(s): Yoshifumi Nishio - Tokushima University; Federico Bizzarri - Politecnico di Milano
<i>T-73 - Synchronization in Dynamical Oscillatory Networks with Non-Uniform Coupling Distributions</i> 846 Yoko Uwate, Yoshifumi Nishio Tokushima University, Japan
T-74 - Multiobjective Transshipment Point Assignment in China Express Delivery Network
T-75 - Optimal Design of Coupling Preferences to Mitigate Traffic Congestion in Interconnected Networks
Jian Zhong, Jiajing Wu, Zhenhao Chen, Zibin Zheng Sun Yat-sen University, China
<i>T-76 - A Unifying Perspective on Phase Noise and Injection Locking</i>
T-77 - Efficient Spectral Graph Sparsification via Krylov-Subspace Based Spectral Perturbation Analysis
Shuhan Zhang{1}, Fan Yang{1}, Xuan Zeng{1}, Dian Zhou{4}, Shun Li{2}, Xiangdong Hu{3} {1}Fudan University, China; {2}Microsystem & Terahertz Research Center, China; {3}Shanghai High-Performance Integrated-Circuit Design Center, China; {4}University of Texas at Dallas, United States
T-78 - On Network-Based Leader-Following Consensus of Linear Multi-Agent Systems
T-79 - A Heuristics-Based VM Allocation Mechanism for Cloud Data Centers
T-80 - A Refinement Process for Nozzle Path Planning in 3D Printing

Data Converters II Time: Monday, May 29 (15:30-17:00) Room: Harborside Ballroom Chair(s): Shahriar Mirabbasi - University of British Columbia; George Yuan - Hong Kong University of Science and Technology
U-81 - A Four-Antenna Baseband Multipath Emulator for Millimeter-Wave Channels
U-82 - A Low Power Read-Out Circuit with Frequency Accuracy of 0.2% for Capacitive and Resistive Sensors
 U-83 - Zero-Bias True Random Number Generator Using LFSR-Based Scrambler
U-84 - Piecewise BJT Process Spread Compensation Exploiting Base Recombination Current
U-85 - Current Mirror Array: a Novel Lightweight Strong PUF Topology with Enhanced Reliability 894 Zheng Wang{2}, Yi Chen{1}, Aakash Patil{1}, Chip-Hong Chang{1}, Arindam Basu{1} {1}Nanyang Technological University, Singapore; {2}Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, China
U-86 - Power Efficient SAR ADC Adaptive to Input Activity for ECG Monitoring Applications
 U-87 - Nonlinear Quantizer Design in Data Conversion Systems Using the Unscented Transform
U-88 - A Design-Oriented Approach for Modeling Integrators Non-Idealities in Discrete-Time Sigma-Delta
Modulators
U-89 - Designing CT Bandpass ΣΔ Modulators with Arbitrary STF Shapes
 U-90 - Fundamental Limits on Energy Efficiency Performance of VCO-Based ADCs
U-91 - Digital Interferer Suppression and Jitter Reduction in Continuous-Time Bandpass ΣΔ Modulators
Jiazuo Chi, Johannes Wagner, Jens Anders, Maurits Ortmanns Universität Ulm, Germany
U-92 - A Novel Clock-Pulse-Width Calibration Technique for Charge Redistribution DACs

U-93 - An 11-Bit 20-MSample/s Pipelined ADC with OTA Bias Current Regulation to Optimize Power Dissipation
Jose Angel Díaz-Madrid{2}, Gines Domenech-Asensi{2}, Jose Alejandro Lopez-Alcantud{2}, Matthias Oberst{1} {1}Fraunhofer Institute for Integrated Circuits IIS, Germany; {2}Universidad Politécnica de Cartagena, Spain
 U-94 - A Digital Compensation Method Canceling Static and Non-Linear Time-Variant Feedback DAC Errors in ΣΔ Analog-to-Digital Converters Marcel Runge, Friedel Gerfers Technische Universität Berlin, Germany
U-95 - A 40 nm CMOS T/H-Less Flash-Like Stroboscopic ADC with 23dB THD and >50 GHz Effective Resolution Bandwidth
Gibran L. Jaya and Shoushun Chen Nanyang Technological University, Singapore
U-96 - A Novel High-Rate Hybrid Window ADC Design for Monolithic Digitally-Controlled DC-DC Converters
Yin Sun, Victor Adrian, Joseph Sylvester Chang Nanyang Technological University, Singapore
Amplifiers, Analog Filtering, RF Circuits & Interface Circuits Time: Monday, May 29 (15:30-17:00) Room: Harborside Ballroom Chair(s): Mohamad Sawan - Polytechnique Montréal; Nuno Paulino – UNINOVA
V-97 - A CMOS Differential-Difference Amplifier with Class-AB Input Stages Featuring Wide Differential-Mode Input Range
V-98 - Offset Based Feedforward Amplifier with Nonlinearity Compensation and P1dB Expansion 946 Zhan Su{1}, Hossein Noori{1}, Fa Dai{1}, Wei Zhou{2}, Yudong Wang{2}, Jun Fu{2} {1}Auburn University, United States; {2}Tsinghua University, China
V-99 - A Robust Fully-Dynamic Residue Amplifier for Two-Stage SAR Assisted Pipeline ADCs
V-100 - A Cascode Miller Compensated Three-Stage Amplifier with Local Q-Factor Control for Wide Capacitive Load Applications
V-101 - A Compact and Low Power Bandpass Amplifier for Low Bandwidth Signal Applications in 65-nm CMOS
Polytechnique Montréal, Canada
V-102 - A 60-GHz Low-Noise Variable-Gain Amplifier in a 130-nm BiCMOS Technology for Sixport Applications
V-103 - A 1.8 μW 32 nV/√Hz Current-Reuse Capacitively-Coupled Instrumentation Amplifier for EEG Detection
Yangtao Dong, Lihan Tang, Xiaolin Yang, Menglian Zhao, Peng Sun, Xiaobo Wu Zhejiang University, China

V-104 - Linear Input Range Extension for Low-Voltage Operational Transconductance Amplifiers in Gm-C Filters
V-105 - CMOS Mixed Signal SoC for Low-Side Current Sensing
V-106 - An Energy/Bandwidth/Area Efficient Frequency-Domain OOK Transmitter with Phase Rotated Modulation 978 Ranran Zhou, Yining Zhang, Woogeun Rhee, Zhihua Wang Tsinghua University, China
V-107 - A Class-E RF Power Amplifier with a Novel Matching Network for High-Efficiency Dynamic Load Modulation
Qianqian Liu, Victor Adrian, Bah-Hwee Gwee, Joseph Sylvester Chang Nanyang Technological University, Singapore
V-108 - A Load Variation Tolerant Readout Interface for High Linear MEMS Capacitive Microphones
Han Yang, Jun Soo Cho, Youngtae Yang, Suhwan Kim Seoul National University, Korea, South
V-109 - A Widely Tunable Balun Based on 2-Port N-Path Bandpass Filters with Embedded Phase Shifting
Prateek Kumar Sharma, Nagarjuna Nallam Indian Institute of Technology Guwahati, India
V-110 - A 0.9V 75MHz 2.8mW 4th-Order Analog Filter in CMOS-Bulk 28nm Technology
V-111 - A Novel Charge Sensitive Pre-Amplifier Structure for Biological Temperature Readout Applications
Hanfeng Wang{2}, Song Yuan{2}, Syed Islam{2}, Charles Britton Jr.{1} {1}Oak Ridge National Laboratory, United States; {2}University of Tennessee, United States
 V-112 - A 0.2V 492nW VCO-Based OTA with 60kHz UGB and 207μVrms Noise
V-113 - A High Temperature, 12-Bit-Time-Domain Sensor Interface Based on Injection Locked Oscillator
1006 Emna Chabchoub{1}, Franck Badets{1}, Pascal Nouet{3}, Mohamed Masmoudi{2}, Frédérick Mailly{3} {1}Commissariat à l'Energie Atomique et aux Energies Alternatives, France; {2}Ecole Nationale d'Ingénieurs de Sfax, Tunisia; {3}Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, France
V-114 - Closed-Loop Continuous-Time Analog Filter with Almost Constant IIP3 Over the Pass-Band
Marcello De Matteis, Antonio D'Amico, Fulvio Ciciotti, Andrea Baschirotto Università degli Studi di Milano-Bicocca, Italy

Room: Harborside Ballroom Chair(s): Xiaozhe Wang - McGill University; Zbigniew Galias - AGH University of Science and Technology
W-115 - A Multidimensional Transfer Function Model for Frequency Dependent Transmission Lines
Maximilian Schäfer{2}, Rudolf Rabenstein{2}, Christian Strobl{1} {1}E-T-A Elektrotechnische Apparate GmbH, Germany; {2}Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
 W-116 - A Method to Identify Dynamic Zones for Efficient Control of HVAC Systems
W-117 - Distributed Optimal Power Flow: an Augmented Lagrangian-Sequential Quadratic Programming Approach1022
Zejiang Hou, Ho-Chun Wu, Shing-Chow Chan University of Hong Kong, Hong Kong
W-118 - An FPGA-Based Aperiodic Modulation Strategy for EMI Suppression in Quasi-Z-Source DC-DC Converters
Saad Ul Hasan, Graham E. Town Macquarie University, Australia
W-119 - On Optimum Placement of Sectionalizing Switches in Radial Distribution Networks
AGH University of Science and Technology, Poland
W-120 - Dimensioning and Comparison of Common Compensation Topologies for IPT Systems 1034 Martin Trautmann, Marius Ohlendorf, Benedikt Sanftl, Robert Weigel, Alexander Koelpin Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
W-121 - Analysis of Coexisting Solutions and Control of Their Bifurcations in a Parallel LC Resonant Inverter1038
Luis Benadero{2}, Enrique Ponce{1}, Abdelali El Aroudi{3}, Luis Martínez-Salamero{3} {1}Universidad de Sevilla, Spain; {2}Universitat Politécnica de Catalunya, Spain; {3}Universitat Rovira i Virgili, Spain
W-122 - Stability Conditions for Hybrid Supply Modulators
Min Tan{2}, Wing-Hung Ki{1} {1}Hong Kong University of Science and Technology, Hong Kong; {2}Huazhong University of Science and Technology, China
W-123 - Dynamic ADC-Quantization for Oscillation-Free Performance of Digitally Controlled Converters1046
Asif Syed{2}, Amit Patra{1} {1}Indian Institute of Technology Kharagpur, India; {2}SiWays Microelectronics, India
W-124 - Improving EDP in Multi-Core Embedded Systems Through Multidimensional Frequency Scaling1050
Wagner Marques{1}, Paulo Souza{1}, Arthur Lorenzon{3}, Antonio Carlos Schneider Beck{3}, Mateus Beck Rutzig{2}, Fábio Rossi{1}
{1}Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Brazil; {2}Universidade Federal de Santa Maria, Brazil; {3}Universidade Federal do Rio Grande do Sul, Brazil
W-125 - Sliding-Mode Approach for Start-Up Control and Voltage Regulation of a Boost Converter Driving a Constant Power Load
Blanca Areli Martínez-Treviño, Abdelali El Aroudi, Luis Martínez-Salamero Universitat Rovira i Virgili, Spain

Education Tools Time: Monday, May 29 (15:30-17:00)
Room: Harborside Ballroom Chair(s): Yun He - Tsinghua University; Joos Vandewalle - Katholieke Universiteit Leuven
X-126 - An Intrinsic Complexity Model for the Problem of Total Resistance Determination
X-127 - Using SoC FPAA and Integrated Simulator for Implementation of Circuits and Systems in Education
Aishwarya Natarajan, Jennifer Hasler Georgia Institute of Technology, United States
X-128 - An Academic EDA Suite for the Full-Custom Design of Mixed-Mode Integrated Circuits 1066 Jofre Pallarès{1}, Keith Sabine{2}, Lluís Terés{1}, Francisco Serra-Graells{1}

Pioneers of CAS – monday, may 29th

Pioneers of Circuits and Systems I
Time: Monday, May 29 (17:00-18:00)
Room: Grand Ballroom V-VI
Chair(s): Pamela Abshire - University of Maryland
Distributed Circuit Theory: Reminiscences
Present at the BeginningNA
Bede Liu
Princeton University, United States
Reminiscence: 60 Years of Teaching Within 84 Years of Life

FutureCAS panel - monday, may 29th

FutureCAS Panel

Time: Monday, May 29 (6:00-7:30) **Room:** Grand Ballroom V-VI

What challenges and opportunities does the future hold for the field of Circuits and Systems?NA

Moderator: Jennifer Blain Christen

Panelists: Jeannette M. Wing, Orla Feely, Mandy Pant, Frederica Darema

Technical Sessions – tuesday, May 30th

Radar Circuits and Systems Time: Tuesday, May 30 (8:00-9:30) Room: Dover A Chair(s): Ioannis Syllaios - University of Texas at Dallas; Joseph Chang - Nanyang Technological University
Time-of-Arrival Measurement Using Adaptive CMOS IR-UWB Range Finder with Scalable Resolution
Real-Time Mitigation of Short-Range Leakage in Automotive FMCW Radar Transceivers
Novel Mixed-Signal Based Short-Range Leakage Canceler for FMCW Radar Transceiver MMICs
Modeling and Analysis of the Effects of PLL Phase Noise on FMCW Radar Performance
A Dual Band FMCW Radar Receiver with Integrated Active Balun and Baseband AGC Loop
IoVT Panel Time: Tuesday, May 30 (8:00-9:30) Room: Dover BC Moderator(s): Dr. Yen-Kuang Chen - Intel Corporation, Prof. Eduard Alarcon - UPC
Deep Learning for Internet of Video Things – Hype or Hope?

Hardware Accelerators for Deep Learning & Cognitive Systems Time: Tuesday, May 30 (8:00-9:30)
Room: Grand Ballroom I Chair(s): Ralph Etienne-Cummings - Johns Hopkins University; Chetan Thakur - Johns Hopkins University
Fast Classification Using Sparsely Active Spiking Networks
A Fixed Point Exponential Function Accelerator for a Neuromorphic Many-Core System
{1}Technische Universität Dresden, Germany; {2}University of Manchester, United Kingdom
Event-Driven Random Backpropagation: Enabling Neuromorphic Deep Learning Machines
Pattern Representation and Recognition with Accelerated Analog Neuromorphic Systems
{1}Graz University of Technology, Austria; {2}Ruprecht-Karls-Universität Heidelberg, Germany; {3}Technische Universität Dresden, Germany; {4}Technische Universität Graz, Germany
Ziksa: on-Chip Learning Accelerator with Memristor Crossbars for Multilevel Neural Networks
Compressive Sensing
Time: Tuesday, May 30 (8:00-9:30)
Room: Grand Ballroom II Chair(s): Wei-Ping Zhu - Concordia University; Yun Chen - Fudan University
Countering the False Myth of Democracy: Boosting Compressed Sensing Performance with Maximum- Energy Approach1107
Mauro Mangia{2}, Fabio Pareschi{1}, Riccardo Rovatti{2}, Gianluca Setti{1} {1}Università degli Studi di Ferrara, Italy; {2}Università di Bologna, Italy
Subspace Learning in the Presence of Sparse Structured Outliers and Noise
Scaled Linearized Bregman Iterations for Fixed Point Implementation
Two-Pass Lp-Regularized Least-Squares Algorithm for Compressive Sensing

Approximate-DCT-Derived Measurement Matrices for Compressed Sensing
Circuits for Power Management & Voltage References Time: Tuesday, May 30 (8:00-9:30) Room: Grand Ballroom III Chair(s): Nathan Neihart - Iowa State University; Jose Silva-Martinez - Texas A&M University
A Power-Efficient Reconfigurable Output-Capacitor-Less Low-Drop-Out Regulator for Low Power Analog Sensing Front-End
An All-MOSFET Sub-1 V Voltage Reference with a - 51 dB PSR Up to 60 MHz
An All-MOSFET Voltage Reference with -50dB PSR @ 80 MHz for Low Power SoC Design
A Simple LDO with Adaptable Bias for Internet of Things Applications
Hardware Security Time: Tuesday, May 30 (8:00-9:30) Room: Grand Ballroom IV Chair(s): Ankur Srivastava - University of Maryland; Chip Hong Chang - Nanyang Technological University
A Voltage Regulator-Assisted Lightweight AES Implementation Against DPA Attacks
CPA Secured Data-Dependent Delay-Assignment Methodology
CMOS Based Gates for Blurring Power Information
Charge-Withheld Converter-Reshuffling (CoRe): a Countermeasure Against Power Analysis Attacks
Weize Yu, Selcuk Köse University of South Florida, United States

TECHNICAL SESSIONS - TUESDAY, MAY 30TH

Vision Sensors Time: Tuesday, May 30 (8:00-9:30) Room: Grand Ballroom VII Chair(s): Piotr Dudek - The University of Manchester; Ricardo Carmona Galán - Instituto of Microelectrónica of Sevilla
INVITED: Development of an Always-on Vision Computer Vision Sensor
Always-on CMOS Image Sensor Pixel Design for Pixel-Wise Binary Coded Exposure
A Dynamic Vision Sensor with Direct Logarithmic Output and Full-Frame Picture-on-Demand
Impact of Fixed Pattern Noise on Embedded Image Compression Techniques
High-Speed Depth from Focus on a Programmable Vision Chip Using a Focus Tunable Lens
Digitally Intensive Frequency Synthesis for Internet of Things Applications Time: Tuesday, May 30 (8:00-8:30) Room: Grand Ballroom VIII Chair(s): Paul Sotiriadis - University of California, San Diego; Peter Kennedy - University College Cork
Analysis of Millimeter-Wave Digital Frequency Modulators for Ubiquitous Sensors and Radars
All Digital FPGA-Implementable Time-Average-Frequency Direct Period Synthesis for IoT Applications 1158
Liming Xiu BOE Technology Group CO., LTD., China
Hybrid-DPLL-Based Constant-Envelope Modulator for Internet-of-Things Chipsets
Single-Bit All Digital Frequency Synthesis with Homodyne Sigma-Delta Modulation for Internet of Things Applications
Nonlinearity-Induced Spurious Tones and Noise in Digitally-Assisted Frequency Synthesizers

Wireless & Implantable/Injectable Technology Circuits & Systems II Time: Tuesday, May 30 (8:00-9:30) Room: Grand Ballroom IX
Chair(s): Shantanu Chakrabartty - Washington University in St. Louis; Benoit Gosselin - Université Laval
A CMOS Automatic Tuning System to Maximize Remote Powering Efficiency
{1}École Polytechnique Fédérale de Lausanne, Switzerland; {2}Università degli Studi di Cagliari, Italy
Feasibility of Hybrid Ultrasound-Electrical Nerve Stimulation for Electroceuticals
A High-Sensitivity CMOS Biophotometry Sensor with Embedded Continuous-Time ΣΔ Modulation
In-Vivo Tests of an Inductively Powered Miniaturized Neural Stimulator
{1}Johns Hopkins University, United States; {2}Johns Hopkins University / National University of Singapore, United States; {3}Stony Brook University, United States
Towards Low-Power Wearable Wireless Sensors for Molecular Biomarker and Physiological Signal Monitoring
Xueyuan Zhao, Vidyasagar Sadhu, Tuan Le, Dario Pompili, Mehdi Javanmard Rutgers University, United States
ADCs for Wireless Communication Time: Tuesday, May 30 (8:00-9:30) Room: Grand Ballroom X
Chair(s): Thierry Taris - Laboratoire de l'Intégration du Matériau au Système; Joseph Chang - Nanyang Technological University
Mismatch-Shaped Frequency-Interleaved Quadrature Data Converters for Carrier Aggregation in MU-MIMO
Sandipan Kundu{2}, Subhanshu Gupta{3}, David Allstot{3}, Jeyanandh Paramesh{1} {1}Carnegie Mellon University, United States; {2}Intel Corporation, United States; {3}Washington State University, United States
An Adaptive Blind Frequency Response Mismatches Calibration Method for Four-Channel TIADCs Based on Channel Swapping
Husheng Liu, Hui Xu National University of Defense Technology, China
A 5-Bit 300–900-MS/s 0.8–1.2-V Supply Voltage ADC with Background Self-Calibration
A 7.9μA 4-Bit 4Msps Successive Approximation Phase-Domain ADC for GFSK Demodulator

A Two-Step Radio Receiver Architecture Fully Embedded Into a Charge-Sharing SAR ADC
Cognitive Radio & Security Systems Time: Tuesday, May 30 (8:00-9:30) Room: Laurel AB Chair(s): Maire O'Neill - Queens University; Joseph Cavallaro - Rice University
INVITED: Hardware Security at the Heart of IoT
Computational Complexity Reduction for Signal Cyclostationarity Detection Based Spectrum Sensing2051
Shuske Narieda National Institute of Technology, Akashi College, Japan
A 3DES Implementation Especially for CBC Feedback Loop Mode
Compact and Provably Secure Lattice-Based Signatures in Hardware
A Sub-mW Spectrum Sensing Architecture for Portable IEEE 802.22 Cognitive Radio Applications
Kevin Banović, Anthony Chan Carusone University of Toronto, Canada
Arithmetic & Logic Circuits Time: Tuesday, May 30 (8:00-9:30) Room: Laurel CD Chair(s): Ettore Napoli - Università degli Studi di Napoli Federico II; Martin Kumm - Universität Kassel
Analysis of Stochastic Logic Circuits in Unipolar, Bipolar and Hybrid Formats
Logarithmic Number System Addition-Subtraction Using Fractional Normalization
Post-Processing of Supergate Networks Aiming Cell Layout Optimization
Integration of Level Shifting in a TSPC Flip-Flop for Low-Power Robust Timing Closure in Dual-VDD ULV Circuits
François Stas, David Bol Université Catholique de Louvain, Belgium
Cell Spreading Optimization for Force-Directed Global Placers

Advanced Video Streaming & Transmission Time: Tuesday, May 30 (8:00-9:30) Room: Kent AB
Chair(s): Hsu-Feng Hsiao - National Chiao Tung University; Jianfei Cai - Nanyang Technological University
Collaborative Wireless Freeview Video Streaming with Network Coding
Dynamic Threshold Based Rate Adaptation for HTTP Live Streaming
View Direction and Bandwidth Adaptive 360 Degree Video Streaming Using a Two-Tier System 1246 Fanyi Duanmu, Eymen Kurdoglu, Yong Liu, Yao Wang New York University, United States
A Robust Video Encoding Scheme to Enhance Error Concealment of Intra Frames
Video Streaming Optimization Using Degradation Estimation with Unequal Error Protection
Mini-Tutorial Time: Tuesday, May 30 (8:00-9:30) Room: Essex AB
Multiply and Filter: An Universal Measurement Trick
Keynote Time: Tuesday, May 30 (9:30-10:30) Room: Grand Ballroom V-VI
A Matter of Trust
Nonlinear Dynamics in CAS Time: Tuesday, May 30 (11:00-12:30) Room: Dover A Chair(s): Marco Storace - Università di Genova; Dimitri Galayco - Université Pierre-et-Marie-Curie
Control-Oriented Design Guidelines to Extend the Stability Margin of Switching Converters
A Modified CCM Approach for Simulating Hierarchical Interconnected Dynamical Systems

CEPAGE: a Toolbox for Central Pattern Generator Analysis
Constant-Time Discontinuity Map for Forward Sensitivity Analysis to Initial Conditions: Spurs Detection in Fractional-N PLL as a Case Study
Semianalytical Model for High Speed Analysis of All-Digital PLL Clock-Generating Networks
Power Converters I
Time: Tuesday, May 30 (11:00-12:30) Room: Dover BC Chair(s): Abdelali El Aroudi - Universitat Rovira i Virgili; Hiroo Sekiya - Chiba University
A Low-Voltage Charge Pump with Improved Pumping Efficiency
Modeling of 3-Level Buck Converters in Discontinuous Conduction Mode for Stand-by Mode Power Supply
Yoshitaka Yamauchi, Toru Sai, Takayasu Sakurai, Makoto Takamiya University of Tokyo, Japan
A Class-D Output Bridge with Dynamic Dead-Time, Small Delay and Reduced EMI
A Current Average Control Method for Transient-Glitch Reduction in Variable Frequency DC-DC Converters
Hsin-Shu Chen, Jia-Nan Tai, Yi-Jan Emery Chen, Jau-Horng Chen National Taiwan University, Taiwan
A Novel Nonlinear Modulation Technique for Stabilizing DC-DC Switching Converters

Pattern Recognition & Learning Systems I Time: Tuesday, May 30 (11:00-12:30) Room: Grand Ballroom I Chair(a): Ibrahim Effedel Meeder Institute: Javany Helleman Hairestit of North Carolina at Charlette
Chair(s): Ibrahim Elfadel - Masdar Institute; Jeremy Holleman - University of North Carolina at Charlotte
INVITED: Using Machine Learning to Separate SignalsNA Peder Olsen
IBM Research, United States
Accelerating Convolutional Neural Network with FFT on Tiny Cores
A Mixed-Mode Array Computing Architecture for Online Dictionary Learning1302 Jussi Poikonen, Mika Laiho University of Turku, Finland
VLSI Implementation of LS-SVM Training and Classification Using Entropy Based Subset-Selection1306
Andreas Bytyn, Jannik Springer, Rainer Leupers, Gerd Ascheid Rheinisch-Westfälische Technische Hochschule Aachen, Germany
Fast Thermopile Readout Circuit Arrangement for Array Processors
Statistical Signal Processing Time: Tuesday, May 30 (11:00-12:30) Room: Grand Ballroom II Chair(s): Wei Xing Zheng - Western Sydney University; Tokunbo Ogunfunmi - Santa Clara University
Efficient Data Structures for Density Estimation for Large High-Dimensional Data
Integer Frequency Offset Detection with Reduced Complexity in OFDM Systems
A New Regularized Recursive Dynamic Factor Analysis with Variable Forgetting Factor for Wireless Sensor Networks with Missing Data
Study of Wind Profile Prediction with a Combination of Signal Processing and Computational Fluid Dynamics1326
Mengdi Jiang, Wei Liu, Yi Li University of Sheffield, United Kingdom
Multichannel Color Image Watermark Detection Utilizing Vector-Based Hidden Markov Model

RF Circuits I Time: Tuesday, May 30 (11:00-12:30) Room: Grand Ballroom III Chair(s): Joseph Chang - Nanyang Technological University; Ioannis Syllaios - University of Texas at Dallas
A 30μW, 3.3dB NF CMOS LNA for Wearable WSN Applications
A 6V CMOS Switching Mode Amplifier for Continuous-Wave Signals from DC to 3 GHz
Common-Mode Termination Requirements in Concurrent Dual-Band Push-Pull Power Amplifiers
Byron Montgomery, Yifei Li, Nathan Neihart Iowa State University, United States
A 1024-QAM Capable WLAN Receiver with -56.3 dB Image Rejection Ratio Using Self-Calibration Technique
Shusuke Kawai, Toshiyuki Yamagishi, Yosuke Hagiwara, Shigehito Saigusa, Ichiro Seto, Shoji Otaka, Shuichi Ito Toshiba Corporation, Japan
Impact of Amplifier Bandwidth Limitations on Gain-Boosted N-Path Receivers
Intellectual Property Protection: A special session in honor of Professor Miodrag Potkonjak Time: Tuesday, May 30 (11:00-12:30) Room: Grand Ballroom IV Chair(s): Gang Qu - University of Maryland
20 Years of Research on Intellectual Property Protection
INVITED: Cybersecurity and the Electric Grid: Innovation and Intellectual Property
Practical IP Watermarking and Fingerprinting Methods for ASIC Designs
Hardware-Based Anti-Counterfeiting Techniques for Safeguarding Supply Chain Integrity
Revisit Sequential Logic Obfuscation: Attacks and Defenses

Gensing Circuits Fime: Tuesday, May 30 (11:00-12:30) Room: Grand Ballroom VII Chair(s): Meng-Fan Chang - National Tsing Hua University; Joseph Friedman - University of Texas at Dallas
From "MISSION: IMPOSSIBLE" to Mission Possible: Fully Flexible Intelligent Contact Lens for Image Classification with Analog-to-Information Processing
FPGA-Based Neural Probe Positioning to Improve Spike Sorting with OSort Algorithm
A Novel ISFET Sensor Architecture Using Through-Silicon Vias for DNA Sequencing
Behaving Cyborg Locusts for Standoff Chemical Sensing
A Modular Wireless Sensor Platform and its Applications
Flexible-Hybrid & Printable Electronics Systems Fime: Tuesday, May 30 (11:00-12:30) Room: Grand Ballroom VIII Chair(s): Fayomi Christian - Université du Québec à Montréal; Gordon Roberts - McGill University
Printed Electronics: Effects of Bending and a Self-Compensation Means
Flexible Hydrogel Actuated Graphene-Cellulose Biosensor for Monitoring Ph
Review: a Fully-Additive Printed Electronics Process with Very-Low Process Variations (Bent and Unbent Substrates) and PDK
Powering Smart Wearable Systems with Flexible Solar Energy Harvesting
Towards a Smartphone-Aided Electronic ELISA for Real-Time Electrochemical Monitoring

CAS for Human Machine Interfaces / Brain Machine Interfaces Time: Tuesday, May 30 (11:00-12:30) Room: Grand Ballroom IX Chair(s): Julius Georgiou - University of Cyprus; Pantelis Georgiou - Imperial College London
A High Temporal Resolution Multiscale Recording System for in Vivo Neural Studies
A Silicon Based fdNIRS System with Integrated tDCS on Chip for Non-Invasive Closed-Loop Neuro Stimulation
A Fully Integrated Wireless Sensor-Brain Interface System to Restore Finger Sensation
A Charge-Based Ultra-Low Power Continuous-Time ADC for Data Driven Neural Spike Processing
Michal Maslik{1}, Yan Liu{1}, Tor Sverre Lande{2}, Timothy Constandinou{1} {1}Imperial College London, United Kingdom; {2}University of Oslo, Norway
Analysis of Passive Charge Balancing for Safe Current-Mode Neural Stimulation
Data Converters I Time: Tuesday, May 30 (11:00-12:30) Room: Grand Ballroom X Chair(s): Ioannis Syllaios - University of Texas at Dallas; George Yuan - Hong Kong University of Science and Technology
A Novel Wavelet-Based Analog-to-Digital Converter
Voltage Domain Correction Technique for Timing Skew Errors in Time Interleaved ADCs
A 700µW 1GS/s 4-Bit Folding-Flash ADC in 65nm CMOS for Wideband Wireless Communications
Bayan Nasri, Sunit Sebastian, Kae-Dyi You, Ramkumar RanjithKumar, Davood Shahrjerdi New York University, United States
A Highly Linear OTA-Free VCO-Based 1-1 MASH ΔΣ ADC

Thermal Noise Canceling Pipelined ADC
Cryptography & PUF Circuits Time: Tuesday, May 30 (11:00-12:30) Room: Laurel AB Chair(s): Maire O'Neill - Queens University; Weiqiang Liu - Nanjing University of Aeronautics and Astronautics
Fast Inversion in GF(2^m) with Polynomial Basis Using Optimal Addition Chains
XOR Gate Based Low-Cost Configurable RO PUF
Investigation of DRAM PUFs Reliability Under Device Accelerated Aging Effects
A Technique to Transform 6T-SRAM Arrays Into Robust Analog PUF with Minimal Overhead
Networks-on-Chip Time: Tuesday, May 30 (11:00-12:30) Room: Laurel CD Chair(s): Emre Salman - Stony Brook University; Shuenn-Yuh Lee - National Cheng Kung University
A Low Latency Fault Tolerant Transmission Mechanism for Network-on-Chip
A Two-Stage Variation-Aware Task Mapping Scheme for Fault-Tolerant Multi-Core Network-on-Chips
Lei Zhang{1}, Jianxun Yang{2}, Chengbo Xue{1}, Yue Ma{1}, Shan Cao{1} {1}Beijing Institute of Technology, China; {2}Tsinghua University, China
Runtime Mitigation of Illegal Packet Request Attacks in Networks-on-Chip
Comprehensive Performance and Robustness Analysis of 2D Turn Models for Network-on-Chips
Siavoosh Payandeh Azad{1}, Behrad Niazmand{1}, Karl Janson{1}, Thilo Kogge{3}, Jaan Raik{1}, Gert Jervan{1}, Thomas Hollstein{2}
{1}Tallinn University of Technology, Estonia; {2}Tallinn University of Technology / Frankfurt University of Applied Sciences, Germany; {3}Technische Universität Darmstadt, Germany
Implications of Noise Insertion Mechanisms of Different Countermeasures Against Side-Channel Attacks
Weize Yu, Selcuk Köse University of South Florida, United States

TECHNICAL SESSIONS - TUESDAY, MAY 30TH

Multimedia Content Analysis & Retrieval Time: Tuesday, May 30 (11:00-12:30) Room: Kent AB
Chair(s): Yeong-Kang Lai - National Chung Hsing University; Shao-Yi Chien - National Taiwan University
Implicit Analysis of Perceptual Multimedia Experience Based on Physiological Response: a Review
Seong-Eun Moon, Jong-Seok Lee Yonsei University, Korea, South
A New Algorithm for Accurate and Automatic Chessboard Corner Detection
Better Deep Visual Attention with Reinforcement Learning in Action Recognition
Cross-Domain Shoe Retrieval Using a Three-Level Deep Feature Representation
A 120 fps 1080p Resolution Block-Based Feature Extraction Architecture Implementation for Real-Time Action Recognition
Video Interfaces & High Speed IO Time: Tuesday, May 30 (11:00-12:30) Room: Essex AB
Chair(s): Eduard Alarcon - Universitat Politècnica de Catalunya
A Real-Time FHD Learning-Based Super-Resolution System Without a Frame Buffer
A 55.1 mW 1.62-to-8.1 Gb/s Video Interface Receiver Generating Up to 680 MHz Stream Clock Over 20 dB Loss Channel
Seoul National University, Korea, South
A 28-Gb/s 1.6-pJ/b PAM-4 Transmitter with 3-Tap FFE and Gm-Regulated Resistive-Feedback Inverter Based Drivers in 28-nm CMOS
A Frequency Reconfigurable 360° Analog Phase Shifter with a Constant Loss
A 4GS/s Reconfigurable Folding Flash ADC for Time Interleaving in 16nm FinFET

TECHNICAL SESSIONS – TUESDAY, MAY 30^{TH}

Modeling & Analysis of Nonlinear Circuits Time: Tuesday, May 30 (13:30-15:00) Room: Dover A Chair(s): Sergio Callegari - Università di Bologna; Elena Blokhina - University College Dublin
Closed-Form Model for Dual-Gate Ambipolar CNTFET Circuit Design
Variability of Supercapacitor Fractional-Order Parameters Extracted from Discharging Behavior Using Least Squares Optimization
Analysis of Power Consumption in LC Oscillators Based on the Inversion Coefficient
Coefficient Extraction for MPM Using LSE, ORLS and SLS Applied to RF-PA Modeling
Analysis and Comparison of Charge-Pump Conditioning Circuits for Capacitive Electromechanical Energy Conversion
Power Converters II Time: Tuesday, May 30 (13:30-15:00) Room: Dover BC Chair(s): Hirotaka Koizumi - Tokyo University of Agriculture and Technology; Stefano Gregori - University of Guelph
Master-Slave Battery Charging System Using Parallel DC-DC Converters for Thermal Safety
A Hybrid Nine-Level Inverter with Series/Parallel Conversion
A 0.9-V Input PWM DCM Boost Converter with Low Output Ripples and Fast Load Transient Response Based on a Novel Square-Root Voltage Mode (SRVM) Control Approach
A High-Speed Level Shifting Technique and its Application in High-Voltage, Synchronous DC-DC Converters with Quasi-ZVS

Design Trade-Offs of Integrated Polygonal Inductors for DC-DC Power Converters
Neural Arrays Time: Tuesday, May 30 (13:30-15:00) Room: Grand Ballroom I Chair(s): Arindam Basu - Nanyang Technological University; Wei Xing Zheng - Western Sydney University
INVITED: Intelligent Virtual Agents at the Edge
Dynamic Voltage and Frequency Scaling for Neuromorphic Many-Core Systems
Scalable Bio-Inspired Fault Detection to Support Fault Recovery in Networks-on-Chip
A 65-nm CMOS 7fJ Per Synaptic Event Clique-Based Neural Network in Scalable Architecture
A Biological-Realtime Neuromorphic System in 28 nm CMOS Using Low-Leakage Switched Capacitor Circuits
DSP for Biosignals Time: Tuesday, May 30 (13:30-15:00) Room: Grand Ballroom II Chair(s): Keshab K. Parhi - University of Minnesota at Minneapolis; Peter Lian - York University
Pupil Localization for Gaze Estimation Using Unsupervised Graph-Based Model
Statistical Modeling of Multimodal Neuroimaging Data in Non-Subsampled Shearlet Domain Using the Student's t Location-Scale Distribution
Dynamic Gene Regulatory Network Analysis Using Saccharomyces cerevisiae Large-Scale Time-Course Microarray Data
Low-Power Real-Time ECG Baseline Wander Removal: Hardware Implementation

TECHNICAL SESSIONS - TUESDAY, MAY 30TH

Constrained Kalman Filter for Improving Kinect Based Measurements
RF Circuits II Time: Tuesday, May 30 (13:30-15:00) Room: Grand Ballroom III Chair(s): Thierry Taris - Laboratoire de l'Intégration du Matériau au Système; Ioannis Syllaios - University of Texas at Dallas
Reconfigurable Inductorless Wideband CMOS LNA for Wireless Communications
A Wideband RF Power Detector with -56 dB Sensitivity and 64 dB Dynamic Range in SiGe BiCMOS Technology
An 89 μW MICS/ISM Band Receiver for Ultra-Low-Power Applications
A Transformer-Less Duplexer with Out-of-Band Filtering for Same-Channel Full-Duplex Radios 1588 Prateek Kumar Sharma, Nagarjuna Nallam Indian Institute of Technology Guwahati, India
A Low Phase Noise 8.8 GHz VCO Based on ISF Manipulation and Dual-Tank Technique
PUF Circuits & Hardware Trojans Time: Tuesday, May 30 (13:30-15:00) Room: Grand Ballroom IV Chair(s): Chip Hong Chang - Nanyang Technological University; Inna Partin Vaisband - University of Illinois at Chicago
An Entropy Test for Determining Whether a Mux PUF Is Linear or Nonlinear
Low-Cost Fortification of Arbiter PUF Against Modeling Attack
Enhancing PUF Reliability by Machine Learning
Single-Triggered Hardware Trojan Identification Based on Gate-Level Circuit Structural

HTChecker: Detecting Hardware Trojans Based on Static Characteristics
Amplifiers & Analog Filtering Time: Tuesday, May 30 (13:30-15:00) Room: Grand Ballroom VII Chair(s): Joseph Chang - Nanyang Technological University; Nuno Paulino - UNINOVA
Continuous Class-B/J Power Amplifier Using Nonlinear Embedding Technique: Analyzing the Design Space
Area-Efficient Fully Integrated Dual-Band Class-E/F Power Amplifier with Switchable Output Power for a BPSK/OOK Transmitter
A Multi-Path Ring Amplifier with Dynamic Biasing
A Highly Compact Wideband Continuous-Time Transimpedance Low-Pass Filter
Improved Nauta Transconductor for Wideband Intermediate-Frequency gm-C Filter
Flexible Internet of Things: From Devices to Systems Time: Tuesday, May 30 (13:30-15:00) Room: Grand Ballroom VIII Chair(s): Xiaojun Guo - Shanghai Jiao Tong University; Yongpan Liu - Tsinghua University
Printed Organic TFT Sensor Tags
Robust Design and Design Automation for Flexible Hybrid Electronics
An 8b 0.8kS/s Configurable VCO-Based ADC Using Oxide TFTs with Inkjet Printing Interconnection
Wenyu Sun{3}, Qinghang Zhao{3}, Fei Qiao{3}, Yongpan Liu{3}, Huazhong Yang{3}, Xiaojun Guo{1}, Lei Zhou{2}, Lei Wang{2} {1}Shanghai Jiao Tong University, China; {2}South China University of Technology, China; {3}Tsinghua University, China

TECHNICAL SESSIONS - TUESDAY, MAY 30TH

Integrated Biomedical Systems, BioMEMS & Biosensors/Actuators I Time: Tuesday, May 30 (13:30-15:00) Room: Grand Ballroom IX
Chair(s): Mohamad Sawan - Polytechnique Montréal; Ibrahim Elfadel - Masdar Institute
A Stimulation Platform for Optogenetic and Bionic Vision Restoration
A Miniaturized Low Power Biomedical Sensor Node for Clinical Research and Long Term Monitoring of Cardiovascular Signals
An Efficient Electronic Measurement Interface for Memristive Biosensors
Analyte Sampling in Paper Biosensors Powered by Graphite-Based Light Absorption
An Implantable 128-Channel Wireless Neural-Sensing Microsystem Using TSV-Embedded Dissolvable µ-Needle Array and Flexible Interposer
Digital to Analog Conversion Time: Tuesday, May 30 (13:30-15:00) Room: Grand Ballroom X Chair(s): Randall Geiger - Iowa State University; Tong Ge - Nanyang Technological University
A 14-Bit 2.5 Gs/s Digital Pre-Distorted DAC in 65 nm CMOS with SFDR > 70 dB Up to 1.2 GHz 1664 Zhiheng Zuo, Qingjun Fan, Jinghong Chen University of Houston, United States
A Digital Calibration Technique Canceling Non-Linear Switch and Package Impedance Effects of a 1.6 GS/s TX-DAC in 28 nm CMOS
A 13Bit 200MS/s Pipeline ADC with Current-Mode MDACs
The Analytic Expression of the Output Spectrum of ΔΣ ADCs with Nonlinear Binary-Weighted DACs and Gaussian Input Signals

TECHNICAL SESSIONS - TUESDAY, MAY 30TH

Communication & Timing Circuits Time: Tuesday, May 30 (13:30-15:00) Room: Laurel AB
Chair(s): Jin-Ku Kang - Inha University; Shoba Krishnan - Santa Clara University
A Low Latency and Area Efficient FFT Processor for Massive MIMO Systems
A 1 Gpps Asynchronous Logic OOK IR-UWB Transmitter Based on Master-Slave PLL Synthesis
Marco Crepaldi, Gian Nicola Angotzi, Antonio Maviglia, Luca Berdondini Istituto Italiano di Tecnologia, Italy
Settling Time of Mesochronous Clock Re-Timing Circuits in the Presence of Timing Jitter
Hardware Optimization of the Perturbation for Probabilistic Gradient Descent Bit Flipping Decoders
Khoa Le{1}, Fakhreddine Ghaffari{1}, David Declercq{1}, Bane Vasic{2} {1}École Nationale Supérieure de l'Électronique et de ses Applications, France; {2}University of Arizona, United States
25-Gb/s Clock and Data Recovery IC Using Latch-Load Combined with CML Buffer Circuit for Delay Generation with 65-nm CMOS
Memory Circuits Time: Tuesday, May 30 (13:30-15:00) Room: Laurel CD Chair(s): Lan-Da Van - National Chiao Tung University; Yuan-Hao Huang - National Tsing Hua University
· · · · · · · · · · · · · · · · · · ·
Area-Efficient STT/CMOS Non-Volatile Flip-Flop
TCache: an Energy-Efficient DRAM Cache Design
Effective Write-Reduction Method for MLC Non-Volatile Memory
A New Write-Contention Based Dual-Port SRAM PUF with Multiple Response Bits Per Cell

Video Coding & Multimedia System Architecture Time: Tuesday, May 30 (13:30-15:00) Room: Kent AB Chair(s): Chris Lee - National Cheng Kung University; Shao-Yi Chien - National Taiwan University
A Fast Intra Encoding Platform for AVS2
High-Throughput HEVC Intrapicture Prediction Hardware Design Targeting UHD 8K Videos
VLSI Architecture Design of Layer-Based Bilateral and Median Filtering for 4k2k Videos at 30fps
A Multiplierless Parallel HEVC Quantization Hardware for Real-Time UHD 8K Video Coding1725 Luciano Braatz, Luciano Agostini, Bruno Zatt, Marcelo Porto Universidade Federal de Pelotas, Brazil
Corner Proposals from HEVC Bitstreams
Applied Signal Processing & Deep Learning Time: Tuesday, May 30 (13:30-15:00) Room: Essex AB Chair(s): Eduard Alarcon - Universitat Politècnica de Catalunya
Fully-Parallel Area-Efficient Deep Neural Network Design Using Stochastic Computing
Bringing Offline Mining to Online Learning System: Low-Cost and Efficient Self-Healing Synaptic Storage for Deep Learning
Deep Texture Features for Robust Face Spoofing Detection
Chattering Free Fixed-Time Convergent Sliding Mode Controller
Accurate Spectral Testing with Non-Coherent Sampling for Multi Tone Applications

LIVE DEMONSTRATIONS – tuesday, may 30TH

=:
Demonstration Session II Fime: Tuesday, May 30 (13:30-16:30) Room: Harborside Ballroom Chair(s): Jennifer Blain Christen - Arizona State University; Shih-Chii Liu - Swiss Federal Institute of Technology in Zurich
O-1 - Live Demonstration: Automated Data Acquisition and Digital Curation Platform for Enhancing Research Precision, Productivity and Reproducibility
O-2 - Live Demonstration: Unipolar Symmetrical Variable-Capacitance Generators for Energy Harvesting
O-3 - Live Demonstration: a Wearable EIT System Using Active Electrodes for Monitoring Respiration
0-4 - Live Demo of a Vibration-Powered Bluetooth Sensor with Running PFC Power Conditioning 1741 Kang Zhao, Yuheng Zhao, Junrui Liang ShanghaiTech University, China
O-5 - Live Demonstration: Depth from Focus on a Focal Plane Processor Using a Focus Tunable Liquid Lens
Dudek{2} [1] Universität Zürich / Eidgenössische Technische Hochschule Zürich, Switzerland; {2} University of Manchester, [Juniversität Zürich / Eidgenössische Technische Hochschule Zürich, Switzerland; {2} University of Manchester, [Juniversität Zürich / Eidgenössische Technische Hochschule Zürich, Switzerland; {2} University of Manchester,
O-6 - Live Demonstration: a Wirelessly Powered Highly Miniaturized Neural Stimulator
O-7 - Live Demonstration: Behaving Cyborg Locusts for Standoff Chemical Sensing
0-8 - Live Demonstration: Prosthesis Grip Force Modulation Using Neuromorphic Tactile Sensing
O-9 - Live Demonstration - an Adaptable Prosthetic Socket: Regulating Independent Air Bladders Through
Closed-Loop Control
O-10 - Live Demonstration: Real-Time, Dynamic Visual Saliency Computation in a VR Environment Seeing Through the Eves of a Mobile Robot

LIVE DEMONSTRATIONS - TUESDAY, MAY 30TH

Jamal Molin{1}, Christopher Simmons{1}, Garrett Nixon{2}, Ralph Etienne-Cummings{1} {1}Johns Hopkins University, United States; {2}Sidwell Friends High School, United States

O-11 - Live Demonstration: a CMOS-Based ISFET Array for Rapid Diagnosis of the Zika Virus....... 1748 Nicolas Moser, Jesus Rodriguez-Manzano, Ling-Shan Yu, Melpomeni Kalofonou, Sara de Mateo, Xiaoxiang Li, Tor Sverre Lande, Christofer Toumazou, Pantelis Georgiou Imperial College London, United Kingdom O-12 - Live Demonstration: Real-Time Chemical Imaging of Ionic Solutions Using an ISFET Array 1749 Nicolas Moser, Chi Leng Leong, Yuangi Hu, Martyn Boutelle, Pantelis Georgiou Imperial College London, United Kingdom O-13 - Live Demonstration: a Highly Sensitive and Quantitative Fluorescence Sensing Platform, for Disease Uwadiae Obahiagbon, Joseph Smith, Hany Arafa, Dixie Kullman, Jennifer Blain Christen Arizona State University, United States O-14 - Live Demonstration: a Wireless Headstage Enabling Combined Optogenetics and Multichannel Electrophysiological Recording.......1751 Gabriel Gagnon-Turcotte{2}, Yoan Lechasseur{1}, Cyril Bories{2}, Younès Messaddeg{2}, Yves De Koninck{2}, Benoit Gosselin{2} {1}Doric Lenses, Canada; {2}Université Laval, Canada O-15 - Live Demonstration: a Multimodal Adaptive Wireless Control Interface for People with Upper-Body Cheikh Latyr Fall{2}, Francis Quevillon{2}, Alexandre Campeau-Lecours{2}, Simon Latour{1}, Martine Blouin{1}, Clément Gosselin{2}, Benoit Gosselin{2} {1}Kinova Robotics, Canada; {2}Université Laval, Canada O-16 - Live Demonstration: a Frequency-Based System for Wireless Electrical Stimulation of iEAPs Yi Huang, Daniel Browe, Joseph Freeman, Laleh Najafizadeh Rutgers University, United States

poster session – tuesday, may 30th Integrated Biomedical Systems & BioMEMS

Time: Tuesday, May 30 (15:00-16:30) Room: Harborside Ballroom
Chair(s): Nitish Thakor - Johns Hopkins University; Pantelis Georgiou - Imperial College London
O-17 - An Adaptable Prosthetic Socket: Regulating Independent Air Bladders Through Closed-Loop Contr
Daniel Candrea{1}, Avinash Sharma{3}, Luke Osborn{4}, Yikun Gu{2}, Nitish Thakor{5} {1}Duke University, United States; {2}Harbin Institute of Technology, China; {3}Indian Institute of Technology Delh India; {4}Johns Hopkins University, United States; {5}Johns Hopkins University / National University of Singapore, United States
O-18 - A Dual Switched-Capacitor Integrator Architecture for Versatile, Real-Time Amperometric Biosensing
Michail Pligouroudis, Konstantinos Papadimitriou, Daniel Evans, Themistoklis Prodromakis University of Southampton, United Kingdom
O-19 - Iontophoresis Instrumentation for the Enhancement of Gene Therapy in Wound Healing
O-20 - pH Sensing Threads with CMOS Readout for Smart Bandages
O-21 - A Multimodal Adaptive Wireless Control Interface for People with Upper-Body Disabilities
Cheikh Latyr Fall{2}, Francis Quevillon{2}, Alexandre Campeau-Lecours{2}, Simon Latour{1}, Martine Blouin{1}, Clément Gosselin{2}, Benoit Gosselin{2} {1}Kinova Robotics, Canada; {2}Université Laval, Canada
O-22 - Dielectric Analysis of Changes in Electric Properties of Leukemic Cells Through Travelling and Negative Dielectrophoresis with 2-D Electrodes
Sameh Sherif{1}, Yehya H. Ghallab{2}, Hamdy Abd El Hamid{2}, Yehea Ismail{2} {1}American University in Cairo, Egypt; {2}American University in Cairo / Zewail City of Science and Technology, Egypt
O-23 - Separation and Electrochemical Detection Platform for Portable Individual PM2.5 Monitoring
Heyu Yin, Hao Wan, Andrew J. Mason Michigan State University, United States
O-24 - A 32-by-32 CMOS Microelectrode Array for Capacitive Biosensing and Impedance Spectroscopy
Virgilio Valente, Andreas Demosthenous University College London, United Kingdom
O-25 - Characterization of a High Dynamic Range Lab-on-CMOS Capacitance Sensor Array

Other Areas in Analog & Mixed Signal Circuits & Systems Time: Tuesday, May 30 (15:00-16:30) Room: Harborside Ballroom Chair(s): Tong Ge - Nanyang Technological University; Igor Filanvosky - University of Alberta
P-26 - A New 1.8V Pierce-Gate Crystal Oscillator Based on the Constant gm Cell in 28nm CMOS Technolog for Automotive Radar Applications
P-27 - A Merged Window Comparator Based Relaxation Oscillator with Low Temperature Coefficient
Lin Ma, Kuan Chuang Koay, Pak Kwong Chan Nanyang Technological University, Singapore
P-28 - Multi-Band Inductor-Less VCO for IoT Applications
P-29 - A 0.13 μm CMOS Fully Integrated 0.1∼12 GHz Frequency Synthesizer for Avionic SDR Applications
P-30 - A Charge Limiting and Redistribution Method for Delay Line Locking in Multi-Output Clock Generation
<i>P-31 - Α 7μΑ 1.6ppm/°C Bandgap Design Realizable in CMOS Process</i> 1810 Kin Keung Jeff Lau Silicon Mitus Technology, United States
P-32 - A PVT Resistant Coarse-Fine Time-to-Digital Converter
P-33 - A 0.6V 50-to-145MHz PVT Tolerant Digital PLL with DCO-Dedicated ΔΣ LDO and Temperature Compensation Circuits in 65nm CMOS
P-34 - A Low-Power Temperature-Compensated CMOS Peaking Current Reference in Subthreshold Region1822
Mohammad Sadegh Eslampanah{1}, Siavash Kananian{4}, Elaheh Zendehrouh{5}, Mohammad Sharifkhani{3}, Amir Masoud Sodagar{2}, Mahdi Shabany{3} {1}Georgia Institute of Technology, United States; {2}Khajeh Nasir Toosi University of Technology, Iran; {3}Sharif University of Technology, Iran; {4}Stanford University, United States; {5}West Tehran Islamic Azad University, Ira
P-35 - Analog Layout Density Uniformity Improvement Using Interconnect Widening and Dummy Fill Insertion
P-36 - A 5mW Batteryless Start-Up Boost Charger for Wireless Power Transfer

POSTER SESSION - TUESDAY, MAY 30TH

P-37 - Ultra Miniature Offset Cancelled Bandgap Reference with ±0. 534% Inaccuracy from -10°C to 110°C
Natan Vinshtok-Melnik, Robert Giterman, Joseph Shor Bar-Ilan University, Israel
P-38 - Using Dynamic Dependence Analysis to Improve the Quality of High-Level Synthesis Designs
Rafael Garibotti, Brandon Reagen, Yakun Sophia Shao, Gu-Yeon Wei, David Brooks Harvard University, United States
P-39 - DPA-Resistant QDI Dual-Rail AES S-Box Based on Power-Balanced Weak-Conditioned Half-Buffer
James Lim, Weng-Geng Ho, Kwen-Siong Chong, Bah-Hwee Gwee Nanyang Technological University, Singapore
<i>P-40 - A Voltage Reference Generator Targeted at Extracting the Silicon Bandgap VGO from VBE</i> 1846 Zhiqiang Liu, Degang Chen Iowa State University, United States
P-41 - A Calibration-Free Low-Power Supply-Pushing Reduction Circuit (SPRC) for LC VCOs
P-42 - Deep Modeling: Circuit Characterization Using Theory Based Models in a Data Driven Framework 1854
David Bolme{1}, Aravind Mikkilineni{1}, Derek Rose{1}, Srikanth Yoginath{1}, Mohsen Judy{2}, Jeremy Holleman{2} {1}Oak Ridge National Laboratory, United States; {2}University of Tennessee, United States
P-43 - A Size-Adaptive Time-Step Algorithm for Accurate Simulation of Aging in Analog ICs
P-44 - Timing Speculative SRAM
P-45 - Low Power Speech Detector on a FPAA
P-46 - Wafer-Level Adaptive Trim Seed Forecasting Based on E-Tests Constantinos Xanthopoulos{2}, Ali Ahmadi{2}, Sirish Boddikurapati{1}, Amit Nahar{1}, Bob Orr{1}, Yiorgos Makris{2} {1}Texas Instruments Inc., United States; {2}University of Texas at Dallas, United States
P-47 - CMOS Current-Mode PWL Implementation Using MAX and MIN Operators

P-48 - An Efficient and Fair Scheduling Policy for Multiprocessor Platforms
P-49 - Design Methodology for Area and Energy Efficient OxRAM-Based Non-Volatile Flip-Flop
P-50 - An Analog Phase Prediction Based Fractional-N PLL
DSP : Algorithms and Implementations Time: Tuesday, May 30 (15:00-16:30) Room: Harborside Ballroom Chair(s): Arjuna Madanayake - University of Akron; Mohsin Jamali - University of Toledo
Q-51 - Pipeline Tracking and Event Classification for an Automatic Inspection Vision System
Q-52 - Fast Human-Animal Detection from Highly Cluttered Camera-Trap Images Using Joint Background Modeling and Deep Learning Classification
Q-53 - Face Hallucination Using Deep Collaborative Representation for Local and Non-Local Patches
Tao Lu{2}, Lanlan Pan{2}, Hao Wang{2}, Yanduo Zhang{2}, Bo Wang{1}, Zixiang Xiong{1} {1}Texas A&M University, United States; {2}Wuhan Institute of Technology, China
Q-54 - A 0.53mW Ultra-Low-Power 3D Face Frontalization Processor for Face Recognition with Human-
Level Accuracy in Wearable Devices
<i>Q-55 - Single Image Super-Resolution Using Hybrid Patch Search and Local Self-Similarity</i> 1906 Shen-Li Lo, Ching-Te Chiu National Tsing Hua University, Taiwan
Q-56 - Design of Composite Filters with Equiripple Passbands and Least-Squares Stopbands
Q-57 - An Indirect Approach to Synthesis of Noise Shaping IIR Filters in ΔΣ Modulators
Q-58 - Speech Recognition Using TVLPC Based MFCC for Similar Pronunciation Phrases
Q-59 - sWMF: Separable Weighted Median Filter for Efficient Large-Disparity Stereo Matching 1922 Shiqiang Chen, Xuchong Zhang, Hongbin Sun, Nanning Zheng Xi'an Jiaotong University, China

Q-60 - Joint-Domain Unsupervised Stylization for Portraits Saboya Yang, Jiaying Liu, Shuai Yang, Wenhan Yang, Zongming Guo Peking University, China
Q-61 - Census Transform-Based Static Caption Detection for Frame Rate Up-Conversion
Q-62 - Variable Pixel G-Neighbor Filters
Q-63 - FPGA Acceleration of Hyperspectral Image Processing for High-Speed Detection Applications
Simon Vellas, George Lentaris, Konstantinos Maragos, Dimitrios Soudris, Zacharias Kandylakis, Konstantinos Karantzalos National Technical University of Athens, Greece
Q-64 - Throughput Evaluation of DSP Applications Based on Hierarchical Dataflow Model
Q-65 - Robust Speaker Verification with a Two Classifier Format and Feature Enhancement
Q-66 - Sparse FIR Filter Design via Partial L1 Optimization
Q-67 - A QCQP Design Method of the Symmetric Pulse-Shaping Filters Against Receiver Timing Jitter
Chia-Yu Yao, Shui-Chin Wang National Taiwan University of Science and Technology, Taiwan
Q-68 - Least-Squares Estimation of the Common Acoustical Poles in Room Acoustics and Head Related Transfer Functions
Q-69 - Efficient Implementation of Modular Multiplication by Constants Applied to RNS Reverse Converters
Roberto de Matos{1}, Rogerio Paludo{3}, Nikolay Chervyakov{2}, Pavel Lyakhov{2}, Hector Pettenghi{3} {1}Instituto Federal de Santa Catarina, Brazil; {2}North Caucasus Federal University, Russia; {3}Universidade Federal de Santa Catarina, Brazil
Q-70 - A New Electric Encoder Position Estimator Based on the Chinese Remainder Theorem for the CMG Performance Improvements

Nanoelectonics & Memristor Technology Time: Tuesday, May 30 (15:00-16:30) Room: Harborside Ballroom Chair(s): Danella Zhao - University of Louisiana at Lafayette; Hao Jiang - San Francisco State University
R-71 - Exploring Logic Architectures Suitable for TFETs Devices
R-72 - A High Performance Full Adder Based on Ballistic Deflection Transistor Technology
<i>R-73 - A Compliance Current Circuit with Nanosecond Response Time for ReRAM Characterization</i> 1978 Qingjiang Li, Jinling Xing, Zhaolin Sun, Fei Jing, Hui Xu National University of Defense Technology, China
R-74 - Transient Response Enhancement of RF MEMS Tuners Using Digital Signal Processing
R-75 - A Unified Analytical Reliability Model of NBTI and HCD for Undoped Double Gate PMOS 1986 Omnia Samy{1}, Hamdy Abd El Hamid{2}, Yehea Ismail{2}, Abd El Halim Zekry{3} {1}Ain Shams University, Egypt; {2}American University in Cairo / Zewail City of Science and Technology, Egypt; {3}Arizona State University, Egypt
R-76 - Adapting Large-Area Flexible Hybrid TFT/CMOS Electronics and Display Technology to Create an Optical Sensor Array Architecture
R-77 - Size-Dependent Switching Coherence of Elliptical Single-Domain Magnetostrictive Nanomagnets in Straintronic Circuit
R-78 - Process Variation Immune and Energy Aware Sense Amplifiers for Resistive Non-Volatile Memories
Soheil Salehi, Ronald F. DeMara University of Central Florida, United States
R-79 - A TiO2 ReRAM Parameter Extraction Method
R-80 - A Practical Hafnium-Oxide Memristor Model Suitable for Circuit Design and Simulation
R-81 - Novel Hafnium Oxide Memristor Device: Switching Behaviour and Size Effect
R-82 - Design and Optimization of a Strong PUF Exploiting Sneak Paths in Resistive Cross-Point Array
Rui Liu, Pai-Yu Chen, Shimeng Yu Arizona State University, United States

POSTER SESSION - TUESDAY, MAY 30TH

R-83 - A Pulse-Based Memristor Programming Circuit
R-84 - Test Point Insertion for RSFQ Circuits 2022 Gleb Krylov, Eby G. Friedman University of Rochester, United States
R-85 - A Memristor Based Image Sensor Exploiting Compressive Measurement for Low-Power Video Streaming
R-86 - A Placement Management Circuit for Efficient Realtime Hardware Reuse on FPGAs Targeting Reliable Autonomous Systems
Spiking and Learning Systems Time: Tuesday, May 30 (15:00-16:30) Room: Harborside Ballroom Chair(s): Ricardo Carmona Galán - Instituto of Microelectrónica of Sevilla; Shoushun Chen - Nanyang Technological University
S-87 - PredictiveNet: an Energy-Efficient Convolutional Neural Network via Zero Prediction
S-88 - A Real-Time 17-Scale Object Detection Accelerator with Adaptive 2000-Stage Classification in 65nm CMOS
Minkyu Kim{1}, Abinash Mohanty{1}, Deepak Kadetotad{1}, Naveen Suda{2}, Luning Wei{3}, Pooja Saseendran{1}, Xiaofei He{3}, Yu Cao{1}, Jae-Sun Seo{1} {1}Arizona State University, United States; {2}ARM, Inc., United States; {3}Zhejiang University, China
S-89 - Comparison of Three FPGA Architectures for Embedded Multidimensional Categorization Through Kohonen's Self-Organizing Maps
S-90 - Energy-Efficient Scheduling Method with Cross-Loop Model for Resource-Limited CNN Accelerator Designs
S-91 - Robust Reconstruction of Network Topology via Huber Algorithm
S-92 - Multiplexing AER Asynchronous Channels Over LVDS Links with Flow-Control and Clock-Correction for Scalable Neuromorphic Systems

POSTER SESSION - TUESDAY, MAY 30TH

S-93 - Online Multiclass Passive-Aggressive Learning on a Fixed Budget
S-94 - Compact Digital-Controlled Neuromorphic Circuit with Low Power Consumption
S-95 - Neural Network Based ECG Anomaly Detection on FPGA and Trade-Off Analysis
S-96 - A Switched-Capacitor Dendritic Arbor for Low-Power Neuromorphic Applications
S-97 - Taking Advantage of Correlation in Stochastic Computing
S-98 - Towards Bioinspired Close-Loop Local Motor Control: a Simulated Approach Supporting Neuromorphic Implementations
S-99 - Snowflake: an Efficient Hardware Accelerator for Convolutional Neural Networks
S-100 - Extending the Neural Engineering Framework for Nonideal Silicon Synapses
Signal Processing for Interaction & Augmented Reality
Time: Tuesday, May 30 (15:00-16:30) Room: Harborside Ballroom Chair(a): Supports Bahardia, Northwestern Bahardia
Chair(s): Susanto Rahardja - Northwestern Polytechnical University; Zicheng Liu - Microsoft Research T-101 - D-PET: A Direct 6 DoF Pose Estimation and Tracking System on Graphics Processing Units
Hung-Yu Tseng, Po-Chen Wu, Yu-Sheng Lin, Shao-Yi Chien
National Taiwan University, Taiwan
T-102 - An Efficient DFT-Based Algorithm for the Charger Noise Problem in Capacitive Touch Applications 2094
Shih-Lun Huang, Sheng-Yi Hung, Chung-Ping Chen National Taiwan University, Taiwan
<i>T-103 - Reflection Removal Based on Single Light Field Capture.</i>
<i>T-104 - Bare-Finger Projector-Camera-Touchpad (PCT) HCI System Using Color Structured Light</i> 2102 Sen Li, Xiang Xie, Guolin Li, Zhihua Wang Tsinghua University, China

T-105 - Real-Time Streaming Challenges in Internet of Video Things (IoVT)
Digital Integrated Circuits and Systems Time: Tuesday, May 30 (15:00-16:30) Room: Harborside Ballroom Chair(s): Saeid Nooshabadi - Michigan Technological University
U-106 - Hardware Accelerators for Recurrent Neural Networks on FPGA
U-107 - Residual Sampling Clocking Offset Estimation and Compensation for FBMC-OQAM Baseband Receiver in the 60 GHz Band 2114 Chun-Yi Liu{2}, Yu-Cheng Yao{3}, Meng-Siou Sie{1}, Edmund Wen Jen Leong{1}, Henry Lopez{2}, Chih-Wei Jen{2}, Shyh-Jye Jou{2} {1}MediaTek, Taiwan; {2}National Chiao Tung University, Taiwan; {3}Realtek Semiconductor Corp., Taiwan
 U-108 - Scalable Memory-Less Architecture for String Matching with FPGAs Ideh Sarbishei{1}, Shervin Vakili{2}, J.M. Pierre Langlois{2}, Yvon Savaria{2} {1}École Polytechnique de Montréal, Canada; {2}Polytechnique Montréal, Canada
U-109 - Design of Majority Logic Based Approximate Arithmetic Circuits
U-110 - Noise Voltage Analysis of Spiral Inductor for on-Chip Buck Converter Design
 U-111 - A New Digital True Random Number Generator Based on Delay Chain Feedback Loop
U-112 - A Digital Clock-Less Pulse Stretcher with Application in Deep Sub-Nanosecond Pulse Detection
Zhiqiang Liu{1}, Nanqi Liu{1}, Shravan Chaganti{1}, Degang Chen{1}, Amitava Majumdar{2} {1}lowa State University, United States; {2}Xilinx Inc., United States
 U-113 - A New Watermarking Scheme on Scan Chain Ordering for Hard IP Protection
U-114 - A 450kHz PVT-Resilient All-Digital BPSK Demodulator for Energy Harvesting Sensor Nodes
Adelson Chua, Louis Alarcon University of the Philippines - Diliman, Philippines
 U-115 - Single Supply CMOS Up Level Shifter for Dual Voltage System
 U-116 - Nodal Thermal Analysis for Multi-VT SOFFET Based Subthreshold Circuits Emeshaw Ashenafi, Azzedin Es-Sakhi, Masud Chowdhury University of Missouri–Kansas City, United States

POSTER SESSION - TUESDAY, MAY 30TH

U-117 - Trojan-Feature Extraction at Gate-Level Netlists and its Application to Hardware-Trojan Detection Using Random Forest Classifier
Waseda University, Japan
 U-118 - Non-Blocking BIST for Continuous Reliability Monitoring of Networks-on-Chip
U-119 - Combined Packet and TDM Circuit Switching NoCs with Novel Connection Configuration Mechanism
U-120 - A Cost-Efficient Delay-Fault Monitor
U-121 - Level Shifter Design for Voltage Stacking
U-122 - 130nm Low Power Asynchronous AES Core Nada El-Meligy{3}, Moustafa Amin{3}, Eslam Yahya{2}, Yehea Ismail{1} {1}American University in Cairo / Zewail City of Science and Technology, Egypt; {2}American University in Cairo / Zewail City of Science and Technology / Banha University, Egypt; {3}Banha University, Egypt
U-123 - A Low-Cost Masquerade and Replay Attack Detection Method for CAN in Automobiles
Communications Security Time: Tuesday, May 30 (15:00-16:30) Room: Harborside Ballroom
Chair(s): Weiqiang Liu - Nanjing University of Aeronautics and Astronautics; Maire O'Neill - Queens University
V-124 - Interpolation Based Wideband Beamforming Architecture
 V-125 - Concatenated LDPC-Polar Codes Decoding Through Belief Propagation
 V-126 - Rate-Compatible and High-Throughput Architecture Designs for Encoding LDPC Codes
V-127 - A Low-Complexity Fully Scalable Interleaver/Address Generator Based on a Novel Property of QPP Interleavers
V-128 - FPGA-Based Strong PUF with Increased Uniqueness and Entropy Properties

POSTER SESSION - TUESDAY, MAY 30TH

V-129 - Optimization of the PLL Based TRNG Design Using the Genetic Algorithm
V-130 - Low-Latency Hardware Architecture for Cipher-Based Message Authentication Code
V-131 - A Delay-Efficient Ring-LWE Cryptography Architecture for Biometric Security
V-132 - Secure Dynamic Authentication of Passive Assets and Passive IoTs Using Self-Powered Timers
Liang Zhou, Shantanu Chakrabartty Washington University in St. Louis, United States
V-133 - A Reliable True Random Number Generator Based on Novel Chaotic Ring Oscillator
V-134 - An Energy-Based Attack Flow for Temporal Misalignment Coutermeasures on Cryptosystems
Rodrigo Lellis{2}, Rafael Soares{2}, Adão Souza Jr.{1} {1}Instituto Federal Sul-Rio-Grandense, Brazil; {2}Universidade Federal de Pelotas, Brazil
V-135 - Highly Secured State-Shift Local Clock Circuit to Countermeasure Against Side Channel Attack
Ali Akbar Pammu, Kwen-Siong Chong, Bah-Hwee Gwee Nanyang Technological University, Singapore
Power Transfer & Charging Circuits Time: Tuesday, May 30 (15:00-16:30) Room: Harborside Ballroom Chair(s): Hiroo Sekiya - Chiba University; Junrui Liang – Shanghai Tech University
W-136 - A Delay Time Controlled Active Rectifier with 95.3% Peak Efficiency for Wireless Power Transmission Systems
W-137 - Analysis and Implementation of Wireless Power Transfer System with Phase and Supply Modulation Control
W-138 - A 13.56 MHz One-Stage High-Efficiency 0X/1X R³ Rectifier for Implatable Medical Devices 2238 Xinyuan Ge, Lin Cheng, Wing-Hung Ki Hong Kong University of Science and Technology, Hong Kong
W-139 - Adaptive 6.78-MHz ISM Band Wireless Charging for Small Form Factor Receivers
W-140 - A Primary-Side Output Current Estimator with Process Compensator for Flyback LED Drivers
Zong-You Hou, Zong-Ying Ho, Jhih-Cheng You, Chua-Chin Wang

POSTER SESSION - TUESDAY, MAY 30TH

 W-141 - High-Speed Driver for SiC MOSFET Based on Class-E Inverter
W-142 - An Auxiliary Switched-Capacitor Power Converter (SCPC) Applied in Stacked Digital Architecture for Energy Utilization Enhancement
W-143 - Switch-Mode Gyrator-Based Emulated Inductor Enabling Self-Tunability in WPT Receivers
Mohamed Saad, Elisenda Bou-Balust, Eduard Alarcón-Cot Universitat Politècnica de Catalunya, Spain
W-144 - A Vibration-Powered Bluetooth Wireless Sensor Node with Running PFC Power Conditioning 2262
Kang Zhao, Yuheng Zhao, Junrui Liang ShanghaiTech University, China
ShanghaiTech University, China W-145 - On-Chip High-Voltage SPAD Bias Generation Using a Dual-Mode, Closed-Loop Charge Pump
ShanghaiTech University, China

PIONEERS OF CAS — tuesday, may 30th Pioneers of Circuits and Systems II

Time: Tuesday, May 30 (16:30-17:30) Room: Grand Ballroom V-VI Chair(s): Pamela Abshire - University of Maryland	
Beyond SPICE Ibrahim Hajj University of Illinois at Urbana-Champaign, United States	2274

technical sessions – wednesday, may 31st

Complex Networks & Chaos
Time: Wednesday, May 31 (8:00-9:30) Room: Dover A Chair(s): Michael Tse - Hong Kong Polytechnic University; Zbigniew Galias - AGH University of Science and Technology
Vaccinating Sis Epidemics in Networks with Zero-Determinant Strategy
Modeling Cascading Failure Propagation in Power Systems
Modeling of Cascading Failures in Cyber-Coupled Power Systems
Optimal Resource Allocation with Node and Link Capacity Constraints in Complex Networks
Full Digital Implementation of a Chaotic Time-Delay Sampled-Data System
Circuits & Systems for Energy Harvesting Time: Wednesday, May 31 (8:00-9:30) Room: Dover BC Chair(s): Dong He - Virginia Polytechnic Institute and State University; Philip XL. Feng - Case Western Reserve University
INVITED: Leveraging the Internet of Things in the Commercial Space
Julien Stamatakis
Julien Stamatakis Senseware, United States How to Design Battery-Assisted Photovoltaic Switched-Inductor CMOS Charger-Supplies
Julien Stamatakis Senseware, United States How to Design Battery-Assisted Photovoltaic Switched-Inductor CMOS Charger-Supplies

A Digital Reverse Current Self-Calibration Technique in 90% High Efficiency Rectified Power Supply for Near Field Communication Through Magnetic Field Induction 2307 Li-Chi Lin{1}, Kuan-Yu Chen{1}, Wen-Hau Yang{1}, Ru-Yu Huang{1}, Ke-Horng Chen{1}, Ying-Hsi Lin{2}, Shian-Ru Lin{2}, Tsung-Yen Tsai{2} {1}National Chiao Tung University, Taiwan; {2}Realtek Semiconductor Corp., Taiwan
Neuromorphic Vision Time: Wednesday, May 31 (8:00-9:30) Room: Grand Ballroom I Chair(s): Fathi Salem - Michigan Statue University; Alejandro Linares-Barranco - Universidad de Sevilla
INVITED: Why Ai Needs Video
Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking
Neuromorphic Visual Saliency Implementation Using Stochastic Computation
Image Classification by Cellular Nonlinear Networks
Hardware Implementation of Convolutional STDP for on-Line Visual Feature Learning
Adaptive Filters Time: Wednesday, May 31 (8:00-9:30) Room: Grand Ballroom II Chair(s): Mrityunjoy Chakraborty - Indian Institute of Technology Kharagpur; Wei Xing Zheng - Western Sydney University
Modified Subband Adaptive Notch Filters for Eliminating Multiple Sinusoids with Reduced Bias and Faster Convergence 2327 Yasutomo Kinugasa{2}, Tapio Saramäki{4}, Yoshio Itoh{5}, Naoto Sasaoka{5}, Kazuki Shiogai{3}, Masaki
Kobayshi{1} {1}Chubu University, Japan; {2}National Institute of Technology, Mastue College, Japan; {3}National Institute of Technology, Niihama College, Japan; {4}Tampere University of Technology, Finland; {5}Tottori University, Japan
A Mixed-Signal Adaptive Filter for Level-Crossing Analog-to-Digital Converter
A Block-Based Convex Combination of NLMS and ZA-NLMS for Identifying Sparse Systems with Variable Sparsity
Bijit K. Das, Mrityunjoy Chakraborty Indian Institute of Technology Kharagour, India

A Comparison of NLMS and LMS Algorithms for Cyclostationary Input Signals 2339 Sheng Zhang, Wei Xing Zheng Western Sydney University, Australia
A New Kernel Kalman Filter Algorithm for Estimating Time-Varying Nonlinear Systems
RF Circuits III Time: Wednesday, May 31 (8:00-9:30) Room: Grand Ballroom III Chair(s): Nathan Neihart - Iowa State University; Ayman Fayed - Ohio State University
A 180-nW Static Power UWB IR Transmitter Front-End for Energy Harvesting Applications
Low-Power Low-Noise Amplifier IIP3 Improvement Under Consideration of the Cascode Stage 2351 Chun-Hsiang Chang{2}, Marvin Onabajo{1} {1}Northeastern University, United States; {2}OmniVision Technologies Inc., United States
Realization of a 10 GHz PLL in IBM 130 nm SiGe BiCMOS Process for Optical Transmitter
EMI Common-Mode (CM) Noise Suppression from Self-Calibration of High-Speed SST Driver Using on-Chip Process Monitoring Circuit
Highly Linear Reconfigurable Mixer Designed for Environment-Aware Receiver
Trust in Fabrication & Post-Silicon Adaptation for Hardware Security Time: Wednesday, May 31 (8:00-9:30) Room: Grand Ballroom IV Chair(s): Aijiao Cui - Harbin Institute of Technology Shenzhen, China
A Guide to Graceful Aging: How Not to Overindulge in Post-Silicon Burn-in for Enhancing Reliability of Weak PUF
Privacy Leakages in Approximate Adders
An Overview of Hardware Intellectual Property Protection
Introducing TFUE: the Trusted Foundry and Untrusted Employee Model in IC Supply Chain Security
Yuntao Liu, Chongxi Bao, Yang Xie, Ankur Srivastava University of Maryland, College Park, United States

A Secure Test Solution for Sensor Nodes Containing Crypto-Cores
Analog & Digital Senses Time: Wednesday, May 31 (8:00-9:30) Room: Grand Ballroom VII Chair(s): Andreas Andreou - Johns Hopkins University; Amine Bermak - Hamad Bin Khalifa University
In-Vivo Validation of Fully Implantable Multi-Panel Devices for Remote Monitoring of Metabolism
Camilla Baj-Rossi{1}, Andrea Cavallini{1}, Enver G. Kilinc{1}, Francesca Stradolini{1}, Tanja Rezzonico Jost{2}, Michele Proietti{2}, Giovanni De Micheli{1}, Fabio Grassi{2}, Catherine Dehollain{1}, Sandro Carrara{1} {1}École Polytechnique Fédérale de Lausanne, Switzerland; {2}Università della Svizzera italiana / Institute for Research in Biomedicine, Switzerland
High-Precision, Mixed-Signal Mismatch Measurement of Metal-Oxide-Metal Capacitors
CMOS Amperometric ADC with High Sensitivity, Dynamic Range and Power Efficiency for Air Quality Monitoring
A Two-Step Prediction ADC Architecture for Integrated Low Power Image Sensors
A PFM Based Digital Pixel with Off-Pixel Residue Measurement for Small Pitch FPAs
Signal Integrity & Energy Efficiency Time: Wednesday, May 31 (8:00-9:30) Room: Grand Ballroom VIII Chair(s): Duncan Elliott - University of Alberta; Antonio Strollo - Università degli Studi di Napoli Federico II
A 4Gb/s Half-Rate DFE with Switched-Cap and IIR Summation for Data Correction
In-Package Spiral Inductor Characterization for High Efficiency Buck Converters
KKT-Condition Inspired Solution of DVFS with Limited Number of Voltage Levels
A 0.2V 2.3pJ/Cycle 28dB Output SNR Hybrid Markov Random Field Probabilistic-Based Circuit for Noise Immunity and Energy Efficiency

Design of Clock Generation Circuitry for High-Speed Subranging Time-Interleaved ADCs
Wearable Sensors, Circuits & Systems Time: Wednesday, May 31 (8:00-9:30) Room: Grand Ballroom IX Chair(s): Wouter Serdijn - Delft University of Technology; Zhihua Wang - Tsinghua University
Electromechanical Cardiac Monitoring SoC for Atrial Fibrillation Detection
Structured Electronic Design of High-Pass ΣΔ Converters and Their Application to Cardiac Signal Acquisition
Wearable Wireless Sensor Patch for Continuous Monitoring of Skin Temperature, Pressure, and Relative Humidity
Ultrasound Sensors and its Application in Human Heart Rate Monitoring
Design and Parametric Analysis of a Wearable Dual-Photoplethysmograph Based System for Pulse Wave Velocity Detection
Filter Design Time: Wednesday, May 31 (8:00-9:30) Room: Grand Ballroom X Chair(s): Igor Filanvosky - University of Alberta; Nuno Paulino - UNINOVA
Property of Rational Functions Related to Band-Pass Transformation with Application to Symmetric Filters Design
Analysis of Second-Order Intermodulation in Miller Bandpass Filters
A New 2nd–Order Allpass Filter in 130nm CMOS
A 50 Hz SC Notch Filter for IoT Applications

Error Correcting Codes Time: Wednesday, May 31 (8:00-9:30) Room: Laurel AB Chair(s): Zhiyuan Yan - Lehigh University; Xinmiao Zhang - Case Western University
A Fast Polar Code List Decoder Architecture Based on Sphere Decoding
Efficient Metric Sorting Schemes for Successive Cancellation List Decoding of Polar Codes
Low-Complexity Transformed Encoder Architectures for Quasi-Cyclic Nonbinary LDPC Codes Over
Subfields
Efficient Approximate Layered LDPC Decoder
Symmetric Split-Row LDPC Decoders
Design for Test & Manufacturability Time: Wednesday, May 31 (8:00-9:30) Room: Laurel CD Chair(s): Ricardo Reis - Federal University of Rio Grande do Su; Massimo Alioto - NTU
Design-Oriented Models for Quick Estimation of Path Delay Variability via the Fan-Out-of-4 Metric 2453 Massimo Alioto{1}, Giuseppe Scotti{2}, Alessandro Trifiletti{2} {1}National University of Singapore, Singapore; {2}Sapienza – Università di Roma, Italy
A Secure Scan Chain Test Scheme Exploiting Retention Loss of Memristors
Layout Decomposition for Hybrid E-Beam and DSA Double Patterning Lithography
Test Pattern Generation for Multiple Stuck-at Faults Not Covered by Test Patterns for Single Faults
A New Approach for Diagnosing Bridging Faults in Logic Designs

CAS-T papers on Memory Time: Wednesday, May 31 (8:00-9:30) Room: Kent AB Chair(s): Pierre-Emmanuel Gaillardon - University of Utah; Lan-Da Van - National Chiao Tung University
A Study on the Programming Structures for RRAM-Based FPGA Architectures
Reconfigurable Writing Architecture for Reliable RRAM Operation in Wide Temperature Ranges
PEVA: a Page Endurance Variance Aware Strategy for the Lifetime Extension of NAND Flash
28-nm 1T-1MTJ 8Mb 64 I/O STT-MRAM with Symmetric 3-Section Reference Structure and Cross-Coupled Sensing Amplifier
Spintronic-based Technology Time: Wednesday, May 31 (13:30-15:00) Room: Dover A Chair(s): Malgorzata Chrzanows-Jeske - Portland State University; Mircea Stan - University of Virginia
Energy-Efficient Magnetic Circuits Based on Nanoelectronic Devices
A Variation-Aware Simulation Framework for Hybrid CMOS/Spintronic Circuits
Hybrid Polymorphic Logic Gate Using 6 Terminal Magnetic Domain Wall Motion Device
Rectified-Linear and Recurrent Neural Networks Built with Spin Devices
Cross-Layer Design and Analysis of a Low Power, High Density STT-MRAM for Embedded System

Energy Grids & Systems Time: Wednesday, May 31 (13:30-15:00) Room: Dover BC Chair(s): Chika Nwankpa - Drexel University; Xiaozhe Wang - McGill University
Implementation of Power Factor Corrector with Fractional Capacitor
Subsystem Size Optimization for Efficient Parallel Restoration of Power Systems
PMU-Based Estimation of Dynamic State Jacobian Matrix
Battery Energy Storage Dispatch Analysis Within the Storage Placement Problem
Adaptive Droop Control with Self-Adjusted Virtual Impedance for Three-Phase Inverter Under Unbalanced Conditions
Zelun Lu{1}, Wenxuan Li{1}, Zhen Li{1}, Xi Chen{2}, Herbert Ho-Ching Iu{3}, Ning Dong{1}, Xiangdong Liu{1} {1}Beijing Institute of Technology, China; {2}Global Energy Interconnection Research Institute North America, United States; {3}University of Western Australia, Australia
Brain Inspired Circuits and Systems Time: Wednesday, May 31 (13:30-15:00) Room: Grand Ballroom I Chair(s): Sankar Basu - National Science Foundation; Mona Zaghloul - George Washington University
INVITED: Implications of a Spontaneously Active Ground State for Computing with Brain-Inspired Circuits Narayan Srinivasa Intel Corporation, United States
Demonstrating Hybrid Learning in a Flexible Neuromorphic Hardware System
Calibrating Silicon-Synapse Dynamics Using Time-Encoding and Decoding Machines
Path Planning on the TrueNorth Neurosynaptic System
Low-Power, Low-Mismatch, Highly-Dense Array of VLSI Mihalas-Niebur Neurons

Digital Filters & Filter Banks Time: Wednesday, May 31 (13:30-15:00) Room: Grand Ballroom II Chair(s): Tapio Saramaki - Tampere University of Technology; Zhiping Lin - Nanyang Technological University
Roundoff Noise Minimization for 2-D Separable-Denominator Digital Filters Using Jointly Optimal High-Order Error Feedback and Realization
Design of IIR Frequency-Response Masking Filters with Near Linear Phase Using Constrained Optimization
FPGA Implementation of 2-D Wave Digital Filters for Real Time Motion Feature Extraction
Design of Cascaded Integrator-Comb Decimation Filters for Direct-RF Sampling Receivers
Design of Orthogonal Filterbanks with Rational Coefficients Using Gröbner Bases
Wireless Power & Data Transfer to Biomedical Implants Time: Wednesday, May 31 (13:30-15:00) Room: Grand Ballroom III Chair(s): Pedram Mohseni - Case Western Reserve; Mehdi Kiani - Pennsylvania State University
Inductive and Ultrasonic Wireless Power Transmission to Biomedical Implants
Transcutaneous Capacitive Wireless Power Transfer (C–WPT) for Biomedical Implants
A Wirelessly Powered High-Speed Transceiver for High-Density Bidirectional Neural Interfaces 2565 Esmaeel Maghsoudloo, Masoud Rezaei, Benoit Gosselin Université Laval, Canada
Design and Modeling of an Inductive Coupling Wireless Power Transfer Using Printed Spirals on Medical Hydrocolloid Dressings
University of Singapore, Singapore INVITED: Wireless Power Transfer: Far Field to Near Field

3D Integrated Circuits Time: Wednesday, May 31 (13:30-15:00) Room: Grand Ballroom IV Chair(s): Eby Friedman - University of Rochester; Hassan Mostafa - University of Waterloo
Hybrid Energy Harvesting in 3-D IC IoT Devices 2573 Boris Vaisband, Eby G. Friedman University of Rochester, United States
Fault Tolerant Techniques for TSV-Based Inteconnects in 3-D ICs
Open Source Cell Library Mono3D to Develop Large-Scale Monolithic 3D Integrated Circuits
Contactless Inter-Tier Communication for Heterogeneous 3-D ICs
Runtime Energy Management Under Real-Time Constraints in MPSoCs
Analog Signal Processing Time: Wednesday, May 31 (13:30-15:00) Room: Grand Ballroom VII Chair(s): Filippo Neri - u-blox, Switzerland; Nuno Paulino - UNINOVA
A High-Speed and Ultra Low-Power Subthreshold Signal Level Shifter
Analysis and Design of the Classical CMOS Schmitt Trigger in Subthreshold Operation
A Low Power Analog Voltage Similarity Circuit
Chopping in Continuous-Time Sigma-Delta Modulators
On Linear Periodically Time Varying (LPTV) Systems with Modulated Inputs, and Their Application to Smoothing Filters

Biosignal Amplifiers Time: Wednesday, May 31 (13:30-15:00) Room: Grand Ballroom IX
Chair(s): Timothy Constandinou - Imperial College London; Ross M Walker - Michigan State University
Two-Electrode Impedance-Sensing Cardiac Rhythm Monitor for Charge-Aware Shock Delivery in Cardiac Arrest
A 16-Channel CMOS Chopper-Stabilized Analog Front-End Acquisition Circuits for ECoG Detection
A Noise-Power-Area Optimized Novel Programmable Gain and Bandwidth Instrumentation Amplifier for Biomedical Applications
A 0.5V Time-Domain Instrumentation Circuit with Clocked and Unclocked ΔΣ Operation
An ECG Chopper Amplifier Achieving 0.92 NEF and 0.85 PEF with AC-Coupled Inverter-Stacking for Noise Efficiency Enhancement
Regulators & References Time: Wednesday, May 31 (13:30-15:00) Room: Grand Ballroom X Chair(s): Ayman Fayed - Ohio State University; Nathan Neihart - Iowa State University
Low Power Output-Capacitorless Class-AB CMOS LDO Regulator
A 276nW, Area-Eficient CMOS Subbandgap Reference Circuit
A Multi-Phase VCO Quantizer Based Adaptive Digital LDO in 65nm CMOS Technology
Transient-Enhanced Output-Capacitorless CMOS LDO Regulator for Battery-Operated Systems 2639 Jorge Pérez-Bailón, Alejandro Márquez, Belén Calvo, Nicolás Medrano Universidad de Zaragoza, Spain

Memristor-Based Technology & Circuits I Time: Wednesday, May 31 (13:30-15:00) Room: Laurel AB Chair(a): Vegne Keng Lei, National Chang Hairent Hairensity Mana For Chang National Taine Hua Hairensity
Chair(s): Yeong-Kang Lai - National Chung Hsing University; Meng-Fan Chang - National Tsing Hua University
Computation of Boolean Matrix Chain Products in 3D ReRAM
An RF Memristor Model and Memristive Single-Pole Double-Throw Switches
A Memristor-CMOS Hybrid Architecture Concept for on-Line Template Matching
Design of Compact Memristive in-Memory Computing Systems Using Model Counting
Cell-to-Array Thermal-Aware Analysis of Stacked RRAM
Logic Circuits & Synthesis Time: Wednesday, May 31 (13:30-15:00) Room: Laurel CD Chair(s): Kwen-Siong Chong - Nanyang Technological University; Ricardo Reis - Federal University of Rio Grand do Su
Publish-Subscribe Programming for a NoC-Based Multiprocessor System-on-Chip
Highly Parallel Bitmap-Based Regular Expression Matching for Text Analytics
Memory Partitioning-Based Modulo Scheduling for High-Level Synthesis
Search Space Reduction for the Non-Exact Projective NPNP Boolean Matching Problem
A 50Gb/s Repeater and 2×50Gb/s 2^7-1 PRBS Generator

Memory: DRAM, SRAM, ReRAM, Flash, Racetrack Time: Wednesday, May 31 (13:30-15:00)
Room: Kent AB Chair(s): Daniele Ielmini - Politecnico di Milano; Sorin Cotofana - Delft University of Technology
Area and Energy-Efficient Complementary Dual-Modular Reduncdancy Dynamic Memory for Space Applications2683
Robert Giterman, Lior Atias, Adam Teman Bar-Ilan University, Israel
Alternative Architectures Towards Reliable Memristive Crossbar Memories
Fixation Ratio of Error Location-Aware Strategy for Increased Reliable Retention Time of Flash Memory
Domain Wall Racetrack Memory for in Memory Computing
Spiking & Event-Based Systems I Time: Wednesday, May 31 (15:15-16:45) Room: Dover A Chair(s): Majid Ahmadi - University of Windsor; Chiara Bartolozzi - Istituto Italiano di Tecnologia
Obstacle Avoidance with LGMD Neuron: Towards a Neuromorphic UAV Implementation
Pipeline AER Arbitration with Event Aging
{1}Consejo Superior de Investigaciones Científicas / Universidad de Sevilla, Spain; {2}Universidad de Cádiz, Spair
Integer Factorization with a Neuromorphic Sieve
INVITED: Synaptic Integrators Implement Inhibitory Plasticity, Eliminate Loops and Create a "Winnerless" Network
James Kozloski IBM Research, United States
Ring Oscillator Based Sub-1V Leaky Integrate-and-Fire Neuron Circuit

Neuromorphic Circuits & Systems for Robotics Time: Wednesday, May 31 (15:15-16:45) Room: Dover BC
Chair(s): Scott Koziol - Baylor University; Jeff Krichmar - University of California, Irvine
A Complete Neuromorphic Solution to Outdoor Navigation and Path Planning
Effect of Synaptic Charge Convergence on Path Planning Over a Neural Network
Towards a Neuromorphic Implementation of Hierarchical Temporal Memory on SpiNNaker
Obstacle Avoidance and Target Acquisition in Mobile Robots Equipped with Neuromorphic Sensory-Processing Systems
A Population-Level Approach to Temperature Robustness in Neuromorphic Systems
Emerging Technologies in Neural System Implementations
Time: Wednesday, May 31 (15:15-16:45)
Room: Grand Ballroom I Chair(s): Chiara Bartolozzi - Istituto Italiano di Tecnologia; Jim Harkin - Ulster University
INVITED: Cognitive Computing Revolution: the Transformation of Embedded Neural Network Systems 2723 Chris Rowen Cognite Ventures, United States
Associative Search Using Pseudo-Analog Memristors
Mitigating Noise Effects in Volatile Nano-Metal Oxide Neural Detector
Reducing Circuit Design Complexity for Neuromorphic Machine Learning Systems Based on Non-Volatile
Memory Arrays

Nonlinear Dynamics of Memristor Oscillators via the Flux-Charge Analysis Method
Image Processing Time: Wednesday, May 31 (15:15-16:45) Room: Grand Ballroom II Chair(s): Omair Ahmed - Concordia University; Kai-Kuang Ma - Nanyang Technological University
Patch-Based Salient Region Detection Using Statistical Modeling in the Non-Subsampled Contourlet
Masoumeh Rezaie Abkenar, Hamidreza Sadreazami, M. Omair Ahmad Concordia University, Canada
Fast Image Super-Resolution via Randomized Multi-Split Forests
Data-Adaptive Color Image Denoising and Enhancement Using Graph-Based Filtering
Document Image Binarization via Optimized Hybrid Thresholding
Single Underwater Image Restoration Using Attenuation-Curve Prior
Low Power Digital Circuits Time: Wednesday, May 31 (15:15-16:45) Room: Grand Ballroom III Chair(s): Jun Zhou - Agency for Science, Technology and Research; Fengbo Ren - Arizona State University
Power-Precision Scalable Latch Memories
Adiabatic Capacitive Logic: a Paradigm for Low-Power Logic
Transistor Sizing Strategy for Simultaneous Energy-Delay Optimization in CMOS Buffers
Evaluation of Dual Mode Logic in 28nm FD-SOI Technology

François Stas, David Bol Université Catholique de Louvain, Belgium
Oscillators, Phase-locked Loops & Others II Time: Wednesday, May 31 (15:15-16:45) Room: Grand Ballroom IV Chair(s): Igor Filanvosky - University of Alberta; Degang Chen - Iowa State University
Design of a Low-Jitter Wideband Frequency Synthesizer for 802.11ad Wireless OFDM Systems Using a Frequency Sixtupler
Optimum Scaling of Stages in a Frequency Divider Chain for Best Jitter FoM
A 0.4V 4.8µW 16MHz CMOS Crystal Oscillator Achieving 74-Fold Startup-Time Reduction Using Momentary Detuning
Phase-Locked Loops Using Switched-Gain Control
A 69-Mbps Dual Tuning 8PSK/QPSK Transmitter Using Injection Locking and RF Phase Modulation
Sensory Circuits & Systems Time: Wednesday, May 31 (15:15-16:45) Room: Grand Ballroom VII Chair(s): Amine Bermak - Hamad Bin Khalifa University; Timothy Constandinou - Imperial College London
462-nW 2-Axis Gesture Sensor Interface Based on Capacitively Controlled Ring Oscillators
Dual Transduction Gas Sensor Based on a Surface Acoustic Wave Resonator
A Low-Power 10-Bit Multichannel Analyzer Chip for Radiation Detection
A Non-Invasive Material Sensing System and its Integrated Interface Circuits

Guoqing Fu, Sameer Sonkusale Tufts University, United States
Modeling and Design Tools Time: Wednesday, May 31 Room: Grand Ballroom X Chair(s): Filippo Neri - u-blox, Switzerland; Nuno Paulino - UNINOVA
Processes of AM-PM Distortion in Large-Signal Single-FET Amplifiers
INVITED: Weighted Kirchhoff Index of a Resistance Network and Generalization of Foster's Theorem
Formal Analysis of High-Performance Stabilized Active-Input Current Mirror
Methodology for Automated Phase Noise Minimization in RF Circuit Interconnect Trees
Analog Layout Retargeting with Process-Variation-Aware Rule-Based OPC
Nanoelectronics I Time: Wednesday, May 31 (15:15-16:45) Room: Laurel AB Chair(s): Robert Chen-Hao Chang - National Chung Hsing University/National Chi Nan University; Sorin Cotofana Delft University of Technology
A SPICE Model of the Ta2O5/TaOx Bi-Layered RRAM
Record fT, fmax, and GHz Amplification in 2Dimensional CVD MoS2 Embedded Gate Fets
High-Power Memristor Model and its Application
Exploration and Evaluation of Low-Dropout Linear Voltage Regulator with FinFET, TFET and Hybrid TFET-FinFET Implementations

of Oxide-Based RRAM for IoT Security Application
Advanced Digital Techniques Time: Wednesday, May 31 (15:15-16:45) Room: Laurel CD Chair(s): Izzet Kale - University of Westminster; Emre Salman - Stony Brook University
Time-Encoded Values for Highly Efficient Stochastic Circuits
Sense Amplifier Half-Buffer (SAHB): a Low-Power High-Performance Asynchronous Logic QDI Cell Template
Design Methodology for Voltage-Scaled Clock Distribution Networks
Optimal Single Constant Multiplication Using Ternary Adders
Future Technology for Circuits and Systems Time: Wednesday, May 31 (15:15-16:45) Room: Kent AB Chair(s): Sorin Cotofana - Delft University of Technology; Yeong-Kang Lai - National Chung Hsing University
Energy and Delay Tradeoffs of Soft Error Masking for 16nm FinFET Logic Paths: Survey and Impact of Process Variation in Near Threshold Region
SPICE Compact Modeling of Bipolar/Unipolar Memristor Switching Governed by Electrical Thresholds
Series-Parallel Charge Pump Conditioning Circuits for Electrostatic Kinetic Energy Harvesting
Insights Into Tunnel FET-Based Charge-Pumps and Rectifiers for Energy Harvesting Applications

Benchmarking TFET from a Circuit Level Perspective: Applications and Guideline	2865
Lingyi Guo, Le Ye, Cheng Chen, Qianqian Huang, Libo Yang, Zhu Lv, Xia An, Ru Huang	
Peking University, China	
AUTHOR INDEX	